D. V. Rutsky∗ UDC 517.982.1+517.538; 517.444; 517.982.27

Let X *be an* ^A1*-regular lattice of measurable functions and let* Q *be a projection that is also a Calder´on–Zygmund operator. In this case, it is possible to define a space* X*^Q consisting of functions* f [∈] X *for which* Qf ⁼ f *in a certain sense. By using the Bourgain approach to* $interpolation, we show that the couple \left(L_1^Q, X^Q \right)$ is *K*-closed in (L_1, X) *. This result is sharp in the sense that, in general,* A1*-regularity cannot be replaced by weaker conditions such as* A*p-regularity for* $p > 1$ *. Bibliography:* 13 *titles.*

0. Introduction

For simplicity, we only consider the case of spaces S of homogeneous type, $S = \mathbb{R}^n$ or $S = \mathbb{T}^n$. A natural setting for these results is consideration of lattices of measurable functions on a measurable space $S \times \mathcal{X}$, where $\mathcal X$ is a σ -finite measurable space. Mostly, we treat operators like the Hardy-Littlewood maximal operator M that act in the first variable. More details on lattices of measurable functions can be found, e.g., in [10].

Let Q be a projection that is also a Calderón–Zygmund operator. For a lattice X , we define a space X^Q of functions f from X for which $Qf = f$ in a certain sense. We show that natural attempts to make the definition of X^Q precise in a fairly general setting lead to various technical difficulties.

Many interesting spaces arising in harmonic analysis, such as the real Hardy and Sobolev spaces, can be defined in terms of L_p^Q with a suitable projection Q (acting in a space of vector-valued functions) e.g. see [11]. We consider the following problem: When is the couple vector-valued functions), e.g., see [11]. We consider the following problem: When is the couple (L_1^Q, X^Q) K-closed in (L_1, X) ? The K-closedness means that there exists a constant C such that for any function $h \in L_1^Q + X^Q$ and any decomposition $h = f + g$, $f \in L_1$, $g \in X$, there exists another decomposition $h = F + G$, $F \in L_1^Q$, $G \in X^Q$, such that $||F||_{L_1} \leq C||f||_{L_1}$ and $||G||_X \leq C||g||_X$. This property was established earlier in [11] in the case where $X = L$ for $||G||_X \leq C||g||_X$. This property was established earlier in [11] in the case where $X = L_p$ for all $1 < p \leq \infty$ using the so-called Bourgain method, and this result later proved to be useful; see also [3].

A weighted Calderón–Zygmund decomposition was developed in [9], which allowed to extend in [6, Chap. 4] the K-closedness to the case of A_1 -regular lattices X (see the definition below).

Theorem 1. *Assume that* X *is an* ^A1*-regular lattice of measurable functions satisfying the Fatou property, and let* Q *be a projection that is also a Calder´on–Zygmund operator. Then the couple* (L_1^Q, X^Q) *is* K-*closed in* (L_1, X) *with a constant depending only on the* A₁-regularity *constant of* X *and properties of* Q*.*

A typical example, as well as a particular case on which the proof of this result is based, is the case of the lattices

 $X = L_{\infty}(w) = \{q \mid |q| \leq Cw \text{ a. e.}\};$

such a lattice is A₁-regular if and only if $w \in A_1$. In the present paper, we give a somewhat simplified proof of Theorem 1 and discuss some related problems.

[∗]St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia, e-mail: rutsky@pdmi.ras.ru.

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 424, 2014, pp. 186–200. Original article submitted June 3, 2014.

For generalities on the Muckenhoupt A_p weights see, e.g., [8, Chap. 5]. A lattice X is called A_p -regular (respectively, BMO-regular) with constants (C, m) if for any $f \in X$ there exists a majorant $w \ge |f|$ such that $||w||_X \le m||f||_X$ and $w \in A_p$ (respectively, log $w \in BMO$) with a constant C. It was noted that such conditions, and especially A_1 -regularity, often characterize lattices of measurable functions that are interesting in the study of behavior of various harmonic analysis operators; see, e.g., [7, 12]. In particular, it is known that the A_1 regularity of a lattice X is equivalent to the boundedness of the maximal operator M in X , and for a wide class of lattices X and Calderón–Zygmund operators Q , the boundedness of Q in X is equivalent to the A₁-regularity of both X and X'.
It may seem that more subtle and mysterious interpo

It may seem that more subtle and mysterious interpolation properties of the spaces X^Q can hardly be characterized in such a simple way. But gradually it was discovered that in the important case of Hardy-type spaces X_A (which corresponds to the Riesz projection $Q = \mathbb{P}$), there is a rather intimate connection of such conditions with interpolation properties; for example, at least for $p \in \{1, 2, \infty\}$, the K-closedness of (H_p, X_A) in (L_p, X) is equivalent to the BMO-regularity of X, see [3] and [13].

