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REPRESENTATIONS AND INEQUALITIES FOR
GENERALIZED HYPERGEOMETRIC FUNCTIONS

D. B. Karp∗ UDC 517.58

An integral representation for the generalized hypergeometric function unifying known represen-
tations via generalized Stieltjes, Laplace, and cosine Fourier transforms is found. Using positivity
conditions for the weight in this representation, various new facts regarding generalized hypergeo-
metric functions, including complete monotonicity, log-convexity in upper parameters, monotonic-
ity of ratios, and new proofs of Luke’s bounds are established. In addition, two-sided inequalities
for the Bessel type hypergeometric functions are derived with the use of their series representations.
Bibliography: 22 titles.

1. Introduction

Standard notation R, C, and N for the real, complex and positive integer numbers, re-
spectively, is adopted. N0 denotes N ∪ {0}. In the previous works [9, 11], we obtained some
representations, inequalities, monotonicity and other properties for the Gauss type generalized
hypergeometric function q+1Fq. The latter is the p = q + 1 special case of the function [3, 15]

pFq

(
A
B

∣∣∣∣ z
)

= pFq (A;B; z) :=
∞∑

n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)nn!

zn, (1)

where A = (a1, a2, . . . , ap) and B = (b1, b2, . . . , bq), bj /∈ −N0, are parameter vectors, and
(a)n denotes the rising factorial, defined by (a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n ≥ 1.
The series in (1) converges in the entire complex z-plane if p ≤ q and inside the unit disk if
p = q+1. In the latter case, the sum can be extended to a function holomorphic in the cut plane
C\[1,∞). The main tool employed in [9,11] in investigating the function q+1Fq is the generalized
Stieltjes transform (see (3) below) of a measure with density expressed by the G-function of
Meijer, cf. [9, Theorem 2]. Such a representation appeared earlier in [15, Theorem 4.2.11].
We suggested more relaxed conditions on the parameters and studied the nonnegativity of the
representing measure. This leads to the monotonicity of the ratios, two-sided bounds, mapping
properties, and other results for the Gauss type hypergeometric functions q+1Fq.

Another line of research pursued in [6,7,12] hinges on the series representation (1) and yields,
among other things, a number of properties of the Kummer type hypergeometric functions qFq,
including logarithmic concavity or convexity in parameters, inequalities for logarithmic deriva-
tives, and bounds for the Turánians. In this note, an integral representation for the general
hypergeometric function pFq is introduced. As particular cases, it includes representations by
the generalized Stieltjes, Laplace, and cosine Fourier transforms. Starting with this represen-
tation, we will obtain new properties of the Gauss type functions q+1Fq, the Kummer type
functions qFq, and the Bessel type functions q−1Fq, including conditions for complete mono-
tonicity, monotonicity of ratios, and log-convexity in upper parameters. Moreover, we furnish
new proofs for Luke’s inequalities from [16], allowing their extension to a wider parameter
range. Finally, we discover new bounds for the Bessel type hypergeometric functions pFq with
p < q of a positive argument.

∗Far Eastern Federal University, Vladivostok, Russia; Universidad del Atlántico, Barranquilla, Colombia,
e-mail: dimkrp@gmail.com.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 429, 2014, pp. 121–139. Original article sub-
mitted September 8, 2014.

1072-3374/15/2076-0885 ©2015 Springer Science+Business Media New York 885

DOI 10.1007/s10958-015-2412-7



2. Representations for pFq and their implications

Let 0 ≤ m ≤ q and 0 ≤ n ≤ p be integers, and let A ∈ C
p and B ∈ C

q be such that
ai − bj − 1 /∈ N0 for all i = 1, . . . , n and j = 1, . . . ,m. We will heavily use Meijer’s G-
function [3, Sec. 16.17], defined by the contour integral

Gm,n
p,q

(
z

A
B

)
:=

1
2πi

∫
L

Γ(b1+s) · · ·Γ(bm+s)Γ(1 − a1−s) · · ·Γ(1 − an−s)z−s

Γ(an+1+s) · · ·Γ(ap+s)Γ(1 − bm+1−s) · · ·Γ(1 − bq−s)
ds. (2)

The contour L begins and ends at infinity and separates the poles of the integrand of the form
−bj − k, k ∈ N0, leaving them on the left, from the poles of the form −aj + k + 1, k ∈ N0,
leaving them on the right. Under the above conditions, such a contour always exists and can
be chosen to make the integral in (2) convergent. More details regarding the choice of L and
conditions for the convergence in (2) can be found in [3], [14, Chap. 1 and 2], and [20, Chap. 8].

