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ALMOST PERIODIC SOLUTIONS OF NONLINEAR DISCRETE SYSTEMS
THAT CAN BE NOT ALMOST PERIODIC IN BOCHNER’S SENSE

V. Yu. Slyusarchuk UDC 517.929

We introduce a new class of almost periodic operators and establish the conditions of existence of almost
periodic solutions of nonlinear discrete equations. These solutions can be not almost periodic in Bochner’s
sense.

1. Basic Definitions and Notation

Let Z be the set of all integers, let G be an arbitrary additive countable group, let K be a scalar field (this
is either a real field R or a complex field C ), let E be an arbitrary Banach space over the field K with a norm
k � kE , and let L.X;X/ be a Banach space of linear continuous operators A W X ! X .X is an arbitrary
Banach space) with the norm

kAkL.X;X/ D sup
kxkXD1

kAxkX :

By M D M.G;E/; we denote the Banach space of representations x D x.g/ defined on G and taking
values from E with the norm

kxkM D sup
g2G

kx.g/kE

and the zero element 0: For each of these representations,

sup
g2G

kx.g/kE <1:

Moreover, by R.x/; we denote the set of values of the representation x D x.g/; i.e., the set fx.g/ W g 2 Gg:
In the space M; we define the operator of shift Sh , h 2 G , by the formula

.Shx/.g/ D x.g C h/; g 2 G: (1)

Definition 1. An element y 2 M is called almost periodic (in Bochner’s sense) (see [1, 2]) if the closure of

the set fShy W h 2 Gg in the space M is a compact subset of this space.

The set B of almost periodic elements of the space M is a subspace of this space with the norm

kxkB D kxkM:
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Definition 2. An operator A 2 L.M;M/ is called almost periodic (in Bochner’s sense) if the closure of the

set fShAS�h W h 2 Gg in the space L.M;M/ is compact in L.M;M/:

In what follows, to study discrete systems, we use a new class of almost periodic operators that can be not
Bochner almost periodic.

We fix an arbitrary open set D � E that may coincide with E: By KD; we denote the set of all nonempty
compact subsets K � D: For the set D1 � D; we denote the set of all elements x 2 M for each of which
R.x/ � D1 by DD1

:

Definition 3. A mapping H W DD ! M is called almost periodic if, for each set K 2 KD and each

sequence .hk/k�1 of elements of the group G; there exists a subsequence .hkl
/l�1 such that

lim
l1!1; l2!1

sup
x2DK

���Shl1
HS�hl1

x � Shl2
HS�hl2

x
���
M

D 0:

It is clear that every operator almost periodic in Bochner’s sense A 2 L.M;M/ is also almost periodic in
the sense of Definition 3. It is also clear that, in the case where D D E; the space E is finite-dimensional, and
the operator H W DD ! M is linear, Definitions 2 and 3 are equivalent. However, in the infinite-dimensional
space E; the operator H almost periodic in the sense of Definition 3 can be not almost periodic in the sense of
Definition 2 (an example of operator of this kind is presented in the next section).

2. Example of an Operator Almost Periodic According to Definition 3 but Not Bochner Almost Periodic

Assume that K D R; G D Z; D D E; and dim E D 1: By S D S.Z; E/; we denote the set of
elements of the space M.Z; E/: For each of these elements, the closure of the set of values in the space E is a
compact set. It is clear that B � S and xC y; ˛x 2 S if x; y 2 S and ˛ 2 R: Therefore, S is a vector space.

We now show that

S D S: (2)

This implies that the vector space S is a subspace of the space M:

Let x be an arbitrary element of the set S: There exists a sequence .xm/m�1 of elements of the set S such
that

lim
m!1 kxm � xkM.Z;E/ D 0: (3)

We fix an arbitrary number " > 0: In view of relation (3), for a certain number m0 2 N; we get

kxm0
� xkM.Z;E/ < ": (4)

Since xm0
2 S , the set R.xm0

/ is compact in E . Hence, for this set, there exists a finite " -grid M:

According to relation (4), the set M is a .2"/ -grid for R.x/: Then the set R.x/ is compact in view of the
arbitrariness of the choice of " > 0 and the Hausdorff theorem (see [3]).