However, in the general case of Calderón–Zygmund projections Q , such a characterization may be false, as the following simple example demonstrates. We can define the space of constant functions on the unit circle T with the normalized Lebesgue measure via a singular integral operator Q with kernel $K(x, y) = 1$, which surely is a Calderon–Zygmund operator. Let *w* be a summable weight such that $w > 0$ almost everywhere. In this case, the space $L_{\infty}(w)^Q$ is nontrivial if and only if

$$
\underset{t \in \mathbb{T}}{\text{ess inf}} w(t) > 0. \tag{1}
$$

However, since the set $L_{\infty}(w)$ is dense in L_1 , it is easy to see that the K-closedness of $(L_1^Q, L_\infty(w)^Q)$ in $(L_1, L_\infty(w))$ implies that $L_\infty(w)^Q$ is nontrivial. This means that for $p > 1$ and such a projection Q , the conclusion of Theorem 1 does not hold for A_p -regular lattices
L, (w) and all weights $w \in A$, since many of such weights do not satisfy (1) $L_{\infty}(w)$ and all weights $w \in A_p$ since many of such weights do not satisfy (1).

Nevertheless, this example may be only an exception to the rule; essentially, it has more to do (by duality) with the rather comprehensively studied interpolation of spaces of codimension 1 (see, e.g., [1]) and not with interpolation of Hardy-type spaces. We also note that this question is closely related to general problems of stability of decompositions under action of various singular operators; see, e.g., [4].

1. WEIGHTED CALDERÓN–ZYGMUND DECOMPOSITION AND THE BOURGAIN METHOD

Any almost everywhere nonnegative measurable function *w* is called here a weight. For a lattice X, the weighted space $X(w)$ is naturally defined by $X(w) = \{wf | f \in X\}$ with the norm $||g||_{X(w)} = ||gw^{-1}||_X$. This definition, however, leads to a somewhat confusing notation $L_p(w^{-1/p})$ for the "standard" weighted Lebesgue spaces with the norm

$$
||h||_{\mathcal{L}_p(w^{-1/p})} = \left(\int |h|^p w\right)^{\frac{1}{p}}
$$

For measurable sets E and weights w, we denote by $w(E) = \int_E$ E *w* the corresponding measure.

We need a weighted version of the following well-known notion; we state it for general linear operators since it will be applied to certain maps which are derived from the Calderon–Zygmund operators. We also use an additional variable.

Definition 2. Let P be a linear operator on $L_1(a^{-1})$, where a is a weight. We say that P admits a Colderón-Zuamund tupe decomposition with weight a if for any $\lambda > 0$ and any P *admits a Calderon–Zygmund type decomposition with weight a if for any* $\lambda > 0$ *and any*

 $f \in L_1(a^{-1})$ there exists a decomposition $f = g + b$ and a measurable set $\Omega \subset S \times X$ such that
the following statements are valid: *the following statements are valid:*

 (1) $||g||_{L_{\infty}} \leq C\lambda;$ (2) $||g||_{L_1(a^{-1})} \leq C||f||_{L_1(a^{-1})};$
(3) $||b||_{L_1(a^{-1})} \leq C||f||_{L_1(a^{-1})};$ (3) $||b||_{L_1(a^{-1})} \leq C||f||_{L_1(a^{-1})}$;
(4) $\leq C||f||_{L_1(a^{-1})}$ (4) $a(\Omega) \leq \frac{C}{\lambda} ||f||_{L_1(a^{-1})}$;

(5) $\int |Pb| a \leq C ||f|$ $\int_{(S\times\mathcal{X})\backslash\Omega}$ $|Pb|a \leq C||f||_{\mathrm{L}_1(a^{-1})}$

with a constant C *independent of* f*.*

The property introduced by Definition 2 together with the (assumed) boundedness of P in $L_t\left(a^{-\frac{1}{t}}\right)$ for some $t > 1$ implies (by the well-known routine argument) the weak type of P, which already has many interesting applications, see [9, Sec. 2]. It is important to note that under these assumptions, P is correctly defined on the entire $L_1(a^{-1})$.
We now provide a sample of simple definitions of the space X^Q which

