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ON PERIODIC MOTION AND BIFURCATIONS IN THREE-DIMENSIONAL
NONLINEAR SYSTEMS

A.A. Martynyuk and N.V. Nikitina UDC 517.36

We present geometric conditions for the existence of a closed trajectory with symmetry in three-
dimensional nonlinear systems. A generator with quadratic nonlinearity and a Chua circuit are considered
as examples.

1. Preliminary Results. Statement of the Problem

The oscillations and stability of nonlinear multidimensional systems are used in the problems of mechanics
[1] and radiophysics [2]. The problem of existence of periodic solutions in three-dimensional autonomous sys-
tems is studied in [3] with the use of the principle of torus formulated earlier. In the present paper, we consider
three-dimensional systems with certain symmetry conditions. This simplifies the solution of the problem, which
is reduced to the problem of existence of closed integral curves. The dynamics of three-dimensional nonlinear
systems is connected with bifurcation processes and the appearance of both periodic motions and strange attractors
(see [2, 4–6] and the references therein).

The solution of the posed problem is based on the following results:

(i) a procedure of detection of the bifurcation processes;

(ii) a principle of symmetry for two-dimensional systems;

(iii) a principle of comparison used to confirm the instability of solutions of the original system in the neigh-
borhood of the origin.

The bifurcations leading to changes in the qualitative behavior of the system can be studied by using the
variational equations [6]. In the present paper, the variational equations differ from the known equations by the
dependence of the coefficients of equations not on time but on the partial solutions of the system of differential
equations [7].

Consider a system

dx

dt
D F.x; p/; x.t/ 2 Rn; p 2 Rm; (1)

where n D 3; F.x; p/ is a smooth function and Rm is the space of parameters. We introduce a small deviation
in the neighborhood of partial solutions Nxi ; i D 1; 2; : : : ; n; namely, ıxi D xi .t/ � Nxi .t/; and consider ıxi as
new coordinates. The linear system corresponding to system (1) in the coordinates ıxi

dıx

dt
D A. Nx/ıx; ıx 2 Rn;
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where A. Nx/ D @F=@xjxDNx ; is called a variational system. By analyzing the roots of the characteristic equations
of the matrix A. Nx/; we can construct, e.g., the separatrices and obtain estimates for the parameters of an orbitally
stable system [7].

In analytically given systems of ordinary differential equations of the form dx=dt D A.t/x; we introduce
characteristic exponents of the nontrivial solutions as follows:

ƒj D limt!1Œt�1 ln kxj .t/k�; j D 1; 2; : : : ; n;

where xj .t/ is the j th fundamental solution of the system of differential equations and k � k is the Euclidean
norm. The numbers ƒj are called generalized characteristic exponents of system (1). For the variational system
used to describe the evolution of perturbations ıx near a partial solution Nx.t/ of the nonlinear system (1), the
family ƒj is called the collection of characteristic Lyapunov exponents of the partial solution Nx.t/ (or the phase
trajectory).

The existence of periodic motions in two-dimensional systems is established with the use of the symmetry
conditions and presented in [8]. The symmetry principle is generalized to the principle of skew symmetry in [7].
As preliminary results, we present some information about the symmetry principle [8]. We write a two-dimensional
system in the form

dx1

dt
D F1.x/;

dx2

dt
D F2.x/;

where x1; x2 2 R; F1 2 C.R2; R/; F2 2 C.R2; R/; and Fi .0; 0/ D 0; i D 1; 2: The geometric symmetry
principle, which can be regarded as basic in deducing the conditions of closure of the phase trajectory relative to
the center, can be formulated as follows [8]:

In a two-dimensional system, a symmetry of the trajectory exists if the function F1.x/ is even in x1 and the

function F2.x/ is odd in x1 , i.e.,

F1.�x1; x2/ D F1.x1; x2/ and F2.�x1; x2/ D �F2.x1; x2/:

