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EXPLICIT FORM OF THE FUNDAMENTAL SOLUTION TO
A SECOND ORDER PARABOLIC OPERATOR

A. G. Chechkin

Lomonosov Moscow State University
Moscow 119991, Russia
a.g.chechkin@gmail.com UDC 517.9

We propose and justify an explicit representation of the fundamental solution to a system

of parabolic equations with special initial conditions. Bibliography: 5 titles.

1 Statement of the Problem and the Main Results

Suppose that x = (x1, . . . , xn) ∈ R
n, t ∈ R+ = [0,+∞), and u(t, x) : R+ × R

n → R is a real-

valued function in R+ × R
n with continuous partial derivatives ∂t, ∂xk

, ∂2
xkxl

, k, l = 1, . . . , n.

The class of such functions is denoted by C1,2(R+ × R
n;R). We say that an operator L is a

second order operator if it has the form

L[v] =
1

2

∑

ij

Aij(t)
∂2v

∂xi∂xj
+

∑

i

( ∑

j

Bij(t)xj + ci(t)
) ∂v

∂xi

+
( ∑

ij

Fij(t)xixj +
∑

i

gi(t)xi + h(t)
)
v,

where Aij(t), Bij(t), ci(t), Fij(t), gi(t), i, j = 1, . . . , n, and h(t) are some functions. Respectively,

we consider the second order equation

u̇ = L[u] (1.1)

Such operators are used in Kolmogorov, Bellman type equations and so on (cf., for example, [1]

and the bibliography therein).

1.1. Assumptions.

Assumption A. The coefficients A(t), B(t), F (t) : R+ → Mn×n(R) of the second order

operator L are continuous functions in R+ and have finite limits A0, B0, F0 ∈ Mn×n(R) as

t → 0. The matrix A(t) is symmetric, and the matrix A0 is positive definite.

Let a solution to the Cauchy problem

P ′ = −P (2AS +BT )− (2AS +B)P − 2A, P |t=0 = 0 ∈ Mn×n(R), (1.2)
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where S(t) is a symmetric solution to the problem

S ′ = 2SAS + SB +BTS +
1

2
(F + F T ), S|t=0 = 0 ∈ Mn×n(R), (1.3)

is represented as

P (t) = −2tA0 +R(t) (1.4)

in a neighborhood of zero, where R(t) is a matrix defined on [0, ε], 0 < ε � 1.

Remark 1.1. The existence of solutions to the problems (1.2) and (1.3) and their properties

are discussed in Section 2 (cf. Propositions 2.2 and 2.4).

We introduce the notation

Q(t) = − 1

2t
R(t)A−1

0 , (1.5)

Q(t) = [E +Q(t)]−1 − E, (1.6)

Q̃(t) = Q(t) + (A(t)−A0)A
−1
0 [E +Q], (1.7)

q̃(t) =
1

n
tr Q̃. (1.8)

Assumption B. The following improper integral exists:

t∫

0

q̃(s)

s
ds < +∞, 0 � t < ε.

Remark 1.2. Assumption B is satisfied if q̃(t) is O(tγ) as t → 0, where γ > 0,

1.2. The main theorem. We consider two systems of differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S′ = 2SAS + SB +BTS +
1

2
(F + F T ),

q′ = (2SA+BT )q + 2Sc+ g,

r′ = tr (AS) +
1

2
qTAq + qT c+ h,

(1.9)

⎧
⎪⎨

⎪⎩

P ′ = −P (2SA+BT )− (2AS +B)P − 2A,

m ′ = −(2AS +B)m−Aq − c,

C ′ = C · (tr (AP−1))

(1.10)

and the Cauchy problem
∂u

∂t
= L[u], u

∣∣
t=0

= δy(x), (1.11)

where δy(x) is a delta-function with singularity at y ∈ R
n.

Theorem 1.1. Suppose that Assumptions A and B are satisfied. Then the solution u(t, x)

to the Cauchy problem (1.11) has the form

exp
{
xTS(t)x+ qT (t)x+ r(t)

}
C(t) exp

{〈
P−1(t)(x−m(t; y)), (x−m(t; y))

〉}
, (1.12)
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where S(t), q(t), r(t) are solutions to the system (1.9) with the initial conditions Sij(0) = qk(0) =

r(0) = 0, i, j, k ∈ 1, n, P (t), m(t; y) are solutions of the first two equations of the system (1.10)

with the initial conditions Pij(0) = 0, i, j ∈ 1, n, m(0) = y, and C(t) is a partial solution of the

third equation of the system (1.10) of the form

C(t) =
1√

(2πt)n detA0

exp

{
− n

2

t∫

0

q̃(s)

s
ds

}
.