We now provide a couple of simple definitions of the space X^Q which are expanded later. The simplest case arises when the projection Q acts boundedly in X ; then

$$
X^Q = \{ f \in X \mid Qf = f \}
$$
\n⁽²⁾

correctly defines a closed subspace of X . However, in interesting cases, Q is not bounded in X. If Q is defined on L₁ (a^{-1}) (but not necessarily takes values in this space) and Q is a
projection (i.e. $Q^2 = Q$ on a dome wheat of L₁ (a^{-1})) then for a lattice X of measurable projection (i.e., $Q^2 = Q$ on a dense subset of $L_1(a^{-1})$), then for a lattice X of measurable
functions on S such that $X \cap L_1(a^{-1})$ is dange in X we may define X^Q as the electron in X of functions on S such that $X \cap L_1(a^{-1})$ is dense in X we may define X^Q as the closure in X of the set the set

$$
\{f \in X \cap L_1(a^{-1}) \mid Qf = f\}.
$$
\n(3)

The Bourgain method, which is the main application of Calderón–Zygmund type decompositions to interpolation, can be stated in the following form in our setting.

Proposition 3. *Assume that* Q *is a linear operator on* $L_1(a^{-1})$, Q *is a projection that admits a Calderón–Zygmund type decomposition with weight a, and Q is bounded in* $L_t\left(a^{-\frac{1}{t}}\right)$ with *some* $t > 1$ *. Then the couple*

$$
\left(\mathcal{L}_1^Q\left(a^{-1}\right),\mathcal{L}_t^Q\left(a^{-\frac{1}{t}}\right)\right)
$$

is K-closed in $(L_1(a^{-1}), L_t(a^{-\frac{1}{t}}))$.

Indeed, assume that some function $f \in L_1^Q(a^{-1}) + L_t^Q(a^{-\frac{1}{t}})$ admits a decomposition $f = f_0 + f_1, f_0 \in L_1(a^{-1}), f_1 \in L_t(a^{-\frac{1}{t}})$. By the assumptions, for f_0 and

$$
\lambda = \left(\|f_1\|_{\mathcal{L}_t\left(a^{-\frac{1}{t}}\right)}^t \|f_0\|_{\mathcal{L}_1(a^{-1})}^{-1} \right)^{\frac{1}{t-1}}
$$

there exists a Calderón–Zygmund type decomposition $f_0 = g + b$ with weight *a*. Simple estimates show that the decomposition $f = g_0 + g_1$, $g_0 = Qb$, $g_1 = Q(g + f_1)$ satisfies the stated K-closedness property. Indeed, conditions (1) and (2) of Definition 2 imply that

$$
\|g_1\|_{\mathcal{L}_t\left(a^{-\frac{1}{t}}\right)} \leq c\|g+f_1\|_{\mathcal{L}_t\left(a^{-\frac{1}{t}}\right)} \leq c\|f_1\|_{\mathcal{L}_t\left(a^{-\frac{1}{t}}\right)} + c\left(\|g\|_{\mathcal{L}_\infty}^{t-1} \|g\|_{\mathcal{L}_1(a^{-1})}\right)^{\frac{1}{t}} \leq c'\|f_1\|_{\mathcal{L}_t\left(a^{-\frac{1}{t}}\right)}
$$
\n
$$
785
$$

with some c and c' independent of f_0 and f_1 , and since $f = b + g + f_1$ and $(I - Q)f = 0$, conditions (3) – (5) of Definition 2 imply that

$$
||Qb||_{L_1(a^{-1})} = \int_{(S\times\mathcal{X})\backslash\Omega} |Qb|a + \int_{\Omega} |b + (I - Q)(g + f_1)|a
$$

$$
\leq c||f_0||_{L_1(a^{-1})} + ca(\Omega)^{\frac{t-1}{t}}||g + f_1||_{L_t(a^{-\frac{1}{t}})} \leq c'||f_0||_{L_1(a^{-1})}
$$

with some c and c' independent of f_0 and f_1 .

Let Q be a Calderón–Zygmund operator on S , i.e., Q is a singular integral operator such that Q is bounded in L_q with some $1 < q < \infty$ and the kernel $K(x, y)$ of Q together with the kernel $\tilde{K}(x, y) = K(y, x)$ of the conjugate operator Q^* satisfy the estimate

$$
|K(x,s) - K(x,t)| \le C_K \frac{|s-t|^{\gamma}}{|x-s|^{n+\gamma}}, \quad |x-s| > 2|s-t|,
$$
\n(4)

where x, s, t belong to $S = \mathbb{R}^n$ or $S = \mathbb{T}^n$. For generalities on such operators, see, e.g., [8].
For an operator T and a weight y we define an operator T corresponding to a dep-

For an operator T and a weight u we define an operator T_u corresponding to a density change by $T_u f = \frac{1}{u} T(uf)$. The main problem can be stated as follows: For what *u* and *a*, does the operator *Q* admit a Calderón-Zygmund decomposition with weight *a*? In [0] the does the operator Q_u admit a Calderón–Zygmund decomposition with weight *a*? In [9], the following result was obtained (without the additional variable and in a somewhat implicit manner).

