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FORMAL MATRICES AND THEIR DETERMINANTS

P. A. Krylov and A. A. Tuganbaev UDC 512.552+512.64

Abstract. In the present paper, we study formal matrix rings over a given ring and determinants of such
matrices.

In Secs. 1–4, some general properties of formal matrix rings are presented. In Secs. 5–9, formal
matrix rings over a given ring are considered. We formulate and study the realization problem (or
the characterization problem), the classification problem, and the isomorphism problem of such rings.
Then we introduce the notion of the determinant of a formal matrix over a commutative ring. To such
determinants, we extend the main properties of the ordinary determinant of matrices over commutative
rings.

All rings are assumed to be associative and with nonzero identity element. If R is a ring, then J(R)
is the Jacobson radical of R and Z(R) is the center of R. In this paper, we use standard notions and the
notation of ring theory (see, e.g., [24, 25]).

1. Construction of Formal Matrix Rings of Order 2

Given two rings R and S, an R-S-bimodule M , and an S-R-bimodule N , we denote by K the set of
all matrices of the form (

r m
n s

)
, where r ∈ R, s ∈ S, m ∈ M, n ∈ N.

With respect to the matrix addition, K is an Abelian group. To turn K into a ring, we need to know how
to calculate “the product” mn ∈ R and “the product” nm ∈ S. This can be done correctly as follows.
We assume that there are bimodule homomorphisms ϕ : M ⊗S N → R and ψ : N ⊗R M → S. We set
ϕ(m ⊗ n) = mn and ψ(n ⊗ m) = nm for all m ∈ M and n ∈ N . Now we can multiply matrices in K as
matrices in ordinary matrix rings:(

r m
n s

) (
r1 m1

n1 s1

)
=

(
rr1 + mn1 rm1 + ms1

nr1 + sn1 nm1 + ss1

)
, r, r1 ∈ R, s, s1 ∈ S, m, m1 ∈ M, n, n1 ∈ N.

Note that rm1, ms1, nr1, and sn1 are the corresponding module products. We also assume that for all
m, m′ ∈ M and n, n′ ∈ N , the associativity relations (mn)m′ = m(nm′) and (nm)n′ = n(mn′) hold. Then
the set K is a ring with respect to the mentioned addition and multiplication operations. When verifying
ring axioms, we also need to take into account the main properties of tensor products and the property
that ϕ and ψ are bimodule homomorphisms. The converse is also true: if K is a ring, then the mentioned
associativity relations are true. The ring K is called a formal matrix ring (of order 2); it is denoted by(

R M
N S

)
.

The term “a ring of generalized matrices” is also used. Sometimes, we simply write “the matrix ring.”
If N = 0 or M = 0, then K is a ring of formal upper or lower triangular matrices(

R M
0 S

)
and

(
R 0
N S

)
,

respectively. To define such rings, the homomorphisms ϕ and ψ are not required.
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The images I and J of the homomorphisms ϕ and ψ are ideals of rings R and S, respectively. They
are called trace ideals of the ring K. We say that K is a ring with zero trace ideals or a trivial ring
provided ϕ = 0 = ψ, i.e., I = 0 = J . Obviously, the ring of formal triangular matrices is a ring with zero
trace ideals.

We denote by MN (NM) the set of all finite sums of elements of the form mn (respectively, nm).
We have the relations

I = MN, J = NM, IM = MJ, NI = JN.

How shall the problem of the study of formal matrix rings be correctly formulated? It is natural to
consider the study of the ring (

R M
N S

)

as the study of the dependence of properties of this ring on properties of the rings R and S, the bimodules
M and N , and the homomorphisms ϕ and ψ.

Sometimes, it is convenient to identify matrices with corresponding elements. For example, we can
identify the matrix (

r 0
0 0

)

with the element r ∈ R, and so on. We use similar conventions for sets of matrices. For example, the set
of matrices (

X Y
0 0

)

is presented in the form (X, Y ) (or simply X provided Y = 0). Similar rules act for matrices with zero
upper row.

If M = 0 = N , then the ring K can be identified with the direct product R × S. Usually, we assume
that the product R × S is a matrix ring.

Let K be some formal matrix ring (
R M
N S

)
.

Using the convention on representations of matrices, we have the relation

K =
(

eKe eK(1 − e)
(1 − e)Ke (1 − e)K(1 − e)

)
, (1.1)

where

e =
(

1 0
0 0

)
.

Under such approach, the action of the corresponding homomorphisms ϕ and ψ coincides with the mul-
tiplication in the ring K.

In a certain sense, the converse is true. Namely, let an abstract ring T contain an idempotent e that
is not equal to 0 or 1. We can form the formal matrix ring

K =
(

eTe eT (1 − e)
(1 − e)Te (1 − e)T (1 − e)

)
.

The rings T and K are isomorphic to each other. The correspondence

t →
(

ete et(1 − e)
(1 − e)te (1 − e)t(1 − e)

)
, t ∈ T,

defines the corresponding isomorphism.
Let K be some formal matrix ring presented in the form (1.1). It is easy to describe the structure of

ideals and the factor rings of the ring K; also, see the end of Sec. 4 and Propositions 6.3 and 6.4.
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If L is an ideal of the ring K, then it is directly verified that L coincides with the set of matrices(
eLe eL(1 − e)

(1 − e)Le (1 − e)L(1 − e)

)
,

where eLe and (1−e)L(1−e) are ideals in the rings R and S, respectively, and eL(1−e) and (1−e)Le are
subbimodules in M and N , respectively. Subgroups that are placed in one of four positions in L coincide
with sets of corresponding components of elements in L.

We form the group of matrices K̄:(
(eKe)/(eLe)

(
eK(1 − e)

)
/
(
eL(1 − e)

)
(
(1 − e)Ke

)
/
(
(1 − e)Le

) (
(1 − e)K(1 − e)

)
/
(
(1 − e)L(1 − e)

)
)

.

In fact, we have the formal matrix ring K̄ (we consider formal matrix rings in the agreed general sense).
The multiplication of matrices in K̄ is induced by the multiplication in K. It is directly verified that the
mapping

K/L → K̄,

(
r m
n s

)
+ L →

(
r̄ m̄
n̄ s̄

)

is a ring isomorphism, where the overline denotes the corresponding residue class.
A concrete formal matrix ring is defined with the use of two bimodule homomorphisms ϕ and ψ. The

choice of another pair of homomorphisms generally leads to another ring. We can formulate the problem
on classification of formal matrix rings depending on corresponding pairs of bimodule homomorphisms.
To this problem, the following Isomorphism Problem is related.

Let K and K1 be two formal matrix rings with bimodule homomorphisms ϕ, ψ and ϕ1, ψ1, respec-
tively. Which interrelations between homomorphisms ϕ, ψ and ϕ1, ψ1 are necessary and sufficient for an
isomorphism K ∼= K1 to exist?

How many formal matrix rings exist? It follows from the above that the class of formal matrix rings
coincides with the class of rings that have nontrivial idempotents (if we consider direct products of rings
as matrix rings).

The class of formal matrix rings also coincides with the class of endomorphism rings of modules that
are decomposable into direct sums. Indeed, let G = A ⊕ B be a right module over some ring T . The
endomorphism ring of G is isomorphic to the matrix ring(

EndT (A) HomT (B, A)
HomT (A, B) EndT (B)

)

with ordinary operations of addition and multiplication of matrices (we consider the composition of
homomorphisms as the product of the homomorphisms). Conversely, for the ring

K =
(

R M
N S

)

we can present the decomposition KK = (R, M) ⊕ (N, S) into the direct sum of right ideals and verify
that the ring EndK(K) is isomorphic to the ring(

R M
N S

)
.

There are many classes of rings that do not necessarily have a matrix origin but are close to formal
matrix rings. In particular, there are various triangular matrix rings. In [5], the authors study so-called
trivial extensions of rings defined as follows. If R is a ring and M is an R-R-bimodule, then we denote
by T the direct sum of Abelian groups R and M :

T = {(r, m) | r ∈ R, m ∈ M}.
The group T turns into a ring if the multiplication is defined by the relation (r, m)(r1, m1) =
(rr1, rm1 + mr1). This ring is a trivial extension of the ring R by the bimodule M .
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Now we consider the triangular matrix ring(
R M
0 R

)

and its subring

Γ =
{(

r m
0 r

)∣∣∣∣ r ∈ R, m ∈ M

}
.

The rings T and Γ are isomorphic to each other under the correspondence

(r, m) →
(

r m
0 r

)
.

Thus, trivial extensions consist of triangular matrices.
Each ring of formal triangular matrices (

R M
0 S

)

is a trivial extension. Indeed, we can consider M as an (R × S)-(R × S)-bimodule, by assuming that
(r, s)m = rm and m(r, s) = ms. We take the trivial extension

T =
{(

(r, s), m
) ∣∣ r ∈ R, s ∈ S, m ∈ M}

of the ring R × S. The correspondence (
r m
0 s

)
→ (

(r, s), m
)

defines an isomorphism of the rings K and T . However, there exists a class of triangular matrix rings
containing all trivial extensions. Let f : R → S be a ring homomorphism. In the ring(

R M
0 S

)
,

all matrices of the form (
r m
0 f(r)

)

form a subring.
We present a more general construction of ring extensions (see [19]). Let M be an R-R-bimodule and

let Φ: M ⊗R M → R be some R-R-bimodule homomorphism. We define a multiplication in R ⊕ M by
the relation

(r, m)(r1, m1) = (rr1 + Φ(m ⊗ m1), rm1 + mr1).

This multiplication is associative if and only if

Φ(m ⊗ m1)m2 = mΦ(m1 ⊗ m2) (1.2)

for all m, m1, m2 ∈ M . In this case, R ⊕ M is a ring. This ring is denoted by R ×Φ M ; it is called
a semitrivial extension of the ring R by M and Φ.

The formal matrix rings are semitrivial extensions. Let(
R M
N S

)

be a formal matrix ring with bimodule homomorphisms ϕ and ψ. We set T = R × S and V = M × N .
We consider V as a natural T -T -bimodule. We denote by Φ the T -T -bimodule homomorphism

(ϕ, ψ) : V ⊗T V → T.
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It satisfies the corresponding relation (1.2). Consequently, we have a semitrivial extension T ×Φ V . The
rings T ×Φ V and (

R M
N S

)

are isomorphic to each other under the correspondence

(r, s) + (m, n) →
(

r m
n s

)
.

On the other hand, every semitrivial extension can be embedded in a suitable formal matrix ring. Indeed,
let T ×Φ V be a semitrivial extension. The relation that corresponds to (1.2) means that there exists
a formal matrix ring (

T V
V T

)
.

The bimodule homomorphisms of the ring coincide with Φ. The mapping

T ×Φ V →
(

T V
V T

)
, (t, v) →

(
t v
v t

)

is a ring embedding. Thus, we can identify T ×Φ V with the matrix ring of the form(
t v
v t

)
.

Let T be some commutative ring. If the rings R and S are T -algebras, then the ring

K =
(

R M
N S

)

also is a T -algebra. In this case, we say that K is a formal matrix algebra.

2. Examples of Formal Matrix Rings of Order 2

We present some examples of formal matrix rings.
(1) Let M be a right module over some ring S, R = End(MS), and let M∗ = Hom(MS , SS). Then

M is an R-S-bimodule and M∗ is an S-R-bimodule, where

(sα)m = sα(m), (αr)m = α
(
r(m)

)
, α ∈ M∗, s ∈ S, r ∈ R, m ∈ M.

There exist an R-R-bimodule homomorphism ϕ : M ⊗S M∗ → R and an S-S-bimodule homomorphism
ψ : M∗ ⊗R M → S that are defined by the relations(

ϕ
(∑

mi ⊗ αi

))
(m) =

∑
miαi(m), ψ

(∑
αi ⊗ mi

)
=

∑
αi(mi),

where mi, m ∈ M and αi ∈ M∗. For ϕ and ψ, two associativity laws are true. Consequently, we obtain
the matrix ring (

R M
M∗ S

)
.

(2) Let R be a ring, X be a left ideal in R, Y be a right ideal in R, and let S be any subring in R
such that Y X ⊆ S ⊆ X ∩ Y . Then (

R X
Y S

)

is a formal matrix ring such that the actions of mappings ϕ and ψ are reduced to the multiplication in R.
As a special case, we obtain the ring (

R Re
eR eRe

)
,

where e is some idempotent.
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(3) Let R be a ring, Y be a right ideal in R, and let S be any subring in R containing Y as an ideal.
Then S is called a subidealizator of the ideal Y in R, and(

R R
Y S

)

is a matrix ring.
(4) Endomorphism rings of Abelian groups. Let G be an Abelian group that is a direct sum of groups

A and B. Then the endomorphism ring End(G) of G is a formal matrix ring (see Sec. 1). Abelian groups
provide many interesting and useful examples of formal matrix rings. First of all, these are triangular
matrix rings. Thus, endomorphism rings of the groups Q⊕ Z, Z(pn) ⊕ Z, and Z(p∞) ⊕Q are isomorphic
to the rings (

Q Q

0 Z

)
,

(
Zpn Zpn

0 Z

)
, and

(
Ẑp Ap

0 Q

)
,

respectively, where Ẑp is the ring of p-adic integers and Ap is the field of p-adic numbers.
The endomorphism ring of the p-group Z(pn) ⊕ Z(pm), n < m, is an informative illustration to the

notion of a formal matrix ring. It can be identified with the formal matrix ring(
Zpn Zpn

Zpn Zpm

)
.

We denote this ring by K or (
R M
N S

)
.

How are matrices multiplied in the ring K? First of all, we remark that Zpn = Zpm/(pm−n · 1).
Therefore, the rings R and S act on M and N by an ordinary, uniquely possible method. Further, we pass
to homomorphisms ϕ : M⊗S N → R and ψ : N⊗RM → S. If we consider K as the original endomorphism
ring, then the action of ϕ and ψ coincides with the composition of corresponding homomorphisms. Taking
this into account, we obtain the following property. If ā ∈ M and b̄ ∈ N , where the over-line denotes the
residue class, then

ϕ(ā ⊗ b̄) = ā ◦ b̄ = pm−nāb̄.

Further, we have
ψ(b̄ ⊗ ā) = b̄ ◦ ā = pm−nb̄ā,

where the last symbols b̄ and ā denote the residue classes in Zpm with representatives b and a.
We obtain that the trace ideals I and J of the ring K are equal to (pm−n ·1) and (pm−n ·1), respectively.

Therefore, we have I ⊆ J(R) and J ⊆ J(S). There exists a surjective homomorphism e : S → R with
e(ȳ) = ȳ, ȳ ∈ S. In addition, Ker(e) ⊆ J(S) and the relation e(b̄ ◦ ā) = ā ◦ b̄ holds.

In [3], the case n = 1, m = 2 is considered in detail. In the ring K, all invertible matrices are
described. This is used for constructing a cryptosystem.

(5) Complete matrix rings. Let R be some ring. The complete matrix ring M(n, R) can be represented
in the form of a formal matrix ring of order 2

M(n, R) =
(

R M(1 × (n − 1), R)
M

(
(n − 1) × 1, R

)
M(n − 1, R)

)
.

This ring is an example of a block matrix ring. A more general situation will appear in the proof of
Proposition 3.3 and in the first paragraph after this proof.

(6) See [4]. Let R be a ring, G be a finite subgroup of the automorphism group of the ring R, and let
RG be the ring of invariants of the ring R, i.e., RG is the subring

{x ∈ R | xg = x for all g ∈ G}.
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We consider the skew group ring R ∗ G consisting of all formal sums of the form∑
g∈G

rgg, rg ∈ R.

