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WEIGHTED CALDERÓN–ZYGMUND DECOMPOSITION
WITH SOME APPLICATIONS TO INTERPOLATION

D. V. Rutsky∗ UDC 517.982.1+517.538; 517.444; 517.982.27

Let X be an A1-regular lattice of measurable functions and let Q be a projection that is also
a Calderón–Zygmund operator. In this case, it is possible to define a space XQ consisting of
functions f ∈ X for which Qf = f in a certain sense. By using the Bourgain approach to
interpolation, we show that the couple

(
LQ
1 , XQ

)
is K-closed in (L1, X). This result is sharp in the

sense that, in general, A1-regularity cannot be replaced by weaker conditions such as Ap-regularity
for p > 1. Bibliography: 13 titles.

0. Introduction

For simplicity, we only consider the case of spaces S of homogeneous type, S = R
n or

S = T
n. A natural setting for these results is consideration of lattices of measurable functions

on a measurable space S × X , where X is a σ-finite measurable space. Mostly, we treat
operators like the Hardy-Littlewood maximal operator M that act in the first variable. More
details on lattices of measurable functions can be found, e.g., in [10].

Let Q be a projection that is also a Calderón–Zygmund operator. For a lattice X, we
define a space XQ of functions f from X for which Qf = f in a certain sense. We show that
natural attempts to make the definition of XQ precise in a fairly general setting lead to various
technical difficulties.

Many interesting spaces arising in harmonic analysis, such as the real Hardy and Sobolev
spaces, can be defined in terms of LQ

p with a suitable projection Q (acting in a space of
vector-valued functions), e.g., see [11]. We consider the following problem: When is the couple(
LQ

1 ,XQ
)

K-closed in (L1,X)? The K-closedness means that there exists a constant C such

that for any function h ∈ LQ
1 + XQ and any decomposition h = f + g, f ∈ L1, g ∈ X, there

exists another decomposition h = F + G, F ∈ LQ
1 , G ∈ XQ, such that ‖F‖L1 ≤ C‖f‖L1 and

‖G‖X ≤ C‖g‖X . This property was established earlier in [11] in the case where X = Lp for
all 1 < p ≤ ∞ using the so-called Bourgain method, and this result later proved to be useful;
see also [3].

A weighted Calderón–Zygmund decomposition was developed in [9], which allowed to extend
in [6, Chap. 4] the K-closedness to the case of A1-regular lattices X (see the definition below).

Theorem 1. Assume that X is an A1-regular lattice of measurable functions satisfying the
Fatou property, and let Q be a projection that is also a Calderón–Zygmund operator. Then the
couple

(
LQ

1 ,XQ
)

is K-closed in (L1,X) with a constant depending only on the A1-regularity
constant of X and properties of Q.

A typical example, as well as a particular case on which the proof of this result is based, is
the case of the lattices

X = L∞ (w) = {g | |g| ≤ Cw a. e.};
such a lattice is A1-regular if and only if w ∈ A1. In the present paper, we give a somewhat
simplified proof of Theorem 1 and discuss some related problems.
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For generalities on the Muckenhoupt Ap weights see, e.g., [8, Chap. 5]. A lattice X is called
Ap-regular (respectively, BMO-regular) with constants (C,m) if for any f ∈ X there exists
a majorant w ≥ |f | such that ‖w‖X ≤ m‖f‖X and w ∈ Ap (respectively, log w ∈ BMO)
with a constant C. It was noted that such conditions, and especially A1-regularity, often
characterize lattices of measurable functions that are interesting in the study of behavior of
various harmonic analysis operators; see, e.g., [7, 12]. In particular, it is known that the A1-
regularity of a lattice X is equivalent to the boundedness of the maximal operator M in X,
and for a wide class of lattices X and Calderón–Zygmund operators Q, the boundedness of Q
in X is equivalent to the A1-regularity of both X and X ′.

It may seem that more subtle and mysterious interpolation properties of the spaces XQ

can hardly be characterized in such a simple way. But gradually it was discovered that in the
important case of Hardy-type spaces XA (which corresponds to the Riesz projection Q = P),
there is a rather intimate connection of such conditions with interpolation properties; for
example, at least for p ∈ {1, 2,∞}, the K-closedness of (Hp,XA) in (Lp,X) is equivalent to
the BMO-regularity of X, see [3] and [13].