Theorem 4 ([9, Sec. 2]). Assume that Q is a Calderón-Zygmund operator, $a \in A_{\infty}$, $w \in A_1$,
and $u = \frac{a}{w}$. Then Q_u admits a Calderón-Zygmund type decomposition with weight a, and Q_u *is bounded in* L_t $\left(a^{-\frac{1}{t}}\right)$ *for all sufficiently small* $t > 1$ *. The operator* Q_u *has weak type* $(1, 1)$ *with weight a.*

The construction of the corresponding decomposition is based on the standard Calderon– Zygmund decomposition carried out with the weighted maximal operator

$$
M_{[a]}f(t) = \sup_{Q \ni t} \frac{1}{a(Q)} \int\limits_{Q} |f|a,
$$

where the supremum is taken over all dyadic cubes. Naturally, this result also holds with an additional variable; moreover, the case with an additional variable is easily recovered from the one-variable case by integrating the respective estimates in Definition 2. The boundedness of Q_u in L_t $\left(a^{-\frac{1}{t}}\right)$ follows from properties of the Muckenhoupt weights (see [9, Lemma 2]).

We note that precise conditions on the weights *a* and *u* that correspond to the part of the conclusion of Theorem 4 concerning the weak type of Q_u are not clear. However, it can be shown that in many cases, the condition $w = \frac{a}{u} \in A_1$ is necessary. It is well known that this condition is necessary in the classical case $u = 1$, $a = w$ (see, e.g., [8, Chap. 5, Sec. 4.6]); thus, any interesting generalizations seem unlikely.

2. THE CASE OF THE COUPLE
$$
\left(L_1^Q \left(w_0^{-1} \right), L_\infty^Q \left(w_1 \right) \right)
$$

Let Q be a Calderón–Zygmund operator that is a projection. In this section, we consider the following question: For what weights w_0 and w_1 is the couple

$$
\left(\mathrm{L}^{Q}_{1}\left(w_{0}^{-1}\right),\mathrm{L}^{Q}_{\infty}\left(w_{1}\right)\right)
$$

K-closed in $(L_1(w_0^{-1}), L_\infty(w_1))$? In the case without weights, an answer was given in [11],
see also [3, Sec. 4]. The main idea is to prove the K-closedness on the entire interval (1, ∞) see also [3, Sec. 4]. The main idea is to prove the K-closedness on the entire interval $(1,\infty)$ 786

by gluing the K-closedness on three overlapping intervals. We apply the same scheme to the weighted Calderón-Zygmund decomposition.

Assume that $a_0 \in A_\infty$, $w_0 \in A_1$, and $u_0 = \frac{a_0}{w_0}$. Then, by Theorem 4, the operator Q_{u_0} and weight a_0 satisfy the assumptions of Proposition 3; thus, the couple $\left(L_1^{Q_{u_0}}\left(a_0^{-1}\right), L_t^{Q_{u_0}} \right)$ $\left(a_0^{-\frac{1}{t}}\right)$ \setminus

is K-closed in $(L_1(a_0^{-1}), L_t(a_0^{-\frac{1}{t}}))$ for all sufficiently small $t > 1$ with suitable estimates on t and the constant of K-closedness via the constants of the weights a_0 and w_0 and properties of Q.

It is easy to see that $[X(u)]^Q=uX^{Q_u}$ for any normed lattice X and any weight *u* (coincidence of the sets and norms). This implies at once that (since $a_0 = u_0w_0$) the couple

$$
\left(\mathcal{L}_1^Q\left(w_0^{-1}\right), \mathcal{L}_t^Q\left(a_0^{1-\frac{1}{t}}w_0^{-1}\right)\right) \tag{5}
$$

is K-closed in $\left(L_1(w_0^{-1}), L_t\left(a_0^{1-\frac{1}{t}}w_0^{-1}\right)\right)$ and Q is bounded in the second space.

We need to use duality in order to obtain the K-closedness on the interval covering the end of the scale $(1,\infty)$ and also to properly define the corresponding space X^Q . For a Banach space X and its subspace $Y \subset X$, the annihilator Y^{\perp} is the set

 $Y^{\perp} = \{f \in X^* \mid f(y) = 0 \text{ for all } y \in Y\}.$

Lemma 5 ([3, Lemma 1.2]). Let (Y_0, Y_1) be a subcouple of a compatible couple of Banach *spaces* (X_0, X_1) *. If* $X_0 \cap X_1$ *is dense in both* X_0 *and* X_1 *, then the following conditions are equivalent*:

-
- (1) (Y_0, Y_1) *is* K-*closed in* (X_0, X_1) ;

(2) $(Y_0^{\perp}, Y_1^{\perp})$ *is* K-*closed in* (X_0^*, X_1^*) .

