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ON CONVERGENCE OF THE ACCELERATED NEWTON METHOD UNDER 
GENERALIZED LIPSCHITZ CONDITIONS 

S. М. Shakhno  UDC 519.6 

We study the problem of local convergence of the accelerated Newton method for the solution of non-
linear functional equations under generalized Lipschitz conditions for the first- and second-order Fréchet 
derivatives.  We show that the accelerated method is characterized by the quadratic order of conver-
gence and compare it with the classical Newton method. 

Introduction 

Consider a nonlinear functional equation 

 F(x) = 0 , (1) 

where  F(x)   is a nonlinear operator acting from a Banach space  X   into a Banach space  Y .  The classical 
Newton method [3, 4] is the most popular and commonly used method for the solution of Eq. (1).  A new meth-
od obtained as a modification of the Newton method was proposed in [1].   In the same paper, its semilocal con-
vergence (under Kantorovich-type conditions) was investigated, and the class of problems for which this new 
method converges faster than the Newton method was outlined. 

Assume that the following representation is true for a nonlinear operator  ϕ   in the Banach space  X :  

 F(x) ≡ x − ϕ(x) = 0 . (2) 

The iterative process for the solution of Eq. (2) has the form 

 
 
xk+1 = xk − ′F

xk + ϕ(xk )
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
−1
F(xk ), k = 0,1,2,… , (3) 

where  x0   is the initial value.  Method (3) is a special case of the one-parameter class of methods 

   xk+1 = xk − [ ′F ((1− µ)xk + µϕ(xk ))]
−1F(xk ), k = 0,1,2,… , (4) 

studied in [2].  As shown in [2], method (4) for the value of the parameter  µ = 0.5 ,  i.e., method (3), is especial-
ly efficient.  Method (3) was studied fairly comprehensively in [7] under the classical conditions imposed on the 
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first- and second-order derivatives.  Method (4) was also investigated in [11] but the results were obtained under 
different (severer) conditions.  

In the investigations of the Newton method, it is proposed [10] to use generalized Lipschitz conditions for 
the operator of derivative in which a positive integrable function is used instead of a constant L .  In [9], we 
propose to use similar generalized Lipschitz conditions for the operator of divided difference of the first order 
and, under these conditions, study the convergence of the secant method.  In [6], we study the convergence of 
the Steffensen method for the operator equations under generalized Lipschitz conditions imposed on the first 
divided differences of the nonlinear operator  F(x) .  The analysis of inexact methods was carried out in [5] un-
der generalized Lipschitz conditions for the first-order divided differences.  The problem of convergence of the 
inexact Newton method under a different generalized Lipschitz condition for the first-order derivative was in-
vestigated in [8]. 

In the present work, we consider method (3) under generalized Lipschitz conditions for the first- and se-
cond-order derivatives. 

Definition and Auxiliary Lemmas 

We denote by   B(x0 ,r) = {x : x − x0 < r}    an open ball and by   B(x0 ,r) = {x : x − x0 ≤ r}   a closed ball 
of radius  r   centered at a point  x0 . 

The condition 

 F(x)− F(xτ ) ≤ L x − xτ ∀ x, xτ ∈D  

imposed on the operator F  is called a Lipschitz condition in the domain D  with constant L .  If the domain D   
is a ball B(x0 ,r)  of radius r  centered at x0  and x ∈B(x0 ,r) , then the segment xτ = x0 + τ(x − x0 ) , 0 ≤ τ ≤ 1 ,  
connects points  x   and  x0   of the ball  B(x0 ,r) .  In this case, the condition 

 F(x)− F(xτ ) ≤ L x − xτ ∀ x ∈B(x0 ,r), 0 ≤ τ ≤ 1 , (5) 

is called the radius Lipschitz condition in the ball  B(x0 ,r)   with constant  L . 
At the same time, the condition 