Thus, equality (2) holds and the vector space S is a subspace of the space M:
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Further, we consider the set X D fx1; x2; : : : ; xk; : : :g � E whose elements satisfy the relation

�����

pX

lD1

ˇlxkl

�����
E

D
pX

lD1

jˇl j (5)

for any p 2 N , real numbers ˇ1; : : : ; p̌ and natural numbers k1; : : : ; kp that do not coincide with each other.
A set with the indicated property exists if, e.g., E D C 0; where C 0 is a Banach space of functions x D x.t/

bounded and continuous on R with values in R: The norm in this space is introduced as follows:

kxkC0 D sup
t2R

jx.t/j:

As the elements x1; x2; : : : ; xk; : : : ; we can take the functions sin�1t; sin�2t; : : : ; sin�kt; : : : ; respectively,
where the numbers �1; �2; : : : ; �k; : : : are linearly independent. In other words, the equality

n1�1 C n2�2 C : : :C nk�k D 0;

where n1; n2; : : : ; nk are integers, yields n1 D n2 D : : : D nk D 0 [2]. It is clear that the closure of the set X
in the space E is not compact in E:

We define an element y D y.n/ of the space M.Z; E/ by the formula

y.n/ D
º
x1 for n � 1;

xn for n � 2:
(6)

Consider a set

Y D fSmy W m 2 Zg;

where Sm is the operator of shift given by relation (1) in the case where G D Z: We also consider the linear span
span .Y / of this set, i.e., the minimal vector subspace of the space M.Z; E/ that contains the set Y . Note that
every element u 2 span .Y / is a linear combination of elements Sm1

y; : : : ; Smp
y 2 Y; i.e.,

u D
pX

kD1

ˇkSmk
y

(here, ˇ1; : : : ; p̌ are real numbers and p is a natural number). Since, by virtue of relations (5) and (6), the
following relations are satisfied for all sufficiently large natural numbers n and ! :

ku.n/ � u.nC !/kE D
�����

pX

kD1

ˇky.nCmk/ �
pX

kD1

ˇky.nC ! Cmk/

�����
E

D
�����

pX

kD1

ˇkxnCmk
�

pX

kD1

ˇkxnC!Cmk

�����
E

D 2

pX

kD1

jˇkj;
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the closure of the set of values of the nonzero element

u D u.n/ D
 

pX

kD1

ˇkSmk
y

!
.n/

of the vector subspace span .Y / is not a compact set. In other words, u 62 S if u 6D 0: It is clear that the following
limit exists:

lim
n!�1u.n/ D

 
pX

kD1

ˇk

!
x1:

We now show that the nonzero elements of the closure span .Y / of the vector subspace span .Y / in the
space M.Z; E/ have the same properties. Let z be any element from span .Y / n span .Y / and let .zk/k�1 be a
sequence of elements from span .Y / such that

lim
k!1

kzk � zkM.Z;E/ D 0: (7)

Further, we show that the following relation is true for some ˛ 2 R :

lim
n!�1 z.n/ D ˛x1: (8)

Indeed, let

lim
n!�1 zk.n/ D ˛kx1; ˛k 2 R; k � 1; (9)

where the sequence .˛k/k�1 is convergent (this requirement does not decrease the generality of our considera-
tions). In other words, for a certain number ˛ 2 R; we get

lim
k!1

˛k D ˛: (10)

It is clear that, for all n 2 Z and k � 1;

z.n/ D .z.n/ � zk.n//C .zk.n/ � ˛kx1/C .˛ka � ˛x1/C ˛x1:

Therefore,

kz.n/ � ˛x1kE � kz.n/ � zk.n/kE C kzk.n/ � ˛kx1kE C k˛kx1 � ˛x1kE ; n 2 Z; k � 1:

In view of (9), this yields that, for any k � 1;

0 � lim
n!�1 kz.n/ � ˛x1kE

� lim
n!�1 kz.n/ � zk.n/kE C lim

n!�1 kzk.n/ � ˛kx1kE C lim
n!�1 k˛kx1 � ˛x1kE
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� kz � zkkM.Z;E/ C k.˛k � ˛/x1kE :

