
Journal of Mathematical Sciences, Vol. 207, No. 6, June, 2015

ON THE CLASS NUMBERS OF ALGEBRAIC NUMBER
FIELDS

O. M. Fomenko∗ UDC 511.466+517.863

Let K be a number field of degree n over Q and let d, h, and R be the absolute values of the
discriminant, class number, and regulator of K, respectively. It is known that if K contains no
quadratic subfield, then

h R � d1/2

log d
,

where the implied constant depends only on n. In Theorem 1, this lower estimate is improved for
pure cubic fields.

Consider the family Kn, where K ∈ Kn if K is a totally real number field of degree n whose
normal closure has the symmetric group Sn as its Galois group. In Theorem 2, it is proved that
for a fixed n ≥ 2, there are infinitely many K ∈ Kn with

h � d1/2(log log d)n−1/(log d)n,

where the implied constant depends only on n.
This somewhat improves the analogous result h � d1/2/(log d)n of W. Duke [MR 1966783

(2004g:11103)]. Bibliography: 16 titles.

1

Let K be an algebraic number field of degree n(K) = [K : Q], n(K) =: n ≥ 2. The study
of h(K) =: h, the class number of the field K, is based on investigating the Dedekind zeta
function of the field K,

ζK(s) =
∑

a

(Na)−s (σ > 1),

where the summation is carried out over all integral nonzero ideals a in K; s = σ + it. It
is known that ζK(s) is a meromorphic function over the entire complex plane with a single
simple pole at s = 1 with residue, say, κK . The function ζK(s) satisfies a Riemann type
functional equation � s → 1 − s �. Every field K has r1 real and 2r2 imaginary conjugate
fields (consequently, r1 + 2r2 = n).

An important role is played by the Dedekind formula

κK = 2r1(2π)r2
h(K)R(K)

w(K)|d(K)|1/2 ,

where d(K) =: d and R(K) =: R signify the discriminant and regulator of the field K,
respectively; w(K) =: w is the number of roots of 1 contained in K. The question on upper
and lower estimates of the residue κK arises. An upper estimate is established comparatively
easily and gives an inequality with an effective constant. Landau [1] proved that

hR � |d|1/2 logn−1 |d|, (1.1)

where the implicit constant depends only on n. Later Siegel [2] and Lavrik [3] calculated this
constant.
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Present the remark of Lavrik: For |d| ≥ 5,

hR < w|d|1/2 logn−1 |d|.
From (1.1), as Landau showed, it follows that

h �
n

|d|1/2 logn−1 |d|. (1.2)

It is considerably harder to obtain a lower estimate for κK . Consider the sequences of normal
extensions K of the field Q such that n/ log |d| → 0. Then, by the Brauer–Siegel theorem [4],

κK � |d|−ε, (1.3)

where ε > 0 is an arbitrary fixed number, and the implicit constant depends on ε and n; an
explicit form of this dependence is so far unknown.

From this, in particular, it follows that for all fields K of a given degree n ≥ 2 with
sufficiently large |d|, we have

hR > |d| 12−ε. (1.4)
It is known that the lower bound (1.3) is closely related to the (hypothetical) existence of
an exceptional zero β0 (also called the Landau–Siegel zero) for ζK(s), i.e., a real zero in the
interval

1 − [c(n) log |d(K)|]−1 ≤ β0 < 1.
If the function ζK(s) has no exceptional zero (according to Heilbronn [5] and Stark [6], this
holds, in particular, for the fields K containing no quadratic subfields), then, for such fields
K,

hR � |d|1/2
log |d| , (1.5)

where the implicit constant depends only on n.
Inequalities (1.1), (1.3)–(1.5) can be sharpened under some additional conditions. Assume

that for every irreducible character χ of the group Gal (K̂/Q), where K̂/Q is the Galois closure
of the field K/Q, the Artin L-function L(s, χ) is entire (the Artin hypothesis) and satisfies the
generalized Riemann hypothesis (GRH). Then

|d(K)|1/2
log log |d(K)| �n h(K)R(K) �

n
|d(K)|1/2(log log |d(K)|)n−1.