We will abbreviate
p∏

i=1
Γ(ai) to Γ(A) and

p∏
i=1

(ai)n to (A)n throughout the paper. Expressions

like A + α, where α ∈ C, and Re(A) > 0 will be understood elementwise. The key role
in the investigations carried out in [9, 11] is played by the generalized Stieltjes transform
representation

q+1Fq

(
σ,A
B

∣∣∣∣ − z

)
=

Γ(B)
Γ(A)

1∫
0

(1 + zt)−σGq,0
q,q

(
t

∣∣∣∣BA
)

dt

t
, (3)

which is readily proved by termwise integration. Note that both the generalized Stieltjes kernel
(1 + zt)−σ = 1F0(σ;−;−zt) and the Laplace kernel e−zt = 0F0(−;−;−zt) are particular cases
of a more general hypergeometric kernel. This simple observation leads us to the following
theorem.

Theorem 1. Assume that p1 ≥ 0, p2 ≥ 1, q1, q2 ≥ 0, p2 ≥ q2, p = p1 + p2, q = q1 + q2, and
p ≤ q + 1 are integers (these conditions imply that p1 ≤ q1 + 1). Write A1 = (a1, . . . , ap1),
A2 = (ap1+1, . . . , ap), B1 = (b1, . . . , bq1), and B2 = (bq1+1, . . . , bq) for complex parameter
vectors satisfying Re(A2) > 0. Then

pFq(A1, A2;B1, B2;−z) =
Γ(B2)
Γ(A2)

∞∫
0

p1Fq1(A1;B1;−zt)Gp2,0
q2,p2

(
t

∣∣∣∣B2

A2

)
dt

t
. (4)

This formula is valid for z ∈ C if p1 ≤ q1 or z ∈ C\(−∞,−1] if p1 = q1 + 1; if p2 = q2, then

the additional assumption Re(ψ2) > 0, where ψ2 =
p∑

i=p1+1
(bi − ai), must be adopted (in this

case, the G-function in (4) vanishes for t > 1). If p2 = q2 and ψ2 = 0, then

pFq(A1, A2;B1, B2;−z)=
Γ(B2)
Γ(A2)

{
p1Fq1(A1;B1;−z)+

1∫
0

p1Fq1(A1;B1;−zt)Gp2,0
q2,p2

(
t

∣∣∣∣B2

A2

)
dt

t

}
,

(5)

where z ∈ C if p1 ≤ q1 or z ∈ C\(−∞,−1] if p1 = q1 + 1.

Proof. Once the correctness of termwise integration has been justified, in order to establish (4),
it suffices to write the kernel p1Fq1 as the series (1) and integrate it term by term. In order to
demonstrate the convergence of the integral in (4) and justify the exchange of summation and
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integration, we resort to the asymptotic relation

Gp2,0
q2,p2

(
x

B
A

)
= O

(
xa lnm−1(x)

)
as x → 0, (6)

where a=min(Re(a1),. . .,Re(ap)), and the minimum is taken over those ai for which ai−bj /∈N0

for all j = 1, . . . , q2. The positive integer m is the maximal multiplicity among the numbers
ai for which the minimum is attained. This formula follows from [14, Corollary 1.12.1] or [13,
Eq. (11)]. It proves the convergence in (4) around zero. Near infinity, for p2 > q2 we have

Gp2,0
q2,p2

(
x

B
A

)
=

(2π)
1
2
(μ−1)

√
μ

x(1−α)/μe−μx1/µ
[
1 + O(x−1/μ)

]
as x → ∞, (7)

where μ = p2 − q2 and α =
q∑

i=q1+1
bi −

p∑
i=p1+1

ai + 1
2 (p2 − q2 + 1). This formula is a particular

case of the formula on page 289 in [4], which is implied by formula (7.8) of the same paper. If
p2 = q2 and Re(ψ2) > 0, then, according to [20, 8.2.59],

Gp2,0
q2,p2

(
x

∣∣∣∣B2

A2

)
= O((1 − x)Re(ψ2)−1) as x ↑ 1

and, according to [9, Lemma 1] (also see the proof of Theorem 2 below),

Gp2,0
q2,p2

(
x

∣∣∣∣B2

A2

)
= 0 for x > 1.

This shows the convergence in (4) around unity for p2 = q2. Finally, (5) follows from [8,
Theorem 1]. �
Remark. The condition p2 ≥ q2 is necessary in the above theorem because, for p2 < q2,

Gp2,0
q2,p2

(
x

∣∣∣∣B2

A2

)
= 0 for all x ∈ R.

