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SOME INEQUALITIES FOR TRIGONOMETRIC
POLYNOMIALS AND FOURIER COEFFICIENTS

V. V. Zhuk∗ and G. Yu. Puerov† UDC 517.5

The Bernstein inequalities for trigonometric polynomials are generalized. For sums of Fourier
coefficients, upper bounds with certain constants in terms of quantities characterizing structural
properties of functions are obtained. Bibliography: 9 titles.

Everywhere below, R, Z+, and N are the sets of reals, nonnegative integers, and positive
integers, respectively; ‖f‖ = max

x∈R
|f(x)|; all the functions are real-valued, and Hn is the set of

trigonometric polynomials of order not exceeding n. By Lp, where 1 ≤ p < ∞, we denote the

set of 2π-periodic measurable functions such that ‖f‖p =

(
π∫

−π
|f |p

)1/p

< ∞. For f ∈ L1 we

set

ak(f) =
1
π

π∫
−π

f(x) cos kx dx, bk(f) =
1
π

π∫
−π

f(x) sin kx dx,

ρk(f) =
√

a2k(f) + b2k(f).

The following inequality, due to S. N. Bernshtein, is well known.

Theorem A (see [1, p. 47; 2]). Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that
T (x0) = ‖T‖. Then, for t ∈ [−π

n , π
n

]
,

T (x0 + t) ≥ ‖T‖ cos nt. (1)

For polynomials of the form T (x) = a cos nx + b sin nx inequality (1) turns into an equality.

In Sec. 1 of the present paper, some generalizations of inequality (1) are obtained.
In Sec. 2, for sums of the form

∞∑
k=n

kαρk(f) (2)

some upper bounds in terms of quantities characterizing the structural properties of the func-
tion f are established.

Sums of the form (2) were considered by several authors (for instance, see [1, pp. 647–648;
3]). The methods used in the present paper enable one to obtain the established inequalities
with explicit constants.

1. Inequalities for trigonometric polynomials

Let a function f be given on R and let it be integrable on every finite interval; let h > 0,
and let r − 1 ∈ N.
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The Steklov function of the first order for f with step h is the function Sh,1(f) defined by
the formula

Sh,1(f, x) =
1
h

h/2∫
−h/2

f(x + t) dt.

The Steklov function of order r for the function f with step h is the function

Sh,r(f, x) = Sh,1(Sh,r−1(f), x).

For r ∈ N, set

ψr(t) =

⎧⎨
⎩

1
(r−1)!

∑
0≤k<|t|+ r

2

(−1)kCk
r

(|t| + r
2 − k

)r−1 if |t| ≤ r/2,

0 otherwise;

ψh,r(t) =
1
h

ψr

(
t

h

)
.

By δr
t (f, x) denote the central difference of order r of the function f with step t at a point x:

δr
t (f, x) =

r∑
m=0

(−1)mCm
r f(x + rt/2 − mt).

If b < a, then we set
b∑
a

= 0.

Theorem 1. Let n ∈ N, T ∈ Hn, t ∈ [−π
n , π

n

]
, k ∈ Z+, and let a point x0 be such that

T (2k)(x0) = ‖T (2k)‖. Then

T (x0 + t)−
2k−1∑
l=0

T (l)(x0)
l!

tl≥ (−1)k

n2k

(
cos nt −

k−1∑
l=0

(−1)l

(2l)!
(nt)2l

)
‖T (2k)‖. (3)

For polynomials of the form T (x) = a cos nx + b sin nx inequality (3) turns into an equality.

Proof. For k = 0 inequalities (1) and (3) coincide. Assume that k ∈ N.
By applying inequality (1) to the polynomial T (2k), we obtain

T (2k)(x0 + tu) ≥ ‖T (2k)‖ cos ntu, (4)

where u ∈ [0, 1]. Multiplying (4) by
t2k(1 − u)2k−1

(2k − 1)!
and integrating with respect to u, we have

t2k

(2k − 1)!

1∫
0

(1 − u)2k−1T (2k)(x0 + tu) du ≥ ‖T (2k)‖ t2k

(2k − 1)!

1∫
0

(1 − u)2k−1 cos ntu du.