However, in the general case of Calderón–Zygmund projections Q, such a characterization
may be false, as the following simple example demonstrates. We can define the space of
constant functions on the unit circle T with the normalized Lebesgue measure via a singular
integral operator Q with kernel K(x, y) = 1, which surely is a Calderón–Zygmund operator.
Let w be a summable weight such that w > 0 almost everywhere. In this case, the space
L∞ (w)Q is nontrivial if and only if

ess inf
t∈T

w(t) > 0. (1)

However, since the set L∞ (w) is dense in L1, it is easy to see that the K-closedness of(
LQ

1 ,L∞ (w)Q
)

in (L1,L∞ (w)) implies that L∞ (w)Q is nontrivial. This means that for p > 1
and such a projection Q, the conclusion of Theorem 1 does not hold for Ap-regular lattices
L∞ (w) and all weights w ∈ Ap since many of such weights do not satisfy (1).

Nevertheless, this example may be only an exception to the rule; essentially, it has more to do
(by duality) with the rather comprehensively studied interpolation of spaces of codimension 1
(see, e.g., [1]) and not with interpolation of Hardy-type spaces. We also note that this question
is closely related to general problems of stability of decompositions under action of various
singular operators; see, e.g., [4].

1. Weighted Calderón–Zygmund decomposition and the Bourgain method

Any almost everywhere nonnegative measurable function w is called here a weight. For a
lattice X, the weighted space X(w) is naturally defined by X(w) = {wf | f ∈ X} with the
norm ‖g‖X(w) =

∥∥gw−1
∥∥

X
. This definition, however, leads to a somewhat confusing notation

Lp

(
w−1/p

)
for the “standard” weighted Lebesgue spaces with the norm

‖h‖Lp(w−1/p) =
(∫

|h|pw
) 1

p

.

For measurable sets E and weights w , we denote by w(E)=
∫
E

w the corresponding measure.

We need a weighted version of the following well-known notion; we state it for general linear op-
erators since it will be applied to certain maps which are derived from the Calderón–Zygmund
operators. We also use an additional variable.

Definition 2. Let P be a linear operator on L1

(
a−1

)
, where a is a weight. We say that

P admits a Calderón–Zygmund type decomposition with weight a if for any λ > 0 and any
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f ∈ L1

(
a−1

)
there exists a decomposition f = g + b and a measurable set Ω ⊂ S ×X such that

the following statements are valid:

(1) ‖g‖L∞ ≤ Cλ;
(2) ‖g‖L1(a−1) ≤ C‖f‖L1(a−1);
(3) ‖b‖L1(a−1) ≤ C‖f‖L1(a−1);
(4) a(Ω) ≤ C

λ ‖f‖L1(a−1);
(5)

∫
(S×X )\Ω

|Pb|a ≤ C‖f‖L1(a−1)

with a constant C independent of f .

The property introduced by Definition 2 together with the (assumed) boundedness of P in
Lt

(
a− 1

t

)
for some t > 1 implies (by the well-known routine argument) the weak type of P ,

which already has many interesting applications, see [9, Sec. 2]. It is important to note that
under these assumptions, P is correctly defined on the entire L1

(
a−1

)
.

We now provide a couple of simple definitions of the space XQ which are expanded later.
The simplest case arises when the projection Q acts boundedly in X; then

XQ = {f ∈ X | Qf = f} (2)

correctly defines a closed subspace of X. However, in interesting cases, Q is not bounded
in X. If Q is defined on L1

(
a−1

)
(but not necessarily takes values in this space) and Q is a

projection (i.e., Q2 = Q on a dense subset of L1

(
a−1

)
), then for a lattice X of measurable

functions on S such that X ∩L1

(
a−1

)
is dense in X we may define XQ as the closure in X of

the set {
f ∈ X ∩ L1

(
a−1

) | Qf = f
}

. (3)

The Bourgain method, which is the main application of Calderón–Zygmund type decompo-
sitions to interpolation, can be stated in the following form in our setting.

Proposition 3. Assume that Q is a linear operator on L1

(
a−1

)
, Q is a projection that admits

a Calderón–Zygmund type decomposition with weight a, and Q is bounded in Lt

(
a− 1

t

)
with

some t > 1. Then the couple (
LQ

1

(
a−1

)
,LQ

t

(
a− 1

t

))

is K-closed in
(
L1

(
a−1

)
,Lt

(
a− 1

t

))
.

