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Using scalar functions, we describe flows of incompressible viscous two-velocity fluids in

the case of the pressure balance and substances of constant volume saturation. We derive

a system of differential equations for these scalar functions an illustrate the method by

an example. Bibliography: 5 titles. Illustrations: 1 figure.

1 Equations of Two-Velocity Hydrodynamics

with One Pressure

In this paper, we use the method of [1]. A nonlinear two-velocity model of the fluid flow through

a deformable porous medium was constructed in [2, 3]. The two-velocity two-fluid hydrodynamic

theory with the pressure balance was developed in [4]. In the isothermic case, the equations of

motion of a two-velocity medium in a dissipative system with one pressure has the form (cf. [4]):

∂ρ

∂t
+ div (ρ̃ṽ + ρv) = 0,

∂ρ̃

∂t
+ div (ρ̃ṽ) = 0, (1)

∂v

∂t
+ (v,∇)v = −∇p

ρ
+ νΔv +

ρ̃

2ρ
∇(ṽ − v)2 + f , (2)
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∂ṽ

∂t
+ (ṽ,∇)ṽ = −∇p

ρ
+ ν̃Δṽ − ρ

2ρ
∇(ṽ − v)2 + f , (3)

where ṽ and v are the velocity vectors of subsystems forming a two-velocity continuum with

densities ρ̃ and ρ respectively, ν and ν̃ are the corresponding kinematic viscosities, ρ = ρ̃+ρ is the

common density and p = p(ρ, (ṽ − v)2) is the equation of state for the two-velocity continuum,

f is the vector of mass force per unit mass. We write Equations (2) and (3) in the equivalent

form

∂v

∂t
+

1

2
∇(v2)− v × rotv = −∇p

ρ
+ νΔv +

ρ̃

2ρ
∇(ṽ − v)2 + f , (4)

∂ṽ

∂t
+

1

2
∇(ṽ2)− ṽ × rotṽ = −∇p

ρ
+ ν̃Δṽ − ρ

2ρ
∇(ṽ − v)2 + f . (5)

From these equations we can derive other equations describing change of vortex in time. For

this purpose we apply the operator rot to both sides of Equations (4) and (5):

∂ Ω

∂t
− rot (v × Ω) = −rot

(∇p

ρ

)

+ νΔ Ω+ rot

(

ρ̃

2ρ
∇(ṽ − v)2

)

+ rotf ,

∂ ˜Ω

∂t
− rot

(

ṽ × ˜Ω
)

= −rot

(∇p

ρ

)

+ ν̃Δ ˜Ω− rot

(

ρ

2ρ
∇(ṽ − v)2

)

+ rotf .

Using formulas of vector analysis, we find

∂ Ω

∂t
− rot (v × Ω) =

1

ρ2
(∇ρ×∇p) + νΔ Ω+

1

2

(

∇
(

ρ̃

ρ

)

×∇(ṽ − v)2
)

+ rotf , (6)

∂ ˜Ω

∂t
− rot

(

ṽ × ˜Ω
)

=
1

ρ2
(∇ρ×∇p) + ν̃Δ ˜Ω− 1

2

(

∇
(

ρ

ρ

)

×∇(ṽ − v)2
)

+ rotf . (7)

2 Scalar Description of Three-Dimensional Vortex Flows

In this section, we present a scalar description of three-dimensional vortex flows of two-

velocity hydrodynamics in an incompressible medium under the condition that the volume sat-

uration is constant. If the mass forces are absent (f = 0), then Equations (1)–(3) have the

solution v = 0, ṽ = 0, ρ = ρ0, ρ̃ = ρ̃0, p = p0 for a mixture of fluids at rest with the uniform

pressure p = p0, partial densities ρ0, ρ̃0, and temperature T . In the case of homogeneous media,

i.e., ρf = const and ρ̃f = const , where ρf , ρ̃f are the phase physical densities provided that

the volume saturation is constant for substances forming the two-phase continuum, we have

ρ = const and ρ̃ = const which implies div v = 0 and divṽ = 0 which is equivalent to the

relations v = rotA and ṽ = rot˜A, where A and ˜A are the corresponding vector potentials of

velocities v and ṽ. In other words, v and ṽ are solenoidal vectors. Because of the gradient

invariance of the vector potential, one of its components can be made zero without loss of gen-

erality. Following [1], we assume that divA = 0 and div ˜A = 0. This assumption restricts the

class of flows under consideration. Then two-component vector potentials are written in terms

of scalar functions σ(x, y, z, t) and σ̃(x, y, z, t) as

A =
∂σ

∂y
i− ∂σ

∂x
j,

˜A =
∂σ̃

∂y
i− ∂σ̃

∂x
j.
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Hence the vorticity fields are also two-component ones. Indeed, since

Ω = rotv = rotrotA = −ΔA+∇divA,

˜Ω = rotṽ = rotrot˜A = −Δ˜A+∇div ˜A,

we have

Ω = −∂Δσ

∂y
i+

∂Δσ

∂x
j,

˜Ω = −∂Δσ̃

∂y
i+

∂Δσ̃

∂x
j.