The sums are added componentwise; for multiplication, we use the distributivity law and the relation
rg · sh = rsg−1

gh for all r, s ∈ R and g, h ∈ G. It is clear that R is a left RG-module and a right
RG-module. We can also consider R as a left and right R ∗ G-module as follows: for any two elements
x =

∑
g∈G

rgg ∈ R ∗ G and r ∈ R, we set

x · r =
∑
g∈G

rgr
g−1

, r · x =
∑
g∈G

(rrg)g.

The mappings
ϕ : R ⊗R∗G R → RG, ψ : R ⊗RG R → R ∗ G

are defined with the use of the relations

ϕ(x ⊗ y) =
∑
g∈G

(xy)g, ψ(y ⊗ x) =
∑
g∈G

yxg−1
g,

respectively.
Two associativity conditions hold; as a result, we obtain the ring(

RG R
R R ∗ G

)
.

3. Formal Matrix Rings of Order n ≥ 2

We present several remarks about formal matrix rings of arbitrary order n. To understand how we
must define such rings, the case n = 2, which was considered in Sec. 1, is sufficient.

We fix a positive integer n ≥ 2. Let R1, . . . , Rn be rings, Mij be Ri-Rj-bimodules, and let Mii = Ri,
i, j = 1, . . . , n. For all i, j, k = 1, . . . , n such that i 
= j and j 
= k, we assume that an Ri-Rk-bimodule
homomorphism

ϕijk : Mij ⊗Rj Mjk → Mik

is defined. For subscripts i = j and j = k, we assume that ϕiik and ϕikk are canonical isomorphisms

Ri ⊗Ri Mik → Mik, Mij ⊗Rj Rj → Mij .

Instead of ϕijk(a ⊗ b), we write a ◦ b or ab. We also assume that, in this notation, (ab)c = a(bc) for all
elements a ∈ Mij , b ∈ Mjk, c ∈ Mkl, and subscripts i, j, k, l.

We denote by K the set of all matrices (aij) of order n with values in bimodules Mij . With respect
to standard matrix operations of addition and multiplication, K is a ring. It can be presented in the form⎛

⎜⎜⎝
R1 M12 . . . M1n

M21 R2 . . . M2n

. . . . . . . . . . . .
Mn1 Mn2 . . . Rn

⎞
⎟⎟⎠ . (3.1)

We say that K is a formal matrix ring of order n. If Mij = 0 for all i, j with i < j (j < i), then we say
that there exists a ring of formal lower (respectively, upper) triangular matrices.

To better understand the structure of formal matrix rings, we clarify their relations to idempotents
and endomorphism rings.

Proposition 3.1. A ring K is a formal matrix ring of order n ≥ 2 if and only if K contains a complete
orthogonal system consisting of n nonzero idempotents.
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Proof. If K is a formal matrix ring of order n, then the matrix units E11, . . . , Enn (see Sec. 5) form the
required system of idempotents of the ring K.

Conversely, if {e1, . . . , en} is a complete orthogonal system of nonzero idempotents of some ring T ,
then T is isomorphic to the formal matrix ring⎛

⎜⎜⎝
e1Te1 e1Te2 . . . e1Ten

e2Te1 e2Te2 . . . e2Ten

. . . . . . . . . . . .
enTe1 enTe2 . . . enTen

⎞
⎟⎟⎠ ;

see Sec. 1 about such rings.

The case of direct sums of two modules, which was considered in Sec. 1, can be generalized to direct
sums of any finite number of summands.

Proposition 3.2. The class of formal matrix rings of order n coincides with the class of endomorphism
rings of modules that are decomposable into direct sums of n nonzero summands.

Formal matrix rings of any order n can appear in concrete problems. In the general theory, matrix
rings of order 2 are usually studied; the main reason is a technical convenience. In a certain sense, the
case n > 2 can be sometimes reduced to the case of matrices of order 2.

Proposition 3.3. Any formal matrix ring of order n > 2 is isomorphic to some formal matrix ring of
order k for each k = 2, . . . , n − 1.

Proof. The assertion becomes quite understandable if we consider a representation of matrix rings with
the use of idempotents or endomorphism rings (see Propositions 3.1 and 3.2). It is sufficient to “enlarge”
idempotents or direct summands by a certain method. Of course, there also exists a direct proof. For
example, we take k = 2. We introduce the following notation for sets of matrices. We set R = R1,
M = (M12, . . . , M1n),

N =

⎛
⎜⎝

M21
...

Mn1

⎞
⎟⎠ , S =

⎛
⎝ R2 M23 . . . M2n

. . . . . . . . . . . .
Mn2 Mn3 . . . Rn

⎞
⎠ .

Here S is a formal matrix ring of order n− 1, M is an R-S-bimodule, N is an S-R-bimodule, and module
multiplications are defined as products of rows and columns on matrices. The homomorphisms ϕijk,
defining the multiplication in K, induce bimodule homomorphisms ϕ : M⊗S N → R and ψ : N⊗RM → S.
In addition, two required associativity laws are true. As a result, we have the formal matrix ring(

R M
N S

)

and the isomorphism

K ∼=
(

R M
N S

)
.

The isomorphism is obtained by decomposing each matrix into four blocks:⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

(
a11

) (
a12 . . . a1n

)
⎛
⎝a21

. . .
an1

⎞
⎠

⎛
⎝a22 . . . a2n

. . . . . . . . .
an2 . . . ann

⎞
⎠

⎞
⎟⎟⎠ .

In the proof of the proposition, we practically obtain that formal matrices can be decomposed into
blocks, which is similar to the case of ordinary matrices; i.e., we can represent formal matrices in the form
of block matrices. We perform actions over block matrices with the use of the rules that coincide with
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the rules for the case where we have single elements instead of the blocks. The multiplication of block
matrices of the same order is always possible provided cofactors have the same block decompositions.

Thus, every formal matrix ring can be considered as a ring of (formal) block matrices. Rings of block
upper (lower) triangular matrices naturally appear. The rings of (formal) block matrices are used in the
theory of finite-dimensional algebras. In particular, rings of block triangular matrices over fields naturally
appear in this theory.

Conversely, there exist several constructions that allow us to use a given formal matrix ring for
constructing formal matrix rings of higher order. We consider the first method.

Given a formal matrix ring of the form (3.1), we fix some sequence of positive integers s1, . . . , sn. We
denote by M̄ij the set of si × sj matrices with elements in Mij (we recall that Mii = R). Further, let K̄
be the set of all block matrices (M̄ij), i, j = 1, . . . , n. We define operations of addition and multiplication
of these matrices as usual. This means that the addition is componentwise; about the multiplication, we
remark that Aij ·Ajk ∈ M̄ik for all matrices Aij ∈ M̄ij and Ajk ∈ M̄jk. Then K̄ turns into a ring of formal
block matrices; in addition, K̄ is a formal matrix ring of order s1 + · · · + sn.

In what follows, we use the second easy method of constructing formal matrix rings of larger order.
Given a formal matrix ring K of order 2,

K =
(

R M
N S

)
,

we show that there exists a formal matrix ring

K4 =

⎛
⎝ K

(
M
S

)
(
N S

)
S

⎞
⎠ .

First of all, (
M
S

)

is a natural K-S-bimodule, and (
N S

)
is an S-K-bimodule. The mapping

ϕ :
(

M
S

)
⊗S

(
N S

) → K,

(
m
x

)
⊗ (n, y) →

(
mn my
xn xy

)

is a K-K-bimodule homomorphism, and the mapping

ψ :
(
N S

) ⊗K

(
M
S

)
→ S, (n, y) ⊗

(
m
x

)
→ nm + yx

is an S-S-bimodule homomorphism. There are two familiar associativity relations for ϕ and ψ from Sec. 1.
Consequently, the mentioned ring K4 exists. The ring

K2 =

⎛
⎝ K

(
R
N

)
(
R M

)
R

⎞
⎠

is similarly defined. Now we remark that the ring

L =
(

S N
M R

)

always exists, along with the ring K. These rings are isomorphic to each other under the correspondence(
r m
n s

)
→

(
s n
m r

)
.
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Therefore, in addition to the rings K4 and K2, there exist rings K3 and K1 that are isomorphic to K4

and K2, respectively. However, we can also construct them directly.

4. Some Ideals of Formal Matrix Rings

For a formal matrix ring of order n, we find the Jacobson radical and the prime radical. First, we
consider the case n = 2.

Given a ring

K =
(

R M
N S

)
,

we define four subbimodules of the bimodules M and N . We set

Jl(M) = {m ∈ M | Nm ⊆ J(S)}, Jr(M) = {m ∈ M | mN ⊆ J(R)},
Jl(N) = {n ∈ N | Mn ⊆ J(R)}, Jr(N) = {n ∈ N | nM ⊆ J(S)}.

Now we form the following sets of matrices:

Jl(K) =
(

J(R) Jl(M)
Jl(N) J(S)

)
, Jr(K) =

(
J(R) Jr(M)
Jr(N) J(S)

)
.

It is directly verified that we obtain a left ideal and a right ideal of the ring K.

Theorem 4.1 ([20]). The following relations hold:

Jl(K) = J(K) = Jr(K).

Proof. We have

J(K) =
(

X B
C Y

)
,

where X and Y are ideals of the rings R and S, respectively, and B and C are subbimodules in M and N ,
respectively (see Sec. 1). The following relations hold:

X = eJ(K)e = J(eKe) = J(R), where e =
(

1 0
0 0

)
.

Similarly, we obtain that Y = J(S). Further, we have

B ⊆ Jl(M) ∩ Jr(M), C ⊆ Jl(N) ∩ Jr(N).

It is proved that J(K) ⊆ Jl(K) ∩ Jr(K).
Now we take an arbitrary matrix (

r m
n s

)

in Jr(K) and the identity matrix E. The matrices

E −
(

r m
0 0

)
, E −

(
0 0
n s

)

are right invertible in K. Their right inverse matrices are matrices(
x xm
0 1

)
,

(
1 0
yn y

)
,

respectively, where x and y are right inverse elements for 1− r and 1− s, respectively. Consequently, the
matrices (

r m
0 0

)
,

(
0 0
n s

)
,

(
r m
n s

)

are contained in J(K). Therefore, Jr(K) ⊆ J(K). Similarly, we have that Jl(K) ⊆ J(K).
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We obtain that Jl(M) = Jr(M) and Jl(N) = Jr(N). These ideals are denoted by J(M) and J(N),
respectively. Thus, we have the relation

J(K) =
(

J(R) J(M)
J(N) J(S)

)
.

For an arbitrary ring T , the intersection of all prime ideals of T is called the prime radical ; it is
denoted by P (T ).

It is well known that the prime radical of the ring T coincides with the set of all strongly nilpotent
elements of T . We recall that an element a ∈ T is said to be strongly nilpotent if all terms of each sequence
a0, a1, a2, . . . such that

a0 = a, an+1 ∈ anTan, n ∈ N,

are equal to zero, beginning with some number.
We define ideals Pl(M), Pr(M), Pl(N), and Pr(N) that are similar to the ideals Jl(M), Jr(M), Jl(N),

and Jr(N), respectively. We restrict ourselves by the “left-side” case. We set

Pl(M) = {m ∈ M | Nm ⊆ P (S)}, Pr(M) = {m ∈ M | mN ⊆ P (R)}.
Then let

Pl(K) =
(

P (R) Pl(M)
Pl(N) P (S)

)
.

Theorem 4.2 ([20]). The following relations hold:

Pl(K) = P (K) = Pr(K).

Proof. The proof of Theorem 4.2 consists of the verification of the above relations with the use of strongly
nilpotent elements.

The equal ideals Pl(M) and Pr(M) are denoted by P (M), and the equal ideals Pl(N) and Pr(N) are
denoted by P (N).

Now we pass to a formal matrix ring K of any order n of the form (3.1) from Sec. 3. For all subscripts
i and j, we define two subbimodules

Jl(Mij) = {x ∈ Mij | Mjix ⊆ J(Rj)}, Jr(Mij) = {x ∈ Mij | xMji ⊆ J(Ri)}.
For i = j, we obtain Jl(Ri) = Jr(Ri) = J(Ri).

Theorem 4.3. We have the relation

J(K) =

⎛
⎜⎜⎝

J(R1) Jl(M12) . . . Jl(M1n)
Jl(M21) J(R2) . . . Jl(M2n)

. . . . . . . . . . . .
Jl(Mn1) Jl(Mn2) . . . J(Rn)

⎞
⎟⎟⎠ (4.1)

and a similar relation, in which the subscript l is replaced by r.

Proof. In the case n = 2, the assertion follows from Theorem 4.1. Let K be a formal matrix ring of order
n ≥ 3. We present K as the block matrix ring (

R M
N Rn

)
,

where R is a formal matrix ring of order n− 1 and M and N are corresponding bimodules (see the proof
of Proposition 3.3). By Theorem 4.1, we have

J(K) =
(

J(R) J(M)
J(N) J(Rn)

)
.
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By the induction hypothesis, the radical J(R) has the form mentioned in the theorem. We must show
that the set in the right part of the relation (4.1) coincides with(

J(R) J(M)
J(N) J(Rn)

)
.

It is sufficient to verify that⎛
⎝ Jl(M1 n)

. . .
Jl(Mn−1 n)

⎞
⎠ = J(M),

(
Jl(Mn1), . . . , Jl(Mn n−1)

)
= J(N),

where
J(M) = {m ∈ M | Nm ⊆ J(Rn)}, J(N) = {n ∈ N | Mn ⊆ J(R)}.

The required assertion follows from the definition of subbimodules Jl(Mij). We specialize the following
fact. If x ∈ Jl(Mnj), then Minx ⊆ Jl(Mij) for all distinct i, j = 1, . . . , n. Indeed, we have

MjiMinx ⊆ Mjnx ⊆ J(Rj).

The proof of the analogue of the relation (4.1) for “the subscript r” is symmetric to the proof presented
above.

We have that Jl(Mij) = Jr(Mij) for distinct i and j. We denote this subbimodule by J(Mij).
The prime radical P (K) has a similar structure. Similarly to the subbimodules Jl(Mij) and Jr(Mij),

we define two subbimodules Pl(Mij) and Pr(Mij). The following result is true.

Theorem 4.4. We have the relation

P (K) =

⎛
⎜⎜⎝

P (R1) Pl(M12) . . . Pl(M1n)
Pl(M21) P (R2) . . . Pl(M2n)

. . . . . . . . . . . .
Pl(Mn1) Pl(Mn2) . . . P (Rn)

⎞
⎟⎟⎠

and a similar relation, in which the subscript l is replaced by the subscript r.

We consider the structure of ideals of the ring K. All assertions from Sec. 1 that are related to ideals
and the factor rings can be extended to formal matrix rings of any order n. The ideal L of the ring K is
equal to ⎛

⎜⎜⎝
I1 A12 . . . A1n

A21 I2 . . . A2n

. . . . . . . . . . . .
An1 An2 . . . In

⎞
⎟⎟⎠ ,

where Ii is an ideal of the ring R and Aij is a subbimodule in Mij . Between these ideals and subbimodules,
there exist some interrelations, which can be easily found (in one particular case, they are mentioned in
Sec. 6). The set of matrices ⎛

⎜⎜⎝
R1/I1 M12/A12 . . . M1n/A1n

M21/A21 R2/I2 . . . M2n/A2n

. . . . . . . . . . . .
Mn1/An1 Mn2/An2 . . . Rn/In

⎞
⎟⎟⎠

naturally forms a formal matrix ring, which is canonically isomorphic to the factor ring K/L.
At the end of the section, we find the center of the formal matrix ring. We recall that the center of

some ring T is denoted by C(T ).