Since these relations hold for all k � 1; relation (8) is true in view of (7) and (10).
We now show that, for an element z 2 span .Y / n span .Y /; the set R.z/ is not compact in E: Let .zk/k�1

be a sequence of elements from span .Y / for which relation (7) is satisfied. Note that, for every k � 1; there
exist numbers pk 2 N; ı1;k; : : : ; ıpk ;k 2 R; and m1;k; : : : ; mpk ;k 2 Z such that the element zk D zk.n/ can
be represented in the form

zk.n/ D
pkX

lD1

ıl;ky.nCml;k/ D
pkX

lD1

ıl;kxnCml;k

[here, we take into account relation (6)]. Thus, in view of (5), we can write

kzkkM.Z;E/ D
pkX

lD1

jıl;kj

and, for all sufficiently large numbers n; ! 2 N;

kzk.n/ � zk.nC !/kE D
�����

pkX

lD1

ıl;kxnCml;k
�

pkX

lD1

ıl;kxnC!Cml;k

�����
E

D 2

pkX

lD1

jıl;kj D 2kzkkM.Z;E/:

These equalities imply that, for all sufficiently large numbers n; ! 2 N;

kz.n/ � z.nC !/kE �kzk.n/ � zk.nC !/kE � k.z.n/ � zk.n// � .z.nC !/ � zk.nC !//kE

�kzk.n/ � zk.nC !/kE � kz.n/ � zk.n/kE � kz.nC !/ � zk.nC !/kE

�2kzkkM.Z;E/ � 2kz � zkkM.Z;E/; k � 1:

This fact, the inclusion z 2 span .Y / n span .Y /; and relation (7) imply that, for some number � > 0 and all
sufficiently large numbers n; ! 2 N;

kz.n/ � z.nC !/kE � �;

which means that the set R.z/ is not compact in the space E:
Hence, span .Y / is a subspace of the space M.Z; E/:
Consider a subspace

L D S˚ span .Y /

of the space M.Z; E/: Note that every vector x 2 L admits a unique representation in the form x D u C v;
where u 2 S and v 2 span .Y /: Indeed, if there exist two representations of this kind, namely,

x D u1 C v1;

x D u2 C v2
�
u1; u2 2 S; v1; v2 2 span .Y /

�
;
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then u1 C v1 D u2 C v2: Hence, we get the equality v1 D v2 for u1 D u2 and the equality u1 � u2 D v2 � v1
for u1 6D u2: This contradicts the inclusion u2 � u1 2 S because

v2 � v1 2 span .Y / n f0g

and the set S \
�
span .Y / n f0g

�
is empty.

Consider a linear continuous functional

 W span .fxk W k 2 Ng/! R

such that  .x1/ D 1 and k k D 1: This functional exists (see, e.g., [4]).
We define a linear functional ' W L ! R as follows: Every vector x D u C v 2 L; where u 2 S and

v 2 span .Y /; is associated with a number

'.x/ D '.u/C '.v/;

where

'.u/ D 0

and

'.u/ D  
�

lim
n!�1u.n/

�
:

This functional is continuous due to the continuity of the functional  :
By the Hahn–Banach theorem on continuation of linear continuous functionals [4], there exists a linear con-

tinuous functional l W M.Z; E/! R; such that l.x/ D '.x/ for all x 2 L and klk D k'k:
We fix an arbitrary element s 2 M nB and define a linear continuous operator C W M ! M by the formula

Cx D l.x/s; x 2 M: (11)

We now show that this operator is almost periodic in the sense of Definition 3 and is not almost periodic in the
sense of Definition 2.

Note that, in view of (11),

SmCS�mx D l.S�mx/Sms (12)

for any x 2 M.Z; E/ and

l.S�mx/ D 0

for any x 2 S: Thus, for any compact set K � E; the closure of the set fSmCS�mx W m 2 Z; x 2 DKg in
the space M.Z; E/ is compact in M.Z; E/ because this set coincides with f0g: This means that the operator
C is almost periodic in the sense of Definition 3. However, the closure of the set fSmCS�m W m 2 Zg in the
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space L.M.Z; E/;M.Z; E// is not compact in L.M.Z; E/;M.Z; E// . Indeed, by virtue of (11) and (12), the
element y specified with the help of (6) satisfies the relation

SmCS�my D Sms; m 2 Z;

and, hence,

fSmCS�m W m 2 Zgy D fSms W m 2 Zg: (13)

If the operator C is almost periodic in the sense of Definition 2, i.e., fSmCS�m W m 2 Zg is a precompact set in
the space L.M.Z; E/;M.Z; E// , then the set fSmCS�m W m 2 Zgy is precompact in the space M.Z; E/: In
view of equality (13), the set fSms W m 2 Zg should also be precompact in the space M.Z; E/: However, for
fSms W m 2 Zg; this property does not hold because the element s is not almost periodic (see Definition 1).