This statement is based on the fact that the Ox2 -axis in the plane Ox1x2 is the axis of symmetry and any
integral curve to the left of the Ox2 -axis is the mirror reflection of a curve to the right of this axis. According
to the symmetry principle, we can conclude that the symmetry of the trajectory exists in the system if the function

F2.x/ is even with respect to x2 and the function F1.x/ is odd with respect to x2 , i.e.,

F2.x1;�x2/ D F2.x1; x2/ and F1.x1;�x2/ D �F1.x1; x2/:

It suffices to assume that an integral curve starting on the Ox1 -axis returns to the Ox1 -axis after its extension.
Here, Ox1 plays the role of the axis of symmetry.

The conditions of skew symmetry for a two-dimensional system [7] take the form

F1.�x1; x2/ D �F1.x1;�x2/ and F2.�x1; x2/ D �F2.x1;�x2/: (2)

By using the conditions of skew symmetry, one can establish the existence of a closed integral curve for a
nonlinear oscillator with unstable singular point (unstable focus). In the presence of stable focus, the trajectory
with skew symmetry comes to the singular point. In both cases, conditions (2) are satisfied. If a two-dimensional
nonlinear system of the form (1) has a saddle at the origin and two skew-symmetric singular stable points, then
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conditions (2) guarantee the existence of two branches of skew-symmetric trajectories starting from the origin. A
more detailed application of the principle of skew symmetry is considered in the Chua problem described in what
follows.

The theorems on symmetry and skew symmetry for three-dimensional systems are proved under the assump-
tion of instability of the analyzed three-dimensional system. This result can be obtained by using, e.g., the method
of comparison [9–11]. According to the method of comparison, we write the equations of comparison (Ważewski-
type equations) with the property of quasimonotonicity. The main sources and results of the investigations of
stability of monotone systems can be found in [9, 10] (see also the survey [11]).

The key statement of the method of comparison can be formulated as follows: if, for the analyzed system, there

exists a Lyapunov function satisfying the appropriate conditions, then various dynamical properties of the original

system follow from the corresponding dynamical properties of the system of comparison [11].

Consider a system

d#j

dt
D qj .#1; : : : ; #k/; j D 1; : : : ; k; (3)

under the following assumptions:

1. System (3) is a Ważewski system, i.e., the components of the vector function q.#/ are quasimonotonically
increasing functions. For a function q.#/ to be quasimonotonically increasing, it is necessary and sufficient that
the conditions @qj =@#i � 0 be satisfied for j ¤ i .

2. The right-hand side of system (3) is continuous and the solution of the Cauchy problem is locally unique
for any #0 2 Rk .

The theorem on instability of the Ważewski system in the cone K (see [9, 11]). If Assumptions 1 and 2 are true
for the Ważewski system, then there exists a sequence #m 2 K; #m ! 0 as m ! 1; such that the inequalities

qj .#m/ � 0; j D 1; : : : ; k; (4)

are true for any m and, in addition, the inequality is strict for at least one j; and moreover, there exists a neigh-
borhood of the origin V such that the vector field is not equal to zero in the set K#m

T
V; then the trivial solution

of system (3) is unstable in the cone.
We restrict ourselves to the application of the theorem of comparison under Assumptions 1 and 2 in the case

where inequality (4) is true. To establish the existence of periodic solutions, it is necessary that the trajectory
starting from the origin be closed due to certain properties of symmetry.

2. Theorem on the Symmetry Principle for Three-Dimensional Systems

According to the symmetry principle for three-dimensional systems, we determine a coordinate plane such
that the analyzed three-dimensional integral curve is projected onto this plane in the form of a closed symmetric
curve. In the other two coordinate planes, the process is stable and may have a symmetry.