Lemma 4.5. The center of the formal matrix ring K consists of all diagonal matrices diag(r1, r2, . . . , rn)
such that ri ∈ C(Ri) and rim = mrj for all m ∈ Mij and distinct i and j.
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Proof. It is clear that diagonal matrices with mentioned construction are contained in C(K).
We assume that the matrix D = (dij) is contained in C(K). It follows from the relation DEkk = EkkD

that dik = 0 = dkj for i 
= k and k 
= j. Therefore, dij = 0 for i 
= j, and D is a diagonal matrix.
Now we fix subscripts i and j and an element m ∈ Mij . Let Aij be the matrix that has m on the

position (i, j) and has 0 on remaining positions. It follows from the relation DAij = AijD that dim = mdj .
In particular, for i = j, we obtain that di ∈ C(Ri).

5. Formal Matrix Rings over the Ring R

Let R be a ring. For any positive integer n ≥ 2, there exists a matrix ring M(n, R) of order n.
We can define other matrix multiplications to obtain formal matrix rings. For the ring M(n, R), the
corresponding bimodule homomorphisms R ⊗R R → R are equal to each other and act with the use of
the relation x ⊗ y → xy. By taking other bimodule homomorphisms R ⊗R R → R, we can obtain matrix
rings over R of order n (as formal matrix rings), which do not coincide with M(n, R).

We take some formal matrix ring K of order n, which is defined in Sec. 3, such that R1 = · · · = Rn = R
and Mij = R for all i and j. Such a ring is called a formal matrix ring of order n over the ring R. Let
ϕijk : R ⊗R R → R, i, j, k = 1, . . . , n, be bimodule homomorphisms associated to the ring K. Similar to
Sec. 3, for elements x, y ∈ R, we set x ◦ y = ϕijk(x ⊗ y). We also set sijk = ϕijk(1 ⊗ 1) for every three
subscripts i, j, k. For all elements x, y ∈ R and subscripts i, j, k, we obtain

x ◦ y = ϕijk(x ⊗ y) = xϕijk(1 ⊗ 1)y = xsijky.

Further, we obtain that
xsijk = ϕijk(x ⊗ 1) = ϕijk(1 ⊗ x) = sijkx.

Thus, sijk is a central element of the ring R and x ◦ y = sijkxy.
For all i, j, k, l, the relations

siik = 1 = sikk, sijk · sikl = sijl · sjkl (5.1)

hold. The first two relations follow from the property that ϕiik and ϕikk coincide with the canonical
isomorphism R⊗R R → R, x⊗y → xy. The remaining relations follow from the property that (x◦y)◦z =
x ◦ (y ◦ z) for all x, y, z ∈ R (see the beginning of Sec. 3). In particular, the relation (1 ◦ 1) ◦ 1 = 1 ◦ (1 ◦ 1)
holds.

Now let us have an arbitrary set of central elements sijk of the ring R, i, j, k = 1, . . . , n, which satisfy
relations (5.1). For each of three subscripts i, j, and k, we define a bimodule homomorphism

ϕijk : R ⊗R R → R, ϕijk(x ⊗ y) = sijkxy, x, y ∈ R.

These homomorphisms define a formal matrix ring of order n in the sense of Sec. 3. Indeed, ϕiik and ϕikk

are the canonical isomorphisms. Further, we set x◦ y = ϕijk(x⊗ y) and obtain that (x◦ y)◦ z = x◦ (y ◦ z)
for all x, y, z ∈ R and corresponding subscripts i, j, k, and l.

We can conclude that there is a one-to-one correspondence between formal matrix rings of order n over
a ring R and sets of central elements {sijk | i, j, k = 1, . . . , n} of the ring R, which satisfy relations (5.1).
We denote such a concrete ring by M(n, R, {sijk}) or M(n, R, Σ), where Σ = {sijk | i, j, k = 1, . . . , n}; or
we simply denote it by the symbol K. The set Σ is called a system of factors, and the elements of Σ are
called factors of the ring K. If all sijk are equal to 1, then we obtain the ring M(n, R).

It is useful to present the formula for the multiplication of matrices in the ring M(n, R, Σ). Namely,
if A = (aij), B = (bij), and AB = C = (cij), then

cij =
n∑

k=1

sikjaikbkj .

We prove several relations for the factors sijk (we assume that we have a ring M(n, R, Σ)). We again
present relations (5.1); we will call them main relations:

siik = 1 = sikk, sijk · sikl = sijl · sjkl. (5.2)
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By setting i = k, we obtain siji = sijl ·sjil. Consequently, sjij = sjil ·sijl. Therefore, the relation siji = sjij

holds. For j = l, we have sjkj = sijk · sikj , whence siji = slij · slji. Thus, we have

siji = sijl · sjil = slij · slji. (5.3)

From relations (5.3), we obtain the following relations, which follow from each other by a permutation of
subscripts:

siji = sjij = sijk · sjik = skij · skji,

siki = skik = sikj · skij = sjik · sjki,

sjkj = skjk = sjki · skji = sijk · sikj .

(5.4)

The following relations follow from relations (5.4):

sijk · siki = sjki · siji = skij · sjkj ,

skji · siki = sikj · siji = sjik · sjkj .
(5.5)

The relations (5.5) can be directly proved with the use of (5.2) if we put l = i into (5.2) and interchange
subscripts.

To a given ring M(n, R, Σ), we can relate several matrices. Namely, we set

S = (siji) =

⎛
⎜⎜⎝

s111 s121 . . . s1n1

s212 s222 . . . s2n2

. . . . . . . . . . . .
sn1n sn2n . . . snnn

⎞
⎟⎟⎠ .

Then for every k = 1, . . . , n, we form the matrix

Sk = (sikj) =

⎛
⎜⎜⎝

s1k1 s1k2 . . . s1kn

s2k1 s2k2 . . . s2kn

. . . . . . . . . . . .
snk1 snk2 . . . snkn

⎞
⎟⎟⎠ .

The matrices S, Sk are called matrices of factors of the ring M(n, R, Σ). The matrix S is symmetric. The
main diagonal of the matrix Sk coincides with kth row (and kth column) of the matrix S; the kth row
and the kth column of the matrix Sk consist of 1.

We formulate several interrelated problems on formal matrix rings M(n, R, Σ).

(I) The realization and characterization problem. Given matrices T, T1, . . . , Tn of order n with
elements in the center C(R), under which conditions are these matrices matrices of factors of some ring
M(n, R, Σ)? It is clear that the matrix T must be symmetric. In addition, we can assume that all
matrices Tk are also symmetric.

(II) The classification problem. Describe formal matrix rings in relation to systems of factors or
matrices of factors.

(III) The isomorphism problem. When do two systems of factors define isomorphic formal matrix
rings? In a more general situation, the isomorphism problem is formulated in Sec. 1.

The above Problems (I)–(III) are considered in Secs. 7–9. Now we consider some easy methods of
constructing systems of factors. We also consider standard situations, where we can state that formal
matrix rings are isomorphic to each other.

(a) We can define the action of the symmetric group of order n on systems of factors; consequently,
the group acts on formal matrix rings. The corresponding orbits consist of isomorphic rings.

Let τ be a permutation of order n. The action of τ on matrices is known. Namely, for the matrix
A = (aij) of order n, we set τA = (aτ(i)τ(j)). We mean that the matrix τA has the element aτ(i)τ(j) on
the position (i, j), and the element aij passes to the position

(
τ−1(i), τ−1(j)

)
.
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Now if Σ = {sijk | i, j, k = 1, . . . , n} is some system of factors, then we set tijk = sτ(i)τ(j)τ(k). Then
{tijk | i, j, k = 1, . . . , n} also is a system of factors, since it satisfies relations (5.2). We denote it by
τΣ. Consequently, the formal matrix ring M(n, R, τΣ) exists. The rings M(n, R, Σ) and M(n, R, τΣ) are
isomorphic to each other under the correspondence A → τA.

We also remark that the action of permutations on matrices can be represented in another form
(see [8]). Let T =

(
δiτ(j)

)
be the permutation matrix τ , where δiτ(j) is the Kronecker symbol. Then

τA = T−1AT , where T−1 =
(
δiτ−1(j)

)
. The essence of the isomorphism M(n, R, Σ) ∼= M(n, R, τΣ) can be

expressed by the relation
T−1(A ◦ B)T = (T−1AT ) ◦ (T−1BT ),

where the left product is calculated in M(n, R, Σ), and the right product is calculated in M(n, R, τΣ).
(b) As above, Σ is a system of factors sijk, and α is an endomorphism of the ring R. We set

tijk = α(sijk). Then {tijk} is a system of factors. We denote it by αΣ. There exists a ring homomorphism

M(n, R, Σ) → M(n, R, αΣ), (aij) → (αaij).

It is an isomorphism provided α is an automorphism of the ring R.
(c) If Σ = {sijk} and X = {xijk} are two systems of factors, then {xijksijk} also is a system of factors.

We denote it by XΣ. For every l = 1, . . . , n, there exists a homomorphism

ζ : M(n, R, XΣ) → M(n, R, Σ), (aij) → (xijlaij).

If all factors xijk are invertible elements, then ζ is an isomorphism.

Proof. We take matrices A = (aij) and B = (bij) in the ring M(n, R, XΣ). We have AB = (cij), where

cij =
n∑

k=1

xikjsikjaikbkj .

On the position (i, j) of the matrix ζ(AB), we have the element
n∑

k=1

xijlxikjsikjaikbkj .

Further, we have ζ(A) = (xijlaij), ζ(B) = (xijlbij), and the matrix ζ(A)ζ(B) has the element
n∑

k=1

sikjxiklxkjlaikbkj

on the position (i, j). However, it follows from relations (5.2) that xikj · xijl = xikl · xkjl. Therefore,
ζ preserves products. If all xijk are invertible, then ζ has the inverse homomorphism ζ−1 : (cij) →
(x−1

ijl cij).

Let Eij denote the matrix unit, i.e., the matrix Eij has 1 on the position (i, j), and Eij has 0 on
remaining positions. We remark that Eij · Ejk = sijkEik.

(d) For every system of factors Σ = {sijk}, the set Σt = {tijk | tijk = skji, i, j, k = 1, . . . , n} also is
a system of factors. Therefore, if the ring M(n, R, Σ) exists, then the ring M(n, R, Σt) also exists; it is
denoted by Kt. In addition, if S, S1, . . . , Sn are matrices of factors of the ring K, then S, St

1, . . . , S
t
n are

matrices of factors of the ring Kt.
If R is a commutative ring, then the transposition A → At is an anti-isomorphism between the rings

K and Kt. Thus, the relation (AB)t = BtAt holds, where the right product is calculated in Kt. This
implies one implication of the following assertion.

Proposition 5.1. Let R be a commutative ring. The relation (AB)t = BtAt holds for all matrices
A and B if and only if sikj = sjki for all subscripts i, k, and j (i.e., the matrices S1, . . . , Sn are symmetric).
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Proof. The remaining implication follows from the relations

(Eik · Ekj)t = (sikjEij)t = sikjEji, Et
kj · Et

ik = EjkEki = sjkiEji.

By the item (c), the ring M(n, R, ΣΣt) also exists. All matrices of factors of M(n, R, ΣΣt) are sym-
metric.

We consider one homomorphism that will be quite useful later. It is a particular case of the homo-
morphism ζ from the item (c).

Given a formal matrix ring M(n, R, Σ), Σ = {sijk}, we fix a subscript l = 1, . . . , n and set tij = sijl for
all i, j = 1, . . . , n. We remark that tii = 1, and it follows from the main relations (5.2) that sijk·tik = tij ·tjk.
In particular, siji = tij · tji.

We define a mapping
η : M(n, R, Σ) → M(n, R), (aij) → (tijaij).

Proposition 5.2.
(1) η is a ring homomorphism;
(2) if for all i, j, and k, the factor sikj is divided by tik or tkj, then Ker(η) is a nilpotent ideal of

nilpotency index 2;
(3) the mapping η is injective if and only if all sijk are nonzero divisors;
(4) η is an isomorphism if and only if all elements sijk are invertible.

Proof. (1) The assertion follows from (c) if we take the system consisting of 1 as Σ and take Σ as X.
(2) We take arbitrary matrices A = (aij) and B = (bij) in the ring M(n, R, Σ). If ηA = 0 = ηB, then

tijaij = 0 = tijbij for all i and j. It follows from the proof of (c) that AB = 0.

At the end of the section, we consider formal matrix rings of order 2 and 3 over a ring R. In the case
n = 2, it is easy to obtain a complete answer. Indeed, we take an arbitrary ring M(2, R, Σ) and clarify
the action of the multiplication in it.

By the use of the previous material, it is easy to prove the following property. There exists an element
s ∈ C(R) such that matrices in M(2, R, Σ) are multiplied by the relation(

a11 a12

a21 a22

) (
b11 b12

b21 b22

)
=

(
a11b11 + sa12b21 a11b12 + a12b22

a21b11 + a22b21 sa21b12 + a22b22

)
. (5.6)

The converse is also true. Any central element s of the ring R defines a ring of formal 2× 2 matrices
over R such that the multiplication in the ring satisfies the relation (5.6). Such rings are introduced
in [12]; they are denoted by Ks in this paper. They are also studied and used in [6, 7, 10,15,17,21,22].

The situation with classification of rings M(3, R, Σ) is more complicated. The main relations (5.2)
turn into the relations

siik = 1 = sikk, i, k = 1, 2, 3,

s121 = s212 = s123 · s213 = s321 · s312,

s131 = s313 = s132 · s312 = s231 · s213,

s232 = s323 = s231 · s321 = s132 · s123.

Every family of elements {sijk | i, j, k = 1, 2, 3}, which satisfy the previous relations, defines a formal
matrix ring over R of order 3. If sikj = sjki for all i, j, k = 1, 2, 3, i.e., the matrices S1, S2, and S3 are
symmetric, then we can write these relations more compactly:

siik = 1 = sikk, i, k = 1, 2, 3,

s121 = s212 = s123 · s213,

s131 = s313 = s132 · s312,

s232 = s323 = s231 · s321.
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In connection with Problem (I), we can certainly say that not every symmetric matrix of order 3 can be
the matrix S for some ring M(3, R, Σ).

6. Some Properties of Formal Matrix Rings over R

First of all, we remark that many results were proved by Tang and Zhou [23] for one class of formal
matrix rings over R; see Section 7 on such rings.

Let M(n, R, Σ) be some formal matrix ring of order n over the ring R. We recall that Σ = {sijk |
i, j, k = 1, . . . , n} is a system of factors. The factors sijk satisfy relations (5.2) and their corollaries
(5.4) and (5.5) from Sec. 5. Sometimes, we denote by Rij the ring R that stands on the position (i, j).

We use Theorems 4.3 and 4.4 for calculation the Jacobson radical and the prime radical of the ring
M(n, R, Σ). In the notation of Theorem 4.3, we have

J(Rij) = {x ∈ Rij | Rji ◦ x ⊆ J(R)}.
Further, Rji ◦ x = sjijRx = sijiRx. Therefore,

J(Rij) = {x ∈ Rij | sijix ∈ J(R)}.
We remark that the ideal J(Rij) coincides with the intersection of all maximal left (right) ideals of the
ring R that do not contain siji. We denote this ideal J(Rij) by Jij(R). Now the following result follows
from Theorem 4.3.