This condition shows that for p < q, the function pFq cannot be represented by the Laplace
or generalized Stieltjes transform. The most “extreme” representation we can obtain in this
case is

pFq(A;B;−z) =
Γ(B2)
Γ(A)

1∫
0

0Fq−p(−;B1;−zt)Gp,0
p,p

(
t

∣∣∣∣B2

A

)
dt

t
,

where essentially the kernel 0Fm is the Bessel function if m = 1 or the so-called hyper-Bessel
function if m > 1 (see [15]). Note that this kernel cannot be represented by Theorem 1 because
of the condition p2 ≥ 1. It is sometimes desirable, however, to have a representation with a
kernel independent of the parameters of the function being represented. This can easily be
achieved by introducing artificial parameters αj > 0 to obtain

pFq(A;B;−z)=
Γ(B)

Γ(A)
q−p∏
i=1

Γ(αi)

1∫
0

0Fq−p(−;α1, . . . , αq−p;−zt)Gq,0
q,q

(
t

∣∣∣∣ B
A,α1, . . . , αq−p

)
dt

t
.

(8)
We must require

∑
bi >

∑
ai +

∑
αi for the convergence of the above integral. In particular,

by choosing αi = i/(q−p+1), we obtain the kernel in terms of the so-called generalized cosine,

cosn(z) =
∞∑

j=0

(−1)jznj

(nj)!
= 0Fn−1(−; 1/n, 2/n, . . . , (n − 1)/n;−(z/n)n).

887



The representation with such a kernel was originally suggested by Kiryakova in [15]. An
important particular case p = q − 1 leads to the standard cosine kernel, as indicated in the
corollary below. Before stating it, define the parametric excess by

ψ =
q∑

k=1

bk −
p∑

k=1

ak. (9)

Corollary 1. Let Re(A) > 0 elementwise. Then

q+1Fq

(
A
B

∣∣∣∣ − z

)
=

Γ(B)
Γ(A)

∞∫
0

e−ztGq+1,0
q,q+1

(
t

∣∣∣∣BA
)

dt

t
. (10)

In addition, if Re(ψ) > 0, then

qFq

(
A
B

∣∣∣∣ − z

)
=

Γ(B)
Γ(A)

1∫
0

e−ztGq,0
q,q

(
t

∣∣∣∣BA
)

dt

t
. (11)

If Re(ψ) > 1/2, then

q−1Fq

(
A
B

∣∣∣∣ − z

)
=

Γ(B)√
πΓ(A)

1∫
0

cos(2
√

zt)Gq,0
q,q

(
t

∣∣∣∣ B
A, 1/2

)
dt

t
. (12)

If ψ = 0, then (11) takes the form

qFq

(
A
B

∣∣∣∣ − z

)
=

Γ(B)
Γ(A)

{
e−z +

1∫
0

e−ztGq,0
q,q

(
t

∣∣∣∣BA
)

dt

t

}
.

If ψ = 1/2, then (12) takes the form

q−1Fq

(
A
B

∣∣∣∣ − z

)
=

Γ(B)√
πΓ(A)

{
cos(2

√
z)+

1∫
0

cos(2
√

zt)Gq,0
q,q

(
t

∣∣∣∣ B
A, 1/2

)
dt

t

}
.

Application of the integral representations (3), (4), (5), (8) (10), (11), and (12) to inves-
tigation of properties of the generalized hypergeometric function pFq depends heavily on the
positivity of the representing measures, expressed here in terms of Meijer’s G-function. Suffi-
cient conditions for the positivity are furnished in the next theorem.

Theorem 2. Assume that A,B ∈ R
q are such that

v(t) =
q∑

j=1

(taj − tbj ) ≥ 0 on (0, 1]. (13)

Then

Gq,0
q,q

(
t

∣∣∣∣BA
)

≥ 0 on (0, 1). (14)

Before giving a proof of this theorem, we recall that a nonnegative function f defined on
(0,∞) is said to be completely monotone if it has derivatives of all orders and (−1)nf (n)(x) ≥ 0
for n ∈ N0 and x > 0 [22, Definition 1.3]. This inequality is known to be strict unless
f is a constant. By the celebrated Bernstein theorem, a function is completely monotone
if and only if it is the Laplace transform of a nonnegative measure [22, Theorem 1.4]. A
positive function f is said to be logarithmically completely monotone if −(log f)′ is completely
monotone [22, Definition 5.8]. The class of logarithmically completely monotone functions is a
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proper subset of the class of completely monotone functions. Their importance stems from the
fact that they represent the Laplace transforms of infinitely divisible probability distributions,
see [22, Theorem 5.9] and [21, Sec. 51].