It is easy to see that if Q is bounded in a weighted space $L_p(\omega)$, $1 < p < \infty$, then

$$
\left[L_{p'}^{I-Q^*}\left(\omega^{-1}\right)\right]^{\perp}=L_p^Q\left(\omega\right).
$$

This observation allows us to extend the definition of $X = L_p^Q(\omega)$ in a natural manner to the case $n = \infty$ in which one cannot state that O is defined on a dense set. Let case $p = \infty$ in which one cannot state that Q is defined on a dense set. Let

$$
L_{\infty}^{Q}(\omega) = \left[L_{1}^{I-Q^{*}}(\omega^{-1})\right]^{\perp}
$$

for all suitable weights ω . For spaces S having finite measure, this definition coincides with the previous one and even with definition (2) (see, e.g., [3, Corollary 4.4]). Sets (3) may be not dense in the strong topology of $X = L_{\infty}(\omega)$ (see [3, Proposition 4.1]).

By duality, Lemma 5 shows that for all weights $a_1 \in A_\infty$ and $w_1 \in A_1$, the couple

$$
\left(\mathcal{L}_{t'}^{Q}\left(a_{1}^{-\frac{1}{t'}}w_{1}\right),\mathcal{L}_{\infty}^{Q}\left(w_{1}\right)\right) \tag{6}
$$

is K-closed in $\left(L_{t'}\left(a_{1}^{-\frac{1}{t'}}w_{1}\right) ,L_{\infty}\left(w_{1}\right) \right)$ for all sufficiently small $t>1$ with suitable estimates on ^t and on the K-closedness constant in terms of the constants of the weights *^a*¹ and *^w*¹ and properties of Q. Moreover, Q is bounded in the first space of the couple.

The boundedness of Q at the respective ends of the intervals (5) and (6) implies the Kclosedness for a middle interval that overlaps them with a suitable choice of weights.

We formulate a most general Wolff-type result concerning the "gluing of scales" as it is applied to K-closedness. Let (X_0, X_1) be an interpolation couple of quasi-Banach spaces and let $0 < \theta < 1$. An intermediate space E for (X_0, X_1) is said to belong to $\mathcal{C}(\theta; X_0, X_1)$ if there is a continuous inclusion $E \subset (X_0, X_1)_{\theta, \infty}$ and $||x||_E \leq C_E ||x||_{X_0}^{1-\theta} ||x||_{X_1}^{\theta}$ for all $x \in E$ with a constant C_E independent of x constant C_E independent of x.

Proposition 6 ([5, Proposition 5]). Let (Y_0, Y_1) be a closed subcouple of an interpolation *couple* (X_0, X_1) *of quasi-Banach spaces and let* $0 < \theta < \delta < 1$ *. Assume also that we are given some spaces* $E_0 \in \mathcal{C}(\theta; X_0, X_1)$ *and* $E_1 \in \mathcal{C}(\delta; X_0, X_1)$ *and* F_0 *and* F_1 *are their respective subspaces such that both* F_0 *and* F_1 *contain* $Y_0 \cap Y_1$ *,* $F_0 \subset Y_0 + F_1$ *, and* $F_1 \subset Y_1 + F_0$ *. If* (Y_0, F_1) *is* K-closed in (X_0, E_1) and (F_0, Y_1) *is* K-closed in (E_0, X_1) *, then* (Y_0, Y_1) *is* K-closed *in* (X_0, X_1) *.*

For weighted Lebesgue spaces, it is well known (see, e.g., [2]) that

$$
\mathcal{L}_{p}\left(\omega\right) \in \mathcal{C}\left(\theta; \mathcal{L}_{p_{0}}\left(\omega_{0}\right), \mathcal{L}_{p_{1}}\left(\omega_{1}\right)\right)
$$

for $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ and $\omega = \omega_0^{1-\theta} \omega_1^{\theta}$, at least if $1 \le p_0 < p_1 \le \infty$ or $1 \le p_0 = p_1 < \infty$. Since the endpoint spaces of the scale $(L_1(w_0^{-1}), L_\infty(w_1))$ are already defined, for gluing of scales we ne need to find some points

$$
0 < \theta_1 < \theta_2 < \theta_3 < \theta_4 < 1
$$

of the interval $(0, 1)$ such that the corresponding K-closedness is valid for the respective couples