Consider a system of three nonlinear differential equations

dx

dt
D �xz C y;

dy

dt
D �x; dz

dt
D �b .z CmC f .x//; (5)

where m and b are positive parameters. Assume that the function f .x/ is defined, continuous, and satisfies the
condition of uniqueness of solutions at every point x: Let f .x/ be a function twice continuously differentiable
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in the neighborhood of the origin. Assume that a closed trajectory lies on the surface and has certain symmetry
properties. It is possible to find a plane onto which the trajectory is projected in the form of a closed curve. The
closed trajectory has certain projections onto the other two planes. The last two projections onto the coordinate
planes may have symmetry but not necessarily closures. One more assumption is connected with the instability of
system (5) in the neighborhood of zero. Since the geometric symmetry and stability of two-dimensional projections
are possible, we can represent the above-mentioned results in the form of the following theorem:

Theorem 1. Consider system (5) under the following assumptions:

(i) system (5) has an unstable solution in the neighborhood of the origin;

(ii) the motion of system (5) in the plane Oxz is described by the system of equations

dx

dt
D �xz; dz

dt
D �b.z CmC f .x//; (6)

which has two stable equilibrium positions.

Then a closed integral curve exists in the three-dimensional system (5).

Proof. The motion specified by Eqs. (5) in the plane Oxy is described by the system of equations

dx

dt
D y;

dy

dt
D �x; (7)

which has a symmetric closed trajectory: a singular point (center); the trajectory in the plane is symmetric about
the Ox- and Oy-axes. The motion of Eqs. (5) in the plane Oyz is described by the system

dy

dt
D 0;

dz

dt
D �b.z Cm/: (8)

The singular point of system (8) has the exponents of the characteristic equation �1 D 0 and �2 D �b .
Assume that the initial conditions of system (5) disturb the formation of the closed symmetric trajectory of system
(7). Then system (6) is perturbed and we observe the formation of trajectories approaching the singular points with
coordinates .˙x0; z0/ . The oscillations of system (5) take the form of a steady-state process characterized by an
integral curve with symmetry in the space Oxyz: Moreover, the projection of system (8) onto the plane Oyz

does not affect this steady-state process.
The theorem is proved.

The proposed theorem has a geometric character. We consider the mechanism of formation of a periodic three-
dimensional curve with symmetry. In analyzing the motions in coordinate planes, the main problem is to find a
plane Oxy in which we get a closed curve symmetric about two axes. The other two coordinate planes stabilize
the qualitative picture and symmetry in the case of stability of the singular points of systems (6) and (8).

Application of Theorem 1. On the Closure of the Trajectory of Generator with Quadratic Nonlinearity. Con-
sider a generator with quadratic inertial nonlinearity in the form of the following dimensionless system presented
in [2]:

dX

dt
D mX �XZ C Y;

dY

dt
D �X;

dZ

dt
D �b.Z �X2/: (9)
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System (9) has one singular point O.0; 0; 0/: We introduce small deviations ıX; ıY; and ıZ from the partial
solutions NX.t/; NY .t/; and NZ.t/ of system (9) and write the variational equations

dıX

dt
D .m � NZ/ıX C ıY � NXıZ;

dıY

dt
D �ıX;

dıZ

dt
D �b.ıZ � 2 NXıX/: (10)

The characteristic equation of system (10) has the form

�3 C �2.b �mC NZ/C �.b.�mC NZ C 2 NX2/C 1/C b D 0: (11)

The roots corresponding to the singular point O.0; 0; 0/ of system (9) are determined from the equation

�3 C �2.b �m/C �.�bmC 1/C b D 0

or

.�C b/.�2 � �mC 1/ D 0:

They are equal to �1;2 D m=2˙
p
.m=2/2 � 1 and �3 D �b: The point O is a saddle-focus for .m=2/2 < 1:

We show that there exist points on the OZ -axis at which the characteristic equation (10) is split into two
equations. At the point A.X D 0; Y D 0;Z D mC b/; the characteristic equation has the form

.�C b/.�2 C b�C 1/ D 0:

The characteristic exponents are the following: �1;2 D �b=2 ˙
p
.b=2/2 � 1 and �3 D �b: At the point