Indeed, assume that some function f ∈ LQ
1

(
a−1

)
+ LQ

t

(
a− 1

t

)
admits a decomposition

f = f0 + f1, f0 ∈ L1

(
a−1

)
, f1 ∈ Lt

(
a− 1

t

)
. By the assumptions, for f0 and

λ =

(
‖f1‖t

Lt

(
a− 1

t

)‖f0‖−1
L1(a−1)

) 1
t−1

there exists a Calderón–Zygmund type decomposition f0 = g + b with weight a. Simple
estimates show that the decomposition f = g0 + g1, g0 = Qb, g1 = Q(g + f1) satisfies the
stated K-closedness property. Indeed, conditions (1) and (2) of Definition 2 imply that

‖g1‖
Lt

(
a− 1

t

) ≤ c‖g + f1‖
Lt

(
a− 1

t

) ≤ c‖f1‖
Lt

(
a− 1

t

) + c
(‖g‖t−1

L∞ ‖g‖L1(a−1)

) 1
t ≤ c′‖f1‖

Lt

(
a− 1

t

)
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with some c and c′ independent of f0 and f1, and since f = b + g + f1 and (I − Q)f = 0,
conditions (3)–(5) of Definition 2 imply that

‖Qb‖L1(a−1) =
∫

(S×X )\Ω

|Qb|a +
∫

Ω

|b + (I − Q)(g + f1)|a

≤ c‖f0‖L1(a−1) + ca(Ω)
t−1

t ‖g + f1‖
Lt

(
a− 1

t

) ≤ c′‖f0‖L1(a−1)

with some c and c′ independent of f0 and f1.
Let Q be a Calderón–Zygmund operator on S, i.e., Q is a singular integral operator such

that Q is bounded in Lq with some 1 < q < ∞ and the kernel K(x, y) of Q together with the
kernel K̃(x, y) = K(y, x) of the conjugate operator Q∗ satisfy the estimate

|K(x, s) − K(x, t)| ≤ CK
|s − t|γ

|x − s|n+γ
, |x − s| > 2|s − t|, (4)

where x, s, t belong to S = R
n or S = T

n. For generalities on such operators, see, e.g., [8].
For an operator T and a weight u we define an operator Tu corresponding to a density

change by Tuf = 1
uT (uf). The main problem can be stated as follows: For what u and a,

does the operator Qu admit a Calderón–Zygmund decomposition with weight a? In [9], the
following result was obtained (without the additional variable and in a somewhat implicit
manner).

Theorem 4 ([9, Sec. 2]). Assume that Q is a Calderón–Zygmund operator, a ∈ A∞, w ∈ A1,
and u = a

w . Then Qu admits a Calderón–Zygmund type decomposition with weight a, and Qu

is bounded in Lt

(
a− 1

t

)
for all sufficiently small t > 1. The operator Qu has weak type (1, 1)

with weight a.

The construction of the corresponding decomposition is based on the standard Calderón–
Zygmund decomposition carried out with the weighted maximal operator

M[a]f(t) = sup
Q�t

1
a(Q)

∫

Q

|f |a,

where the supremum is taken over all dyadic cubes. Naturally, this result also holds with an
additional variable; moreover, the case with an additional variable is easily recovered from the
one-variable case by integrating the respective estimates in Definition 2. The boundedness of
Qu in Lt

(
a− 1

t

)
follows from properties of the Muckenhoupt weights (see [9, Lemma 2]).

We note that precise conditions on the weights a and u that correspond to the part of the
conclusion of Theorem 4 concerning the weak type of Qu are not clear. However, it can be
shown that in many cases, the condition w = a

u ∈ A1 is necessary. It is well known that this
condition is necessary in the classical case u = 1, a = w (see, e.g., [8, Chap. 5, Sec. 4.6]); thus,
any interesting generalizations seem unlikely.

2. The case of the couple

(
LQ

1

(
w−1

0

)
,LQ∞ (w1)

)

Let Q be a Calderón–Zygmund operator that is a projection. In this section, we consider
the following question: For what weights w0 and w1 is the couple(

LQ
1

(
w−1

0

)
,LQ

∞ (w1)
)

K-closed in
(
L1

(
w−1

0

)
,L∞ (w1)

)
? In the case without weights, an answer was given in [11],

see also [3, Sec. 4]. The main idea is to prove the K-closedness on the entire interval (1,∞)
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by gluing the K-closedness on three overlapping intervals. We apply the same scheme to the
weighted Calderón–Zygmund decomposition.