2 Auxiliaries

We use the method for studying parabolic equations proposed in [2]).

2.1. Integral of exponential of quadratic functions.

Proposition 2.1. Let v(x) = 〈Sx, x〉+ 〈q, x〉+ r be a quadratic form, where S ∈ Mn×n(R)

is a symmetric matrix, q ∈ R
n, and r ∈ R. The integral

∫

Rn

exp v(x) dx1 . . . dxn (2.1)

exists if and only if the matrix S(t) is negative definite; moreover,

∫

Rn

exp{〈Sx, x〉+ 〈q, x〉+ r}dx1 . . . dxn = πn/2|detS|−1/2 exp

{
r − 1

4
〈S−1q, q〉

}
. (2.2)

Proof. As is known, the quadratic form with a symmetric matrix with real entries can be re-

duced to the diagonal form by an orthogonal transformation, i.e., for a symmetric matrix S = ST

there exists an orthogonal matrix O : O−1 = OT such that OTSO = Λ, Λ = diag {λ1, . . . , λn}.
Making the change of variables x = Oy, we can write the quadratic form 〈Sx, x〉 in the form

〈Sx, x〉 = 〈SOy,Oy〉 = 〈OTSOy, y〉 = 〈Λy, y〉 =
n∑

k=1

λky
2
k,

where λk, k = 1, . . . , n, are eigenvalues of the matrix S. Note that λk, k = 1, . . . , n, are real

because the matrix S is symmetric. It is obvious that detS = λ1 · . . . · λn.

In the variables y = (y1, . . . , yn), the function v(x) takes the form

v(x) = 〈Λy, y〉+ 〈OT q, y〉+ r =

n∑

k=1

[λky
2
k + q̃kyk] + r,

where q̃k is the kth component of the vector q̃ = OT q = O−1q. Hence the integral (2.1) (of

multiplicity n) exists if and only if the following n single integrals

Ik =

+∞∫

−∞
exp{λky

2
k + q̃kyk} dyk.

simultaneously exist. The last condition is satisfied if and only if λk < 0 for all k = 1, . . . , n.

Moreover,
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λky
2
k + q̃kyk = −

[
(−λk)y

2
k − q̃kyk +

(
− 1

4λk

)
q̃2k

]
− 1

4λk
q̃2k

= −
[√

−λkyk − 1

2
√−λk

q̃k

]2 − 1

4λk
q̃2k.

Consequently,

Ik = exp
{
− 1

4λk
q̃2k

}
·

√
π√−λk

(2.3)

since (independently of b in the case a > 0)

+∞∫

−∞
e−(ay+b)2dy =

√
π

a
,

From (2.3) and the equality dx1 . . . dxn = dy1 . . . dyn, valid in view of the orthogonality of

the matrix O, it follows that

∫

Rn

exp v(x)dx1 . . . dxn = exp

{
r −

n∑

k=1

1

4λk
q̃2k

}
n∏

k=1

√
π√−λk

. (2.4)

We note that the matrix diag {1/λ1, . . . , 1/λn} is the inverse of Λ. Therefore,

n∑

k=1

1

4λk
q̃2k =

1

4
〈Λ−1q̃, q̃〉 = 1

4
〈(OTSO)−1q̃, q̃〉

=
1

4
〈OTS−1Oq̃, q̃〉 = 1

4
〈S−1Oq̃,Oq̃〉 = 1

4
〈S−1q, q〉;

moreover,
n∏

k=1

√
π√−λk

=
(
√
π)n√

(−1)n detS
= πn/2|detS|−1/2.

Therefore, the equality (2.4) can be written in the form
∫

Rn

exp{〈Sx, x〉+ 〈q, x〉+ r}dx1 . . . dxn = πn/2|detS|−1/2 exp
{
r − 1

4
〈S−1q, q〉

}
, (2.5)

which is a formula for computing the integral of exponential of quadratic functions, valid pro-

vided that all the eigenvalues of the matrix S are negative.