C.X D 0; Y D 0;Z D m/; the characteristic equation has the form

.�C b/.�2 C 1/ D 0

and the characteristic exponents at this point are the following: �1;2 D ˙i and �3 D �b: At the point D.X D
0; Y D 0;Z D �m/; the characteristic equation has the form

.�C b/.�2 � 2m�C 1/ D 0

and the characteristic exponents at this point are the following: �1;2 D m˙
p
m2 � 1 and �3 D �b:

Thus, at the point C; the real parts of two complex conjugate roots change sign. The characteristic equation
(11) contains the partial solutions NX and NZ: The plane OXZ is a coordinate plane that defines bifurcation
processes of system (9).

To prove the instability of system (9), we use the method of comparison. We introduce the functions V1 D
X2=2; V2 D Y 2=2; and V3 D X2=2 C Z2=2: By virtue of system (9), the derivatives of the functions Vj ;

j D 1; 2; 3; admit the estimates

dV1

dt
D mX2 �X2Z CXY � mX2 C Y 2

2
C X2

2
C Z2

2
C X4

2
;

dV2

dt
D �XY � X2

2
C Y 2

2
;
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dV3

dt
DbX2Z CmX2 �X2Z CXY � bZ2�

�
mC b

2

�
X2

2
C Y 2

2
C .1 � b/.X2 CZ2/

2
C .1C b/X4

2
:

Here, the derivatives of two variables are replaced by the sum

˙bX2Z � bX4

2
C bZ2

2
; ˙XY � X2

2
C Y 2

2
; ˙X2Z � X4

2
C Z2

2
:

We write the system of comparison

d#1

dt
D 2m#1 C #2 C #3 C 2#2

1 ;

d#2

dt
D #1 C #2; (12)

d#3

dt
D .2mC b/#1 C #2 C .1 � b/#3 C 2.1C b/#2

1 :

Under the condition b � 1; the system of comparison (12) shows that a trajectory moves from zero. We give the
following values of parameters: .m; b/ D .1I 0:2/:

We shift the origin of coordinates to the point C and introduce the new coordinate system Cxyz; where
x D X; y D Y; and z D Z �m: Then system (9) takes the form of system (5)

dx

dt
D �xz C y;

dy

dt
D �x; dz

dt
D �b.z Cm � x2/: (13)

Consider the motion of the trajectory of system (13) on the plane Cxz defined by the system of equations

dx

dt
D �xz; dz

dt
D �b.z Cm � x2/: (14)

Let us determine singular points of system (14). We set z D 0: System (14) has two singular points with coordi-
nates x D ˙p

m; z D 0: The singular points C1.
p
m; 0/ and C2.�

p
m; 0/ have the characteristic exponents

�1;2 D �b

2
.1˙

p
1 � 8m=b/: The appearance of a closed trajectory of system (13) is caused by an initial pertur-

bation with respect to the variable x leading to a perturbation of the variable y: Since all conditions of Theorem 1
are satisfied, there exists a closed curve of system (13).

The three-dimensional image of the trajectory of system (13) and its projection onto the plane Cxy are shown
in Figs. 1a and b, respectively, for the initial perturbation x.0/ D 0:01:

Consider the second procedure of finding the singular point of Eq. (14). We set x D 0: Then the singular
point has the coordinates x D 0; z D �m: In the case of initial perturbation solely of the variable z; a closed
trajectory of system (5) does not appear because the projection of system (13) onto the plane Cxy is a point due
to the absence of perturbation of the system with respect to the variables x and y:
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a b

Fig. 1

3. Systems with Skew Symmetry

For a plane (two-dimensional) system, the principle of skew symmetry is discussed in [7]. A nonlinear system
of the form (1),

dx1

dt
D F1.x1; x2/;

dx2

dt
D F2.x1; x2/

has a skew-symmetric trajectory in the plane Ox1x2 if conditions (2) are satisfied.
For the three-dimensional system (1), we make the following assumptions:

Assumption 1. System (1) has three singular points. The singular point O.0; 0; 0/ is a saddle-focus with

zero saddle value.