$$
\left(\mathrm{L}_{1}\left(w_{0}^{-1}\right), \mathrm{L}_{\frac{1}{1-\theta_{2}}}\left(w_{0}^{-(1-\theta_{2})}w_{1}^{\theta_{2}}\right)\right),
$$
\n
$$
\left(\mathrm{L}_{\frac{1}{1-\theta_{1}}}\left(w_{0}^{-(1-\theta_{1})}w_{1}^{\theta_{1}}\right), \mathrm{L}_{\frac{1}{1-\theta_{4}}}\left(w_{0}^{-(1-\theta_{4})}w_{1}^{\theta_{4}}\right)\right),
$$

and

$$
\left(\mathcal{L}_{\frac{1}{1-\theta_3}}\left(w_0^{-(1-\theta_3)}w_1^{\theta_3}\right),\mathcal{L}_{\infty}(w_1)\right).
$$

This means that in order to apply the above results to intervals (5) and (6), we need to find some weights $a_0, a_1 \in A_\infty$ such that θ_2 is sufficiently small, θ_3 is sufficiently close to 1,

$$
w_0^{-(1-\theta_j)}w_1^{\theta_j}=a_0^{\theta_j}w_0^{-1}
$$

for $j \in \{1,2\}$, and

$$
w_0^{-(1-\theta_j)}w_1^{\theta_j}=a_1^{\theta_j-1}w_1^{-1}
$$

for $j \in \{3, 4\}$. It is easy to see that these conditions are satisfied if and only if $a_0 = a_1 = w_0w_1$. The assumptions of Theorem 4 require that $a_0, a_1 \in A_\infty$. Thus, we arrive at the following result.

Proposition 7. *Assume that weights* $w_0, w_1 \in A_1$ *are such that* $w_0w_1 \in A_\infty$ *. Then the couple*

$$
\left(\mathrm{L}^{Q}_{1}\left(w_{0}^{-1}\right),\mathrm{L}^{Q}_{\infty}\left(w_{1}\right)\right)
$$

is K-closed in $(L_1(w_0^{-1}), L_\infty(w_1))$ with an estimate for the constant depending only on the
A₁-constants of the weights w_0, w_1 , the A -constant of the weight w_0w_1 and properties of O A_1 -constants of the weights w_0 , w_1 , the A_∞ -constant of the weight w_0w_1 , and properties of Q.

We note that it is not clear whether the condition $w_0w_1 \in A_\infty$ is necessary for the conclusion of Proposition 7.

3. The case of the couple (L_1^Q, X^Q)

Proposition 7 easily implies Theorem 1 if X is A₁-regular and the space X^Q satisfies the condition

$$
X^{Q} \cap \mathcal{L}_{\infty}(w) = \mathcal{L}_{\infty}^{Q}(w)
$$
\n⁽⁷⁾

for all $w \in X \cap A_1$. Indeed, assume that $f \in L_1^Q + X^Q$ and $f = g_0 + h_0$, where $g_0 \in L_1$
and $h_0 \in X$. There exists an A₁-majorant $w_0 \in A_1$ for h_0 , $||w_0||_X \le m||h_0||_X$, with some and $h_0 \in X$. There exists an A₁-majorant $w_0 \in A_1$ for h_0 , $||w_0||_X \leq m||h_0||_X$, with some constants (C, m) independent of h_0 . Then $h_0 \in L_{\infty}(w_0)$. In the case $S = \mathbb{T}^n$, the condition $f \in L_1^Q \subset L_1^Q + L_\infty^Q(w_0)$ is always satisfied, and by Proposition 7, there exists a decomposition $f = g + h$ such that $g \in L_1^Q$ and $h \in L_\infty^Q(w_0)$ with

$$
||g||_{\mathrm{L}_1} \leq C ||g_0||_{\mathrm{L}_1}
$$

and

$$
||h||_X \le ||h||_{L_{\infty}(w_0)} ||w_0||_X \le Cm||h_0||_X
$$

for some C independent of g_0 and h_0 , which proves the K-closedness in this case.
In the case $S = \mathbb{R}^n$ the inclusion