Corollary 6.1. The Jacobson radical of the ring M(n, R, Σ) is equal to⎛
⎜⎜⎝

J(R) J12(R) . . . J1n(R)
J21(R) J(R) . . . J2n(R)

. . . . . . . . . . . .
Jn1(R) Jn2(R) . . . J(R)

⎞
⎟⎟⎠ . (6.1)

The prime radical of the ring M(n, R, Σ) has a similar structure. We set

P (Rij) = {x ∈ Rij | sijix ∈ P (R)}.
Corollary 6.2. The prime radical of the ring M(n, R, Σ) coincides with the ideal of matrices of the
form (6.1); we only have to replace the symbol J by P .

We present an internal description of ideals of the ring M(n, R, Σ) and determine the structure of its
factor rings. For an arbitrary formal matrix ring, these questions were briefly considered in Secs. 1 and 4.
The following proposition is directly verified.

Proposition 6.3. Let I be an ideal of the ring M(n, R, Σ). Then

I =

⎛
⎜⎜⎝

I11 I12 . . . I1n

I21 I22 . . . I2n

. . . . . . . . . . . .
In1 In2 . . . Inn

⎞
⎟⎟⎠ ,

where all Iij are ideals in R. In addition, the following relations hold :

Iii ⊆
n⋂

l=1

(Iil ∩ Ili), sijiIij ⊆ Iii ∩ Ijj

for all i, j = 1, . . . , n, and
sikjIkj ⊆ Iij , sjkiIjk ⊆ Iji

for all distinct i, j, and k.

The following proposition is also proved with the use of standard methods.
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Proposition 6.4. Let I = (Iij) be an ideal of the ring K = M(n, R, Σ).
(1) The set of matrices

K̄ =

⎛
⎜⎜⎝

R/I11 R/I12 . . . R/I1n

R/I21 R/I22 . . . R/I2n

. . . . . . . . . . . .
R/In1 R/In2 . . . R/Inn

⎞
⎟⎟⎠

is a formal matrix ring with bimodule homomorphisms

ϕijk : R/Iij ⊗R/Ijj R/Ijk → R/Iik, ϕijk(x̄ ⊗ ȳ) = sijkxy + Iik

for all i, j, k = 1, . . . , n.
(2) There is an isomorphism

K/I ∼= K̄, (xij) + I → (xij + Iij).

For our matrix rings, we consider several usual ring properties. We recall that Eij are matrix units.

Proposition 6.5. Let R be a ring and let K be a formal matrix ring of order n over R with factors sijk,
i, j, k = 1, . . . , n. The following assertions hold.

(1) K is a simple ring if and only if R is a simple ring and all factors sijk not are equal to zero.
(2) K is a prime ring if and only if R is a prime ring and all sijk not are equal to zero.
(3) K is a regular ring if and only if R is a regular ring and all elements sijk are invertible in R.
(4) K is a semiprimitive ring if and only if R is a semiprimitive ring and all sijk are nonzero divisors

in R.
(5) K is a semiprime ring if and only if R is a semiprime ring and all sijk are nonzero divisors in R.

Proof. (1) =⇒. If I is a nonzero ideal in R, then⎛
⎝ I . . . I

. . . . . . . . .
I . . . I

⎞
⎠

is an ideal in K. Therefore, since the ring K is simple, we have I = R. Consequently, R is a simple ring.
The homomorphism η from Proposition 5.2 need to be injective. Therefore, each sijk is not equal to zero.

⇐=. The ring M(n, R) is simple. All central elements sijk are invertible, since the center of a simple
ring is a field. By Proposition 5.2, K ∼= M(n, R); consequently, K is a simple ring.

(2) =⇒. Since R ∼= E11KE11, we have that R is a prime ring. We assume that sijk = 0 for some i,
j, and k. Then EijKEkl = 0. This contradicts the property that K is a prime ring.

⇐=. The center of a prime ring is a domain. Therefore, all sijk are nonzero divisors. We assume
that (aij)K(bij) = 0 for some nonzero matrices (aij) and (bij). For example, let akl 
= 0 and bmp 
= 0.
Then sklmskmpaklRbmp = 0, whence aklRbmp = 0; this contradicts the primeness of the ring R. Thus,
K is a prime ring.

(3) =⇒. Since the ring K is regular and R ∼= E11KE11, the ring R is regular. Consequently, there
exists a matrix (aij) with Eij = Eij(aij)Eij . Therefore, we obtain the relation sijiaji = 1, and all elements
siji are invertible. From relations (5.4), we obtain that all elements sijk also are invertible.

⇐=. The ring M(n, R) is regular and K ∼= M(n, R) by Proposition 5.2.
(4) and (5). The assertions follow from relations (5.4) of Sec. 5 and Corollaries 6.1 and 6.2, respectively.

7. Characterization of Matrices of Factors

In this section and in the following two sections, R denotes an arbitrary ring, M(n, R, Σ) is a formal
matrix ring of order n over the ring R, and Σ is a system of factors {sijk | i, j, k = 1, . . . , n}. The factors sijk
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satisfy relations (5.2). The element that stands on the position (i, j) of the product of matrices (aij) and

(bij) from the ring M(n, R, Σ) is equal to
n∑

k=1

sikjaikbkj .

In Sec. 5, we formulated Problem (I): Which matrices can be matrices of factors for formal matrix
rings? Problem (II) is related to the description of the rings M(n, R, Σ) in terms of systems of factors Σ.
In the general case, it is difficult to solve these problems; one of the reasons is that the verification of
relations (5.2) is difficult.

The situation seems to be more simple if all factors sijk are integral powers of some central element s
of the ring R. We know that for n = 2, other possibilities do not exist (see the end of Sec. 5).

For n ≥ 3, the situation with characterization and classification of rings M(n, R, Σ) becomes more
complicated, even if all factors sijk are powers of the element s. The particular case in which every
factor sijk is equal to sm for some m ≥ 1 is interesting. Tang and Zhou [23] explicitly study the rings
M(n, R, Σ) such that siji = s2 for i 
= j and sijk = s for all pairwise distinct i, j, and k. We call such
rings Tang–Zhou rings.

Here and in Sec. 8, we consider the case where either sijk = 1 or sijk = s for all i, j, and k, where
s is some central element of the ring R. We impose simple additional restrictions on the element s. Any
corresponding matrix ring is denoted by M(n, R, s); it is clear that for fixed n, there exists only a finite
number of distinct such rings. The element s is called a factor of each such ring M(n, R, s).

Further, we assume that we have a ring M(n, R, s). In addition, we assume that s2 
= 1 and s is not an
idempotent. Without large loss of generality, it can be assumed that s is not an invertible element. Indeed,
if the element s is invertible, then M(n, R, s) ∼= M(n, R) by Proposition 5.2. The following condition is
more strong: sk 
= sl for all nonnegative distinct k and l.

Thus, we assume that we have a ring M(n, R, s), where the element s2 is not equal to 1 or s; in
particular, s 
= 0 and s 
= 1. We present some relations between factors of the form siji.

Lemma 7.1. Let i, j, and k be three pairwise distinct subscripts. Then only one of the following three
cases is possible for the elements siji, siki, and sjkj.

(1) All three elements are equal to 1.
(2) Some two elements of these three elements are equal to s, and the third element is equal to 1.
(3) All three these elements are equal to s.

Proof. It directly follows from relations (5.4) that the situation is impossible, where some two of three
factors siji, siki, sjkj are equal to 1, and the third factor is equal to s. Therefore, the cases, mentioned in
(1)–(3), remain. Each of these cases actually appears; this follows from what follows.

In Sec. 5, we constructed square matrices S, S1, . . . , Sn of order n from factors sijk of some formal
matrix ring. We call these matrices matrices of factors of a given ring. In what follows, the words “the
matrix of factors” usually mean the matrix S.

It is useful to define the notion of an abstract matrix of factors. As earlier, let s be some central
element of the ring R such that s2 
= 1 and s2 
= s. Let T = (tij) be a symmetric matrix of order n such
that all elements of T are equal to 1 or s, the main diagonal consists of 1, and for all three elements tij ,
tik, and tjk, one of the assertions (1), (2), or (3) in Lemma 7.1 holds. Such a matrix T is called a matrix
of factors. If τ is some permutation of order n, then τT = (tτ(i)τ(j)) also is a matrix of factors (matrices
of the form τT are defined in item (a) of Sec. 5).

Let T be a matrix such that T can be represented in the block form such that the blocks, standing
on the main diagonal, consist of 1, and the element s stands on all remaining positions. It is clear that T
is a matrix of factors. In such a case, we say that T has the canonical form.

Lemma 7.2. For every matrix of factors T , there exists a permutation σ such that the matrix σT has
the canonical form.

359



Proof. We use induction on n. For n = 2, there exists a unique matrix of factors(
1 s
s 1

)
,

which has the canonical form.
We assume that the assertion of the lemma is true for all matrices of order ≤n − 1, where n ≥ 3.

Let T be a matrix of order n. We take the submatrix T ′ of order n − 1 that stands in the right lower
corner of the matrix T . There exists a permutation τ ′ of integers 2, . . . , n such that the matrix τ ′T ′ has
the canonical form. We take a permutation τ of order n that coincides with τ ′ on integers 2, . . . , n. In
the right lower corner of the matrix τT , the matrix τ ′T ′ stands on all remaining positions. If all elements
of the first row of the matrix τT , beginning with the second element, are equal to s, then τT already has
the canonical form.

Now we assume that the first row of the matrix τT contains 1; of course, we exclude the position
(1, 1). Let the second block that is on the main diagonal (after the position (1, 1)) have the order m − 1,
m ≥ 2. In such a case, the elements t12, . . . , t1m are simultaneously equal to 1 or s. Indeed, if t1i = 1 and
t1j = s, 2 ≤ i, j,≤ m, then tij = s, which is impossible. We assume that t12 = · · · = t1m = 1. If t1l = 1
for some l, m + 1 ≤ l ≤ n, then t2l = 1, which is also impossible. Consequently, t1 m+1 = · · · = t1n = s.
Now if we unite the first block and the second block that stand on the main diagonal, then we obtain the
canonical form of the matrix τT .

Thus, we can assume that t12 = · · · = t1m = s. What can we say about elements t1 m+1 = · · · = t1n?
We assume that t1i = 1, t1j = 1, and t1k = 1, where m + 1 ≤ i, j, k ≤ n and i < j < k. In such a case, we
have tij = s, tik = 1; this is a contradiction. Therefore, the sequence t1 m+1, . . . , t1n can have only one of
the following three forms:

(1) 111 . . . sss;
(2) sss . . . 111 . . . sss;
(3) sss . . . 111.

The following fact is important: below the sequence 11 . . . 1 from (1), (2), or (3), the main diagonal
contains a block, the order of which is equal to the number of 1’s in the given sequence.

In the cases (1) and (2), we act further as follows. We take the submatrix such that the end of its
right lower corner is the block that corresponds to the sequence 1 1 . . . 1. By the use of some permutation,
we reduce this submatrix to the canonical form. Then we apply the same permutation to the whole
matrix (we add missing monomial cycles), and we reduce it to the canonical form (under these actions,
the submatrix that is placed in the right lower corner does not change).

We consider the remaining case (3). Let the block on the main diagonal, which is placed under the
sequence 1 1 . . . 1, begin with the row of number k + 1, where k ≥ 2. We apply the cycle (1 2 . . . k) to the
matrix. As a result, the block of order k+1, which consists of 1’s, will appear in the right lower corner. In
the first row from the right and in the first column from the left, the element s is placed instead of 1. On
the positions (k, 1), . . . , (k, k − 1) and (1, k), . . . , (k − 1, k), the element s is also placed. Thus, to the left
and up from the block, consisting of 1’s, the element s stands on all positions of the right lower corner.
By the use of some permutation, we reduce to the canonical form the submatrix that is placed in rows
and columns with numbers 1, 2, . . . , k − 1. After this, the whole matrix will have the canonical form.

In the situation of the lemma, we say that the matrix T is reduced to the canonical form σT . The
converse is also true, i.e., if some matrix T is reduced to the canonical form σT , then T is a matrix of
factors. Thus, matrices of factors coincide with matrices that can be reduced to the canonical form by
permutations.

Let the matrix T have the canonical form. Then blocks that stand on the main diagonal of the matrix
can be can arranged in any required order. In other words, there exists a permutation τ such that blocks
in the matrix τT are placed in the required order, and τT has the canonical form. For this purpose, it is
sufficient to show that if T consists of two blocks, then we can interchange them. Let the first block have
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the order k, 1 ≤ k ≤ n − 1. Then we can take the permutation(
1 2 . . . n − k n − k + 1 . . . n

k + 1 k + 2 . . . n 1 . . . k

)

as τ .
We formulate the main result of the section. First, we remark that one particular case, which appears

in the proof, will be considered in the next section.

Theorem 7.3. Let T be a matrix of factors. There exists a ring M(n, R, s) such that T is a matrix of
factors of M(n, R, s).

Proof. We use induction on n. For n = 2, only one matrix of factors exists; namely, the matrix(
1 s
s 1

)
.

We know that there always exists a ring M(2, R, s) with matrix of factors(
1 s
s 1

)
.

Now we assume that n > 2. Let σ be a permutation such that the matrix σT has the canonical form
(see Lemma 7.2). The following two cases are possible.

Case 1. All blocks that stand on the main diagonal have the order 1. In Sec. 8, it will be shown that
there exists a ring M(n, R, s) with matrix of factors σT .

Case 2. Not all blocks mentioned in the case 1 have the order 1. Before the theorem, it is remarked
that there exists a permutation τ such that the matrix τσT has the canonical form, and the order of the
lowest block exceeds 1. In τσT , we take the submatrix T ′ of order n − 1 placed in the left upper corner.
It has the canonical form. By the induction hypothesis, there exists a ring K of the form M(n − 1, R, s)
with matrix of factors T ′. We represent this ring as a block matrix ring of order 2:⎛

⎜⎜⎝
R . . . R R
· . . . · ·
R . . . R R

R . . . R R

⎞
⎟⎟⎠ .

Now we apply the construction of the ring K4 from Sec. 3 to the ring K. The matrix of factors of the
obtained ring K4 coincides with the matrix τσT . The ring σ−1τ−1K4 is the required formal matrix ring.
Indeed, the matrix T is a matrix of factors of this ring.

We return to the action of permutations on the set of formal matrix rings (see the item (a) of Sec. 5).
It is clear that this action can be restricted to the set of rings M(n, R, s) of the considered form with
fixed factor s. Every permutation τ also acts on every matrix A = (aij); namely, τA =

(
aτ(i)τ(j)

)
. In

particular, τ acts on matrices of factors S. In addition, it follows from Lemma 7.2 that the orbits consist
of matrices that have the same canonical form. Under the action of permutations, the set of matrices of
factors is decomposed into orbits. The number of these orbits is equal to the number of representations
of the integer n in the form of sums of positive integers that are less than n.

If the ring K = M(n, R, s) has the matrix of factors S, then τS is a matrix of factors of the ring τK for
every permutation τ . Consequently, if two rings are contained in the same orbit, then the corresponding
matrices of factors are also contained in the same orbit. Obviously, the converse is not true. The reason
is that a given matrix of factors S can have several series of matrices of factors S1, . . . , Sk. Therefore, the
number of orbits for rings is not known. In several particular cases, the number will be presented in the
next section.