It remains to apply the Taylor formula:

T (x0 + t) −
2k−1∑
l=0

T (l)(x0)
l!

tl =
t2k

(2k − 1)!

1∫
0

(1 − u)2k−1T (2k)(x0 + tu) du,

cos nt −
k−1∑
l=0

(−1)l

(2l)!
(nt)2l =

(−1)kn2kt2k

(2k − 1)!

1∫
0

(1 − u)2k−1 cos ntu du.

846



Straightforward computations yield that for

T (x) = a cos nx + b sin nx =
√

a2 + b2 cos (nx + ϕ)

and

x0 = −ϕ

n
+

π
(
1 + (−1)k+1

)
2n

inequality (3) with |t| ≤ π
n becomes an equality. �

Corollary 1. Let n ∈ N, T ∈ Hn, t ∈ [−π
n , π

n

]
, k ∈ N, and let a point x0 be such that

|T (2k)(x0)| = ‖T (2k)‖. Then∣∣∣∣∣T (x0 + t)−
2k−1∑
l=0

T (l)(x0)
l!

tl

∣∣∣∣∣≥ 1
n2k

∣∣∣∣∣cos nt −
k−1∑
l=0

(−1)l

(2l)!
(nt)2l

∣∣∣∣∣ ‖T (2k)‖. (5)

For polynomials of the form T (x) = a cos nx + b sin nx inequality (5) turns into an equality.

Proof. If T (2k)(x0) = ‖T (2k)‖, then, using the relation

(−1)k
(

cos x −
k−1∑
l=0

(−1)l

(2l)!
x2l

)
≥ 0 (x ∈ R),

we ascertain that inequalities (5) and (3) coincide.
If T (2k)(x0) = −‖T (2k)‖, then the result established is applied to −T . �

Theorem 2. Let n ∈ N, T ∈ Hn, k ∈ Z+, and let a point x0 be such that T (2k+1)(x0) =
‖T (2k+1)‖.

If t ∈ [
0, π

n

]
, then

T (x0 + t) −
2k∑
l=0

T (l)(x0)
l!

tl ≥ (−1)k

n2k+1

(
sin nt −

k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

)
‖T (2k+1)‖, (6)

if t ∈ [−π
n , 0

]
, then

T (x0 + t) −
2k∑
l=0

T (l)(x0)
l!

tl ≤ (−1)k

n2k+1

(
sin nt −

k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

)
‖T (2k+1)‖. (7)

For polynomials of the form T (x) = a cos nx + b sin nx inequalities (6) and (7) turn into
equalities.

Proof. If u ∈ [0, 1], then, applying inequality (1) to the polynomial T (2k+1), we have

T (2k+1)(x0 + tu) ≥ ‖T (2k+1)‖ cos ntu. (8)

Let t ∈ [
0, π

n

]
. On multiplying inequality (8) by

t2k+1(1 − u)2k

(2k)!
and integrating with respect

to u, we obtain

t2k+1

(2k)!

1∫
0

T (2k+1)(x0 + tu)(1 − u)2k du ≥ ‖T (2k+1)‖t2k+1

(2k)!

1∫
0

(1 − u)2k cos ntu du. (9)

Combining (9) with the Taylor expansions

T (x0 + t) −
2k∑
l=0

T (l)(x0)
l!

tl =
t2k+1

(2k)!

1∫
0

(1 − u)2kT (2k+1)(x0 + tu) du
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and

sin nt −
k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1 =

(−1)kn2k+1t2k+1

(2k)!

1∫
0

(1 − u)2k cos ntu du,

we arrive at (6).
Straightforward computations show that for

T (x) = a cos nx + b sin nx =
√

a2 + b2 cos (nx + ϕ)

and
x0 = −ϕ

n
+ (−1)k+1 π

2n
inequality (6) with |t| ≤ π

n becomes an equality.
If t ∈ [−π

n , 0
]
, then (7) is proved in a similar fashion, the only difference being that the sign

of inequality (9) is changed for the opposite one. �
Corollary 2. Let n ∈ N, T ∈ Hn, t ∈ [−π

n , π
n

]
, k ∈ Z+, and let a point x0 be such that

|T (2k+1)(x0)| = ‖T (2k+1)‖. Then∣∣∣∣∣T (x0 + t) −
2k∑
l=0

T (l)(x0)
l!

tl

∣∣∣∣∣ ≥ 1
n2k+1

∣∣∣∣∣sin nt −
k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

∣∣∣∣∣ ‖T (2k+1)‖. (10)

For polynomials of the form T (x) = a cos nx + b sin nx inequality (10) turns into an equality.