Proof of Theorem 2. First note that

Gq,0
q,q

(
t

∣∣∣∣BA
)

= 0

for t > 1 and all (complex) values of A and B. This follows from the fact that for t > 1,
choosing the right loop to be the contour of integration in (2) yields a convergent integral,
see [14, Theorem 1.1]. On the other hand, there are no poles of the integrand inside this
contour, whence the above equality follows by Cauchy’s theorem. This explains the restriction
t ∈ (0, 1) in the theorem statement. Further, by virtue of the formula

tαGq,0
q,q

(
t

∣∣∣∣BA
)

= Gq,0
q,q

(
t

∣∣∣∣B + α
A + α

)

(see [20, 8.2.2.15] or [3, 16.19.2]), we can restrict our attention to the case A,B > 0. Indeed,
adding a sufficiently large α to A and B neither alters the sign of Meijer’s G in (14) nor the sign
of v(t) in (13). Adopting the assumption A,B > 0, we are in a position to apply [5, Lemma 2.1],
whose particular case (essentially contained already in [1, Theorem 10]) states that the ratio
x → Γ(A + x)/Γ(B + x) is logarithmically completely monotone if and only if condition (13)
is fulfilled. Hence, under (13), this function also is completely monotone. If ψ > 0, then

Γ(A + x)
Γ(B + x)

=

∞∫
0

e−xtGq,0
q,q

(
e−t

∣∣∣∣BA
)

dt,

and the representing measure must be nonnegative by Berstein’s theorem. This measure is
unique according to [22, Proposition 1.2]. Nonnegativity is extended to ψ = 0 by continuity.
If ψ < 0, then v(t) cannot be nonnegative on (0, 1] because v(1) = 0 and v′(1) = −ψ. �

Condition (13) is probably also necessary for (14), at least if ψ ≥ 0. However, this condition
is very difficult to verify. Some sufficient conditions are known to hold for inequality (13). In
order to cite the corresponding results, we need to introduce the following terminology [17,
Definition A.2]. It is said that a real vector B = (b1, . . . , bq) is weakly supermajorized by a
real vector A = (a1, . . . , aq) (symbolized as B ≺W A) if

0 < a1 ≤ a2 ≤ · · · ≤ aq, 0 < b1 ≤ b2 ≤ · · · ≤ bq,

k∑
i=1

ai ≤
k∑

i=1

bi for k = 1, 2 . . . , q.
(15)

If, in addition, ψ(=
q∑

i=1
(bi − ai)) = 0, then B is said to be majorized by A, or B ≺ A.

It will be convenient to assume that A and B (or Ai and Bi when they appear) are ordered
ascending whenever they are real. From a theorem of Tomić (see [17, Proposition 4.B.2]) it
immediately follows hat v(t) ≥ 0 if B ≺W A. In the present context, this fact was first used
by Alzer [1, Theorem 10]. For the particular situation q = 2n, n = 0, 1, . . ., Grinshpan and
Ismail [5, Theorems 1.1,1.2] derived two different sets of conditions sufficient for (13) to be
valid.

By combining the nonnegativity of the G-function with representations (3) and (11), we
obtain some sufficient conditions for the generalized hypergeometric functions to be completely
monotone or logarithmically completely monotone.
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Theorem 3. Let v(t) ≥ 0 on (0, 1] and let σ > 0. Then the functions

x → q+1Fq

(
σ,A
B

∣∣∣∣ − x

)
and x → qFq

(
A
B

∣∣∣∣ − x

)

are completely monotone on (0,∞). In particular, this holds if B ≺W A.

Theorem 4. Let σ > 0 and let v(t) ≥ 0 on (0, 1] (in particular, this holds if B ≺W A). Then
the function

x → x−σ
q+1Fq

(
σ,A
B

∣∣∣∣ − 1
x

)

is completely monotone on (0,∞). If 0 < σ ≤ 1, then it is logarithmically completely monotone.

Proof. By factoring the generalized Stieltjes transform (3) into repeated Laplace transforms
ans using [10, Theorem 8], we obtain

x−σ
q+1Fq(σ,A;B;−1/x) =

1
Γ(σ)

∞∫
0

e−uxuσ−1

∫ 1

0
e−utdρ(t) du

=
1

Γ(σ)

∞∫
0

e−uxuσ−1
qFq(A;B;−u) du,

where

dρ(t) =
Γ(B)
Γ(A)

Gq,0
q,q

(
t

∣∣∣∣BA
)

dt

t

is nonnegative by Theorem 2. This implies complete monotonicity. Further, according to [21,
Theorem 51.4], a probability distribution is infinitely divisible if it has log-convex density. The

function uσ−1
1∫
0

e−utdρ(t) is log-convex for 0 < σ ≤ 1 because both factors are log-convex (the

second factor is log-convex by complete monotonicity). Thus, the function in the statement
of the theorem is the Laplace transform of an infinitely divisible distribution, whence it is
logarithmically completely monotone by [1, Proposition on p. 387] or [22, Theorem 5.9]. �

By applying the methods of proofs from [9,11] to representations (4) and (5), it is straight-
forward to establish the two propositions below (cf. Theorems 4 and 7 from [9]). The symbol
A′

1 will denote A1 without its maximal element.