In Sec. 3, for a given matrix ring (
R M
N S

)
,
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we introduced four methods of constructing matrix rings of larger order. We call these methods con-
structions of K1, K2, K3, and K4. Now we assume that we have a ring M(n, R, s) = L with matrices of
factors S, S1, . . . , Sn. We assume that we applied the mentioned constructions to L. The obtained rings
are denoted by L1, L2, L3, and L4, respectively. The matrices of factors S′, S′

1, . . . , S
′
n, S′

n+1 of any these
rings are obtained from the matrices S, S1, . . . , Sn with the use of a certain regularity. We consider the
construction K4 more explicitly. We must represent the ring L in the block form, as a matrix ring of
order 2 (see Sec. 3),

L =
(

P M
N S

)
,

where P is a matrix ring of order k, 1 ≤ k ≤ n− 1; S, M , and N are mentioned in Sec. 3. For simplicity,
we take k = n − 1. We apply the construction K4 to L and obtain the matrix ring L4 of order n + 1:

L4 =

⎛
⎝ L

(
M
S

)
(
N S

)
S

⎞
⎠ .

By considering the structure of matrices in the ring L4, we obtain that the matrices of factors S′, S′
1, . . . , S

′
n

of the ring L4 are obtained from the corresponding matrices S, S1, . . . , Sn by the same method, and
S′

n+1 = S′
n. Namely, to each matrix S, S1, . . . , Sn, we need to add from the right the last column of

this matrix; to each matrix S, S1, . . . , Sn, we need to add from below the last row of this matrix; on the
position (n + 1, n + 1), we need to put the element that stands on the position (n, n).

We formulate the following question, which will appear again at the end of Sec. 8. We apply the
permutation τ of order n to the ring L. Then we apply the construction K4 to the ring τL; the ring (τL)4
will be obtained. Which interrelations exist between the rings L4 and (τL)4? Is it possible to transform
one of these rings into the second ring by some permutation?

At the end of the section, we consider excluded values of the factor s: s2 = 1 and s2 = s. If s2 = 1,
then the element s is invertible and M(n, R, s) ∼= M(n, R) by Proposition 5.2. The case s2 = s (i.e., s is
an idempotent) is more interesting. We present one characteristic example. We set siik = 1 = sikk and
sijk = s for i 
= j and j 
= k. Then Σ = {sijk} is a system of factors. Consequently, there exists a ring
M(n, R, Σ).

8. Classification of Formal Matrix Rings

We continue to consider the topic considered in the previous section. Our main concern is with
Problem (II) formulated in Sec. 5. We will also complete the proof of Theorem 7.3 related to Problem (I).
We preserve the notation and the conventions of Sec. 7.

It follows from Theorem 7.3 that for any matrix of factors T , there exists a ring M(n, R, s) such
that its matrix of factors S coincides with T . Several such rings M(n, R, s) can exist, since for a given
matrix S, we can have different families of matrices of factors S1, . . . , Sn that correspond to different
systems of factors Σ. In the given situation, the classification problem (II) consists in listing all such rings
M(n, R, s) for fixed s.

Depending on the canonical form of the matrix S, we study the following two cases.
(1) The main diagonal of the matrix S consists of two blocks.
(2) All blocks on the main diagonal of the matrix S have the order 1.

In the first case, the matrices S1, . . . , Sn are symmetric, and they are uniquely determined by the matrix S.
Similar to Sec. 7, we assume that the matrix of factors of the ring M(n, R, s) is the matrix S, unless

otherwise specified.

Lemma 8.1. Let us have a ring M(n, R, s) and let S, S1, . . . , Sn be the matrices of factors of the ring.
The following conditions are equivalent.

(1) The canonical form of the matrix S contains exactly two blocks.
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(2) For any three elements siji, siki, and sjkj, there is realized either the case (1), or the case (2)
from Lemma 7.1.

(3) The matrices S1, . . . , Sn are symmetric.

Proof. (1) =⇒ (2). Let τ be an arbitrary permutation. If for elements of the matrix S holds (2), then
the same is true for elements of the matrix τS, and conversely. Therefore, we can assume that S has the
canonical form. Then it is easy to verify that (2) is true.

(2) =⇒ (1). We again assume that S has the canonical form. If we will assume that the number of
blocks is not less than 3, then we will quickly obtain a contradiction.

(2) =⇒ (3). We take any three elements siji, siki, and sjkj , where the subscripts i, j, and k are
pairwise distinct. By (2), either all these elements are equal to 1, or some two of them are equal to s, and
the third element is equal to 1. In any case, it follows from relations (5.4) that sikj = sjki.

(3) =⇒ (2). If we assume that
siji = siki = sjkj = s,

then we obtain that all remaining six factors in relation (5.5) are equal to each other. This contradicts
relations (5.4).

Further, we consider rings M(n, R, s) such that their matrices of factors satisfy equivalent conditions
(1)–(3) of Lemma 8.1. It is easy to prove the following assertion: each row of the matrix S uniquely
determines the remaining rows. We reformulate this assertion. For this purpose, we pass to the “additive”
representation of the matrices S, S1, . . . , Sn; i.e., we replace all elements by corresponding exponents of
the element s (as usual, we set s0 = 1). The obtained matrices consist of 0 and 1. (These matrices are
examples of Boolean matrices from [11].) We denote by S+ the matrix constructed from the matrix S.
For elements of the matrix S+, we preserve the notation siji or, more briefly, sij . For elements of the
matrix S+ in the field Z/2Z, the assertion (2) of Lemma 8.1 has the form sij + sik = sjk. This relation
is also true if some two subscripts are equal to each other.

The elements sikj with distinct i and j (i.e., elements of the matrix Sk) are uniquely determined by
elements of the form siji. More precisely, elements of the main diagonal of the matrix Sk (this diagonal
coincides with kth row of the matrix S) determine all remaining elements of this matrix if we take into
account relations (5.4). In the field Z/2Z, the relation sikj = sik · sjk is true. It also remains true for
equal subscripts. Thus, the matrix S completely determines matrices Sk, k = 1, . . . , n.

We can present a complete review of the rings M(n, R, s) considered in Lemma 8.1.
We specialize that the ring M(n, R) also falls under the item (3) of the following theorem. We obtain

this ring provided all factors sijk are equal to 1 = s0. In the item (2), the matrix, consisting of 1,
corresponds to M(n, R).

Theorem 8.2. There exists a one-to-one correspondence between the following three sets.
(1) The set of sequences of length n − 1 that consist of 0 and 1.
(2) The set of matrices of factors of order n that satisfy equivalent conditions (1) and (2) of

Lemma 8.1.
(3) The set of rings M(n, R, s) whose matrices of factors satisfy conditions (1), (2), and (3) of

Lemma 8.1.

Proof. In fact, a bijection between sets (1) and (2) is already obtained. Namely, if T = (tij) is some matrix
of factors in the set (2), then we associate the sequence t12, . . . , t1n to the matrix T (as indicated above,
we replace elements tij by corresponding exponents of the element s; in what follows, we act similarly).
Conversely, let us have some sequence from the set (1). We add 0 to this sequence from the left. We
take this extended sequence as the first row of the matrix (tij) of order n. The remaining elements of
the matrix are obtained with the use of the relation t1j + t1k = tjk (in the field Z/2Z). We also have the
relation tij + tik = tjk for all i = 2, . . . , n and all j and k. Now we replace 0 (1) by 1 (respectively, s)
in this matrix. The constructed matrix is a matrix from the set (2). The above correspondence between
sequences in (1) and matrices in (2) is a bijection.
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Now we pass to a bijection between sets (2) and (3); this bijection exists even in practice. If T is
some matrix in the set (2), then by Theorem 7.3, there exists a ring M(n, R, s) such that T is a matrix
of factors for M(n, R, s). Now we remark that the coincidence of two rings of the form M(n, R, {sijk})
means that multiplication operations in these rings are equal to each other. It follows from the definition
of such rings that systems of factors of these rings M(n, R, {sijk}) are equal to each other. Therefore, it
is clear that distinct rings M(n, R, s) correspond to distinct matrices T .

Conversely, if the ring M(n, R, s) belongs to the set (3), then we associate the matrix of factors S of
this ring with the ring M(n, R, s). It was remarked earlier that factors sijk with distinct subscripts i and k
are uniquely determined by factors of the form siji. In other words, matrices of factors S1, . . . , Sn of the
ring M(n, R, s) are uniquely determined by the matrix S. Therefore, distinct matrices S correspond to
distinct rings M(n, R, s).

Corollary 8.3. In Theorem 8.2, the number of rings in the set (3) is equal to 2n−1. Consequently, this
number not depends on the ring R and the element s.

Now we describe one general situation. Let us have an arbitrary set of central elements {sijk | i, j, k =
1, . . . , n} of the ring R. We need to verify whether this set satisfies relations (5.2), i.e., whether the set is
a system of factors. For this purpose, in particular, we need to verify the relation

sijk · sikl = sijl · sjkl (8.1)

for all pairwise distinct subscripts i, j, k, and l. A situation is possible in which for any such four
subscripts only the mutual disposition of the subscripts i, j, k, l is important, i.e., the order between
subscripts is only important. A similar situation appears below. For convenience, we assume that i = 1,
j = 2, k = 3, and l = 4. By considering all variants of the arrangement of integers i, j, k, l, we obtain
that the number of corresponding relations (8.1) is equal to 24. It is convenient to arrange these relations
in the form of four series containing six relations in every series. We present the first series such that the
subscripts i, j, and k can be equal to any integer from the set {1, 2, 3}:

s123 · s134 = s124 · s234, s321 · s314 = s324 · s214,

s312 · s324 = s314 · s124, s213 · s234 = s214 · s134,

s231 · s214 = s234 · s314, s132 · s124 = s134 · s324.

(8.2)

There are three additional series for values of subscripts {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}.
Now we consider the case (2) mentioned at the beginning of the section. Namely, we study another

encountered situation for the ring M(n, R, s), where all factors siji, i 
= j, are equal to s. In other words,
the matrix of factors of such a ring has blocks of order 1 on the main diagonal (this matrix already has
the canonical form). In particular, we complete the proof of Theorem 7.3. The ring M(2, R, s) belongs to
this type of rings; therefore, we assume that n ≥ 3.

Theorem 8.4. Let T = (tij) be a matrix of order n ≥ 3 such that T has 1 on the main diagonal and
the element s on remaining positions. There exists a ring M(n, R, s) such that T is a matrix of factors
for M(n, R, s). Any two such rings can be transformed into each other by permutations, i.e., they are
contained in the same orbit.

Proof. From the text after Corollary 8.3, we know values that we need to give to the factors sijk to obtain
the ring M(n, R, s). As always, siik = 1 = sikk. Then we set siji = tij . Further, for all pairwise distinct
subscripts i, j, and k, we assume that sijk = 1 if the permutation (i, j, k) is even, and sijk = s for the
odd permutation (i, j, k). We verify that the set Σ = {sijk | i, j, k = 1, . . . , n} is a system of factors, i.e.,
relations (5.2) are true.

If two subscripts in some relation (5.2) (this is relation (8.1)) are equal to each other, then it turns
into the relation of the form (5.4) or (5.5). However, these relations are true by the choice of factors sijk.
In particular, the assertion is verified in the case n = 3. Further, we assume that n ≥ 4. It remains to
verify the relation (8.1) for all pairwise distinct subscripts i, j, k, and l. Here we are in the situation
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described after Corollary 8.3, since the mutual disposition of integers i, j, k, and l is only important in
the verification. Therefore, it is sufficient to verify that all 24 relations of the form (8.2) are true; this is
directly verified.

Thus, Σ is a system of factors; consequently, there exists a ring M(n, R, Σ) with matrix of factors T .

Remark. We interrupt the proof of the theorem; we will return later to the remaining assertion about
the orbit.

Conversely, we can assume in the proof that sijk = s for even permutations (i, j, k), and sijk = 1 for
odd permutations (i, j, k). Then we obtain a ring with matrix of factors T . We denote the corresponding
rings by L0 and L1. The permutation

σ =
(

1 2 . . . n
n n − 1 . . . 1

)

transforms L0 into L1 (we need to take into account that the permutations (i, j, k) and
(
σ(i), σ(j), σ(k)

)
have opposite parities).

Thus, we obtain two rings L0 and L1 with matrix of factors T . Do other such rings exist? For n = 3,
the answer is negative, which follows from the next paragraph.

We take n = 4. It directly follows from relations (5.4) and (5.5) that the factors s123, s312, and s231

from relations (8.2) are equal to each other, and the same is true for s321, s213, and s132. In addition,
elements of these triples need to have opposite values (1 or s). We have a similar situation with the first
elements of the remaining 18 relations. The first elements of relations (8.2) coincide with all elements that
are considered in these relations. Therefore, we can conclude that the given ring M(4, R, s) is uniquely
determined by the vector (c1, c2, c3, c4) of length 4, which consists of 0 and 1. Here c1 = 0 if s123 = 1,
and c1 = 1 if s123 = s, and so on. The vectors (0, 0, 0, 0) and (1, 1, 1, 1) correspond to the rings L0

and L1, respectively. Applying cycles (1 2 4 3), (1 3 2 4), and (1 4 2 3) to the rings L0 and L1, we obtain
four additional rings M(4, R, s). To these rings, the vectors (0, 1, 1, 0), (1, 0, 0, 1), (0, 0, 1, 1), (1, 1, 0, 0)
correspond. The permutation (1 4)(2 3) transforms L0 into L1 and conversely. There do not exist rings
M(4, R, s) that correspond to the vectors (0, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0),
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1); to verify this, it is sufficient to study relations (8.2).
Therefore, we have that there exist six rings M(4, R, s) with given matrix of factors T . These rings are
transformed to each other by permutations, i.e., they are contained in the same orbit. In addition, we
remark that

L1 = Lt
0, L(0,0,1,1) = Lt

(1,1,0,0), L(0,1,1,0) = Lt
(1,0,0,1)

(see the item (d) from Sec. 5).
Now we assume that n ≥ 5. We already have rings L0 and L1 such that T is a matrix of factors

for L0 and L1. Now let M(n, R, s) be any other such a ring. We show that it can be transformed into
L0 or L1 by some permutation.

We fix arbitrary pairwise distinct subscripts i, j, k, and l. The elements standing on the positions

(i, i), (i, j), (i, k), (i, l), (j, i), (j, j), (j, k), (j, l), (k, i), (k, j), (k, k), (k, l), (l, i), (l, j), (l, k), (l, l)

in matrices from M(n, R, s) form some ring M(4, R, s). We have just proved that there exists a permuta-
tion σ of order 4 that transforms this ring M(4, R, s) into the ring L0. By thinking that integers not equal
to i, j, k, l are fixed, we assume that σ is a permutation of order n. We apply σ to the ring M(n, R, s).
By repeating this action several times, we obtain the permutation of order n that transform the ring
M(n, R, s) into L0. This completes the proof of Theorem 8.4.

Leaning on the above, we present the considered matrices of factors S of the rings M(n, R, s) for
n = 2, 3, 4. We omit the matrix that consists of 1 and corresponds to the ring M(n, R).

n = 2.

S =
(

1 s
s 1

)
.
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n = 3. Two orbits of matrices of factors and two corresponding orbits of rings.
The first orbit:

S =

⎛
⎝1 s s

s 1 s
s s 1

⎞
⎠ .

The orbit of rings consists of the rings L0 and L1.
The second orbit: ⎛

⎝1 s s
s 1 1
s 1 1

⎞
⎠ ,

⎛
⎝1 1 s

1 1 s
s s 1

⎞
⎠ ,

⎛
⎝1 s 1

s 1 s
1 s 1

⎞
⎠ .

The orbit of rings contains three rings.
n = 4. Three orbits of matrices of factors and three corresponding orbits of rings.
The first orbit:

S =

⎛
⎜⎜⎝

1 s s s
s 1 s s
s s 1 s
s s s 1

⎞
⎟⎟⎠ .