Moreover, the velocity fields remain to be three-dimensional

v =
∂2σ

∂x∂z
i+

∂2σ

∂y∂z
j−

(

∂2σ

∂x2
+

∂2σ

∂y2

)

k =
∂2σ

∂x∂z
i+

∂2σ

∂y∂z
j+

(

∂2σ

∂z2
−Δσ

)

k,

ṽ =
∂2σ̃

∂x∂z
i+

∂2σ̃

∂y∂z
j−

(

∂2σ̃

∂x2
+

∂2σ̃

∂y2

)

k =
∂2σ̃

∂x∂z
i+

∂2σ̃

∂y∂z
j+

(

∂2σ̃

∂z2
−Δσ̃

)

k.

Since the third component of the vorticity field is absent, the projection of (4) and (5) on the

z-axis yields rot(v × Ω) = 0 and rot(ṽ × ˜Ω) = 0 which implies

J

(

Δσ,
∂2σ

∂z2

)

= 0, ˜J

(

Δσ̃,
∂2σ̃

∂z2

)

= 0,

where J(f, g) ≡ fxgy − fygx. From these relations we find

Δσ = −H

(

∂2σ

∂z2

)

, Δσ̃ = − ˜H

(

∂2σ̃

∂z2

)

,

where H and ˜H are arbitrary functions. It is convenient to introduce the functions

Φ(x, y, z, t) =
∂σ

∂z
, ˜Φ(x, y, z, t) =

∂σ̃

∂z
.

Then the velocity fields are represented as

v =
∂Φ

∂x
i+

∂Φ

∂y
j+

[

∂Φ

∂z
+H

(

∂Φ

∂z

)]

k = ∇Φ+H

(

∂Φ

∂z

)

k, (8)

ṽ =
∂˜Φ

∂x
i+

∂˜Φ

∂y
j+

[

∂˜Φ

∂z
+ ˜H

(

∂˜Φ

∂z

)]

k = ∇˜Φ+ ˜H

(

∂˜Φ

∂z

)

k. (9)

In the special case

H

(

∂Φ

∂z

)

≡ 0, ˜H

(

∂˜Φ

∂z

)

≡ 0,

the velocity fields are potentials and the functions Φ(x, y, z, t), ˜Φ(x, y, z, t) are hydrodynamic

potentials. Following [1], we call such functions quasipotentials.
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The vorticity fields are expressed in terms of quasipotentials as follows:

Ω =
∂H

∂x
i− ∂H

∂y
j = H

′ ∂

∂z

(

∂Φ

∂x
i− ∂Φ

∂y
j

)

, (10)

˜Ω =
∂ ˜H

∂x
i− ∂ ˜H

∂y
j = ˜H

′ ∂

∂z

(

∂˜Φ

∂x
i− ∂˜Φ

∂y
j

)

, (11)

where the prime means the differentiation of H and ˜H with respect to the corresponding vari-

ables. The equations of continuity are written in the form

ΔΦ+
∂H

∂z
= 0, (12)

Δ˜Φ+
∂ ˜H

∂z
= 0 (13)

or

ΔΦ +H
′ ∂2Φ

∂z2
= 0, (14)

Δ˜Φ+ ˜H
′ ∂2

˜Φ

∂z2
= 0. (15)

In the case of homogeneous media, substituting (6), (7) into (4), (5), for the first two components

we find the motion integrals

∂Φ

∂t
+

(∇Φ)2

2
+

∫

HdΦz = −p

ρ
+ νΔΦ− F +R(z, t)

+
ρ̃

2ρ
[(Φx − ˜Φx)

2 + (Φy − ˜Φy)
2 + (Φz − ˜Φz +H − ˜H)2], (16)

∂˜Φ

∂t
+

(∇˜Φ)2

2
+

∫

˜Hd˜Φz = −p

ρ
+ ν̃Δ˜Φ− F + ˜R(z, t)

− ρ

2ρ
[(Φx − ˜Φx)