Theorem 5. Keeping the notation and constraints of Theorem 1, assume, in addition, that

A1, B1 > 0, p2 = q2, and
p∑

j=p1+1
(taj − tbj) ≥ 0 (or B2 ≺W A2). Then, for every fixed μ > 0,

the function

x →
pFq

(
A1, A2 + μ
B1, B2 + μ

∣∣∣∣ − x

)

pFq

(
A1, A2

B1, B2

∣∣∣∣ − x

)

is monotone decreasing on (−∞, 0) if p ≤ q or on (−1, 0) if p = q + 1. If p = q and
p1∑

j=1
(taj − tbj ) ≥ 0 (or B1 ≺W A1), then the above quotient decreases on the entire real line.

If p = q + 1 and
∑q1

j=1(t
aj − tbj ) ≥ 0 (or B1 ≺W A′

1), then the above quotient decreases on
(−1,∞).
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Theorem 6. Keeping the notation and constraints of Theorem 1, assume, in addition, that

A1, B1 > 0, p2 = q2, and
p∑

j=p1+1
(taj − tbj) ≥ 0 (or B2 ≺W A2). Then the function

μ → pFq

(
A1, A2 + μ
B1, B2 + μ

∣∣∣∣ − x

)

is log-convex on (0,∞) for every fixed x ∈ (−∞, 0) if p ≤ q or x ∈ (−1, 0) if p = q+1. If p = q

and
p1∑

j=1
(taj − tbj ) ≥ 0 (or B1 ≺W A1), then log-convexity holds for every real x, whereas for

p = q+1 and
q1∑

j=1
(taj − tbj ) ≥ 0 (or B1 ≺W A′

1) log-convexity holds for every fixed x ∈ (−1,∞).

Remark. It is readily seen that the conditions B1 ≺W A1 and B2 ≺W A2 imply B ≺W A (for
these relations to make sense, one must assume that p1 = q1 and p2 = q2). For this reason,
Theorems 5 and 6 are the strongest in an informal sense for p1 = q1 = 0, i.e., for the functions

x → qFq

(
A + μ
B + μ

∣∣∣∣ − x

)/
qFq

(
A
B

∣∣∣∣ − x

)
and μ → qFq

(
A + μ
B + μ

∣∣∣∣ − x

)
.

3. Inequalities for the Kummer and Gauss type functions

In Theorem 16 of his paper [16], Luke gave two-sided bounds for the function
qFq(A;B;x) under the restrictions bi ≥ ai > 0, i = 1, 2, . . . , q. He indicated that these
bounds are “easily proved” without providing such proofs. In this section, we supply two
different proofs of Luke’s inequalities, one valid for positive values of the argument x and the
other valid for all real x. In this way, we substantially relax Luke’s conditions. For negative
argument values, our conditions are given in terms of the nonnegativity of v(t) or the weak
majorization B ≺W A. For positive argument values, the conditions can be weakened further
and are given in terms of the elementary symmetric polynomials, defined by

ek(x1, . . . , xq) =
∑

1≤j1<j2···<jk≤q

xj1xj2 · · · xjk , k = 1, 2, . . . , q.

Theorem 7. Assume that
eq(b1, . . . , bq)
eq(a1, . . . , aq)

≥ eq−1(b1, . . . , bq)
eq−1(a1, . . . , aq)

≥ · · · ≥ e1(b1, . . . , bq)
e1(a1, . . . , aq)

≥ 1 (16)

and that every elementary symmetric polynomial above is nonnegative. Then

ef1x ≤ qFq(A;B;x) ≤ 1 − f1 + f1e
x for x ≥ 0, (17)

where f1 =
q∏

i=1
(ai/bi). Moreover, the upper bound holds true if every fraction in (16) is merely

not less than 1.

Remark. Note that conditions (16) are strictly weaker than B ≺W A, as we demonstrated
in [9, Lemma 3].