The orbit of rings consists of six rings.
The second orbit:⎛

⎜⎜⎝
1 s s s
s 1 1 1
s 1 1 1
s 1 1 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 1 s
1 1 1 s
1 1 1 s
s s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s 1 1
s 1 s s
1 s 1 1
1 s 1 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1 s 1
1 1 s 1
s s 1 s
1 1 s 1

⎞
⎟⎟⎠ .

The third orbit: ⎛
⎜⎜⎝

1 1 s s
1 1 s s
s s 1 1
s s 1 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s s 1
s 1 1 s
s 1 1 s
1 s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s 1 s
s 1 s 1
1 s 1 s
s 1 s 1

⎞
⎟⎟⎠ .

The second orbit of rings contains four rings, and the third orbit of rings contains three rings.
The rings L0 are examples of rings of crossed matrices [2], which are quite useful in the structural

theory of some Artinian rings.
We return to Lemma 7.1. In this lemma, we consider possible values of factors in the triple siji,

siki, sjkj . We considered situations where only the cases (1) and (2) are realized; then we considered
the situation where only the case (3) is realized. To these situations correspond some structure of the
canonical form of matrices of factors. The question remains where each of the cases (1), (2), and (3) can
appear. This is equivalent to the property that the canonical form of the given matrix of factors contains
blocks of order > 1 and has more than two blocks on the main diagonal.

How can we obtain all rings M(n, R, s) for which the canonical form of the matrix of factors has
a similar structure? For n = 2 and n = 3, such rings do not exist. The proof of Theorem 7.3 presents
a practical method of constructing the required rings for n ≥ 4. Namely, we need to take the rings
M(n, R, s), beginning with n = 3; then we apply the construction K4 from Sec. 3 to M(n, R, s). Before
this, we must use some permutation for the transfer to the ring M(n, R, s), where the matrix of factors
has the canonical form. From the rings M(n, R, s), we need to exclude those rings, whose matrices of
factors have the canonical form containing exactly two blocks on the main diagonal. As a result, we
obtain the rings M(n+1, R, s) with the required form of the matrix of factors. Then we apply all possible
permutations to these rings. After this, we will have the required rings M(n + 1, R, s). We remark that
if blocks of the matrix of factors of the ring M(n, R, s) have the orders k1, . . . , kt with t ≥ 3, then blocks
of the corresponding ring M(n + 1, R, s) will have the orders k1, . . . , kt−1, kt + 1.
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We illustrate the given construction method in the case n = 4. We take the ring M(3, R, s), which is
denoted by L0 above. This ring has a matrix of factors⎛

⎝1 s s
s 1 s
s s 1

⎞
⎠ .

Applying the construction K4 to the ring L0, we obtain the ring M(4, R, s) with the matrix of factors⎛
⎜⎜⎝

1 s s s
s 1 s s
s s 1 1
s s 1 1

⎞
⎟⎟⎠

such that s121 = s131 = s232 = s141 = s and s343 = 1. By considering the position of 1 above the main
diagonal, we denote the obtained ring by L34. We apply permutations (3 1)(4 2), (1 3 4)(2), (1 3)(2)(4),
(2 3 4)(1), and (2 3)(1)(4) to the ring L34 and obtain the rings L12, L13, L14, L23, and L24, respectively.
Above the main diagonal, matrices of factors of these rings have 1 in the positions (1, 2), (1, 3), (1, 4),
(2, 3), and (2, 4), respectively.

We can repeat these actions beginning with the ring L1 = M(3, R, s). As a result, we obtain the
rings L′

12, L′
13, L′

14, L′
23, L′

24, and L′
34. We recall that the ring L0 can be transformed into the ring L1

by some permutation (e.g., we can use (1 4)(2 3)). The ring L34 is transformed into the ring L′
34 by the

permutation (1 2)(3 4); this gives a partial answer on the question formulated in the end of Sec. 7. Thus,
all 12 rings

L12, L13, L14, L23, L24, L34, L′
12, L′

13, L′
14, L′

23, L′
24, L′

34

are contained in the same orbit. In addition, we remark that L1 = Lt
0 and L′

ij = Lt
ij (see the item (d) of

Sec. 5).
The above list of matrices of factors can be supplemented for n = 4 by one more orbit:⎛

⎜⎜⎝
1 1 s s
1 1 s s
s s 1 s
s s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s 1 s
s 1 s s
1 s 1 s
s s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s s 1
s 1 s s
s s 1 s
1 s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s s s
s 1 1 s
s 1 1 s
s s s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s s s
s 1 s 1
s s 1 s
s 1 s 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 s s s
s 1 s s
s s 1 1
s s 1 1

⎞
⎟⎟⎠ .

The corresponding orbit of rings contains 12 rings of the form Lij and L′
ij . It is not known whether

this orbit contains other rings.

9. Isomorphisms of Rings M(n,R, s)

The following result is directly verified with the use of Lemma 4.5.

Lemma 9.1. For any formal matrix ring K over the ring R, the relation C(K) = {rE | r ∈ C(R)} holds.

In Sec. 5, the isomorphism problem (III) was formulated. Now we consider the problem for formal
matrix rings M(n, R, {sijk}) such that for i 
= j and j 
= k, any factor sijk is equal to sm for some m ≥ 1,
where s is a fixed central element of the ring R. Similar rings were mentioned at the beginning of Sec. 7.
Here we denote such rings by M(n, R, s); do not confuse this with the symbol M(n, R, s) from Secs. 7
and 8, where M(n, R, s) denotes the ring such that sijk = 1 or sijk = s.

In what follows, we denote by M(n, R, 0) the ring M(n, R, {sijk}) such that all factors sijk are equal
to zero, excepting siik and sikk. Further, T is some ring and M(n, T, {tijk}) is an arbitrary formal matrix
ring over T .
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We recall a familiar definition. A ring R is said to be normal if all idempotents of R are central.

Lemma 9.2. Let R be a normal ring. If M(n, R, 0) ∼= M(n, T, {tijk}), then all factors tijk are equal to
zero, excepting cases where i = j or j = k.

Proof. We set K1 = M(n, R, 0) and K2 = M(n, T, {tijk}). We fix some ring isomorphism f : K1 → K2.
Let I denote the ideal (Iij) of the ring K1, where Iii = 0 and Iij = R for i 
= j (see Proposition 6.3).
Then I2 = 0, whence

(
f(I)

)2 = 0. We assume that there exists a nonzero factor tikj such that i 
= k and
k 
= j. Then EikEkj = tikjEij 
= 0, where Eij is the matrix unit (see Sec. 5). Consequently, the matrices
Eik and Ekj cannot be contained in f(I) simultaneously. For definiteness, let Eik /∈ f(I). Then

Eii(Eii + Eik) − (Eii + Eik)Eii = Eik /∈ f(I).

It is proved that the idempotent (Eii+Eik)+f(I) of the factor ring K2/f(I) is not central in K2/f(I).
Therefore, the ring K2/f(I) is not normal. On the other hand, the ring K2/f(I) is normal, since

K2/f(I) ∼= K1/I ∼= R ⊕ · · · ⊕ R

is a finite direct product of normal rings. This is a contradiction.

Now let s and t be two nonzero central elements of the ring R (by Lemma 9.2, we can assume that
s 
= 0 and t 
= 0). In addition, let sk 
= sl for all distinct nonnegative k and l. Further, let M(n, R, {sijk})
and M(n, R, {tijk}) be two rings of the form mentioned at the beginning of the section; namely, every
factor sijk is a positive integral power of the element s, and every factor tijk is a positive integral power
of the element t. We also assume that at least one of the factors sijk is equal to s and at least one of the
factors tijk is equal to t. In addition, we assume that the systems of factors sijk and tijk are “similar” in
the following sense:

sijk = sm ⇐⇒ tijk = tm

for all factors sijk and tijk. By our convention, we denote the considered rings by M(n, R, s) and M(n, R, t),
respectively.

Recall that we denote by J(R), U(R), and Z(R) the Jacobson radical, the group of invertible elements,
and the set of all (left or right) zero divisors of the ring R.

Theorem 9.3. Let R be a commutative ring with Z(R) ⊆ J(R). The rings M(n, R, s) and M(n, R, t)
are isomorphic to each other if and only if t = vα(s), where v is an invertible element in R and α is an
automorphism of the ring R.

Proof. We set K1 = M(n, R, s) and K2 = M(n, R, t). Given a ring isomorphism f : K1 → K2, the
isomorphism f induces the isomorphism C(K1) → C(K2) of the centers of these rings. We explicitly
consider the action of this isomorphism. We take an arbitrary element a ∈ R. By Lemma 9.1, aE ∈ C(K1).
Consequently, f(aE) ∈ C(K2). Further, f(aE) = bE for some b ∈ R. We obtain that f induces an
automorphism α of the ring R such that α(a) = b. Thus, we have f(aE) = α(a)E, a ∈ R.

Now we take the ideal

(sE)K1 =

⎛
⎝sR . . . sR

. . . . . . . . .
sR . . . sR

⎞
⎠

of the ring K1. Under the action of f , the image of the ideal is the ideal f
(
(sE)K1

)
. We have the relations

f
(
(sE)K1

)
= f(sE)K2 = (α(s)E)K2 =

⎛
⎝α(s)R . . . α(s)R

. . . . . . . . .
α(s)R . . . α(s)R

⎞
⎠ .

The isomorphism f induces the isomorphism of the factor rings K1/(sE)K1 → K2/(α(s)E)K2. The first
factor ring is the matrix ring M(n, R/sR, 0) (see the paragraph before Lemma 9.2). The second factor
ring is the matrix ring M(n, R/α(s)r, t̄), where t̄ = t + α(s)R. Thus, residue classes tijk + α(s)R are
factors of this ring. Applying Lemma 9.2, we obtain that t̄ = 0 or t ∈ α(s)R (we must take into account
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that t is one of the elements tijk). Consequently, t = α(s)x for some element x ∈ R. Taking the converse
isomorphism for f , we obtain that s = α−1(t)y, y ∈ R. Then we have

t = α(s)x = tα(y)x, t(1 − α(y)x) = 0.

By the assumption, we obtain that

1 − α(y)x ∈ J(R), 1 − (1 − α(y)x) = α(y)x ∈ U(R).

Consequently, x is an invertible element. Therefore, t = vα(s), where v is an invertible element, and α is
an automorphism of the ring R.

Now we assume that t = vα(s), where v is an invertible element and α is an automorphism of
the ring R. We show that the rings K1 and K2 are isomorphic to each other. First, the isomorphism
M(n, R, s) ∼= M

(
n, R, α(s)

)
follows from the item (b) of Sec. 5. The set {α(sijk) | i, j, k = 1, . . . , n} is

a system of factors of the second ring. We can assume that α is the identity automorphism. We take the
set {vijk | i, j, k = 1, . . . , n}, where vijk = vm if sijk = sm. This set is a system of factors. Therefore,
we have the ring M(n, R, vs) with system of factors {vijksijk | i, j, k = 1, . . . , n}. By the item (c) of
Sec. 5, there exists an isomorphism M(n, R, vs) ∼= M(n, R, s). It follows from the relation t = vs and
the convention on “the similarity” of systems of factors that tijk = vijksijk for all i, j, k. Therefore,
M(n, R, vs) = M(n, R, t) and M(n, R, s) ∼= M(n, R, t).

We remark that Z(R) ⊆ J(R) provided R is either a domain or a local ring.

Corollary 9.4. Let R be a commutative ring that is either a domain or a local ring. The rings M(n, R, s)
and M(n, R, t) are isomorphic to each other if and only if t = vα(s), where v is an invertible element,
α is an automorphism of the ring R.

In the papers of Krylov [12] and Tang, Li, and Zhou [21], the authors prove some isomorphism
theorems for formal matrix rings of order 2 (e.g., Corollary 9.5). Tang and Zhou [23] prove Theorem 9.3 for
rings considered in Sec. 7. In this case, the restrictions on the elements s and t listed before Theorem 9.3,
are not required. These restrictions are also not required for n = 2 (see the text after Proposition 5.2
about multiplication relations of matrices in such rings).

Corollary 9.5 ([12]). Let R be a commutative ring and let s and t be two elements of this ring such that
at least one of these elements is not a zero divisor. The rings M(2, R, s) and M(2, R, t) are isomorphic to
each other if and only if t = vα(s), where v is an invertible element, α is an automorphism of the ring R.

Abyzov and Tapkin [1] study rings M(3, R, Σ) with symmetric matrices S1, S2, and S3, i.e., sikj = sjki

for all i, j, k = 1, 2, 3 (see the end of Sec. 5 about matrix rings of order 3). In particular, the authors
obtained several results on the isomorphism problem for such rings. In addition, Abyzov and Tapkin
introduced systems of factors of a more general (as compared with the case n = 3) form as follows. Let
s1, . . . , sn be arbitrary central elements of the ring R. For all i, j, k = 1, . . . , n, we set

sijk =

⎧⎪⎨
⎪⎩

1 if i = j or j = k;
sj if i, j, k are pairwise distinct;
sisj if i = k, but i 
= j.

It is directly verified that Σ = {sijk} is a system of factors, since Σ satisfies relations (5.2). Consequently,
there exists a ring M(n, R, Σ). Further, Abyzov and Tapkin [1] transfer results on the isomorphism
problem obtained for the rings M(3, R, Σ) to the rings M(n, R, Σ) mentioned above. The class of such
rings M(n, R, Σ) contains Tang–Zhou rings from the beginning of Sec. 7.

If s and t are any two invertible elements (without any restrictions), then any two rings M(n, R, s)
and M(n, R, t) mentioned at the beginning of the section are isomorphic to each other by Proposition 5.2.
Therefore, we can assume that one of these elements (for example, s) is not invertible. In this case, if R is
a domain, then sk 
= sl for k 
= l. This is realized in the following two examples. Therefore, we assume in
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these examples that the corresponding systems of factors {sijk} and {tijk} satisfy only the two conditions
formulated before Theorem 9.3.

Example 9.6. Let s, t ∈ Z. An isomorphism M(n,Z, s) ∼= M(n,Z, t) exists if and only if t = s or t = −s.

Proof. First of all, we need to take into account Lemma 9.2 and the remark before Example 9.6. Further,
the assertion follows from Theorem 9.3, since the ring Z has only the identity automorphism and U(Z) =
{1,−1}.
Example 9.7. Let R be a commutative domain and let i and j be two positive integers. If M(n, R[x], xi) ∼=
M(n, R[x], xj) or M(n, R[[x]], xi) ∼= M(n, R[[x]], xj), then i = j.

Proof. Let V be one of the rings R[x], R[[x]]. We assume that i < j. By Theorem 9.3, we have that
xi = v(x)α(xj) = v(x)α(x)j , where v(x) is an invertible element of the ring V and α is an automorphism
of the ring V . Further, we have α(x) = xk(a0+a1x+. . .), where k ≥ 0 and a0 
= 0. Then xi = xjkv(x)(a0+
a1x+ . . .)j . However, we have i < j. Therefore, k = 0, and we have the relation xi = v(x)(a0 +a1x+ . . .)j .
Since a0 
= 0, we have that v(x) is divided by x, which is impossible.

10. Determinants of Formal Matrices

In the last two sections, R is a commutative ring, and K is some formal matrix ring of order n over
the ring R with system of factors {sijk | i, j, k = 1, . . . , n}, i.e., K = M(n, R, {sijk}).

We recall the multiplication rules for matrices in the ring K. Let A = (aij), B = (bij), and AB = (cij).

Then cij =
n∑

k=1

sikjaikbkj . We will use several times the relations from Sec. 5, which are concerned with

the interrelations between factors sijk. For convenience, we partly repeat these relations. First of all,
these are the main relations (5.2):

siik = 1 = sikk, sijk · sikl = sijl · sjkl.