In order to obtain information on the class number h(K), estimates of the regulator R(K)
are needed. Significant results on the value of R(K) were obtained by Remak [7, 8]. One of
his estimates is as follows: If R(K) is not a totally imaginary quadratic extension of a totally
real field, then

R(K) �
n

log |d(K)|.
Consequently, for such fields K, from (1.1) it follows that

h �
n

|d|1/2(log |d|)n−2. (1.6)

In [9], an infinite sequence of fields Km (m = 1, 2, . . . ) of a given degree n ≥ 2 with a small
regulator and, consequently, by (1.4), with an extremally large class number

h(Km) > |d(Km)| 12−ε, (1.7)

where ε > 0 is an arbitrary fixed number, was constructed. The result is unconditional and
can be transferred to any given signature.

Stronger results of the same type are presented in §3 of the present paper; one of them is
due to the author (see Theorem 2).
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Here, it is appropriate to make several remarks regarding the real quadratic fields Q(
√

d).
Let χ be the primitive quadratic character modulo d and let L(s, χ) be the corresponding
Dirichlet L-function. Then L(1, χ) = hRd−1/2. Since L(1, χ) � log d and R >

(
1
2 +o(1)

)
log d,

then h � √
d (the old Landau estimate). Under the assumption of the GRH for the Dirichlet

L-functions, Littlewood [10] proved that

L(1, χ) < (2eγ + o(1)) log log d.

Consequently, assuming the GRH, we have

h < (4eγ + o(1))d1/2(log d)−1 log log d.

Montgomery and Weinberger [11] showed that the following theorem is unconditionally valid:
There is an absolute constant c > 0 such that

h > cd1/2(log d)−1 log log d (1.8)

for infinitely many real quadratic fields Q(
√

d).
Unconditionally, it is very difficult to improve inequalities (1.1), (1.3)–(1.5) in the general

case. Some advances are possible for cubic fields (see §2); in particular, in §2 Theorem 1 of
the author is proved, which is connected with pure cubic fields.

2

Consider a pure cubic field K = Q( 3
√

m), where m is cube-free, m 	= ±1; we have m = ab2,
where a and b are square-free and coprime integers. It is known that if a2 	≡ b2 (mod 9), then
d(K) = −27a2b2; if a2 ≡ b2 (mod 9), then d(K) = −3a2b2.

For pure cubic fields, the Landau results (1.1), (1.2), and (1.6) were improved by Cohn [12].
Restrict ourselves to the case of positive a and b. Cohn used the fact that in the case of a
pure cubic field K, the residue κK reduces to a finite expression involving the Dedekind eta
function. This implies the inequality

hR � |d|1/2 log |d| · log log |d|, (2.1)

improving inequality (1.1) in the particular case in question. This implies the following im-
provement of (1.6):

h � |d|1/2 log log |d|.
Pass to estimating hR from below in the case of a pure cubic field K. In accordance with

what has been said above, ζK(s) has no exceptional zero; therefore, we are going to sharpen
the estimate (1.5).

Theorem 1. If K is a pure cubic field, then

hR � |d|1/2
(log |d|)1/2 · (log log |d|)1/2 ,

where the implicit constant is absolute.

Proof. It is known that for σ > 1, the Dedekid zeta function of any field K factorizes in the
Euler product

ζK(s) =
∏

p

(
1 − N(p)−s)−1 =

∏

p

∏

p|p

(
1 − N(p)−s)−1 (σ > 1), (2.2)

where p in the outer product runs over all prime rational numbers, whereas p in the inner
product runs over all prime ideals of the field K above p.

Vinogradov [13] approximated κK by a segment of the Euler product and obtained, for
the field K, the following analog of the classical Mertens formula (which we state in the
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particular case): For a field K for which the Dedekind zeta function has no exceptional zero,
the asymptotic formula

hR =
w|d|1/2

2r1(2π)r2
· e−γ

log D
·

∏

p
N(p)≤D

(
1 − N(p)−1

)−1(
1 +

θ

log D

)
(2.3)

is valid, where log D ≥ c(n) log |d| · log log |d|; c(n) is a suitable positive constant depending
only on n; θ �

n
1.

Pass to the proof of Theorem 1 itself. Apply the asymptotic formula (2.3) in the case of the
pure cubic field K = Q( 3

√
m). We need the following special case of the law of decomposition

of prime numbers p in the field K (see [14]): If (p, |d|) = 1 and p ≡ 2 (mod 3), then, in K,

p = p1p2,

where p1 is a prime ideal of the field K of degree 1, and p2 is a prime ideal of the field K of
degree 2.