2.2. Parabolic equation. We consider the equation

∂u(t, x)

∂t
= J[u(t, x)], (t, x) ∈ R+ × R

n, (2.6)

where

J[u] =

n∑

k,l=1

1

2
akl(t, x)

∂2u

∂xk∂xl
+

n∑

k=1

bk(t, x)
∂u

∂xk
+ C(t, x) · u, (2.7)

or, in the vector form,
∂u

∂t
=

〈1
2
A,

∂2u

∂x2

〉
+

〈
b,
∂u

∂x

〉
+ Cu. (2.8)
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Lemma 2.1. Let ρ ∈ C1,2(R+×R
n;R), ρ(t, x) > 0, be a positive solution to Equation (2.6).

Then a function v ∈ C1,2(R+ × R
n;R) of the form

v(t, x) =
u(t, x)

ρ(t, x)
, (t, x) ∈ R+ × R

n (2.9)

satisfies the equation
∂v

∂t
=

〈
1

2
A,

∂2v

∂x2

〉
+

〈
A
∂ ln ρ

∂x
+ b,

∂v

∂x

〉
. (2.10)

Proof. Differentiating the identity (2.9), we get

∂u

∂t
=

∂ρ

∂t
· v + ρ · ∂v

∂t
,

∂u

∂xk
=

∂ρ

∂xk
· v + ρ · ∂v

∂xk
,

∂2u

∂xk∂xl
=

∂2ρ

∂xk∂xl
· v + ∂ρ

∂xk

∂v

∂xl
+

∂ρ

∂xl

∂v

∂xk
+ ρ · ∂2v

∂xk∂xl
.

Substituting the obtained expressions into Equation (2.8), we find

∂ρ

∂t
· v + ρ · ∂v

∂t
=

[〈1
2
A,

∂2ρ

∂x2

〉
· v +

〈
A
∂ρ

∂
x,

∂v

∂x

〉
+ ρ

〈1
2
A,

∂2v

∂x2

〉]

+
[〈

v,
∂ρ

∂x

〉
· v + ρ ·

〈
b,

∂v

∂x

〉]
+ C · [ρ · v].

Rearranging the terms, we find

ρ · ∂v
∂t

= ρ ·
〈1
2
A,

∂2v

∂x2

〉
+

〈
A
∂ρ

∂x
,
∂v

∂x

〉
+ ρ ·

〈
b,

∂v

∂x

〉
+
(
− ∂ρ

∂t
+ L[ρ]

)
· v. (2.11)

The last term on the right-hand side of (2.11) vanishes since ρ satisfies Equation (2.6). Dividing

both sides of (2.11) by ρ > 0, we obtain (2.10).

2.3. Second order equation. The positive functions

ρ(t, x) = exp
{
xTS(t)x+ qT (t)x+ r(t)

}
, (2.12)

where S ∈ Mn×n(R), satisfy an equation of the form (1.1) (cf. [2]), and the following assertion

holds (cf. [2, Theorem 3.1]).

Lemma 2.2. A function ρ ∈ C1,2(R+ ×R
n;R) of the form (2.12) is a solution to Equation

(1.1) if and only if the coefficients S(t), q(t), r(t) satisfy the system of equations

S ′ =
1

2
STAS +

1

2
SAST + SAS + SB +BTST +

1

2
(F + F T ),

q ′ = (SA+ STA+BT )q + Sc+ ST c+ g,

r ′ = tr (AS) +
1

2
qTAq + qT c+ h.

(2.13)
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We consider the Cauchy problem

S ′ =
1

2
STAS +

1

2
SAST + SAS + SB +BTST +

1

2
(F + F T ),

S|t=0 = 0 ∈ Mn×n(R).

We look for a solution to this problem in the space of symmetric matrices Mn×n(R). The Cauchy

problem can be written in the form (1.3), and the system (2.13) takes the form (1.9).

Proposition 2.2. Let Assumption A hold. Then the solution S(t) to the problem (1.3) exists

in an ε1-neighborhood of zero.

Proof. Indeed, by Assumption A, lim
t→0

S ′(t) = 1
2(F0+F T

0 ) exists, i.e., S ′(t) = 1
2(F0+F T

0 )+

o(1). This means that

S(t) =
1

2
t(F0 + F T

0 ) +K(t), (2.14)

where K(t) = (kij(t)) is a symmetric matrix; moreover, kij(t) = o(t) as t → 0, i.e., there exists

ε1 > 0 such that the representation (2.14) holds.

Definition 2.1. A system of the form (2.13) is called a Riccati type system (cf. [3]–[5]).