Proof. By fn =
q∏

i=1
[(ai)n/(bi)n] denote the coefficient at xn/n! in the power series expansion

(1) of qFq(A;B;x). Then the conditions

ei(b1, . . . , bq) ≥ ei(a1, . . . , aq), i = 1, . . . , q,
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(i.e., every fraction in (16) is not less than 1) imply that

fn+1

fn
= R(n) =

q∏
i=1

ai + n

bi + n
≤ 1

because eq−i(a1, . . . , aq) (eq−i(b1, . . . , bq)) is the coefficient at ni in the polynomial in the numer-
ator (denominator) of R(n). Thus, fn+1 ≤ fn, whence fn ≤ f1 for n = 1, 2, . . . . Consequently,
for x ≥ 0, we obtain

qFq(A;B;x) = 1 +
∞∑

n=1

fn
xn

n!
= 1 + f1

∞∑
n=1

fn

f1

xn

n!
≤ 1 + f1

∞∑
n=1

xn

n!
= 1 − f1 + f1e

x.

Further, under conditions (16), the function R(x) defined above is increasing according to [12,
Lemma 2]. This leads to the following inequalities (k ≥ 0):

R(0) =
q∏

i=1

ai

bi
≤

q∏
i=1

ai + k

bi + k
= R(k) ⇒ (f1)n =

q∏
i=1

(ai)n

(bi)n
≤

q∏
i=1

(ai)n
(bi)n

= fn, n = 1, 2, . . . .

Consequently,

qFq(A;B;x) = 1 +
∞∑

n=1

fn
xn

n!
≥ 1 +

∞∑
n=1

(f1)n
xn

n!
= ef1x,

which completes the proof. �

Remark. Inequalities (17) can be refined to the bounds

1 +
f2
1

f2
(e(f2/f1)x − 1) ≤ qFq(A;B;x) ≤ 1 − f2 + (f1 − f2)x + f2e

x, (18)

valid for x ≥ 0 under the assumptions of Theorem 7. Indeed, the upper bound is obtained by
writing

qFq(A;B;x) = 1 + f1x + f2

∞∑
n=2

fn

f2

xn

n!
≤ 1 + f1x + f2

∞∑
n=2

xn

n!

= 1 − f2 + (f1 − f2)x + f2e
x,

where we have used the fact that fn+1 ≤ fn for n = 2, 3, . . . , provided that every fraction in
(16) is not less than 1. In order to prove the lower bound, we note that under conditions (16),
we have (f2/f1)n−1 ≤ fn/f1 for n = 2, 3, . . . by the increase of R(x). Then

qFq(A;B;x) = 1 + f1x + f1

∞∑
n=2

fn

f1

xn

n!

≥ 1 + f1x + f1

∞∑
n=2

(
f2
f1

)n−1 xn

n!
= 1 +

f2
1

f2
(e(f2/f1)x − 1).

A similar trick can be applied to separate further terms.

Corollary 2. Let σ > 0 and let the hypotheses of Theorem 7 be satisfied. Then, for 0 ≤ x < 1,
1

(1 − f1x)σ
≤ q+1Fq(σ,A;B;x) ≤ 1 − f1 +

f1
(1 − x)σ

and

1 − f2
1

f2
+

f2
1

f2(1 − f2x/f1)σ
≤ q+1Fq(σ,A;B;x) ≤ 1 − f2 + σ(f1 − f2)x+

f2
(1 − x)σ

.
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Proof. Following Luke’s idea from [16], write the bounds (17) for qFq(A;B; t), multiply by
e−tytσ−1, and integrate using the relation

∞∫
0

e−tytσ−1
qFq(A;B; t) dt = y−σΓ(σ)q+1Fq(σ,A;B; 1/y).

In order to obtain the first inequality, it remains to write x = 1/y in the resulting inequality
and simplify the latter. The second inequality is proved by applying the same trick to (18). �

Theorem 8. Assume that A,B > 0 and
q∑

j=1
(taj − tbj ) ≥ 0 (or B ≺W A). Then, for all real x,

e−f1x ≤ qFq(A;B;−x) ≤ 1 − f1 + f1e
−x.

Proof. In accordance with the integral form of Jensen’s inequality [18, Chap. I, Eq. (7.15)],

ϕ

⎛
⎝

b∫
a

f(s)dμ(s)

/ b∫
a

dμ(s)

⎞
⎠ ≤

b∫
a

ϕ(f(s))dμ(s)

/ b∫
a

dμ(s) (19)

if ϕ is convex and f is integrable with respect to a nonnegative measure μ. Put ϕx(y) = e−xy,
f(s) = s, and

dμ(s) =
Γ(B)
Γ(A)

Gq,0
q,q

(
s

∣∣∣∣BA
)

ds

s
.

Then
1∫

0

dμ(s) = 1,

1∫
0

f(s)dμ(s) =
q∏

i=1

ai

bi
= f1,

1∫
0

ϕx(f(s))dμ(s) = qFq(A;B;−x).