Assumption 2. The right-hand side of system (1) satisfies the skew-symmetry conditions (10) in three coor-

dinate planes Ox1x2; Ox1x3; and Ox2x3:

Assumption 3. In one coordinate plane, a system of the form (1) has a circular dissipative curve; in the other

two planes, the system has nonzero stable singular points.

Theorem 2. Let Propositions 1–3 be true for the differential system (1). Then, in the neighborhood of three

singular points of system (1), there exists a closed integral curve.

Proof. The physical aspect of the proof is given in [12]. It is shown in [12] that if the trajectory of a con-
servative system satisfies the symmetry condition [skew-symmetry condition of the form (2)], then there exists a
closed trajectory. Conditions of the form (2) must be satisfied for two-dimensional systems on each coordinate
plane. On one coordinate plane, a trajectory is circular. For the appearance of a limit cycle, a condition for leaving
the neighborhood of zero by the trajectory must be satisfied. This is realized due to the presence of stable singular
points on coordinate planes. The saddle-focus point O.0; 0; 0/ with zero saddle value takes part in the formation
of skew-symmetry of the trajectory. Conditions of the form (2) lead not only to closure but also to skew-symmetry
of projections.
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The theorem is proved.

Application of Theorem 2. On the Closure of Trajectory and Bifurcation Processes in the Chua System.

Consider the system of Chua nonlinear differential equations [6, 13, 14]

dx

dt
D ˛.ax � bx3 C y/;

dy

dt
D x � y C z;

dz

dt
D �ˇy; (15)

where a; b; ˛; and ˇ are positive parameters. We prove the existence of a skew-symmetric limit cycle in system
(15). System (15) has three equilibrium states: a singular point O.0; 0; 0/ and singular points A.xA D

p
a=b;

yA D 0; zA D �
p
a=b ) and B.xB D �

p
a=b; yB D 0; zB D

p
a=b ). Introducing small deviations ıx; ıy;

and ız from the partial solutions Nx; Ny; and Nz of system (15), we write the variational equations

dıx

dt
D ˛.aıx � 3b Nx2ıx C ıy/;

dıy

dt
D ıx � ıy C ız;

dız

dt
D �ˇıy:

The variational system has the characteristic equation

�3 C �2.1C ˛.�aC 3b Nx2//C �.ˇ � ˛.1C a � 3b Nx2//C ˛ˇ.�aC 3b Nx2/ D 0: (16)

The characteristic equation (16) depends only on the partial solution Nx: The characteristic exponents of the point
O are defined by the equation

�3 C �2.1 � ˛a/C �.ˇ � ˛.1C a// � ˛ˇa D 0:

Consider the motion relative to the singular point O: On the plane Oxy; the trajectory of system (15) has a
curve defined by the equations

dx

dt
D ˛.ax � bx3 C y/;

dy

dt
D x � y: (17)

System (17) has the following singular points:

O1.0; 0/; E.
p
.aC 1/=b;

p
.aC 1/=b/; F.�

p
.aC 1/=b;�

p
.aC 1/=b/:

For system (17), the variational equations

dıx

dt
D ˛.aıx � 3b Nx2ıx C ıy/;

dıy

dt
D ıx � ıy

have the characteristic equation

.�C 1/.� � ˛.a � 3b Nx2// � ˛ D 0: (18)

The singular point O1 has the characteristic exponents

�1;2 D �1C ˛a

2
˙

s��1C ˛a

2

�2

C ˛.aC 1/:
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Fig. 2

Fig. 3

We choose parameters so that

˛a D 1: (19)

In this case, �1;2 D ˙
p
1C ˛ and the point O1 is a saddle. By substituting the coordinate x of the points E

and F into the characteristic equation (18), we obtain the characteristic exponents of the points E and F

�1;2 D �3.1C ˛/

2
˙

s
9.1C ˛/2

4
� 2.1C ˛/: (20)