Corollary 2.1. Let S(t), q(t), r(t) satisfy the system (1.9). Then the function v of the form

(2.9) in Lemma 2.1 with ρ of the form (2.12) in Equation (1.1) satisfies the equation

∂v

∂t
=

〈1
2
A,

∂2v

∂x2

〉
+

〈
B̂x+ ĉ,

∂v

∂x

〉
, (2.15)

where B̂ = 2AS +B and ĉ = Aq + c.

To justify formulas for B̂ and ĉ, we recall that a function ρ of the form (2.12) satisfies

∂ ln ρ

∂x
= 2Sx+ q.

2.4. A Riccati type system with singularity. Consider functions u(t, x) : R+×R
n → R

of class C1,2(R+ × R
n;R) satisfying (1.1). We look for a solution to Equation (1.1) in the form

u(t, x) = exp{xTP−1(t)x+ qT (t)x+ r(t)}, (2.16)

where P−1 is a symmetric matrix. According to Lemma 2.2, we have the system

(P−1)′ = 2P−1AP−1 + P−1B +BTP−1 +
1

2
(F + F T ),

q ′ = (2P−1A+BT )q + 2P−1c+ g,

r ′ = tr (AP−1) +
1

2
qTAq + qT c+ h.

(2.17)

Proposition 2.3. If entries of an invertible matrix P (t) are differentiable, then the entries

of the inverse matrix P−1(t) are also differentiable; moreover,

(P−1(t))′ = −P−1(t)P ′(t)P−1(t). (2.18)
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Proof. Each entry of the matrix P−1(t) can be expressed as the ratio of two polynomials

in entries of P (t) taken with a suitable sign: the cofactor corresponding to a chosen element

and the determinant of P (t) different from zero since the matrix P (t) is nonsingular. Therefore,

entries of P−1(t) are differentiable. Differentiating the identity P (t)P−1(t) ≡ E with respect to

t, we obtain the relation P ′(t)P−1(t)+P (t)(P−1(t))′ = 0 which immediately implies (2.18).

It is easy to show that a function u(t, x) of the form (2.16) is also represented as

u(t, x) = C(t) · exp{〈P−1(t)(x−m(t)), (x−m(t))〉}, (2.19)

where

m = −1

2
Pq, (2.20)

C = exp
{
r − 1

4
〈Pq, q〉

}
. (2.21)

Note that the nonsingularity of P−1 in a neighborhood of zero follows from Proposition 2.6.

We set B̃ = −BT .

Lemma 2.3. A function u ∈ C1,2(R+ ×R
n;R) of the form (2.19) is a solution to Equation

(1.1) if and only if P (t), m(t), C(t) satisfy the equations

P ′ = −1

2
P (F + F T )P + PB̃ + B̃TP − 2A,

m ′ = −1

2
P (F + F T )m+ B̃Tm− c− 1

2
Pg,

C ′ = C · [tr (AP−1) +
1

2
〈(F + F T )m,m〉+ 〈g,m〉+ h].

(2.22)

Proof. Using (2.18), we transform the first equation of the system (2.17) as follows:

−P−1P ′P−1 = 2P−1AP−1 + P−1B +BTP−1 +
1

2
(F + F T ).

Multiplying both sides of this equality from the left and from the right by the matrix P , we

obtain the first equation of (2.22). Differentiating the identity (2.20), we find

m ′ = −1

2
(P ′q + Pq ′).

Substituting the expressions for P ′ and q ′ from (2.22) and (2.17) respectively, we get

m ′ = −1

2

(
− 1

2
P (F + F T )Pq + B̃TPq + 2c+ Pg

)
= −1

2
P (F + F T )m+ B̃Tm− c− 1

2
Pg.

Hence we obtain the second equation of (2.22). Finally, differentiating (2.21), we have

C ′ = exp
{
r − 1

4
〈Pq, q〉

}
·
(
r − 1

4
〈Pq, q〉

)′
= C ·

(
r − 1

4
〈Pq, q〉

)′
.

However, (〈Pq, q〉)′ = 〈P ′q, q〉+ 2〈Pq, q ′〉 since the matrix P is symmetric. Hence

C ′ = C ·
(
r ′ − 1

4
〈P ′q, q〉 − 1

2
〈Pq, q ′〉

)
.
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Substituting the expressions for P ′, q ′, and r ′ from (2.22) and (2.17), we obtain the equality

C ′ = C ·
(
tr (AP−1) +

1

8
〈P (F + F T )Pq, q〉 − 1

2
〈Pg, q〉+ h

)

= C ·
(
tr (AP−1) +

1

2
〈(F + F T )m,m〉+ 〈g,m〉+ h

)

which coincides with the third equation of the system (2.22).