Assume that a0 ∈A∞, w0 ∈A1, and u0 = a0
w0

. Then, by Theorem 4, the operator Qu0 and

weight a0 satisfy the assumptions of Proposition 3; thus, the couple
(
LQu0

1

(
a−1
0

)
,LQu0

t

(
a
− 1

t
0

))

is K-closed in
(

L1

(
a−1
0

)
,Lt

(
a
− 1

t
0

))
for all sufficiently small t > 1 with suitable estimates on

t and the constant of K-closedness via the constants of the weights a0 and w0 and properties
of Q.

It is easy to see that [X(u)]Q=uXQu for any normed lattice X and any weight u (coincidence
of the sets and norms). This implies at once that (since a0 = u0w0) the couple(

LQ
1

(
w−1

0

)
,LQ

t

(
a

1− 1
t

0 w−1
0

))
(5)

is K-closed in
(

L1

(
w−1

0

)
,Lt

(
a

1− 1
t

0 w−1
0

))
and Q is bounded in the second space.

We need to use duality in order to obtain the K-closedness on the interval covering the end
of the scale (1,∞) and also to properly define the corresponding space XQ. For a Banach
space X and its subspace Y ⊂ X, the annihilator Y ⊥ is the set

Y ⊥ = {f ∈ X∗ | f(y) = 0 for all y ∈ Y }.
Lemma 5 ([3, Lemma 1.2]). Let (Y0, Y1) be a subcouple of a compatible couple of Banach
spaces (X0,X1). If X0 ∩ X1 is dense in both X0 and X1, then the following conditions are
equivalent:

(1) (Y0, Y1) is K-closed in (X0,X1);
(2)

(
Y ⊥

0 , Y ⊥
1

)
is K-closed in (X∗

0 ,X∗
1 ).

It is easy to see that if Q is bounded in a weighted space Lp (ω), 1 < p < ∞, then
[
LI−Q∗

p′
(
ω−1

)]⊥
= LQ

p (ω) .

This observation allows us to extend the definition of X = LQ
p (ω) in a natural manner to the

case p = ∞ in which one cannot state that Q is defined on a dense set. Let

LQ
∞ (ω) =

[
LI−Q∗

1

(
ω−1

)]⊥

for all suitable weights ω. For spaces S having finite measure, this definition coincides with
the previous one and even with definition (2) (see, e.g., [3, Corollary 4.4]). Sets (3) may be
not dense in the strong topology of X = L∞(ω) (see [3, Proposition 4.1]).

By duality, Lemma 5 shows that for all weights a1 ∈ A∞ and w1 ∈ A1, the couple(
LQ

t′

(
a
− 1

t′
1 w1

)
,LQ

∞ (w1)
)

(6)

is K-closed in
(

Lt′

(
a
− 1

t′
1 w1

)
,L∞ (w1)

)
for all sufficiently small t > 1 with suitable estimates

on t and on the K-closedness constant in terms of the constants of the weights a1 and w1 and
properties of Q. Moreover, Q is bounded in the first space of the couple.

The boundedness of Q at the respective ends of the intervals (5) and (6) implies the K-
closedness for a middle interval that overlaps them with a suitable choice of weights.

We formulate a most general Wolff-type result concerning the “gluing of scales” as it is
applied to K-closedness. Let (X0,X1) be an interpolation couple of quasi-Banach spaces and
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let 0 < θ < 1. An intermediate space E for (X0,X1) is said to belong to C(θ;X0,X1) if there
is a continuous inclusion E ⊂ (X0,X1)θ,∞ and ‖x‖E ≤ CE‖x‖1−θ

X0
‖x‖θ

X1
for all x ∈ E with a

constant CE independent of x.

Proposition 6 ( [5, Proposition 5]). Let (Y0, Y1) be a closed subcouple of an interpolation
couple (X0,X1) of quasi-Banach spaces and let 0 < θ < δ < 1. Assume also that we are
given some spaces E0 ∈ C(θ;X0,X1) and E1 ∈ C(δ;X0,X1) and F0 and F1 are their respective
subspaces such that both F0 and F1 contain Y0 ∩ Y1, F0 ⊂ Y0 + F1, and F1 ⊂ Y1 + F0. If
(Y0, F1) is K-closed in (X0, E1) and (F0, Y1) is K-closed in (E0,X1), then (Y0, Y1) is K-closed
in (X0,X1).