In the case $S = \mathbb{R}^n$, the inclusion

$$
f \in \mathcal{L}_1^Q + \mathcal{L}_{\infty}^Q(w_0)
$$

is not guaranteed. However, by the assumptions, $f = g_1 + h_1$ with some $g_1 \in L_1^Q$ and $h_1 \in X^Q$.
Let w_1 be an A_{te}maiorant for h₁ and let $\varepsilon > 0$. Then Let w_1 be an A₁-majorant for h_1 and let $\varepsilon > 0$. Then

$$
f \in \mathcal{L}_1^Q + \mathcal{L}_{\infty}^Q(w)
$$

with $w = w_0 + \varepsilon w_1$, and, by Proposition 7, there exists a decomposition

$$
f = g_{\varepsilon} + h_{\varepsilon}
$$

such that $g_{\varepsilon} \in L_1^Q$ and $h_{\varepsilon} \in L_\infty^Q(w)$ with the corresponding estimates

$$
||g_{\varepsilon}||_{\mathrm{L}_{1}} \leq C||g_{0}||_{\mathrm{L}_{1}}
$$

and $||h_{\varepsilon}||_{\mathbf{L}_{\infty}(w)} \leq C$ and with some C independent of ε , g_0 , and h_0 . We choose ε small enough so that $||g_0||_{\mathbf{L}} \leq C||g_0||_{\mathbf{L}}$ so that $||w||_X \leq 2||w_0||_X$. Then the functions g_{ε} and h_{ε} satisfy the estimates $||g_{\varepsilon}||_{L_1} \leq C||g_0||_{L_1}$ and $||h_{\varepsilon}||_X \leq ||h_{\varepsilon}||_{L_{\infty}(w)} ||w||_X \leq 2Cm||h_0||_X$, which proves the K-closedness in the general case. Thus, we have established Theorem 1 under the additional assumption (7).

Let us finally give a suitable definition for the space X^Q . Specifically, we construct the *smallest* subspace X^Q of X satisfying (7). Assume that Q is a projection that is a Calderón– Zygmund operator and that X is an A_1 -regular lattice with constants (C, m) satisfying the Fatou property. Similarly to the definition of the space L^Q_{∞} , for any nonzero weight $w \in X \cap A_1$
we set we set

$$
X_w^Q = \left(\mathcal{L}_1^{I-Q^*} \left(w^{-1} \right) \right)^\perp \subset \mathcal{L}_\infty \left(w \right)
$$

with the topology of X. This definition is correct since by Theorem 4, the projection $I - Q^*$ is properly defined on $L_1(w^{-1})$. The balls of the space X_w^Q are closed in X since it is easily seen that these balls are closed with respect to convergence in measure.

The spaces X_w^Q are monotone in *w*: If $w_1 \leq w_2$ almost everywhere, then

$$
L_1^{I-Q^*} (w_2^{-1}) \subset L_1^{I-Q^*} (w_1^{-1})
$$

and $X_{w_1}^Q \subset X_{w_2}^Q$. Now let

$$
X^{Q} = \bigcup_{\substack{w \in X, w \neq 0, \\ w \in A_1 \text{ with constant } C}} X^{Q}_{w}
$$
 (8)

with the topology of X. It is easy to see that X^Q is a linear space since for any $w_0, w_1 \in X \cap A_1$ and $w = w_0 + w_1$, the relations

$$
L_1(w_0^{-1}) \cap L_1(w_1^{-1}) \supset L_1(w^{-1})
$$

and $L_1^{I-Q^*}(w_0^{-1}) \cap L_1^{I-Q^*}(w_1^{-1}) \supset L_1^{I-Q^*}(w^{-1})$ hold, i.e.,

$$
[X_{w_0}^Q]^{\perp} \cap [X_{w_1}^Q]^{\perp} \supset [X_w^Q]^{\perp};
$$

passing to the annihilators, we see that $X_{w_0}^Q + X_{w_1}^Q \subset X_w^Q$.
Let us now verify that X_Q^Q is a closed subspace of X

Let us now verify that X^Q is a closed subspace of X. Indeed, assume that a sequence $f_n \in X^Q$, $n \in \mathbb{N}$, is such that the series $\sum_n f_n$ converges in X; it suffices to verify that $a - \sum f \in X^Q$. Crowing functions in this series together, we may further assume that $g = \sum_n f_n \in X^Q$. Grouping functions in this series together, we may further assume that $||f||_{X} \leq 2^{-n}$ for $n > 2$. The A_{rr}eqularity of X implies that there exist some Arresponds w. $||f_n||_X \leq 2^{-n}$ for $n \geq 2$. The A₁-regularity of X implies that there exist some A₁-majorants w_n for the functions $2^n f_n$. By the monotonicity (or using a more general Proposition 3.4 of [12]), it is easy to see that $w = \sum_{n} 2^{-n} w_n$ belongs to A₁ with constant C, and w is an A₁-majorant for g . We also have the estimates

$$
|f_n| \le 2^{-n} w_n \le w
$$

for all $n \in \mathbb{N}$, which implies that $f_n \in X_w^Q$ for all $n \in \mathbb{N}$; thus, $g \in X_w^Q \subset X^Q$ because of the closedness of balls of Y^Q closedness of balls of X_w^Q .
It is easy to see that the