 F(x)− F(x0 ) ≤ L x − x0 ∀ x ∈B(x0 ,r)  (6) 

is called the center Lipschitz condition in a ball  B(x0 ,r)   with constant  L . 
However, the parameter  L   in the Lipschitz conditions is not necessarily constant but can be a positive in-

tegrable function.  In this case, we replace (5) and (6) with  

 F(x)− F(xτ ) ≤ L(u)du
τρ(x )

ρ(x )

∫ ∀ x ∈B(x0 ,r), 0 ≤ τ ≤ 1 , (7) 

and 
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 F(x)− F(x0 ) ≤ L(u)du
0

ρ(x )

∫ ∀ x ∈B(x0 ,r) , (8) 

respectively.  The Lipschitz conditions (7) and (8) are called the generalized Lipschitz conditions or the condi-
tions with average  L . 

By using the Banach theorem [3], we arrive at the following result: 

Lemma 1.  Suppose that  F   has a continuous derivative in the ball  B(x∗,r) ,  there exists  ′F (x∗ )−1 ,  and 
the derivative  ′F   satisfies the center Lipschitz condition with average  L : 

 ′F (x∗ )−1 ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟
− ′F (x∗ )⎛

⎝⎜
⎞
⎠⎟

≤ L(u)du
0

ρ x+y
2

⎛
⎝⎜

⎞
⎠⎟

∫ ∀ x, y ∈B(x∗,r) , (9) 

where  L   is a positive integrable function and  ρ(x) = x − x∗ .  Let  r  satisfy the condition 

 L(u)du
0

r

∫ ≤ 1 . (10) 

Then  ′F (x)   is invertible in the ball  B(x∗,r)   and, moreover, 

 ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ ) ≤ 1− L(u)du
0

ρ x+y
2

⎛
⎝⎜

⎞
⎠⎟

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

. 

Proof.  Indeed, in view of the identity 

 ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ ) = I − I − ′F (x∗ )−1 ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−1
 

and inequalities (9) and (10), it follows from the Banach theorem that  

 ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ ) ≤ 1− L(u)du
0

ρ x+y
2

⎛
⎝⎜

⎞
⎠⎟

∫
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

. 

Lemma 2 [5].  Let   

 h(t ) = 1
t L(u)du
0

t

∫ ,      0 ≤ t ≤ r , 
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where  L(u)   is a positive integrable function monotonically nondecreasing on   [0,r ] .  Then  h(t )   is a mono-
tonically nondecreasing function of  t . 

Lemma 3.  Let 

 g(t ) = 1
t 3

N (u)(t − u)2 du
0

t

∫ , 0 ≤ t ≤ r , 

where  N (u)   is a positive integrable function monotonically nondecreasing on    [0,r ] .  Then  g(t )   is a mono-
tonically nondecreasing function of  t . 

Proof.  Indeed, it follows from the monotonicity of  N   for  0 < t1 < t2   that 

 g(t2 )− g(t1) =
1
t2
3 N (u)(t2 − u)

2 du
0

t2

∫ − 1
t1
3 N (u)(t1 − u)

2 du
0

t1

∫  

  = 1
t2
3 N (u)(t2 − u)

2 du
t1

t2

∫ + 1
t2
3 N (u)(t1 − u)

2 du
0

t1

∫ − 1
t1
3 N (u)(t1 − u)

2 du
0

t1

∫  

  = 1
t2
3 N (u)(t2 − u)

2 du
t1

t2

∫ + 1
t2
3 −

1
t1
3

⎛

⎝⎜
⎞

⎠⎟
N (u)(t1 − u)

2 du
0

t1

∫  

  ≥ N (t1)
1
t2
3 (t2 − u)

2 du
t1

t2

∫ + 1
t2
3 −

1
t1
3

⎛

⎝⎜
⎞

⎠⎟
(t1 − u)

2 du
0

t1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  = N (t1)
1
t2
3 (t2 − u)

2 du
0

t2

∫ − 1
t1
3 (t1 − u)

2 du
0

t1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 . 

Hence,  

 g(t ) = 1
t 3

N (u)(t − u)2 du
0

t

∫ , 0 ≤ t ≤ r , 

is a monotonically nondecreasing function of  t .  

