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CHEBYSHEV POLYNOMIALS, ZOLOTAREV POLYNOMIALS,
AND PLANE TREES

Yu. Yu. Kochetkov UDC 511+514

Abstract. A polynomial with exactly two critical values is called a generalized Chebyshev polynomial (or
Shabat polynomial). A polynomial with exactly three critical values is called a Zolotarev polynomial. Two
Chebyshev polynomials f and g are called Z-homotopic if there exists a family pα, α ∈ [0, 1], where p0 = f ,
p1 = g, and pα is a Zolotarev polynomial if α ∈ (0, 1). As each Chebyshev polynomial defines a plane
tree (and vice versa), Z-homotopy can be defined for plane trees. In this work, we prove some necessary
geometric conditions for the existence of Z-homotopy of plane trees, describe Z-homotopy for trees with
five and six edges, and study one interesting example in the class of trees with seven edges.

1. Introduction

1.1. Generalized Chebyshev Polynomials. A polynomial p(z) ∈ C[z] is called a generalized Cheby-
shev polynomial if it has exactly two finite critical values: α and β (in what follows, we will call such
a polynomial simply a Chebyshev polynomial). If p(z) is a Chebyshev polynomial, then the set p−1[α, β]
is a plane connected tree Tp (see, e.g., [1]). Inverse images of the points α and β are vertices of the
tree Tp, and the degree of a vertex equals the multiplicity of the corresponding critical point (a vertex of
degree 1 is a simple root of the polynomial p(z) − α or p(z) − β). Also for each plane tree T there exists
a Chebyshev polynomial p(z) defined up to linear change of variable z and variable u = p(z) such that
the trees p−1[α, β] and T are isotopic. Such a polynomial p(z) will be called a polynomial that defines the
tree T .

Vertices of a plane tree T can be colored in two colors—black and white—so that colors of any two
adjacent vertices are different. Such a coloring will be called a binary structure of T . Obviously, vertices
of one color are inverse images of α and vertices of the other color are inverse images of β.

The type (or passport) of a plane tree with binary structure consists of two sequences of multiplicities
of white vertices and black vertices in nonincreasing order. Thus, the type of the tree
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is 〈3, 2 | 2, 1, 1, 1〉.
Remark 1. Often it is assumed that the numbers α and β are 0 and 1.

1.2. Zolotarev Polynomials. A polynomial p ∈ C[z] is called a Zolotarev polynomial if it has exactly
three finite critical values. If p is a Zolotarev polynomial, deg(p) = n, α, β, and γ are its critical values,
and C is a simple arc C ⊂ C connecting the points α, β, and γ, then p−1(C) is a connected plane tree
with 2n edges. Here points from the set p−1{α, β, γ} are vertices of this tree and the degree of a vertex v,
p(v) = α, is equal to the multiplicity of the critical point v if α is an endpoint of C, or to the double
multiplicity if α is an interior point. Vertices of the tree p−1(C) can be colored in three colors: white,
black, and grey, where white vertices are inverse images of the interior (with respect to arc C) critical
value. One vertex of each edge is white and the other one is black or grey.
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Remark 2. Arcs C1 and C2 connecting points α, β, and γ can be isotopically nonequivalent: for example,

� � �

C1

or � � �

C2

β α γ

β

α γ

.

In this case, the trees p−1(C1) and p−1(C2) can also be isotopically nonequivalent.

The passport of a Zolotarev polynomial consists of three sequences of multiplicities of its critical
points that correspond to the first, the second, and the third critical value. Multiplicity sequences will be
written in the nonincreasing order: 〈k1, k2, . . . | l1, l2, . . . | m1, m2, . . .〉. For example, the critical points
of the polynomial p = x2(x − 1)2(3x − 1) are 0, 1, 2/3, and 1/5 with values 0, 0, 4/81, and −32/3125,
respectively. So 〈2, 2 | 2 | 2〉 is the passport of p.

2. Z-Homotopy

Definition 1. Two trees T1 and T2 will be called Z-homotopic if there exists a continuous family pλ ∈ C[z],
λ ∈ [0, 1], such that

• all polynomials pλ have the same degree;
• the polynomial p0 is a Chebyshev polynomial and defines the tree T1;
• the polynomial p1 is a Chebyshev polynomial and defines the tree T2;
• the polynomials pλ, λ �= 0, 1, are Zolotarev polynomials, but not Chebyshev polynomials.

Example 1. Let us study the Z-homotopy problem on the set of 5-edge trees. There are five of them:
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T1 T2 T3 T4 T5

Let

p =
∫

x2(x − 1)(x − a) dx.