The latter relation is (11) represented in a different form. This proves the lower bound. In
order to demonstrate the upper bound, we will apply the converse Jensen inequality, due to
Lah and Ribarić, which reads as follows. Set

A(g) =

M∫
m

g(s)dτ(s)
/ M∫

m

dτ(s) ,

where τ is a nonnegative measure and g is a continuous function. If −∞ < m < M < ∞ and
ϕ is convex on [m,M ], then, according to [19, Theorem 3.37],

(M − m)A(ϕ(g)) ≤ (M − A(g))ϕ(m) + (A(g) − m)ϕ(M).

Setting ϕx(t) = e−xt, dτ(s) = dμ(s), g(s) = s, and [m,M ] = [0, 1], we arrive at the upper
bound of the theorem. �

Corollary 3. Let σ > 0 and let the hypotheses of Theorem 8 be satisfied. Then, for x ≥ 0,

1
(1 + f1x)σ

≤ q+1Fq(σ,A;B;−x) ≤ 1 − f1 +
f1

(1 + x)σ
.
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Proof. Multiply inequality (17) written for qFq(A;B;−xt) by e−ttσ−1 and integrate using the
formula ∞∫

0

e−ttσ−1
qFq(A;B;−xt) dt = Γ(σ)q+1Fq(σ,A;B;−x). �

4. Inequalities for the Bessel type functions

First, we will find an upper bound in the general situation p < q. As above, the symbol fn

will denote the coefficient at xn/n! in the series representation (1), i.e.,

fn =

p∏
i=1

(ai)n

q∏
i=1

(bi)n
=

(A)n
(B)n

for n = 0, 1, . . . .

Theorem 9. Let p < q. If

eq−i(b1, . . . , bq) ≥ ep−i(a1, . . . , ap), i = 0, 1, . . . , p, (20)

then, for x ≥ 0,
pFq(A;B;x) ≤ 1 − f1 + f1e

x.

If
eq(b1, . . . , bq)
ep(a1, . . . , ap)

≤ eq−1(b1, . . . , bq)
ep−1(a1, . . . , ap)

≤ · · · ≤ eq−p+1(b1, . . . , bq)
e1(a1, . . . , ap)

≤ eq−p(b1, . . . , bq), (21)

then, for x ≥ 0,
pFq(A;B;x) ≤ ef1x.

Proof. The proof of the first upper bound repeats that of the upper bound (17) in Theorem 7.
In order to demonstrate the second bound, note that for p < q, the function

R(x) =

p∏
i=1

(ai + x)

q∏
i=1

(bi + x)

is decreasing under conditions (21) according to [12, p. 394], which implies that

fn =

p∏
i=1

(ai)n

q∏
i=1

(bi)n
≤

p∏
i=1

(ai)n

q∏
i=1

(bi)n
= (f1)n.

Hence

pFq(A;B;x) = 1 +
∞∑

n=1

fn
xn

n!
≤ 1 +

∞∑
n=1

(f1)n
xn

n!
= ef1x. �

According to the asymptotic formula [3, 16.11.8],

q−1Fq

(
A
B

∣∣∣∣ x

)
=

Γ(b1) · · ·Γ(bq)
2
√

πΓ(a1) · · ·Γ(aq−1)
xνe2

√
x

(
1 +

d1√
x

+ O(x−1)
)

as x → +∞,

where ν = 1
2

q−1∑
i=1

ai − 1
2

q∑
i=1

bi + 1/4. Hence the upper bounds of Theorem 9 are very wrong in

asymptotic order. In the most important case p = q − 1, we can do much better.
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Theorem 10. Let A,B > 0 (understood elementwise). Then, for x ≥ 0,

e
√
4x+c2−c

(
1
2

+
1
2c

√
4x + c2

)−c

≤ q−1Fq(A;B;x), (22)

where c > 0 is given by

c = max
i∈{1,2,...,q}

[
ei(b1, b2, . . . , bq) − ei(a1, a2, . . . , ap)

ei−1(a1, a2, . . . , ap)

]
, (23)

p = q − 1, and eq(a1, a2, . . . , ap) = 0.