2 + (Φy − ˜Φy)
2 + (Φz − ˜Φz +H − ˜H)2], (17)

where F (x, y, z, t) is the potential of mass forces and R(z, t), ˜R(z, t) are arbitrary functions

defined by the boundary conditions. From these equations we find

∂(ρΦ+ ρ̃˜Φ)

∂t
+

ρ(∇Φ)2 + ρ̃(∇˜Φ)2

2
+ ρ

∫

HdΦz + ρ̃

∫

˜Hd˜Φz + p+ ρF

= νρΔΦ+ ν̃ρ̃Δ˜Φ+ ρR(z, t) + ρ̃ ˜R(z, t). (18)

From the third components of the velocities (5), (6) for quasipotentials we have

H
′ ∂

∂z

(

∂Φ

∂t
+

(∇Φ)2

2
+

∫

HdΦz

)

= νΔH − ∂R

∂z
, (19)

˜H
′ ∂

∂z

(

∂˜Φ

∂t
+

(∇˜Φ)2

2
+

∫

˜Hd˜Φz

)

= ν̃Δ ˜H − ∂ ˜R

∂z
, (20)
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The system (14), (15) is a generalization of the Bernoulli equation for two-velocity hydrody-

namics. It becomes the known Bernoulli equation for potential flows [1] if the velocities and

densities of the phases coincide, R, ˜R depend only on time, and

H

(

∂Φ

∂z

)

≡ 0, ˜H

(

∂˜Φ

∂z

)

≡ 0.

Using (16), we can find the pressure field provided that the quasipotentials are known for given

functions H
(∂Φ

∂z

)

and ˜H
(∂˜Φ

∂z

)

. Thus, to find the velocity fields and the corresponding vorticity

fields and pressure, we need to solve the system (10), (11), (17), (18) for quasipotentials and

then apply Equations (6)–(9) and (16).

To illustrate the above approach, we consider the case of linear functions H(Φz) and ˜H(˜Φz),

i.e., H(Φz) = λΦz and ˜H(˜Φz) = ˜λ˜Φz. Then Equations (12), (13), (17), (18) take the form

ΔΦ+ λΦzz = 0, (21)

∂Φ

∂t
+

(∇Φ)2

2
+

λ

2
(Φz)

2 + λν
∂2Φ

∂z2
= −R(z, t)

λ
+Q(x, y, t), (22)

Δ˜Φ+ ˜λ˜Φzz = 0, (23)

∂˜Φ

∂t
+

(∇˜Φ)2

2
+

˜λ

2
(˜Φz)

2 + ˜λν̃
∂2

˜Φ

∂z2
= −

˜R(z, t)

˜λ
+ ˜Q(x, y, t), (24)

where Q(x, y, t) and ˜Q(x, y, t) are arbitrary functions.

In [1], for the system (19)–(22) solutions of three type were constructed:

I. Solutions of the form

Φ(x, y, z, t) = e−νλk2t(Ae−kz +Bekz) sin(αx+ βy),

˜Φ(x, y, z, t) = e−ν̃˜λ˜k2t( ˜Ae−˜kz + ˜Be
˜kz) sin(α̃x+ ˜βy)

with λ > 0, ˜λ > 0, α2 + β2 = (1 + μ)k2, α̃2 + ˜β2 = (1 + ˜λ)˜k2, and

R(z, t) = −λ

2
(α2 + β2)e−2νλk2t(Ae−kz +Bekz)2,

Q(x, y, t) = −2AB(α2 + β2)e−2νλk2t sin2(αx+ βy),

˜R(z, t) = −
˜λ

2
(α̃2 + ˜β2)e−2ν̃˜λ˜k2t( ˜Ae−˜kz + ˜Be

˜kz)2,

˜Q(x, y, t) = −2 ˜A ˜B(α̃2 + ˜β2)e−2ν̃˜λ˜k2t sin2(α̃x+ ˜βy).

II. Solutions of the form

Φ(x, y, z, t) = eνλk
2t(Ae−(αx+βy) +Beαx+βy) sin kz,

˜Φ(x, y, z, t) = eν̃
˜λ˜k2t( ˜Ae−(α̃x+˜βy) + ˜Beα̃x+

˜βy) sin˜kz
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with −1 < λ < 0, −1 < ˜λ < 0, α2 + β2 = (1 + λ)k2, α̃2 + ˜β2 = (1 + ˜λ)˜k2, and

R(z, t) = −2λAB(α2 + β2)e2νλk
2t cos2 kz,

Q(x, y, t) =
1

2
(α2 + β2)e2νλk

2t(Ae−(αx+βy) +Beαx+βy)2,

˜R(z, t) = −2˜λ ˜A ˜B(α̃2 + ˜β2)e2ν̃
˜λ˜k2t cos2 ˜kz,

˜Q(x, y, t) =
1

2
(α̃2 + ˜β2)e2ν̃

˜λ˜k2t( ˜Ae−(α̃x+˜βy) + ˜Beα̃x+
˜βy)2.