Critical points of p are 0, 1, and a, and the corresponding critical values are 0, 5a − 3, and a4(5 − 3a).

• If a = 0, then p is a Chebyshev polynomial that defines the tree T1.
• If a = 1, then p is a Chebyshev polynomial that defines the tree T3.
• If a = 3/5, then p(1) = 0 and p is a Chebyshev polynomial that defines the tree T2.
• If a = 5/3, then p(a) = 0 and p is a Chebyshev polynomial that defines the tree T2.
• If a = (−2±√

5 i)/3, then p(a) = p(1), and p is a Chebyshev polynomial that defines the tree T4.

For all other values of the parameter a, the polynomial p is a Zolotarev polynomial. Thus, deformations
of the parameter a allow one to realize pairwise Z-homotopies between the trees T1, T2, T3, and T4. For
example, the following deformation of the tree corresponds to the increase of the parameter a from 0 to
3/5 (the arc C in this case is the segment that connects the critical values 5a − 3 and a3(5 − 3a)).
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The trees T1, T2, and T4 are Z-homotopic to the tree T5. Indeed, let us consider the polynomial

p(x) =
∫

x(x − 1)(x − a)(x − b) dx.

If p(a) = p(0), where a �= 2, then this polynomial is a Zolotarev polynomial (here b = (3a2−5a)/(5a−10)).
However, for some values of the parameter a the polynomial p degenerates into a Chebyshev polynomial.
Indeed,

(1) if a = 0, then b = 0, and we have a Chebyshev polynomial defining the tree T1;
(2) if a = 1, then b = 2/5 and p(1) = 0, and we have a Chebyshev polynomial defining the tree T2;
(3) if a = 5/3, then b = 0, and we have a Chebyshev polynomial defining the tree T2;
(4) if a = ±√

5, then b = 1 ±√
5 and p(1) = p(b), and we have a Chebyshev polynomial defining the

tree T5;
(5) if a = (5 ±√

5)/4, then b = −(1 ±√
5)/4 and p(1) = p(b), and we have a Chebyshev polynomial

defining the tree T5;
(6) if a = (5 ±√

5 i)/3, then b = 1, and we have a Chebyshev polynomial defining the tree T4.
Thus, a deformation of the parameter a allows us to construct a Z-homotopy between the trees T1 and T5,
T2 and T5, and T4 and T5.

The trees T3 and T5 are not Z-homotopic. This statement will be proved in the next section. Also it
is a consequence of results in Sec. 4.

3. Geometry of Space of Zolotarev Polynomials of Degree 5

Let
q = x4 + ax2 + bx + c, p =

∫
q dx.

The polynomial p is a Zolotarev polynomial if among the numbers p(x1), p(x2), p(x3), and p(x4), where
x1, x2, x3, and x4 are roots of q, there are only three different values. In this case, the polynomial
s(y) =

(
y−p(x1)

)(
y−p(x2)

)(
y−p(x3)

)(
y−p(x4)

)
has a multiple root, i.e., its discriminant is zero. This

discriminant is reducible:

(1280a6 − 32256a4c + 9504a3b2 + 269568a2c2 − 69984ab2c − 19683b4 − 746496c3)

× (16a4c − 4a3b2 − 128a2c2 + 144ab2c − 27b4 + 256c3) = 0.

We see that the variety of Zolotarev polynomials of degree 5 is reducible and has two components
C1 and C2. The second factor, which defines the component C2, is simply the discriminant of the
polynomial q.

The intersection C1 ∩ C2 is the union of three components:

C1 ∩ C2 = C3 ∪ C4 ∪ C5.
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• Polynomials that belong to C3 are Chebyshev polynomials that define the tree T4.
• Polynomials that belong to C4 are Chebyshev polynomials that define the tree T2.
• Polynomials that belong to C5 are Chebyshev polynomials that define the tree T1.

A Chebyshev polynomial p0 that defines T5 belongs only to the first component C1, and a Chebyshev
polynomial p1 that defines T3 belongs only to the second component C2. Thus, a family of Zolotarev
polynomials that connect p0 and p1 must also contain one of Chebyshev polynomials in C1 ∩ C2. But
then this family is not a Z-homotopy.

4. Theorems

In this section, we will prove a sufficient condition, when a tree cannot be Z-homotopic to a “chain.”

Lemma 1. Let pλ, 0 < λ < 1, be a continuous family of Zolotarev polynomials of degree n. Then passports
of all these polynomials are the same.