It is easy to see that this definition coincides with the earlier one in the case where Q is a Calderón–Zygmund operator defined on $X \cap L_1$ if we additionally assume that this set is dense in X. Indeed, if $f \in X^Q \cap L_1$ and Q is defined on f, then $f \in X^Q_w = \left[L_1^{I-Q^*}(w^{-1}) \right]^{\perp}$ with a weight $w \in A_1$. Thus, for any bounded function g supported on a set of finite measure, we have the equalities

$$
0 = \int f[(I - Q^*)g] = \int [(I - Q)f]g \tag{9}
$$

(recall that we assume that Q is defined in L_q for some $1 < q < \infty$), which implies that $Qf = f$ and

$$
X^{Q} \subset \operatorname*{clos}_{X} \{ f \in X \cap L_{1} \mid Qf = f \}.
$$

On the other hand, if $f \in X \cap L_1$ and $Qf = f$, then $f \in X_w^Q$ for any A₁-majorant w of f due
to relation (9) which proves the converse inclusion to relation (9), which proves the converse inclusion

$$
X^Q \supset \operatorname{clos}_{X} \{ f \in X \cap L_1 \mid Qf = f \}.
$$

We see that in this case, both definitions yield the same space X^Q .

In conclusion, we note that definition (8) can be written in the form $X^Q = X \cap N_Q$, where $N_Q = \bigcup_{w \in A_1}$ $\left(L_1^{I-Q^*}(w^{-1}) \right)^{\perp}$ is an analog of the Smirnov class N₊ used in the definition of Hardy-type spaces. However, this particular definition seems to work only for A1-regular lattices since the set N_Q , in contrast to N_+ , is not necessarily closed with respect to convergence in measure; the set A_1 is itself dense with respect to convergence in measure in the set of almost everywhere nonnegative measurable functions. This motivates the following question: Is it possible to extend the set N_Q in a natural way to cover most interesting cases? It is desirable for this space to cover at least all the spaces X^Q appearing in the results of the present work together with their annihilators. The simple approach based on taking the closure of N_Q with respect to convergence in measure does not always work; for example, in the case of codimension 1 spaces on the unit circle $S = T$ defined by the projection $Qf = f - \int f$ (this

is the dual example to that described in the Introduction), taking the closure with respect to convergence in measure completely destroys the condition $Qf = f$.

Translated by D. V. Rutsky.

REFERENCES

- 1. S. V. Astashkin and P. Sunehag, "Real method of interpolation on subcouples of codimension one," *Stud. Math.*, **186**, 151–168 (2008).
- 2. J. Bergh and J. Löfström, *Interplation Spaces. An Introduction*, Springer-Verlag (1976).
- 3. S. V. Kisliakov, "Interpolation of ^Hp-spaces: Some recent developments," *Israel Math. Conf.*, **13**, 102–140 (1999).
- 4. S. Kisliakov and N. Kruglyak, *Extremal Problems in Interpolation Theory, Whitney– Besicovitch Coverings, and Singular Integrals, Birkhäuser/Springer, Basel (2012).*
- 5. S. V. Kisliakov, "On BMO-regular couples of lattices of measurable functions," *Stud. Math.*, **159**, 277–289 (2003).
- 6. D. V. Rutsky, "BMO-regularity in lattices of measurable functions and interpolation," Thesis (C. Sc.), St. Petersburg Department of the Steklov Mathematical Institute, St.Petersburg, Russia (2011).
- 7. D. V. Rutsky, "A1-regularity and boundedness of Calderon–Zygmund operators," *Stud. Math.* (2014) (to appear), http://arxiv.org/abs/1304.3264.
- 8. E. M. Stein, *Harmonic Analysis*: *Real-Variable Methods, Orthogonality, and Oscillatory Integrals*. Princeton Univ. Press (1993).
- 9. D. S. Anisimov and S. V. Kislyakov, "Double singular integrals: Interpolation and correction," *Algebra Analiz* **16**, 1–33 (2004).
- 10. L. V. Kantorovich and G. P. Akilov, *Functional Analysis*, 2nd ed. [in Russian], Moscow (1977).
- 11. S. V. Kislyakov and Quan Hua Xu, "Real interpolation and singular integrals," *Algebra Analiz*, **8**, 75–109 (1996).
- 12. D. V. Rutsky, "BMO-regularity in lattices of measurable functions on spaces of homogeneous type," *Algebra Analiz*, **23(2)**, 248–295 (2011).
- 13. D. V. Rutsky, "On the relationship between AK-stability and BMO-regularity," *Zap. Nauchn. Semin. POMI*, **416**, 175–187 (2013).