Convergence of the Accelerated Newton Method 

We now study the local convergence of method (3).  The radius of the domain of convergence and the order 
of convergence of this method are established by the following theorem:  
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Theorem 1.  Let  F   be a nonlinear operator defined in an open convex domain  D   of the space  X   with 
values in this space.  Assume that 

 (і) F(x) = 0   has a solution  x∗ ∈D ;    at this point  x∗ ,  there exists a Fréchet derivative  ′F (x∗ ) ,  and 
it is invertible; 

 (іі) there exist Fréchet derivatives  ′F   and  ′′F   in  B(x∗,Mr)   satisfy the Lipschitz conditions with av-
erage  L  and  M: 

 ′F (x∗ )−1( ′F (x)− ′F (x∗ )) ≤ L(u)du
0

ρ(x )

∫ , (11) 

 ′F (x∗ )−1( ′′F (x)− ′′F (y)) ≤ N (u)du
0

x−y

∫ , (12) 

  where  x, y ∈B(x∗,r) ,  ρ(x) = x − x∗ ,  and L   and  N  are positive nondecreasing functions  ; 

 (ііі)  
′ϕ (x) ≤ α,   M = max{1,α}  ∀ x ∈B(x∗,r) ; 

 (іv) r > 0   satisfies the inequality 

 
1
8 N (u)(r − u)2 du + r L(u)du

0

αr /2
∫0

r
∫

r 1− L(u)du
0

(1+α )r /2
∫( ) ≤ 1 . (13) 

Then the accelerated Newton method converges for all  x0 ∈B(x∗,r) ,  and 

 ρ(xn+1) = xn+1 − x∗ ≤ (Aρ(xn )+Cα)ρ(xn )
2 ≤ (Aρ(x0 )+Cα)ρ(xn )

2  

  
 
≤ q
ρ(x0 )

ρ(xn )
2 ≤… ≤ q2

n+1−1ρ(x0 ), n = 0,1,2,… , (14) 

where  

 A =
N (u)(ρ(x0 )− u)

2 du
0

ρ(x0 )∫
8 1− L(u)du

0

(1+α )ρ(x0 )/2∫( )ρ(x0 )3 , 
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 C =
L(u)du

0

αρ(x0 )/2∫
1− L(u)du

0

(1+α )ρ(x0 )/2∫( )αρ(x0 ) , 

 q = Aρ(x0 )
2 +Cαρ(x0 ) < 1 . (15) 

Proof.  We choose arbitrary  x0 ∈B(x∗,r) ,  where  r   satisfies inequality (13).  Then  q   defined by (15) 
is smaller than 1.  Indeed, since  L   and  N   are monotone, it follows from Lemmas 2 and 3 that   

 1
t L(u)du

0

t
∫       and      1

t 3
N (u)(t − u)2 du

0

t
∫   

are nondecreasing as functions of  t .  Hence, 

 

 

q =
N (u)(ρ(x0 )− u)

2 du
0

ρ(x0 )∫ ρ(x0 )
2

8ρ(x0 )
3 1− L(u)du

0

(1+α )ρ(x0 )/2∫( ) +
L(u)du

αρ(x0 )
20

αρ(x0 )/2∫
αρ(x0 )

2 1− L(u)du
0

(1+α )ρ(x0 )/2∫( )
 

  

 

≤
N (u)(r − u)2 duρ(x0 )

2
0

r
∫
8r3 1− L(u)du

0

(1+α )r/2
∫( ) +

L(u)du
αρ(x0 )

20

αr/2
∫

αr
2 1− L(u)du

0

(1+α )r/2
∫( )  

  

  

≤ 1
r

N (u)(r − u)2 du
0

r
∫

8r 1− L(u)du
0

(1+α )r//2
∫( ) +

L(u)du
0

αr//2
∫

1− L(u)du
0

(1+α )r//2
∫( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ρ(x0 )  

  ≤
ρ(x0 )
r < 1.  (16) 