Hence, the construction of the operator with required properties is completed.

Remark 1. Assume that the Banach space E coincides with the space l1 D l1.N;R/ of sequences a D
.a1; a2; : : : ; ak; : : :/ each of which satisfies the inequality

1X

kD1

jakj <1

with the norm

kakl1 D
1X

kD1

jakj: (14)

As the set

X D fx1; x2; : : : ; xk; : : :g � E

used in the construction of the presented example, we can take a set QX of sequences

xk D .ık1; ık2; ık3; : : :/; k 2 N;

where ıkl is the Kronecker symbol: ıkl D 1 for k D l and ıkl D 0 for k 6D l:

Thus, it is clear that, in view of (14), the elements of the set QX satisfy relation (5).

3. Main Object of Investigations

Let � be an arbitrary domain from the space E: Consider a mapping F W D� ! M such that, for every
K 2 K�; the closure of the set fShFS�hx W h 2 G; x 2 DKg in the space M is compact in M; i.e., the
mapping F is almost periodic in the sense of Definition 3.

It is clear that, for any K 2 K and a sequence .hk/k�1 of elements of the group G; there exists a subse-

quence .hkl
/l�1 such that the sequence

�
Shkl

FS�hkl
x
�

l�1
converges uniformly on DK :
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The aim of the present work is to establish the conditions of existence of almost periodic solutions of the
equation

Fx D 0: (15)

In analyzing this equation, we use a functional defined on the set of solutions of the equation with precompact
ranges of values.

Note that difference equations are special cases of Eq. (15). Thus, in particular, this is true for the equation

xnC1 D fn.xn/; n 2 Z:

The existence of almost periodic solutions of this equation was studied by the author in [5].

4. Functional ı: Separated and Strongly Separated Solutions of Eq. .15/

We fix an arbitrary set K 2 K: By N .F; K/; we denote the set of all solutions x of Eq. (15) for each of
which R.x/ � K and R.x/ 6D K:

We now fix an arbitrary element x� 2 N .F; K/ (it is assumed that N .F; K/ 6D ¿ ) and set

r.x�; K/ D sup
¸
kx � ykE W x 2 R.x�/; y 2 K

¹
: (16)

In view of the inequality R.x/ 6D K; we get

r.x�; K/ > 0:

We also fix an arbitrary number " 2 Œ0; r.x�; K/�: By �.x�; K; "/; we denote the set of all elements y 2 M

such that

R.x� C y/ � K (17)

and

kykM � ": (18)

Similarly, we can define the set �.z; K; "/ for any other element z 2 M such that R.z/ � K:

Consider a functional

ı.x�; K; "/ D inf
y2�.x�;K;"/

��F.x� C y/
��
M
: (19)

Definition 4. A solution z 2 N .F; K/ of Eq. (15) is called separated on the set G � K if this solution is

unique on the set G � K or the following inequality is satisfied for any other solution u D u.g/ with values in

K W

inf
g2G

kz.g/ � u.g/kE � �:

Here, � is a positive constant depending only on z:
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Definition 5. A solution z 2 N .F; K/ of Eq. (15) is called strongly separated on the set G �K if

ı.z; K; "/ > 0

for every " 2 .0; r.z; K//:

It is clear that any solution z 2 N .F; K/ of Eq. (15) strongly separated on the set G �K is a solution of this
equation separated on the set G � K . At the same time, the solution z 2 N .F; K/ of Eq. (15) separated on the
set G �K can be a solution of this equation, which is not strongly separated on the set G �K (the corresponding
example is constructed in [5] for the case where G D Z ).

The applications of the functional ı to the investigation of the nonlinear equation (15) and a similar linear
equation are discussed in the next sections.

Similar functionals were used by the author in [6–8] to study nonlinear almost periodic equations,

x.t C 1/ D f .t; x.t//;

dx.t/

dt
D f .t; x.t//; t 2 R;

and

f .t; x.t// D 0; t 2 R; (20)

with a continuous mapping f W R ��! E; where � is an arbitrary domain of the space E .