For weighted Lebesgue spaces, it is well known (see, e.g., [2]) that

Lp (ω) ∈ C (θ; Lp0 (ω0) ,Lp1 (ω1))

for 1
p = 1−θ

p0
+ θ

p1
and ω = ω1−θ

0 ωθ
1, at least if 1 ≤ p0 < p1 ≤ ∞ or 1 ≤ p0 = p1 < ∞. Since the

endpoint spaces of the scale
(
L1

(
w−1

0

)
,L∞ (w1)

)
are already defined, for gluing of scales we

need to find some points

0 < θ1 < θ2 < θ3 < θ4 < 1

of the interval (0, 1) such that the corresponding K-closedness is valid for the respective couples
(

L1

(
w−1

0

)
,L 1

1−θ2

(
w−(1−θ2)

0 wθ2
1

))
,

(
L 1

1−θ1

(
w−(1−θ1)

0 wθ1
1

)
,L 1

1−θ4

(
w−(1−θ4)

0 wθ4
1

))
,

and (
L 1

1−θ3

(
w−(1−θ3)

0 wθ3
1

)
,L∞ (w1)

)
.

This means that in order to apply the above results to intervals (5) and (6), we need to find
some weights a0, a1 ∈ A∞ such that θ2 is sufficiently small, θ3 is sufficiently close to 1,

w−(1−θj)
0 wθj

1 = aθj

0 w−1
0

for j ∈ {1, 2}, and

w−(1−θj)
0 wθj

1 = aθj−1
1 w−1

1

for j ∈ {3, 4}. It is easy to see that these conditions are satisfied if and only if a0 = a1 = w0w1.
The assumptions of Theorem 4 require that a0, a1 ∈ A∞. Thus, we arrive at the following
result.

Proposition 7. Assume that weights w0,w1 ∈ A1 are such that w0w1 ∈ A∞. Then the couple
(
LQ

1

(
w−1

0

)
,LQ

∞ (w1)
)

is K-closed in
(
L1

(
w−1

0

)
,L∞ (w1)

)
with an estimate for the constant depending only on the

A1-constants of the weights w0, w1, the A∞-constant of the weight w0w1, and properties of Q.

We note that it is not clear whether the condition w0w1 ∈ A∞ is necessary for the conclusion
of Proposition 7.
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3. The case of the couple

(
LQ

1 ,XQ
)

Proposition 7 easily implies Theorem 1 if X is A1-regular and the space XQ satisfies the
condition

XQ ∩ L∞ (w) = LQ
∞ (w) (7)

for all w ∈ X ∩ A1. Indeed, assume that f ∈ LQ
1 + XQ and f = g0 + h0, where g0 ∈ L1

and h0 ∈ X. There exists an A1-majorant w0 ∈ A1 for h0, ‖w0‖X ≤ m‖h0‖X , with some
constants (C,m) independent of h0. Then h0 ∈ L∞ (w0). In the case S = T

n, the condition
f ∈ LQ

1 ⊂ LQ
1 +LQ∞ (w0) is always satisfied, and by Proposition 7, there exists a decomposition

f = g + h such that g ∈ LQ
1 and h ∈ LQ∞ (w0) with

‖g‖L1 ≤ C‖g0‖L1

and
‖h‖X ≤ ‖h‖L∞(w0)‖w0‖X ≤ Cm‖h0‖X

for some C independent of g0 and h0, which proves the K-closedness in this case.
In the case S = R

n, the inclusion

f ∈ LQ
1 + LQ

∞ (w0)

is not guaranteed. However, by the assumptions, f = g1 +h1 with some g1 ∈ LQ
1 and h1 ∈ XQ.

Let w1 be an A1-majorant for h1 and let ε > 0. Then

f ∈ LQ
1 + LQ

∞ (w)

with w = w0 + εw1, and, by Proposition 7, there exists a decomposition

f = gε + hε

such that gε ∈ LQ
1 and hε ∈ LQ∞ (w) with the corresponding estimates

‖gε‖L1≤ C‖g0‖L1

and ‖hε‖L∞(w) ≤ C and with some C independent of ε, g0, and h0. We choose ε small enough
so that ‖w‖X ≤ 2‖w0‖X . Then the functions gε and hε satisfy the estimates ‖gε‖L1 ≤ C‖g0‖L1

and ‖hε‖X ≤ ‖hε‖L∞(w)‖w‖X ≤ 2Cm‖h0‖X , which proves the K-closedness in the general
case. Thus, we have established Theorem 1 under the additional assumption (7).