It follows from these relations that we have the following relations:

siji = sjij , siji = sijl · sjil = slij · slji.

In addition, for all i, j = 1, . . . , n, we defined the element tij , which is equal to sijl for some l = 1, . . . , n.
The relations

tij · tji = siji, tij · tjk = tik · sijk

hold. Now we introduce the notion of the determinant of an arbitrary matrix in K and show that such
a determinant satisfies properties that are similar to the main properties of the ordinary determinant
of matrices from the ring M(n, R). We use properties of the ordinary determinant without additional
explanations.

In several cases, determinants of matrices from the ring K are considered in [1, 6, 7, 22, 23]. The
paper [15] contains a general approach to the notion of the determinant of an arbitrary formal matrix of
order 2.

We are interesting in the following question: Which transformations of rows and columns of matrices
in K are possible? We take an arbitrary matrix A = (aij) in K.

(a) Rows of the matrix A can be multiplied by elements of R. Therefore, we can consider common
factors of elements of rows.

We have the homomorphism

ϕijk : Rij ⊗Rj Rjk → Rik, ϕijk(x ⊗ y) = sijkxy = x ◦ y

(see Secs. 3 and 5). The symbol ◦ can be considered as an operation in R; however, the result of the
operation depends on subscripts i and j. To emphasize that the element r of the ring R is used as an
element of Rij , we will add the subscripts i and j to this element. Namely, we set rij = r. Let A1, . . . , An
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be rows of the matrix A. Then rij ◦ Aj denotes the vector-row (rij ◦ aj1, . . . , rij ◦ ajn). In fact, we deal
with some R-module (R, . . . , R).

(b) We can multiply (in the sense of the operation ◦) the jth row of the matrix A by the element rij

and add the product to the ith row. Such transformation is briefly presented in the form rij ◦ Aj + Ai.

(c) We can replace the ith row of the matrix A by the row 1ij ◦ Aj = (sij1aj1, . . . , sijnajn), and we
can also replace the jth row of the matrix A by the row 1ji ◦ Ai = (sji1ai1, . . . , sjinain). The transfer
from the matrix A to the obtained matrix is called the interchange of the ith row and the jth row of the
matrix A. Similar transformations can be performed over columns of the matrix A.

We will say that the ith row and the jth row of the matrix A are proportional if Aj = rji ◦ Ai or
Ai = rij ◦ Aj for some elements rji, rij ∈ R.

Let η be one of the homomorphisms

M(n, R, {sijk}) → M(n, R)

defined before Proposition 5.2. It acts with the use of the relation (aij) → (tijaij), where tij = sijl for
some fixed integer l = 1, . . . , n.

The ordinary determinant of the matrix C ∈ M(n, R) is denoted by |C|. For every matrix A from the
ring K, we set d(A) = |ηA|. We call the element d(A) the determinant of the matrix A in the ring K,
and the mapping d : K → R, A → d(A) is called the determinant of the ring K.

We present the equivalent method of defining determinants of matrices in K. First, we return to the
operation ◦. If xij , xjk ∈ R, then xij ◦ xjk = sijkxijxjk by our convention. We will assign subscripts i, k
to the element xijxjk.

Now, given the elements ai1i2 , . . . , aik−1ik of the ring R, the expression

ai1i2 ◦ ai2i3 ◦ · · · ◦ aik−1ik (10.1)

has an exact sense. Indeed, any arrangement of parentheses in (10.1) is rightful. In addition, the result
does not depend on the arrangement of parentheses, i.e., ◦ is an associative operation. The proof uses the
induction on the number of elements. For k = 3, the assertion follows from the main relations mentioned
at the beginning of the section.

With the use of the tensor product Ri1i2⊗R · · ·⊗RRik−1ik , we can give a value to the expression (10.1).
The homomorphisms ϕijk induce the homomorphism ϕ from this product into R. Then

ai1i2 ◦ · · · ◦ aik−1ik = ϕ(ai1i2 ⊗ · · · ⊗ aik−1ik).

We also can act as follows. As earlier, let Eij be a matrix unit. Then EijEjk = sijkEik. If

(ai1i2Ei1i2) · . . . · (aik−1ikEik−1ik) = cEi1ik , c ∈ R,

then ai1i2 ◦ · · · ◦ aik−1ik = c.
Let us have one more element aiki1 . Subscripts of elements ai1i2 , . . . , aik−1ik , aiki1 form a cycle; it

is denoted by σ. We represent it, beginning with another element. In such a case, the expression
ai1i2 ◦ · · · ◦ aik−1ik ◦ aiki1 is equal to the corresponding expression for another representation of the cycle σ
(we must take into account the relation siji = sjij).

Now we can give an exact meaning to the expression a1i1 ◦ · · · ◦ anin provided the second subscripts
of the factors form a permutation of integers 1, . . . , n. For this purpose, we represent the permutation

τ =
(

1 2 . . . n
i1 i2 . . . in

)

as the product of independent cycles σ1, . . . , σm. If c1, . . . , cm are products (in the sense of the operation ◦)
of elements whose subscripts are included in cycles σ1, . . . , σm, respectively, then we assume that

a1i1 ◦ · · · ◦ anin = c1 · . . . · cm.
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We state that
d(A) =

∑
n!

(−1)qa1i1 ◦ · · · ◦ anin ,

where q is the number of inversions in the permutation i1, . . . , in. Since

d(A) = |ηA| =
∑
n!

(−1)qt1i1a1i1 · . . . · tninanin ,

it is sufficient to verify that corresponding summands of two sums are equal to each other. We take two
such summands. We decompose the permutation of subscripts of factors of these summands into the
product of independent cycles. We show that products of elements whose subscripts form some cycle are
equal to each other. We take one from cycles (i1i2 . . . ik). The product ai1i2 ◦ · · · ◦ aiki1 is equal to

si1i2i1 · si2i3i1 · . . . · sik−1iki1 · ai1i2 · . . . · aiki1 .

The corresponding product for the determinant ηA is

ti1i2 · . . . · tiki1 · ai1i2 · . . . · aiki1 .

With the use of induction on the length of the cycle, we prove that

ti1i2 · . . . · tiki1 = si1i2i1 · . . . · sik−1iki1 .

If k = 2, then ti1i2ti2i1 = si1i2i1 . Let k ≥ 3. We have tik−1iktiki1 = tik−1i1sik−1iki1 ; then we use the
induction hypothesis. As a result, we obtain the relation

d(A) =
∑
n!

(−1)qa1i1 ◦ · · · ◦ anin .

We can say that the complete development formula holds for the determinant d(A). As a corollary, we
obtain that the first definition of the determinant d(A) does not depend on the choice of the homomor-
phism η.

We present several main properties of the determinant d(A). Each of them can be verified with the
use of either the first definition or the second definition of the determinant. We more frequently use the
second definition to avoid the repetition of well-known arguments.

(1) d(E) = 1.
(2) The determinant d is a polylinear function of matrix rows.

Proof. The property (2) follows from the relation d(A) = ηA and a similar property of the ordinary
determinant.

(3) If the matrix A′ is obtained from the matrix A by interchanging the ith row and jth row, then
d(A′) = −sijid(A).

Proof. For the matrix A′, the ith row is equal to 1ij ◦ Aj and the jth row is equal to 1ji ◦ Ai. For the
matrix η(A′), the ith row is equal to (ti1sij1aj1, . . . , tinsijnajn). For every k, we obtain

tiksijk = siklsijk = sijlsjkl = sijltjk.

We can repeat the same action for the jth row of the matrix η(A′). We obtain that

|η(A′)| = sijlsjil|A′′| = siji|A′′|,
where the matrix A′′ is obtained from ηA by the interchange of the ith row and the jth row. Therefore,
|A′′| = −|ηA|. Now we obtain

d(A′) = |η(A′)| = siji|A′′| = −siji|ηA| = −sijid(A).
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(4) If some two rows of the matrix A are proportional, then d(A) = 0.

Proof. Let the jth row of the matrix A be equal to rji ◦ Ai for some rji ∈ R. By property (2), we can
assume that this row has the form (sji1ai1, . . . , sijnain). For the matrix ηA, the row with number i is
equal to (si1lai1, . . . , sinlain) for some l, and the row with number j is equal to (sj1lsji1ai1, . . . , sjnlsjinain).
For every k = 1, . . . , n, we have sjiksjkl = sjilsikl. Now it is clear that the ith row of the matrix ηA is
proportional to the jth row of ηA. Consequently, d(A) = |ηA| = 0.

(5) If we multiply (in the sense of the operation ◦) the jth row of the matrix A by some element
rij ∈ R and add the product to the ith row of the matrix A, then the determinant of the obtained matrix
will be equal to d(A).

Proof. In the proof of (5), we can use standard methods based on properties (2) and (4).

(6) For any two matrices A and B, the relation d(AB) = d(A)d(B) holds.

Proof. It is clear that the relations

d(AB) = |η(AB)| = |η(A)η(B)| = |η(A)| |η(B)| = d(A)d(B)

are true.

(7) If sikj = sjki for all i, j, and k, then d(A) = d(At) for every matrix A. If all elements siji are
nonzero divisors in R, then the converse is also true.

Proof. We can use the homomorphism η or the complete development formula; this is practically the same
method. We use the first method. We have d(A) = |ηA| and d(At) = |η(At)|. There exists a familiar
correspondence between the summand determinants |ηA| and |η(At)|. We take some summand c of
the determinant |ηA|. Let τ be the permutation of subscripts of this summand. We have the relation
τ = σ1 · . . . · σm, where σi are pairwise independent cycles (in particular, of length 1). Further, let ci be
the product of factors whose subscripts occur in σi, i = 1, . . . , n. Then c = c1 · . . . · cm.

Let the summand d of the determinant |η(At)| correspond to c. The permutation of its subscripts is
τ−1 = σ−1

m · . . . · σ−1
1 . For the element d, we have the corresponding representation d = d1 · . . . · dm. We

verify that c1 = d1, . . . , cm = dm. For this purpose, we take some cycle σ = (i1i2 . . . ik). Without loss of
generality, we can assume that k ≥ 2. Then σ−1 = (ik, ik−1, . . . , i1). Now it is sufficient to verify that the
product ti1i2ti2i3 · . . . · tik−1iktiki1 is equal to the product tikik−1

tik−1ik−2
· . . . · ti2i1ti1ik . These products are

equal to
(ti1i2ti2i3 · . . . · tik−2ik−1

tik−1i1)sik−1iki1

and
(ti2i1ti3i2 · . . . · tik−1ik−2

ti1ik−1
)si1ikik−1

,

respectively. The form of the expressions in parentheses prompts us to use induction on the length of the
cycle σ. The case k = 2 is obvious.

Now we assume that all factors siji are nonzero divisors and d(A) = d(At) for every matrix A. If
some two of three subscripts i, j, k are equal to each other, then sikj = sjki. Therefore, we assume that
subscripts i, j, k are pairwise distinct We take the matrix

A = E + Eik + Ekj + Eji − Eii − Ekk − Ejj .

The determinant d(A) is equal to 1ik ◦ 1kj ◦ 1ji = sikjsiji, and the determinant d(At) is equal to sjkisjij .
Consequently, sikj = sjki.

There exists a familiar relation for a determinant with corner consisting of zeros.
(8) Let the matrix A have the form (

B D
0 C

)
,

where B and C are matrices of order m and n − m, respectively. Then d(A) = d(B)d(C).
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Proof. We give some explanations. The matrix B has a system of factors {sijk | 1 ≤ i, j, k ≤ m}, and the
matrix C has a system of factors {sijk | m + 1 ≤ i, j, k ≤ n} (all subscripts can be reduced by m). For
the rings M(m, R, {sijk}) and M(n − m, R, {sijk}), we assume that corresponding homomorphisms η are
restrictions of the homomorphism η to the ring M(n, R, {sijk}). We mean that the matrix B is identified
with the matrix (

B 0
0 0

)
,

and the matrix C is identified with the matrix (
0 0
0 C

)
.

Now we obtain the relations
d(A) = |ηA| = |ηB| · |ηC| = d(B)d(C).

If the set of factors sijk contains zero divisors, this often hinders the work with matrices. We define
one formal matrix ring that sometimes helps to avoid these difficulties. In one case, a similar ring is
introduced in [23] (see below).

We fix a commutative ring R and an integer n ≥ 2. Let X = {xijk} be a set of n(n2 − 1) variables,
where 1 ≤ i, j, k ≤ n, i 
= j, j 
= k. Further, let R[X] be the polynomial ring in variables xijk with
coefficients in the ring R.

Let I be the ideal of the ring R[X] generated by all differences of the form xijkxikl − xijlxjkl. We
denote by R[X] the factor ring R[X]/I. We identify elements of the ring R with their images in R[X].
For simplicity of representations, we denote the residue class xijk + I by xijk. In what follows, it will be
important that the elements xijk are nonzero divisors in R[X].

We set xiik = 1 = xikk for all i, k = 1, . . . , n. In the ring R[X], we have the relations xijkxikl = xijlxjkl

for all values of subscripts. Therefore, there exists a formal matrix ring M(n, R(X), {xijk}). This ring is
denoted by M(n, R[X], X). There exists a familiar homomorphism

η : M(n, R[X], X) → M(n, R[X])

(see the paragraph before Proposition 5.2). In addition, the determinant d : M(n, R[X], X) → R[X] was
defined earlier. In a certain sense, the ring M(n, R[X], X) and the determinant d form a couniversal object
for formal matrix rings of order n over R and their determinants. We give an exact meaning to these
words.

Let us have a concrete formal matrix ring M(n, R, {sijk}). In such a case, several homomorphisms
appear, we call them the permutation homomorphisms; they are denoted by the same symbol θ. Every
such a homomorphism replaces the symbol xijk by the element sijk. First of all, this the homomorphism
θ : R[X] → R. Since R can be embedded in R[X], we have that θ splits, i.e., R[X] = R ⊕ Ker(θ).

It follows from main relations (5.2) that I ⊆ Ker(θ). After identification, we can assume that
R[X] = R ⊕ (

Ker(θ)
)
/I. In addition, θ induces the homomorphism R[X] → R; we denote it by the same

symbol θ.
More generally, there exists a split permutation homomorphism θ : M(n, R[X]) → M(n, R) such that

θ is applied to each element of the matrix, and there also exists a decomposition M(n, R[X]) = M(n, R)⊕
Ker(θ). Further, θ induces the permutation homomorphism

θ : M(n, R[X]) → M(n, R)

and the decomposition
M(n, R[X]) = M(n, R) ⊕ (

Ker(θ)/M(n, I)
)
. (10.2)

The last homomorphism θ is also a homomorphism of formal matrix rings

M(n, R[X], X) → M(n, R, {sijk}).
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Remarks.
(1) The decomposition (10.2) is only additive.
(2) The homomorphism θ is surjective. More precisely, every matrix (aij) ∈ M(n, R) is the image of

the matrix (aij) in M(n, R[X]) (we identify matrices (aij) and (aij + I)).

Now we can write two commutative diagrams:

M(n, R[X], X) M(n, R[X])

M(n, R, {sijk}) M(n, R)

�η

�
θ

�
θ

�η

,

M(n, R[X]) R[X]

M(n, R) R

�det

�
θ

�
θ

�det

,

where det is the ordinary determinant. Commutativity of the second diagram is directly verified with the
use of the complete development formula for the determinant. We also have the commutative diagram
that unites two previous diagrams:

M(n, R[X], X) R[X]

M(n, R, {sijk}) R

�d

�

θ

�

θ

�d

.