Proof. Let aλ, bλ, and cλ be critical values of the polynomial pλ. They are continuous functions of the
parameter λ. A change of passport during increase or decrease of the parameter λ can occur only in
the case of collision of roots of the polynomial pλ − aλ (or pλ − bλ, or pλ − cλ): two roots x′

λ and x′′
λ of

the polynomial pλ − aλ of multiplicities k′ and k′′, respectively, approach each other, when λ → μ, and
generate a root xμ of the polynomial pμ − aμ of multiplicity k′ + k′′ − 1.

Let the passport of pλ be 〈k1, . . . , kr | l1, . . . , ls | m1, . . . , mt〉. Then
r∑

i=1

ki = n,
s∑

i=1

li = n,
t∑

i=1

mi = n,

r∑
i=1

(ki − 1) +
s∑

i=1

(li − 1) +
t∑

i=1

(mi − 1) = n − 1.

Hence, r + s + t = 2n + 1. But the collision of roots diminishes the number r and violates the above
equality.

Remark 3. We see that it is more correct to speak not about Z-homotopy, but about Z-homotopy in the
class of Zolotarev polynomials with a given passport. Thus, the trees T1, T2, T3, and T4 with five edges
are pairwise Z-homotopic in the class of Zolotarev polynomials with the passport 〈3 | 2 | 2〉, and the trees
T1 and T5, T2 and T5, and T4 and T5 are Z-homotopic in the class of Zolotarev polynomials with the
passport 〈2, 2 | 2 | 2〉.
Lemma 2. Let pλ, 0 ≤ λ < 1, be a continuous family of polynomials of degree n, where p0 is a Chebyshev
polynomial and pλ, λ > 0, are Zolotarev polynomials (but not Chebyshev polynomials). Let us assume that
a critical point a of the polynomial p0 of multiplicity k generates m critical points a1(λ), . . . , am(λ) in the
family pλ with multiplicities k1, . . . , km, m > 1. Then the numbers pλ

(
a1(λ)

)
, . . . , pλ

(
am(λ)

)
cannot all

be equal.

Proof. Let us assume that the opposite is true:

pλ

(
a1(λ)

)
= . . . = pλ

(
am(λ)

)
= α(λ).

Let λ → 0. Then
ai(λ) → a, i = 1, . . . , m, α(λ) → α = p0(a).

But k − 1 = (k1 − 1) + . . . + (km − 1), so a is a root of the polynomial p0 − α of multiplicity k + m − 1.
We have a contradiction.

Definition 2. A tree is called a chain if valencies of all its vertices are ≤ 2.

Theorem 1. If a tree T has a white vertex a of degree ≥ 3 and a black vertex b of degree ≥ 3, then it
cannot be Z-homotopic to a chain.
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Proof. Let us assume that the opposite is true. Then there exists a Z-homotopy connecting a Chebyshev
polynomial p0 that defines T with a Chebyshev polynomial p1 that defines a chain. This means that
critical points a and b in the family pλ generated critical points a1, . . . , am and b1, . . . , bn, respectively,
all of them of multiplicity 2. Let p0(a) = α and p0(b) = β. If the parameter λ is small, then the values
pλ(a1), . . . , pλ(am) are close to α and among them there are at least two different values. Analogously,
the values pλ(b1), . . . , pλ(bn) are close to β and among them are at least two different values. But then
a polynomial pλ, λ � 1, has at least four critical values. We have a contradiction.

Corollary 1. The trees T3 and T5 cannot be Z-homotopic.

5. Trees with Six Edges

Below are all plane 6-edge trees.
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By Theorem 1, the trees T3 and T13, T7 and T13, and T8 and T13 are not Z-homotopic. However,
there is one more nonhomotopic pair.

Proposition 1. The trees T6 and T12 are not Z-homotopic.

Proof. Let the opposite be true, and let a and b be white (for example) vertices of degree 3 of the tree T6.
The first case. Let polynomials pλ have a critical point aλ of multiplicity 3 and all other critical

points be of multiplicity 2. Thus, the vertex b generates two critical points b1 and b2 of multiplicity 2,
pλ(b1) �= pλ(b2), and the value pλ(a) coincides with the value pλ(b1) or with the value pλ(b2). But then
the tree T12 has a white vertex of degree 2 in addition to the white vertex of degree 3.

The second case. Polynomials pλ have critical points only of multiplicity 2. Thus, vertices a and b
generate critical points a1, a2 and b1, b2, respectively. Moreover, pλ(a1) = pλ(b1), pλ(a2) = pλ(b2), and
pλ(b1) �= pλ(b2). Let the fifth critical point be c = cλ. The vertex of T12 of degree 3 cannot be generated
by junction of the points a1 and b1 (or a2 and b2), because otherwise during the change of the parameter λ
from 1 to 0 the vertex of degree 3 of T12 generates two critical points with the same values. Also, this
vertex cannot be generated by junction of the points c and a1 (for example), because then T12 has a vertex
of degree 3 and a vertex of degree 2 of the same color.