If  xk ∈B(x∗,r) ,  then, according to (5), we find 

 xk+1 − x∗ = xk − x∗ − ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1
F(xk )  

  = ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1

′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟ (xk − x∗ )− F(xk )+ F(x∗ )⎡

⎣⎢
⎤
⎦⎥
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  = ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ ) ′F (x∗ )−1 ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟ (xk − x∗ )− F(xk )+ F(x∗ )⎡

⎣⎢
⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟  

  = ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ ) ′F (x∗ )−1 ′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
(xk − x∗ )− F(xk )+ F(x∗ )

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
 

   + ′F (x∗ )−1 ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟ −

′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥(xk − x* )

⎞

⎠⎟
. 

We now write the identity from Lemma 1 in [12, p. 336] for  ω = 1
2 : 

 F(x)− F(y)− ′F x + y
2

⎛
⎝⎜

⎞
⎠⎟
(x − y)  

  = 1
4 (1− t ) ′′F x + y

2 + t
2 (x − y)⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢0

1

∫ − ′′F x + y
2 + t

2 (y − x)⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
(x − y)(x − y)dt . 

Taking  x = x∗ ,  y = x   in this equality, we obtain  

 ′F (x∗ )−1 F(x∗ )− F(xk )− ′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
(x∗ − xk )

⎡

⎣
⎢

⎤

⎦
⎥  

  = 1
4 (1− t ) ′F (x∗ )−1 ′′F

xk + x∗

2 + t
2 (x

∗ − xk )
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

0

1

∫  

   − ′′F
xk + x∗

2 + t
2 (xk − x∗ )

⎛

⎝⎜
⎞

⎠⎟
(x∗ − xk )(x

∗ − xk )
⎤

⎦
⎥dt  

  ≤ 1
4 (1− t ) N (u)du xk − x∗

2
dt

0

t xk −x
∗

∫
0

1

∫  

  = 1
8 1− u

xk − x∗
⎛

⎝
⎜

⎞

⎠
⎟

2

N (u)du xk − x∗
2

0

xk −x
∗

∫  
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  = 1
8 N (u)(ρ(xk )− u)

2 du
0

ρ(xk )

∫ . 

Thus, according to Lemmas 1–3 and conditions (11) and (12), in view of the last inequality, we get 

 xk+1 − x∗ ≤ ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ )  

  × ′F (x∗ )−1 ′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
(xk − x∗ )− F(xk )+ F(x∗ )

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
 

   + ′F (x∗ )−1 ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟ −

′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥(xk − x∗ )

⎞

⎠⎟
 

  ≤ ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟
−1

′F (x∗ )  

  × 1
4 (1− t )

0

1

∫ ′F (x∗ )−1 ′′F
xk + x∗

2 + t
2 (xk − x∗ )

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎛

⎝
⎜  

   − ′′F
xk + x∗

2 + t
2 (x

∗ − xk )
⎛

⎝⎜
⎞

⎠⎟
⎤

⎦
⎥(xk − x∗ )(xk − x∗ ) dt  

   + ′F (x∗ )−1 ′F
xk + ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟ −

′F
xk + x∗

2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥(xk − x∗ )

⎞

⎠⎟
 

  ≤
N (u)(ρ(xk )− u)

2 du
0

ρ(xk )∫ ρ(xk )
3

8 1− L(u)du
0

ρ
xk +ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟∫

⎛

⎝
⎜

⎞

⎠
⎟ ρ(xk )

3
+

L(u)du
0

ρ(ϕ(xk ))/2∫ ρ(xk )
ρ(ϕ(xk ))

2

1− L(u)du
0

ρ
xk +ϕ(xk )

2
⎛
⎝⎜

⎞
⎠⎟∫

⎛

⎝
⎜

⎞

⎠
⎟
ρ(ϕ(xk ))

2

 

  ≤
N (u)(ρ(x0 )− u)