Definition 2.2. The system (2.22) is referred to as a Riccati type system with singularity.

Proposition 2.4. Let Assumption A be satisfied. Then a solution P (t) to the Cauchy

problem (1.2) exists in an ε2-neighborhood of zero.

Proof. By Assumption A, lim
t→0

P ′(t) = −2A0 exists, i.e., P ′(t) = −2A0 + o(1). Hence

P (t) = −2tA0 +R(t), (2.23)

where R(t) = (rkl(t)) is a symmetric matrix; moreover, rkl(t) = o(t) as t → 0, i.e., there exists

ε2 > 0 such that (2.23) holds.

We note that ε2 � ε1 and the constant ε in Assumption A is equal to ε2.

2.5. Additional Facts. The proof of the following assertion is obvious by Lemma 2.3.

Proposition 2.5. A function v ∈ C1,2(R+ × R
n;R) of the form (2.19) is a solution to

Equation (2.15) if and only if its coefficients satisfy the system (1.10).

Proposition 2.6. The matrix P (t) is negative definite in a neighborhood of zero.

Proof. Let λ0 > 0 be the least eigenvalue of the matrix A0. By Assumption A,

〈A0x, x〉 � λ0〈x, x〉, x ∈ R
n.

We choose a small t0 ∈ R+ such that |rkl(t)| < 1
2λ0t for all t ∈ (0, t0), where R(t) = (rkl(t)) is

defined in (2.23). Then for t ∈ (0, t0)

|〈R(t)x, x〉| � 1

2
λ0t〈x, x〉, x ∈ R

n.

However, 〈P (t)x, x〉 = −2t〈A0x, x〉 + 〈R(t)x, x〉 in view of (2.23). Combining the last two

inequalities, we conclude that for t ∈ (0, t0)

〈P (t)x, x〉 � −3

2
λ0t〈x, x〉, x ∈ R

n.

Consequently, 〈P (t)x, x〉 < 0 for t ∈ (0, t0) and all x 
= 0, i.e., the matrix P (t) is negative definite

on (0, t0) and all its eigenvalues are negative.

Proposition 2.7. lim
t→0

I(t) = 1, where

I(t) =

∫

Rn

C(t) · exp{〈P−1(t)(x−m(t; y)), (x−m(t; y))〉}dx1 . . . dxn,
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P (t) and m(t; y) are solutions to the first two equations of the system (1.10) with the initial

conditions Pij(0) = 0, i, j ∈ 1, n, and m(0) = y, whereas C(t) is a partial solution to the third

equation of the system (1.10) of the form

C(t) =
1√

(2πt)n detA0

exp

{
− n

2

t∫

0

q̃(s)

s
ds

}
.

Proof. Replacing ν(t) = lnC(t), we reduce the third equation of (1.10) to the form

ν ′(t) = tr (AP−1) . (2.24)

For (1.5) we have Q(t) = (qkl(t)); moreover, qkl(t) = o(1) as t → 0. From (2.23) it follows that

P (t) = −2t[E +Q(t)]A0. (2.25)

Consequently,

P−1(t) = − 1

2t
A−1

0 [E +Q(t)]−1 = − 1

2t
A−1

0 [E +Q(t)],

where Q(t) = (qkl(t)) is given in (1.6). The matrix Q(t) exists by Assumption A. Moreover,

qkl(t) = o(1) as t → 0. We set W (t) = A(t)P−1(t). Then

−2tW (t) = A(t)A−1
0 [E +Q(t)] = [A0 + (A(t)−A0)]A

−1
0 [E +Q(t)]

= E +Q(t) + (A(t)−A0)A
−1
0 [E +Q(t)] = E + Q̃(t),

where Q̃(t) = (q̃kl(t)) is given by (1.7); moreover, q̃kl(t) = o(1) as t → 0 by Assumption A.