We meant the existence of the last diagram when we said that the pair (M(n, R[X], X), d) is couniversal.
In one important case, we can simplify the construction of the ring M(n, R[X], X). We consider formal

matrix rings M(n, R, {sijk}) such that every factor sijk is a nonnegative integral power of some nonzero
element s. We denote by M(n, R, s) some such ring. In Secs. 7 and 8, we circumstantially considered rings
M(n, R, s) such that every factor sijk is equal to 1 or s. In Sec. 9, we assumed that sijk = sm, m ≥ 1, for
i 
= j and j 
= k.

For the element s, we also assume that sk 
= sl for all distinct nonnegative k and l. Let x be a variable.
For all i, j, and k, we set xijk = xm provided sijk = sm. The set {xijk | i, j, k = 1, . . . , n} is a system of
factors in the polynomial ring R[x]. Consequently, there exists a formal matrix ring M(n, R[x], {xijk}); it
is denoted by M(n, R[x], x). The above three diagrams turn into diagrams

M(n, R[x], x) M(n, R[x])

M(n, R, s) M(n, R)

�η

�

θ

�

θ

�η

,

M(n, R[x], x) R[x]

M(n, R, s) R

�d

�
θ

�
θ

�d

.

In these diagrams, d is the determinant, and θ is the permutation homomorphism that replaces the
symbol x by the symbol s. Tang and Zhou defined and used the ring M(n, R[x], x) in [23].

11. Some Theorems on Formal Matrices

We preserve the notation of the previous section. As before, we assume that we have some formal
matrix ring M(n, R, {sijk}), where R is a commutative ring. We show that there are analogues of the
Hamilton–Cayley theorem and one familiar invertibility criterion of the matrix.

We recall that tij = sijl for some fixed l. In what follows, we will use the homomorphism

η : M(n, R, {sijk}) → M(n, R), (aij) → (tijaij)

(see Sec. 5).
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Let A = (aij) be some matrix. We denote by η(A)∗ the adjoint matrix for ηA. Then

η(A)η(A)∗ = η(A)∗η(A) = |η(A)|E.

Further, we have η(A)∗ = (A′
ji), where A′

ji is the algebraic adjunct of the element tjiaji. We recall that
A′

ji is the determinant of the matrix that is obtained from the matrix ηA after the replacement of the
element tjiaji by 1 and the replacement of all remaining elements of the jth row and the ith column by 0.

We temporarily assume that all elements sijk are nonzero divisors. First, we also assume that n ≥ 3.
We take an arbitrary summand of the determinant A′

ji, where j 
= i. This summand necessarily contains
the factor tikaiktkjakj for some k 
= i, j. Since tiktkj = sikjtij , we can write A′

ji = tjiAji, where Aji is
a certain element of the ring R canonically obtained from A′

ji. If i = j, then tij = 1 and Aji = A′
ji. For

n = 2, the existence of such an element tij is directly verified.
We form the matrix A∗ = (Aji). We have η(A∗) = η(A)∗. Further,

η(AA∗) = η(A)η(A∗) = η(A)η(A)∗ = |η(A)| · E = d(A)E = η(d(A)E);

similarly, we have
η(AA∗) = η(d(A)E).

Since all sijk are nonzero divisors, Ker(η) = 0 by Proposition 5.2. Consequently, AA∗ = A∗A = d(A)E.
How can we construct the matrix A∗ if not all elements sijk are nonzero divisors? For this purpose,

we use the commutative diagram from Sec. 10:

M(n, R[X], X) R[X]

M(n, R, {sijk}) R

�dX

�

θ

�

θ

�d

(11.1)

(we have replaced d by dX in the first row of the diagram). Since each xijk is a nonzero divisor, it follows
from the above that there exists a unique matrix A∗

X ∈ M(n, R[X], X) such that AA∗
X = A∗

XA = dX(A)E.
Therefore, we have that

θ(A)θ(A∗
X) = θ(A∗

X)θ(A) = θ(dX(A)E)
or

Aθ(A∗
X) = θ(A∗

X)A = θ(dX(A)E).
It follows from the diagram that θdX(A) = dθ(A) = d(A), whence θ(dX(A)E) = d(A)E. As a result, we
obtain the relations

Aθ(A∗
X) = θ(A∗

X)A = d(A)E.

It remains to set A∗ = θ(A∗
X). If all elements sijk are nonzero divisors, then this matrix A∗ coincides with

the matrix A∗ defined in the text before the diagram. If we compare similar construction methods of the
matrix A∗ before the diagram (11.1) and of the matrix A∗

X , then it is clear that A∗ = θ(A∗
X).

We finish the first part of Sec. 11 with the following results.

Theorem 11.1. Let us have a formal matrix ring M(n, R, {sijk}) and let A be a matrix in this ring.
(1) AA∗ = AA∗ = d(A)E.
(2) The matrix A is invertible if and only if d(A) is an invertible element of the ring A.
(3) If A is an invertible matrix, then A−1 = d(A)−1A∗.

For the determinant d(A), there exist analogues of the decomposition of a determinant relative to
elements of a row and the orthogonality property of rows and algebraic adjuncts. We mean the relations

ai1 ◦ Ai1 + ai2 ◦ Ai2 + · · · + ain ◦ Ain = d(A),
ai1 ◦ Aj1 + ai2 ◦ Aj2 + · · · + ain ◦ Ajn = 0, i 
= j,

following from the relation AA∗ = d(A)E.
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The familiar Hamilton-Cayley theorem states that every matrix is a root of its characteristic polyno-
mial. We extend this theorem on matrices in the matrix ring M(n, R, {sijk}).

Let x be a variable. We have the formal matrix ring M(n, R[x], {sijk}) and the homomorphism
η : M(n, R[x], {sijk}) → M(n, R[x]) from Proposition 5.2. This homomorphism extends the homomor-
phism η : M(n, R, {sijk}) → M(n, R).

Now we take some symbol λ. Let A be a matrix in the ring M(n, R, {sijk}). With the use of the
relation f(λ) = d(λE − A), we define the characteristic polynomial f(λ) of the matrix A (with respect
to the ring M(n, R, {sijk})), where d(λE − A) is the determinant of the matrix λE − A in the ring
M(n, R[λ], {sijk}). Since

d(λE − A) = |η(λE − A)| = |λE − ηA|,
we have that f(λ) is the characteristic polynomial of the matrix ηA in the ring M(n, R). By the Hamil-
ton–Cayley theorem, f(ηA) = 0. By the use of the relation

f(λ) = λn + a1λ
n−1 + · · · + an−1λ + an, ai ∈ R,

we obtain that η(fA) = f(ηA) = 0. If η is an injective mapping (i.e., all sijk are nonzero divisors), then
f(A) = 0, which is required.

If the mapping η is not injective, then we again consider the ring M(n, R[X], X) from Sec. 10; for
this ring, the corresponding homomorphism η is injective. The ring M(n, (R[X])[λ], X) exists. The
homomorphism θ : R[X] → R from Sec. 10 induces the homomorphism θ : (R[X])[λ] → R[λ] that applies
θ to coefficients of polynomials. Finally, the last homomorphism θ induces the homomorphism

θ : M(n, (R[X])[λ], X) → M(n, R[λ], {sijk}).
We also have the following commutative diagram, which is similar to the diagram from Sec. 10:

M(n, (R[X])[λ], X) (R[X])[λ]

M(n, R[λ], {sijk}) R[λ]

�d

�
θ

�
θ

�d

. (11.2)

We return to the characteristic polynomial f(λ) of the matrix A = (aij). We take the matrix Ā = (āij)
from the ring M(n, R[X], X) with θ(Ā) = A, where θ is taken from the diagram (11.1). Let F (λ) be the
characteristic polynomial of the matrix Ā, i.e., F (λ) = d(λE − Ā), where λE − Ā ∈ M(n, (R[X])[λ], X).
Then θ(λE − Ā) = λE −A, where θ is taken from the diagram (11.2). It follows from the diagram (11.2)
that

θd(λE − Ā) = dθ(λE − Ā) = d(λE − A).
In other words, θ

(
F (λ)

)
= f(λ), where

F (λ) ∈ (R[X])[λ], f(λ) ∈ R[λ], θ : (R[X])[λ] → R[λ].

We represent the polynomial F [λ] more explicitly:

F (λ) = λn + ā1λ
n−1 + · · · + ān−1λ + ān, āi ∈ R[X].

Then we have
f(λ) = θ

(
F (λ)

)
= λn + a1λ

n−1 + · · · + an−1λ + an.

Now it follows from the above that

F (Ā) = Ān + ā1Ā
n−1 + · · · + ān−1Ā + ānE = 0.

Therefore,
0 = θ

(
F (Ā)

)
= An + a1A

n−1 + · · · + an−1A + anE = f(A).
We have proved the following result.
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Theorem 11.2. If A is a matrix in the ring M(n, R, {sijk}) and f(λ) is the characteristic polynomial of
the matrix A, then f(A) = 0.

Tang and Zhou [23] proved Theorem 11.2 for their formal matrix rings (see the beginning of Sec. 7).
Finally, we consider the uniqueness property of a determinant. For the ordinary determinant of

matrices, some combinations of properties (1)–(8) of Sec. 10 are characteristic combinations. We mean
that if some mapping f : M(n, R) → R satisfies some of the properties (1)–(8), then f coincides with
the determinant. We show that under some restrictions introduced in Sec. 10 the determinant properties
(1)–(3) are characteristic properties in the mentioned sense.

Theorem 11.3. Let M(n, R, {sijk}) be a formal matrix ring, where the ring R does not have elements
of additive order 2 and all factors sijk are nonzero divisors. In addition, let f : M(n, R, {sijk}) → R be
a mapping such that the following properties are true:

(1) f(E) = 1;
(2) f is a polylinear function of rows of the matrix ;
(3) if we interchange rows with numbers i and j in an arbitrary matrix A ∈ M(n, R, {sijk}) and

denote the obtained matrix by A′, then f(A′) = −sijif(A).
Then f coincides with the determinant d of the ring M(n, R, {sijk}).
Proof. Let A = (aij) be an arbitrary matrix. We use several times the polylinearity of the function f
for the representation of the element f(A) as a sum of elements of the form f(C), where C is a matrix
such that the ith row of the matrix C contains the element aij on the position (i, j), and the remaining
elements are equal to zero. Then from every row of the matrix C, we interchange this element aij with
the sign of the mapping f . We denote by D the obtained matrix (every row of the matrix D has 1
on at most one position, and D has 0 on the remaining positions). Considering (2), we obtain that
f(C) = a1j1 · . . . · anjnf(D).

We show that if some of the subscripts j1, . . . , jn are equal to each other, then f(D) = 0. For example,
let us assume that 1 stands on the positions (i, k) and (j, k), i 
= j. In the matrix D, we interchange rows
with subscripts i and j; we denote the obtained matrix by D′. By (3), f(D′) = −sijif(D). It follows
from (2) that

f(D′) = sijksjikf(D) = sijif(D).
Therefore, we have the relations

sijif(D) = −sijif(D), 2sijif(D) = 0, 2f(D) = 0, f(D) = 0.

Thus, there only remain elements of f(C) such that subscripts of elements a1j1 , . . . , anjn form a per-
mutation. In addition, if some row of the matrix D consists of zeros, then f(D) = 0 by property (2).
Therefore, we assume that every row of any matrix D contains exactly one element that is equal to 1,
and the remaining elements are equal to zero; this means that D is a permutation matrix. Let τ be
a permutation of subscripts of nonzero elements of the matrix D. We have τ = σ1 · . . . · σm, where σi are
pairwise independent cycles. We denote by σ one of these cycles; let σ = (i1i2 . . . ik). By interchanging
rows with numbers i1, i2, . . . , ik, we obtain the situation such that each 1 from these rows is placed on the
main diagonal. How will the element f(D) be changed in this situation? We will know this with the use
of induction on the length of the cycle σ.

For m = 2 and m = 3, the induction hypothesis is directly verified. We assume that for any cycle σ
of length m with 3 ≤ m < k, the relation

f(D) = (−1)m−1si1i2i3si1i3i4 · . . . · si1im−1imsi1imi1f(V )

holds. The difference between the matrices V and D consists in the property that the rows of the matrix V
with numbers i1, . . . , im have 1 on the main diagonal.

Now let σ have the length k. We interchange rows of the matrix D with numbers i1 and i2. The
obtained matrix is denoted by D′. The matrices D and D′ are interrelated by the relation f(D′) =
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−si1i2i1f(D). In the matrix D′, we take out of the sign f the element si1i2i3 of the row i1 and the
element si2i1i3 of the row i2. We denote by D′′ the obtained matrix. We have the relation f(D′) =
si2i1i2si1i2i3f(D′′). It follows from the last two relations that f(D) = −si1i2i3f(D′′). On the position
(i2, i2) of the matrix D′′, we have 1, and subscripts of elements (i.e., of 1) in the remaining rows form
a cycle (i1i3 . . . ik) of length k − 1. By the induction hypothesis, we obtain the relation

f(D′′) = (−1)k−2si1i3i4si1i4i5 · . . . · si1ik−1iksi1iki1f(W ),

where W is the matrix that has 1 in rows with numbers i1, . . . , ik on the main diagonal, and the remaining
rows coincide with the corresponding rows of the matrix D. Finally, we obtain the relation

f(D) = (−1)k−1si1i2i3si1i3i4 · . . . · si1ik−1iksi1iki1f(W ).

Since the determinant function d satisfies properties (1)–(3), a similar relation holds for d.
Further, we deal similarly with the remaining cycles σi in the decomposition of the permutation τ .

Finally, we obtain that the corresponding matrix W coincides with E. Therefore, f(W ) = d(W ). Thus,
we obtain that

f(D) = d(D), f(C) = d(C), f(A) = d(A).

Remarks.
(1) A matrix A = (aij) that is not invertible in the ring M(n, R) can be invertible in the ring

M(n, R, Σ), where Σ is some system of factors. We formulate the following problem: Characterize
matrices A that are invertible in some ring M(n, R, Σ). By considering the existence of the
homomorphism

η : M(n, R, Σ) → M(n, R)
from Sec. 5, we can give another form to this problem. For which matrices A and systems of
factors Σ = {sijk} is the matrix A′ = (sijlaij) invertible in the ring M(n, R) for some integer
l = 1, 2, . . . , n?

(2) We can define and study the permanent of the matrix A in the ring M(n, R, Σ). It is useful to
remark that for several problems related to determinants and permanents, there is the possibility
of variations related to the existence of many systems of factors Σ. For example, in the case
of the familiar Polya problem about conversion of permanents and determinants, we can require
that the permanent of the matrix A in the ring M(n, R, Σ) coincides with the determinant of
some other matrix in the ring M(n, R, Σ′) for some system of factors Σ′ (the system is new in the
general case).

(3) Let F be a field and let Σ = {sijk} be some system of factors sijk ∈ F . If all sijk are not equal
to zero, then it follows from Proposition 5.2 that there is an isomorphism M(n, F, Σ) ∼= M(n, F ).
This case is not very interesting. If some factors sijk are equal to zero, then properties of the ring
M(n, F, Σ) may strongly differ from properties of the ring M(n, F ). We distinguish a particular
case where every factor sijk is equal to 1 or 0. For the corresponding rings M(n, F, Σ), we can
study Problems (I)–(III) formulated in Sec. 5. In addition, we can consider the above questions
(1) and (2).

The work of the second author is supported by the Russian Foundation for Basic Research, project
14-01-00452-A: Ring Theory: Structural Theory; Applications.
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