5. Main Result

We now present conditions for the existence of almost periodic solutions of Eq. (15) in which, unlike the well-
known Amerio theorem on almost periodic solutions of nonlinear differential equations, the H -class of Eq. (15)
is not used (see [9, 10]).

Let ƒ be a bounded subset of the space E . We define the diameter diam ƒ of the set ƒ by the equality

diam ƒ D supfkx � ykE W x; y 2 ƒg:

Theorem 1. If the solution z 2 N .F; K/ of Eq. (15), where K 2 K; is such that diam R.z/ 6D 0 and

ı.z; K; "/ > 0 (21)

for any " 2 .0; r.z; K//; then this solution is almost periodic.

Remark 2. The solution z 2 N .F; K/ of Eq. (15) for which diam R.z/ D 0 is stationary and, hence, almost
periodic.

Proof. We assume that the solution z 2 N .F; K/ of Eq. (15) is not an element of the space B: Then there
exists a sequence

�
Shpz

�
p�1

(here, hp 2 Z; p � 1 ) for which every subsequence
�
Skpz

�
p�1

is divergent.
Hence, for some sequences of natural numbers .pr/r�1 and .qr/r�1 and a number � 2 .0; diamR.z//; we get

��Skpr
z � Skqr

z
��
M

� �; r � 1: (22)
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Note that

diamR.z/ � r.z; K/:

Without loss of generality, we can assume that the sequence

�
SkpFS�kpx

�
p�1

is uniformly convergent on DK : Thus,

lim
p;q!1 sup

x2DK

��SkpFS�kpx � Skq
FS�kq

x
��
M

D 0: (23)

Consider the elements

yr D Skpr
z � Skqr

z; r � 1;

of the space M: It is clear that

yr 2 �.Skqr
z; K; �/; r � 1: (24)

We now show that

ı.z; K; �/ D 0: (25)

In view of relations (19) and (24) and the fact that

Skpr
Fz D 0; r � 1;

the following relations hold for every r � 1 :

ı.z; K; �/ D inf
y2�.z;K;�/

kF.zC y/kM D inf
y2�.Skqr

z;K;�/
kSkqr

F.zC S�kqr
y/kM

D inf
y2�.Skqr

z;K;�/
kSkqr

FS�kqr
.Skqr

zC y/kM � kSkqr
FS�kqr

.Skqr
zC yr/kM

D kSkqr
FS�kqr

.Skqr
zC .Skpr

z � Skqr
z//kM D kSkqr

FS�kqr
Skpr

zkM

� kSkpr
FS�kpr

Skpr
zkM C kSkqr

FS�kqr
Skpr

z � Skpr
FS�kpr

Skpr
zkM

D kSkpr
FzkM C kSkqr

FS�kqr
Skpr

z � Skpr
FS�kpr

Skpr
zkM

D kSkqr
FS�kqr

Skpr
z � Skpr

FS�kpr
Skpr

zkM
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� sup
x2DK

��Skqr
FS�kqr

x � Skpr
FS�kpr

x
��
M
:

By virtue of (23), this yields relation (25), which contradicts (21).
Hence, the assumption that the solution z 2 N .F; K/ of Eq. (15) is not almost periodic is wrong.
Theorem 1 is proved.

Note that the validity of relation (21) means that the solution z 2 N .F; K/ of Eq. (15) is strongly separated
on the set G �K: Hence, this theorem can be formulated in the following form:

Theorem 2. Let K belong to K: If the solution z 2 N .F; K/ of Eq. (15) is strongly separated on the set

G �K; then this solution is almost periodic.

Remark 3. The condition of strong separability of a bounded solution of Eq. (15) is not a condition necessary
for this solution to belong to the space B (this is a sufficient condition). The solution of Eq. (15) can be almost
periodic but not separated on the set G �K; which is confirmed by the difference equation

xnC1 D xn; n 2 Z:

6. The Case of Linear Equation .15/

Consider an equation

Ax D h; (26)

where

A W M ! M

is a linear operator continuous and almost periodic in the sense of Definition 3 (this operator can be not Bochner
almost periodic), and h 2 B:

Since Eq. (26) is a special case of Eq. (15) (the operator F is defined by the formula

Fx D Ax � h; x 2 M /;

the following assertion is true by virtue of Theorem 2:

Theorem 3. Let K belong to K: The solution z of Eq. (26) strongly separated on the set G �K is almost

periodic.