All other pairs of trees are Z-homotopic. The construction of the corresponding Z-homotopy usually
is quite straightforward. Let us describe some interesting cases.

• The tree T4 and the tree T12. Let vertices of degree 2 of T4 be in points ±1, its vertex of degree 4
be in origin, the vertex of degree 3 of T12 be in origin, and its vertices of degree 2 be in cubic
roots of 1.

Let us consider the polynomial

p =
∫

x2(x − 1)(x − a)(x − b) dx
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with the condition p(a) = p(b). Then p is a Zolotarev polynomial with passport 〈3 | 2, 2 | 2〉.
If a = 0 and b = −1, then p degenerates into a Chebyshev polynomial that corresponds to the
tree T4. The change of the parameter a from 0 to −i, to 2 − i, to 2, to 2 +

√
3 i/2, and to

(−1 +
√

3 i)/2 induces the change of the parameter b from −1 to (−1 −√
3 i)/2.

• The tree T10 and the tree T13. Let the vertex of degree 3 of T10 be in origin, its vertices of degree 2
be in points 1, a1 ≈ 1.57−0.03 i and b1 ≈ −0.57+0.58 i, vertices of degree 2 of T13 be in points 0,
±1, and ±√

3.
Let us consider the polynomial

p =
∫

x(x − 1)(x − a)(x − b)(x − c) dx

with conditions p(a) = 0 and p(b) = p(c). Then p is a Zolotarev polynomial with passport
〈2, 2 | 2, 2 | 2〉. If a = a1, b = b1, and c = 0, then p degenerates into a Chebyshev polynomial that
corresponds to the tree T10. The change of the parameter b from b1 to −1 induces the change of
the parameter a from a1 to

√
3 and the change of the parameter c from 0 to −√

3 (here c moves
along the arc in the lower half plane).

• The tree T12 and the tree T13. Let the vertex of degree 3 of T12 be in the point i/
√

3, its vertices
of degree 2 be in the points ±1 and

√
3 i, vertices of degree 2 of T13 be in points 0, ±1, and

±1/
√

3.
Let us consider the polynomial

p =
∫

(x2 − 1)(x − a)(x − b)(x − c) dx

with conditions p(−1)=p(1)=p(c). Then p is a Zolotarev polynomial with passport 〈2, 2, 2 | 2 | 2〉.
If a = b = i/

√
3 and c =

√
3 i, then p degenerates into a Chebyshev polynomial that corresponds

to the tree T12. The change of the parameter a from i/
√

3 to 1/
√

3 induces the change of the
parameter b from i/

√
3 to −1/

√
3 and the change of the parameter c from

√
3 i to 0.

6. Trees with Seven Edges

Zolotarev polynomials of degree 7 with passport 〈2, 2 | 2, 2 | 2, 2〉 give a nontrivial example of absence
of Z-homotopy (nontrivial in the sense that this absence cannot be explained by Lemma 2 or Theorem 1).
Without loss of generality, we can assume that the first critical value is 0 and that the corresponding
critical points are 0 and 1. Then such a polynomial is of the form

p(x) =
∫

x(x − 1)(x − a)(x − b)(x − c)(x − d) dx,

where
p(1) = 0, p(a) = p(b), p(c) = p(d).

The algebraic variety C in 4-dimensional space with coordinates a, b, c, and d defined by these conditions
is reducible: it is the union of two components C = C1 ∪ C2 of degrees 8 and 16. Trees (up to mirror
symmetry) that correspond to Zolotarev polynomials from the first component can be seen in the picture
below.
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The order of monodromy group of Zolotarev polynomials from C1 is 168.
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Trees (up to mirror symmetry) that correspond to Zolotarev polynomials from the second component
can be seen in the picture below.
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The order of the monodromy group of Zolotarev polynomials from C2 is 2520.
The intersection C1 ∩ C2 consists of Chebyshev polynomials that correspond to trees
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However, the component C1 contains Chebyshev polynomials that correspond to trees
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and the component C2 contains Chebyshev polynomials that correspond to trees

� �

�

� �

�

� � , � �

�

� �

�

� � , � � � � � � �

�

, � � � � � � �

�

,

� � � � � �

�

�

, � � � � � �

�

�

, � � � � �

�

� �

�� , � � � � �

�� �

�� .

Thus, we see that trees
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,

for example, are not Z-homotopic in the class of Zolotarev polynomials with the passport 〈2, 2 | 2, 2 | 2, 2〉
(although they are Z-homotopic in the class with the passport 〈4 | 2 | 2〉).
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