2 du
0

ρ(x0 )∫ ρ(xk )
3

8 1− L(u)du
0

(1+α )ρ(x0 )/2∫( )ρ(x0 )3 +
L(u)du

0

αρ(x0 )/2∫ ρ(xk )
αρ(xk )

2

1− L(u)du
0

(1+α )ρ(x0 )/2∫( )αρ(x0 )2

 

  ≤ (Aρ(xk )+Cα)ρ(xk )
2 ≤ (Aρ(x0 )+Cα)ρ(xk )

2 ≤ q
ρ(x0 )

ρ(xk )
2 . (17) 
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We also write the following estimate: 

 ϕ(xk+1)− x∗ = ϕ(xk+1)− ϕ(x
∗ )  

   ≤ ′ϕ (xk+1 + θ(xk+1 − x∗ )) xk+1 − x∗  

   ≤ α xk+1 − x∗ , 0 ≤ θ ≤ 1 . (18) 

Setting  k = 0   in estimates (17) and (18 ), we obtain 

 x1 − x∗ ≤ q x0 − x∗ < x0 − x∗ , 

 ϕ(x1)− x∗ ≤ α x1 − x∗ < M x1 − x∗ ≤ M x0 − x∗ . 

Hence,  x1   and  ϕ(x1)   belong to the ball  B(x∗,αr) .  This means that we can repeat (17) infinitely many 

times.  Therefore, by induction, all  xk ,  ϕ(xk )∈B(x∗,αr) ,  whereas   

 ρ(xk ) = xk − x∗       and      ρ(ϕ(xk )) = ϕ(xk )− x∗  

are monotonically decreasing. 
Further, for all  k = 0,1,… ,  we have 

 
 
xk+1 − x∗ ≤ q

ρ(x0 )
ρ(xk )

2 = q
ρ(x0 )

xk − x∗
2
≤ … ≤ q2

k+1−1 x0 − x∗ . 

Thus, estimate (14) is proved.  

The domain of uniqueness of the solution can be found by analogy with [10]. 
In studying the Newton method, it is usually assumed that derivatives satisfy the Lipschitz conditions.  If we 

suppose that  L   and  N   are constant, then we obtain the following corollary of Theorem 1:  

Corollary 1.  Assume that  F(x∗ ) = 0   and  F   has the first- and second-order continuous derivatives in  

B(x∗,Mr) .  Suppose that  ′F (x∗ )−1   exists and that ′F (x∗ )−1 ′F (x)   and  ′F (x∗ )−1 ′′F (x)   satisfy the Lipschitz 
conditions 

 ′F (x∗ )−1( ′F (x)− ′F (x∗ )) ≤ L x − x∗ , 
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 ′F (x∗ )−1( ′′F (x)− ′′F (y)) ≤ N x − y , 

where  x, y ∈B(x∗,Mr) ,  ′ϕ (x) ≤ α,  and   M = max{1,α} ∀ x ∈B(x∗,r) . 
Let  r > 0   satisfy the equation 

 Nr2
12 + L(1+ 2α)r − 2 = 0 . 

Then the accelerated Newton method (3) converges for all  x0 ∈B(x∗,r)   and inequality (14) is true for 

 q =
Lα + N

12 x0 − x∗

2 − L(1+α) x0 − x∗
x0 − x∗ . 

Comparing the obtained value of  q   with the quantity  

 qN =
L x0 − x∗

2 1− L x0 − x∗( )   

introduced for the Newton method in [10], we conclude that  q   (for  α < 1   and a sufficiently close initial ap-
proximation) is lower than  qN   and, hence, the order of convergence of the accelerated Newton method is 
greater in this case. 

CONCLUSIONS 

In [9], we have studied the local convergence of the Newton method in the case where the generalized Lip-
schitz conditions (in which a certain positive integrable function is used instead of the Lipschitz constant) are 
satisfied for the first-order derivatives.  In the present work, we study the local convergence of the accelerated 
version of this method under generalized Lipschitz conditions for the first- and second-order derivatives.  It is 
shown that, under certain conditions, the proposed method converges faster than the Newton method. 
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