We now present the conditions of strong separability of the solution z of Eq. (26) on G �K:
Consider the linear homogeneous equation

Ax D 0 (27)

corresponding to Eq. (26).

Theorem 4. Let K belong to K: The solution z of Eq. (26) with values in K is strongly separated on

G �K iff the trivial solution 0 of Eq. (27) is strongly separated on G �K:
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Proof. Since z is a solution of Eq. (26), every element u of the space M for which

A.zC u/ D h;

is a solution of Eq. (27), i.e.,

Au D 0;

and vice versa. If we now use the definitions of the set �.x�; K; "/ [see (17) and (18)] and the functional
ı.x�; K; "/ [see (19)], then, in the case of linear equations, we conclude that, for any " 2 .0; r.z; K// [see (16)],

inf
y2�.z;K;"/

kA.zC y/ � hkM D inf
y2�.0;K;"/

kAykM > 0:

In other words, for all " 2 .0; r.z; K//; we find

ı.z; K; "/ D ı.0; K; "/ > 0:

This yields the assertion of the theorem.
Theorem 4 is proved.

Theorem 5. If

inf
x2S; kxkMD1

kAxkM > 0; (28)

then every solution z 2 S of Eq. (26) is almost periodic.

Proof. Since z 2 S , we get

R.z/ � K

for some K 2 K: Thus, in view of (28) and the linearity of the operator A; we find

inf
x2S; R.x/�K; kxkMD"

kAxkM > 0

for every " 2 .�.z; K/; r.z; K/�; where

�.z; K/ D inf
¸
kx � ykE W x 2 R.x�/; y 2 K

¹

and, hence,

inf
x2S; R.x/�K; kxkM�"

kAxkM > 0

for any " 2 .0; r.z; K/�: In view of the last relation, the trivial solution 0 of Eq. (27) is strongly separated on
G �K: Therefore, by virtue of Theorem 4, the solution z 2 S of Eq. (26) is also strongly separated on G �K:

Hence, by Theorem 3, the solution z 2 S of Eq. (26) is almost periodic.
Theorem 5 is proved.
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Remark 4. The set of equations almost periodic in the sense of Definition 3 (for which it is possible to apply
the theorems from Sections 5 and 6) is nonempty. An element of this set is, e.g., the equation

xC Cx D h; (29)

where

C W M.Z; E/! M.Z; E/

is a linear continuous operator defined by relation (11) and h is an almost periodic element of the space M.Z; E/:

It is clear that the operator I C C , where

I W M.Z; E/! M.Z; E/

is the identity operator, is almost periodic in the sense of Definition 3 but is not Bochner almost periodic.
Since h 2 S and Cy D 0 for any y 2 S; Eq. (29) has a unique solution x in the space S that coincides

with h and is strongly separated [according to Definition 5 and the definition of the functional � (see (19))] on
each set Z �K; where K is an arbitrary compact set in E for which R.h/ � K:

In conclusion, we note that the presented conditions for the existence of almost periodic solutions of Eqs. (15)
and (26) are new even in the case G D Z: Unlike the Amerio theorem, the H -class of Eq. (15) is not used
in Theorems 1 and 2 and the Banach space E can be infinite-dimensional. Similarly, in Theorems 3 and 5, the
H -class of Eq. (26) is also not used and the operator A can be not Bochner almost periodic.

We also note that there are numerous works devoted to the investigation of almost periodicity of the solutions
of equations. We now mention only a part of these publications. For ordinary linear differential equations, the
first theorems on almost periodic solutions were proved by Favard [11]. For the nonlinear differential equations,
theorems of this sort were obtained by Amerio [9]. In the cited works, the H -classes of the analyzed equations
were essentially used. Moreover, the requirement of separability of bounded solutions of the equations was also
used in [9]. Favard’s results were improved by Mukhamadiev [12, 13]. The Mukhamadiev theorems were later
generalized in [14–16]. In this direction, significant results were also obtained by Levitan [2], Amerio [17], and
Zhikov [18]. The conditions of almost periodicity of bounded solutions of nonlinear difference and differential
equations, as well as of Eq. (20), were established by the author (without using the H -classes of these equations)
in [5–8].
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