Proof. If we could find a number c such that

fn =
(a1)n · · · (ap)n
(b1)n · · · (bq)n

≥ 1
(c)n

for n = 1, 2, . . . , (24)

then, for x ≥ 0 (p = q − 1),

pFq(A;B;x) = 1 +
∞∑

n=1

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
≥ 1 +

∞∑
n=1

1
(c)n

xn

n!
= 0F1(−; c;x). (25)

Further, we can use some known lower bounds for the function 0F1(−; c;x) (which is equal
to the modified Bessel function Ic−1 up to a simple multiplier) in deriving lower bounds for
pFq(A;B;x) in terms of elementary functions. For (24) to hold, it suffices to satisfy f1c ≥ 1
and

fn+1(c)n+1

fn(c)n
=

(a1 + n) · · · (ap + n)(c + n)
(b1 + n) · · · (bq + n)

≥ 1, n = 1, 2, . . . .

In turn, the above inequality holds if (recall that q = p + 1)

ei(a1, a2, . . . , ap, c) ≥ ei(b1, b2, . . . , bq), i = 1, 2, . . . , q,

or
ei(a1, a2, . . . , ap) + cei−1(a1, a2, . . . , ap) ≥ ei(b1, b2, . . . , bq), i = 1, 2, . . . , q.

For these q inequalities to be satisfied, we must set

c = max
i∈{1,2,...,q}

[
ei(b1, b2, . . . , bq) − ei(a1, a2, . . . , ap)

ei−1(a1, a2, . . . , ap)

]
.

Here, e0 = 1 and eq(a1, a2, . . . , ap) = 0. Owing to the latter relation, we obtain c > 0 for any
positive arrays A and B. Hence the problem reduces to finding good bounds for 0F1(−; c;x)
for x, c > 0. Numerically best bounds, contained in [2, Eq. (11)], are in terms of the ratio
Iν+1/Iν of the modified Bessel functions

Iν(x) = (x/2)ν [Γ(ν + 1)]−1
0F1(−; ν + 1;x2/4).

Written in terms of the logarithmic derivative of 0F1(−; c;x), these bounds read as

2√
4x + c2 + c

≤ 0F1
′(−; c;x)

0F1(−; c;x)
= 0F1(−; c + 1;x)/c

0F1(−; c;x)
≤ 2√

4x + (c + 1)2 + c − 1
,

where the derivative formula 0F1
′(−; c;x) = 0F1(−; c + 1;x)/c has been used. Using the

evaluation
x∫

0

2dt

a +
√

4tq + b2
=

1
q

√
4xq + b2 − a

q
ln

a +
√

4xq + b2

a + b
− b

q
,
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we can integrate the above inequalities to obtain

√
4x + c2 − c log

c +
√

4x + c2

2c
− c ≤ log(0F1(−; c;x))

≤
√

4x + (c + 1)2 − (c − 1) log
c − 1 +

√
4x + (c + 1)2

2c
− (c + 1).

Taking exponentials yields

e
√
4x+c2−c

(
1
2

+
1
2c

√
4x + c2

)−c

≤ 0F1(−; c;x)

≤ e
√

4x+(c+1)2−c−1

(
c − 1
2c

+
1
2c

√
4x + (c + 1)2

)1−c

.

(26)

Combining the lower bound in (26) with (25) completes the proof of the theorem. �

Theorem 11. Let A,B > 0 (understood elementwise) and let d given by

d = min
i∈{1,2,...,q}

[
ei(b1, b2, . . . , bq) − ei(a1, a2, . . . , ap)

ei−1(a1, a2, . . . , ap)

]
(27)

be positive. Here, p = q − 1, e0 = 1, and eq(a1, a2, . . . , ap) = 0. Then, for x ≥ 0,

q−1Fq(A;B;x) ≤ e
√

4x+(d+1)2−d−1

(
d − 1
2d

+
1
2d

√
4x + (d + 1)2

)1−d

. (28)

Proof. If we could find a certain d such that

fn(d)n =
(a1)n · · · (ap)n(d)n

(b1)n · · · (bq)n
≤ 1 for n = 1, 2, . . . ,

then we would have

pFq(A;B;x) = 1 +
∞∑

n=1

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!

≤ 1 +
∞∑

n=1

1
(d)n

xn

n!
= 0F1(−; d;x).

Application of the upper bound from (26) to the above inequality would prove (28). In order
to find such a d, it suffices to satisfy f1d ≤ 1 and

fn+1(d)n+1

fn(d)n
=

(a1 + n) · · · (ap + n)(d + n)
(b1 + n) · · · (bq + n)

≤ 1.

In turn, the above inequality holds if (recall that q = p + 1)

ei(a1, a2, . . . , ap, d) ≤ ei(b1, b2, . . . , bq), i = 1, 2, . . . , q,

or
ei(a1, a2, . . . , ap) + dei−1(a1, a2, . . . , ap) ≤ ei(b1, b2, . . . , bq), i = 1, 2, . . . , q.

For these q inequalities to be satisfied, we must choose d in accordance with (27). �
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