Let us finally give a suitable definition for the space XQ. Specifically, we construct the
smallest subspace XQ of X satisfying (7). Assume that Q is a projection that is a Calderón–
Zygmund operator and that X is an A1-regular lattice with constants (C,m) satisfying the
Fatou property. Similarly to the definition of the space LQ∞, for any nonzero weight w ∈ X∩A1

we set

XQ
w =

(
LI−Q∗

1

(
w−1

))⊥ ⊂ L∞ (w)

with the topology of X. This definition is correct since by Theorem 4, the projection I − Q∗

is properly defined on L1

(
w−1

)
. The balls of the space XQ

w are closed in X since it is easily
seen that these balls are closed with respect to convergence in measure.

The spaces XQ
w are monotone in w : If w1 ≤ w2 almost everywhere, then

LI−Q∗
1

(
w−1

2

) ⊂ LI−Q∗
1

(
w−1

1

)

and XQ
w1 ⊂ XQ

w2 . Now let
XQ =

⋃
w∈X,w �=0,

w∈A1 with constant C

XQ
w (8)
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with the topology of X. It is easy to see that XQ is a linear space since for any w0,w1 ∈ X∩A1

and w = w0 + w1, the relations

L1

(
w−1

0

) ∩ L1

(
w−1

1

) ⊃ L1

(
w−1

)

and LI−Q∗
1

(
w−1

0

) ∩ LI−Q∗
1

(
w−1

1

) ⊃ LI−Q∗
1

(
w−1

)
hold, i.e.,

[
XQ

w0

]⊥ ∩ [
XQ

w1

]⊥ ⊃ [
XQ

w

]⊥
;

passing to the annihilators, we see that XQ
w0 + XQ

w1 ⊂ XQ
w .

Let us now verify that XQ is a closed subspace of X. Indeed, assume that a sequence
fn ∈ XQ, n ∈ N, is such that the series

∑
n fn converges in X; it suffices to verify that

g =
∑

n fn ∈ XQ. Grouping functions in this series together, we may further assume that
‖fn‖X ≤ 2−n for n ≥ 2. The A1-regularity of X implies that there exist some A1-majorants wn

for the functions 2nfn. By the monotonicity (or using a more general Proposition 3.4 of [12]),
it is easy to see that w =

∑
n

2−nwn belongs to A1 with constant C, and w is an A1-majorant

for g. We also have the estimates

|fn| ≤ 2−nwn ≤ w

for all n ∈ N, which implies that fn ∈ XQ
w for all n ∈ N; thus, g ∈ XQ

w ⊂ XQ because of the
closedness of balls of XQ

w .
It is easy to see that this definition coincides with the earlier one in the case where Q is a

Calderón–Zygmund operator defined on X∩L1 if we additionally assume that this set is dense

in X. Indeed, if f ∈ XQ ∩ L1 and Q is defined on f , then f ∈ XQ
w =

[
LI−Q∗

1

(
w−1

)]⊥
with

a weight w ∈ A1. Thus, for any bounded function g supported on a set of finite measure, we
have the equalities

0 =
∫

f [(I − Q∗)g] =
∫

[(I − Q)f ]g (9)

(recall that we assume that Q is defined in Lq for some 1 < q < ∞), which implies that Qf = f
and

XQ ⊂ clos
X

{f ∈ X ∩ L1 | Qf = f} .

On the other hand, if f ∈ X ∩ L1 and Qf = f , then f ∈ XQ
w for any A1-majorant w of f due

to relation (9), which proves the converse inclusion

XQ ⊃ clos
X

{f ∈ X ∩ L1 | Qf = f} .

We see that in this case, both definitions yield the same space XQ.
In conclusion, we note that definition (8) can be written in the form XQ = X ∩ NQ, where

NQ =
⋃

w∈A1

(
LI−Q∗

1

(
w−1

))⊥
is an analog of the Smirnov class N+ used in the definition

of Hardy-type spaces. However, this particular definition seems to work only for A1-regular
lattices since the set NQ, in contrast to N+, is not necessarily closed with respect to convergence
in measure; the set A1 is itself dense with respect to convergence in measure in the set of almost
everywhere nonnegative measurable functions. This motivates the following question: Is it
possible to extend the set NQ in a natural way to cover most interesting cases? It is desirable
for this space to cover at least all the spaces XQ appearing in the results of the present work
together with their annihilators. The simple approach based on taking the closure of NQ

with respect to convergence in measure does not always work; for example, in the case of
codimension 1 spaces on the unit circle S = T defined by the projection Qf = f − ∫

f (this
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is the dual example to that described in the Introduction), taking the closure with respect to
convergence in measure completely destroys the condition Qf = f .

Translated by D. V. Rutsky.
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