III. Solutions of the form

Φ(x, y, z, t) = Aeνλk
2t sin(αx+ βy) sin kz,

˜Φ(x, y, z, t) = ˜Aeν̃
˜λ˜k2t sin(α̃x+ ˜βy) sin˜kz

with λ < −1, ˜λ < −1, α2 + β2 = −(1 + λ)k2, α̃2 + ˜β2 = −(1 + ˜λ)˜k2, and

R(z, t) = −λ

2
A2(α2 + β2)e2νλk

2t sin2 kz,

Q(x, y, t) = −A2

2
(α2 + β2)e2νλk

2t sin2(αx+ βy),

˜R(z, t) = −
˜λ

2
˜A2(α̃2 + ˜β2)e2ν̃

˜λ˜k2t sin2 ˜kz,

˜Q(x, y, t) = −
˜A2

2
(α̃2 + ˜β2)e2ν̃

˜λ˜k2t sin2(α̃x+ ˜βy).

A solution of type III can be regarded as a doubly periodic Kolmogorov flow [5]. Rotating

the coordinates about the z-axis, we can assume that the solution depends only on x in the

x, y–plane. Therefore, without loss of generality we set β = 0. Moreover, the velocity fields

contain two components x and z:

v = αAe2νλk
2t

[

cosαx sin kzi+
1

√−(1 + λ)
sinαx cos kzk

]

,

ṽ = α̃ ˜Ae2ν̃
˜λ˜k2t

[

cos α̃x sin ˜kzi+
1

√

−(1 + ˜λ)
sin α̃x cos ˜kzk

]

,

whereas the vorticity fields have only one y-component:

Ω = −λαAe2νλk
2t cosαx sin kzj,

˜Ω = −˜λα̃ ˜Ae2ν̃
˜λ˜k2t cos α̃x sin ˜kzj.

Ignoring the external forces, setting F (x, y, z, t) ≡ 0, and using (16), we find the pressure

p = ρ
(αA)2

2
e2νλk

2t[sin2 αx− (1 + λ) sin2 kz] + ρ̃
(α̃ ˜A)2

2
e2ν̃

˜λ˜k2t[sin2 α̃x− (1 + ˜λ) sin2 ˜kz].
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The figure presents the flow fields in the viscous case for ν = 0 and λ = −1,25. The opposite

flow fields are colored by black and white. Since the solution is periodic in the x, z-plane, we

can extract an elementary cell such that its lateral boundary can be assumed to be solid. In the

case of the absence of viscosity, it is required only that the normal velocity components vanish

on the walls, which is valid for solutions of type III.

More complicated examples of flows can be constructed by matching solutions of type I–III.

Other classes of flows can be constructed by choosing suitable nonlinear H(Φz) and ˜H(˜Φz).

References

1. Yu. A. Stepanyants and E. I. Yakubovich, “Scalar description of three-dimensional vortex
flows of an incompressible fluid” [in Russian], Dokl. RAN 436, No. 6, 764–767 (2011);
English transl.: Dokl. Phys. 56, No. 2, 130–133 (2011).

2. V. N. Dorovskii, “Continuum theory of filtration” [in Russian], Geolog. Geophys. No. 7,
39–45 (1989).

3. V. N. Dorovskii and Yu. V. Perepechko, “Phenomenological description of two-speed medium
with relaxing shear stresses” [in Russian], Prikl. Mekh. Tekhn. Fiz. No. 3, 97–104 (1992);
English transl.: J. Appl. Mech. Tech. Phys. 33, No. 3, 403–409 (1992).

4. V. N. Dorovskii and Yu. V. Perepechko, “The theory of partial melting” [in Russian], Geolog.
Geophys. No. 9, 56–64 (1989).

5. A. M. Obukhov, “Kolmogorov flow and laboratory simulation of it” [in Russian], Usp. Mat.
Nauk 38, No. 4, 101–111 (1983); English transl.: Rus. Math. Surv. 38, No. 4, 113 (1983).

Submitted on May 28, 2012

766


	Abstract
	1 Equations of Two-Velocity Hydrodynamicswith One Pressure
	2 Scalar Description of Three-Dimensional Vortex Flows
	References