If p
∣∣|d| and p 	= 3, then p = p31, where p1 is a prime ideal of the field K of degree 1.

Set log D = c log |d| log log |d|, where c > 0 is a suitable absolute constant. Taking into
account (2.2), we have

∏

p
N(p)≤D

(
1 − N(p)−1

)−1≥
∏

p≤D
p≡2 (mod 3)
(p,|d|)=1

(
1 − 1

p

)−1 � (log |d|)1/2(log log |d|)1/2.

Formula (2.3) for the pure cubic field K, together with the latter estimate, proves Theorem 1.
�

Remark 1. Duke [15] presented a new result for n = 3: The upper bound (3.1) is attained
unconditionally by infinitely many Abelian cubic fields.

3

First, present the Duke results [16], improving (1.7) in an important particular case. We
will assume that K ∈ Kn if K is a totally real field of algebraic numbers of degree n whose
normal closure K̂ has the full symmetric group Sn as its Galois group Gal (K̂/Q). For such
fields,

ζK(s) = ζ(s)L(s, χ),
where the character χ of the Galois representation is irreducible and has degree n − 1 and
conductor d. In addition,

h =
d1/2

2n−1R
L(1, χ).

The Artin hypothesis and GRH yield

L(1, χ) � (log log d)n−1.

Remak [7] proved that if K contains no nontrivial subfields (this is true for K ∈ Kn), then

R � (log d)n−1.

Therefore, assuming the Artin hypothesis and GRH, for totally real fields K containing no
nontrivial subfields and, in particular, for K ∈ Kn, we have

h � d1/2(log log d/ log d)n−1; (3.1)

here, the implicit constant depends only on n.
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The question on the sharpness of the estimate (3.1) arises. From the Montgomery and
Weinberger result (1.8) it follows that for n = 2, the estimate (3.1) cannot be improved except
for the value of the constant. A similar fact was shown by Duke in [16] for n ≥ 3, but
only assuming the Artin hypothesis and GRH. His result is stated in the following way [16,
Theorem 1]: Fix an n ≥ 2 and assume that every Artin L-function is an entire function and
satisfies the GRH. Then there exists a constant c > 0, depending only on n, such that there are
fields K ∈ Kn with arbitrarily large discriminant d for which h > c d1/2(log log d/ log d)n−1.

The best unconditional result was obtained in [16]: There are infinitely many fields K ∈ Kn

with
h � d1/2(log d)−n; (3.2)

here, the implicit constant depends only on n.
This improves the estimate (1.7).
The estimate (3.2) is improved in Theorem 2 below.

Theorem 2. Fix an n ≥ 2. There are infinitely many K ∈ Kn with

h � d1/2(log log d)n−1/(log d)n;

here, the implicit constant depends only on n.

Proof. We rely on the following important result by Duke [16, Proposition 4]:
Fix an n ≥ 2. There is a constant c > 0, depending only on n, such that there are fields

K ∈ Kn with arbitrarily large discriminant d for which every prime number p with c ≤ p ≤ log d
splits completely in K and R ≤ c(log d)n−1, where R is the regulator of K.

Note that as K the fields obtained by adjoining to Q a root of the polynomial

f(x, t) = (x − t)(x − 22t)(x − 32t) . . . (x − n2t) − t

for a suitable integral value of t are taken.
Write (2.3) in the particular case of a field K ∈ Kn:

hR =
d1/2

2n−1
· e−γ

log D
·

∏

p
N(p)≤D

(
1 − N(p)−1)−1

(
1 +

θ

log D

)
,

where log D = c(n) log d · log log d with a suitable constant c(n) > 0 depending only on n, and
|θ| �

n
1. Now as K we take the fields occurring in the above-stated Duke proposition. We

have

hR �
n

d1/2(log d · log log d)−1
∏

p
N(p)≤log d

(
1 − N(p)−1

)−1

� d1/2(log d · log log d)−1
∏

p≤log d

(
1 − 1

p

)−n

� d1/2(log d)−1(log log d)−1(log log d)n.

For the fields K considered, we have

R �
n

(log d)n−1,

which completes the proof of the theorem. �

Translated by G. V. Ku’mina and O. M. Fomenko.
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