In the plane Oyz; the motion of an image point is described by the equations

dy

dt
D �y C z;

dz

dt
D �ˇy: (21)

System (21) describes a linear dissipative oscillator

Rz C Pz C ˇz D 0
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and satisfies conditions (2). The singular point O2 of system (21) is a stable focus. In the plane Oxz; the motion
of the image point is described by the equations

dx

dt
D ˛.ax � bx3/;

dz

dt
D 0:

The singular point O3 has the characteristic exponents �1 D ˛a and �2 D 0: The singular points G and
H have the coordinates x D ˙

p
a=b; z D 0: The points G and H have the characteristic exponents �1 < 0

and �2 D 0: The equations formally satisfy conditions (2).
We take the following values of parameters:

.a; b; ˛; ˇ/ D .1=6; 1=6; 6; 7/: (22)

In choosing the values of parameters (22), we take into account the following conditions:

(a) condition (19);

(b) the singular points E and F of system (17) are stable nodes [according to relation(20)]; the points E

and F are depicted in Fig. 2;

(c) according to the characteristic equation (16), at the saddle-focus point O; the saddle value is equal to
zero, � D 2Re�1;2 C �3 D 0:

The initial values are specified according to the following estimates:

jx.0/j > jxAj; jy.0/j � 0; jz.0/j > jzAj: (23)

Under these conditions, the curve is closed relative to the singular points O; A; and B: The choice of the initial
conditions (23) can be numerically corrected with regard for inequalities (23).

Consider the range of values of the parameter ˇ;

7 < ˇ < 10:1: (24)

The other parameters are specified by (22). The bifurcation process in system (15) is controlled by a single variable
x: The curve �.x/ plotted according to the characteristic equation (16) specifies the dependence of the saddle
value on the coordinate �.x/: Thus, at the saddle-focus points A and B; the saddle value is negative, i.e.,

� D 2Re�1;2 C �3 < 0

within the range (24) of the parameter ˇ: The saddle value is negative at all points except the point O (see Fig. 3;
ˇ D 8:7 ).
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a b

c

Fig. 4

Assume that the initial perturbations satisfy conditions of the form (23). The solutions of the Chua system form
closed skew-symmetric integral curves within the range of values (24) of the parameter ˇ . In Fig. 4, we present
three closed curves of system (15) in the projections onto the coordinate planes. In the plane section xz; the outer
closed curve is plotted for ˇ D 7 and the initial perturbations x.0/ D �1:7; y.0/ D 0:2; and z.0/ D �1:7: The
inner curve is plotted for ˇ D 10:1 and the initial perturbations x.0/ D �2:9; y.0/ D 0:8; and z.0/ D �2:9:
At the saddle-focus point O; the saddle value is equal to zero, i.e., � D 2Re�1;2 C �3 D 0 within the range of
values (24) of the parameter ˇ: The values of the other parameters are given by relation (22).

We now consider the solutions of the Chua system caused by the singular points A and B: The points A and
B are skew symmetric. We associate the point A with a coordinate system Avyw and write equations of motion
in new coordinates,

dv

dt
D ˛

�
�2av � bv2

�
3

r
a

b
C v

�
C y

�
;

dy

dt
D v � y C w;

dw

dt
D �ˇy; (25)

where v D x �
p
a=b and w D z C

p
a=b: The points A and B may form closed curves excluding the point

O: The parameter ˇ must guarantee that the trajectories closed with respect to A and B are disjoint. Consider
the process of motion relative to one singular point. We introduce small deviations ıv; ıy; and ıw from the
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Fig. 5

partial solutions Nv; Ny; and Nw of system (25) and write the following variational equations:

dıv

dt
D ˛

�
�2aıv � 6b

r
a

b
Nvıv � 3b Nv2ıv C ıy

�
;

dıy

dt
D ıv � ıy C ıw;

dıw

dt
D �ˇıy: (26)