Taking into account the above notation, we transform the right-hand side of (2.24) as follows:

tr (AP−1) = tr W (t) = − 1

2t
tr (E + Q̃(t)) = − n

2t
(1 + q̃(t)),

where q̃(t) is defined in (1.8); moreover, q̃(t) = o(1) as t → 0 by the definition and properties of

the matrix Q̃(t). Equation (2.24) takes the form

ν ′(t) = − n

2t
(1 + q̃(t)). (2.26)

The function ν0(t) defined by the equality

ν0(t) = −n

2
ln t− n

2

t∫

0

q̃(s)

s
ds,

is a partial solution to this equation. Thus, the general solution to Equation (2.26) has the form

ν(t) = ν0(t) +N0, N0 ∈ R. As a consequence, we find

ν(t) = N0 − n

2
ln t+ o(1), t → 0. (2.27)

Hence C(t) = C0 exp ν0(t) and C0 = expN0 > 0 are solutions to the third equation of (1.10).
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By (2.5) and (2.21), we have I(t) = C(t) ·πn/2|detP (t)|1/2 (independently of y ∈ R
n). Hence

ln I(t) = ν(t) +
n

2
lnπ +

1

2
ln |detP (t)|. (2.28)

From (2.25) it follows that

|detP (t)| = (2t)n detA0 · (1 + o(1)). (2.29)

Based on (2.27) and (2.29), from (2.28) we find

ln I(t) = N0 − n

2
ln t+

n

2
lnπ +

1

2
ln((2t)n detA0(1 + o(1))) = N0 + ln

√
(2π)n detA0 + o(1).

Setting N0 = − ln
√

(2π)n detA0, we obtain the required equality lim
t→0

I(t) = 1.

We define G(t, x; y) : R+ × R
n × R

n → R by the formula

G(t, x; y) = C(t) · exp{〈P−1(t)(x−m(t; y)), (x−m(t; y))〉},

where P (t), m(t), C(t) satisfy the assumptions of Proposition 2.7.

Lemma 2.4. Let ϕ(x) : Rn → R be a function of class C∞
0 (Rn), and let

f(t, x) =

∫

Rn

ϕ(y)G(t, y;x)dy.

Then f(t, x) → ϕ(x) as t → 0.

Proof. For any fixed t > 0 the matrix P = P (t) is symmetric and negative definite by

construction and Propositions 2.6 and 2.4. Hence there exists an orthogonal matrix O : O−1 =

OT such that OTP (t)O = Λ = diag {λ1, . . . , λn}; moreover, all λk are negative.

Denote by
√−Λ the matrix diag {√−λ1, . . . ,

√−λn} and by
√−P (t) the matrix O

√−ΛOT .

Making the change of variables y =
√−P (t)z +m(t;x), we find

f(t, x) =

∫

Rn

ϕ(y)C(t) exp{〈P−1(t)(y −m(t;x)), (y −m(t;x))〉}dy

=

∫

Rn

ϕ(y)C(t) exp{〈O√−ΛOTOΛ−1OTO
√−ΛOT z, z〉}d(O√−ΛOT z)

=

∫

Rn

C(t)ϕ(
√

−P (t)z +m(t;x)) exp{−〈z, z〉} · |detP (t)|1/2dz

= π−n/2I(t)

∫

Rn

ϕ(
√

−P (t)z +m(t;x)) exp{−〈z, z〉}dz.

The last integral converges to πn/2ϕ(x) since P (t) → 0 and m(t;x) → x as t → 0. Hence

f(t, x) → ϕ(x) as t → 0 by Proposition 2.7.
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3 Proof of Theorem 1.1

We represent a solution to the Cauchy problem (1.11) as the product u(t, x) = ρ(t, x)v(t, x).

By Corollary 2.1, the problem splits into two ones:

∂ρ

∂t
= L[ρ], ρ|t=0 = 1, (3.1)

∂v

∂t
= F[v], v|t=0 = δy(x), (3.2)

where L is a second order operator and F is the operator corresponding to the right-hand side

of Equation (2.15). By Lemma 2.2, the problem (3.1) has a solution ρ(t, x) of the form (2.12),

where S(t), q(t), r(t) are solutions to the system (1.9) with the initial conditions Sij(0) = qk(0) =

r(0) = 0, i, j, k ∈ 1, n. By Proposition 2.5, there exists a function v(t, x) of the form (2.19),

where P (t), m(t), C(t) are solutions to the system (1.10). From Lemma 2.4 it follows that for

the initial conditions Pij(0) = 0, i, j ∈ 1, n, m(0) = y, and

C(1) = exp

{
− n

2

+∞∫

0

q̃(s)

s
ds− ln

√
(2π)n detA0

}

we have v(t, x) → δy(x) as t → 0. It is obvious that for such initial conditions on S(t), q(t), r(t),

P (t), m(t), C(t) the product ρ(t, x)v(t, x) also converges to δy(x) as t → 0.
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