System (26) has the characteristic equation

�3 C �2

�
1C ˛

�
2aC 6b

r
a

b
Nv C 3b Nv2

��
C �

�
˛

�
2aC 6b

r
a

b
Nv C 3b Nv2 � 1

�
C ˇ

�

C ˛ˇ

�
2aC 6b

r
a

b
Nv C 3b Nv2

�
D 0:

In the coordinate system Avyw; the singular point O has the coordinates vO D �
p
a=b; yO D 0; wO Dp

a=b: For the initial perturbations

jv.0/j <
p
a=b; jy.0/j � 0; jwO.0/j <

p
a=b; (27)

the motion under the influence of the singular point A (or B/ becomes predominant in the system. The estimates
of the initial conditions (23) can be numerically corrected. We introduce initial perturbations of the form (27)
taking into account the influence of the singular points A and B for the values of the parameter ˇ (24).

For ˇ < 8:3 from range (24), the Chua system possesses an integral curve in the neighborhood of the point
A passing into the neighborhood of the point B: The transition from the neighborhood of the point A into the
neighborhood of the point B means orbital instability. In the motion of the image point in the neighborhood of the
point A (or B ), all points of the trajectory are saddle-focus points with negative saddle values. As the image point
passes into the neighborhood of the point B; the signature of the spectrum of characteristic Lyapunov exponents
becomes positive. For ˇ D 8:3; a fragment of this process for the initial perturbations v.0/ D 0:2; y.0/ D 0;

and w.0/ D 0:2 is shown in Fig. 5.
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Fig. 6

A subsequent increase in the parameter ˇ is accompanied by the appearance of two limit cycles. The transition
to the limit cycles passes through a bifurcation of multiple increase in the period. The two limit cycles in the
coordinate system Oxyz for the initial values x.0/ D 0:2; y.0/ D 0; and z.0/ D �0:2 (a cycle relative to the
point A ) and x.0/ D �0:2; y.0/ D 0; z.0/ D 0:2 (a cycle relative the point B ) and the parameter ˇ D 9 are
depicted in Fig. 6a. The two limit cycles with multiple (quadruple) period ( ˇ D 8:7 ) in the coordinate plane Oxz

are presented in Fig. 6b. Their time realizations x.t/ are shown in Fig. 6c.
In radiophysics, the term “multistability” indicates the coexistence of several attractors in the phase space.

This is caused by the initial perturbations. In the Chua system, multistability is caused by the influence of a certain
singular point on the behavior of the trajectory. This influence is determined by the estimates of different initial
conditions (23) and (27). Within the range 8:3 < ˇ < 9; the limit cycles relative to the points A and B suffer
bifurcations of multiple increase in the period. In Fig. 6, the trajectory of the limit cycle hits a point where x � 0:

The curve abruptly changes the direction of motion. The phenomenon of a multiple increase in the period is caused
by the nonuniformity of motion of the image point. This occurs in the immediate vicinity of the point O: In this
case, the saddle value is close to zero.

The formation of two limit cycles without symmetry (see Fig. 6) is connected with the geometric theorem
according to which all points of the trajectory are attractive saddle-focus points with negative saddle values.
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4. Conclusions

The present paper is devoted to the classification of physical objects generating multidimensional attractors.
We prove two theorems on the existence of limit cycles with symmetry in three-dimensional systems.

The second theorem is connected with the skew symmetry of projections onto the coordinate planes generating
the closure of the three-dimensional trajectory. As an example, we consider the mathematical Chua model. We
establish the conditions under which the Chua system generates periodic signals. In the case of a single limit cycle
(see Fig. 4), the skew-symmetry principle is adapted for three-dimensional systems. This adaptation is connected
with Theorem 2. The presented values of parameters (22) form a point in the space of parameters. In a small
neighborhood of this point, there exists a set of points also associated with the limit cycles. We establish the cause
of the appearance of multiple periods of the limit cycles. The mechanism of multistability is described.
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