Proof. Let T (2k+1)(x0) = ‖T (2k+1)‖, t ∈ [
0, π

n

]
. For k = 0, inequality (10) stems from (6) and

the inequality sin nt ≥ 0. For k ∈ N, (10) follows from (6) and the inequality

(−1)k
(

sinx −
k−1∑
l=0

(−1)l

(2l + 1)!
x2l+1

)
≥ 0 (x ≥ 0).

If t ∈ [−π
n , 0

]
, then for k = 0 inequality (10) is implied by (7) and the relation

(−1)k
(

sinx −
k−1∑
l=0

(−1)l

(2l + 1)!
x2l+1

)
≤ 0 (x ≤ 0).

In the case where T (2k+1)(x0) = −‖T (2k+1)‖, the above-proved assertion should be applied
to the polynomial −T . �
Corollary 3. Let n ∈ N, T ∈ Hn, m ∈ Z+, t ∈ [

0, π
n

]
, and let a point x0 be such that

T (m)(x0) = ‖T (m)‖.
If m = 2k (k ∈ Z+), then

T (x0 + t) + T (x0 − t)− 2
k−1∑
l=0

T (2l)(x0)
(2l)!

t2l ≥ 2(−1)k

n2k

(
cos nt −

k−1∑
l=0

(−1)l

(2l)!
(nt)2l

)
‖T (2k)‖; (11)

if m = 2k + 1 (k ∈ Z+), then

T (x0 + t) − T (x0 − t) − 2
k−1∑
l=0

T (2l+1)(x0)
(2l + 1)!

t2l+1

≥ 2(−1)k

n2k+1

(
sinnt −

k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

)
‖T (2k+1)‖. (12)

For polynomials of the form T (x) = a cos nx + b sin nx inequalities (11) and (12) turn into
equalities.
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Proof. Applying (3), we have

T (x0 − t) −
2k−1∑
l=0

T (l)(x0)
l!

(−1)ltl ≥ (−1)k

n2k

(
cos nt −

k−1∑
l=0

(−1)l

(2l)!
(nt)2l

)
‖T (2k)‖. (13)

In order to prove (11), suffice it to sum (3) and (13).
Similarly, using (7), we derive

−T (x0 − t) +
2k∑
l=0

T (l)(x0)
l!

(−1)ltl ≥ (−1)k

n2k+1

(
sin nt −

k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

)
‖T (2k+1)‖.

Summing the inequality obtained with (6), we come to (12). �
Remark 1. For m = 1, inequality (12) is presented in [2].

Corollary 4. Let n ∈ N, T ∈ Hn, m ∈ N, t ∈ [
0, π

n

]
, and let a point x0 be such that

|T (m)(x0)| = ‖T (m)‖.
If m = 2k (k ∈ N), then∣∣∣∣∣T (x0 + t) + T (x0 − t) − 2

k−1∑
l=0

T (2l)(x0)
(2l)!

t2l

∣∣∣∣∣ ≥ 2
n2k

∣∣∣∣∣cos nt −
k−1∑
l=0

(−1)l

(2l)!
(nt)2l

∣∣∣∣∣ ‖T (2k)‖; (14)

if m = 2k + 1 (k ∈ Z+), then∣∣∣∣∣T (x0 + t) − T (x0 − t) − 2
k−1∑
l=0

T (2l+1)(x0)
(2l + 1)!

t2l+1

∣∣∣∣∣
≥ 2

n2k+1

∣∣∣∣∣sin nt −
k−1∑
l=0

(−1)l

(2l + 1)!
(nt)2l+1

∣∣∣∣∣ ‖T (2k+1)‖. (15)

For polynomials of the form T (x) = a cos nx + b sin nx inequalities (14) and (15) turn into
equalities.

Inequalities (14) and (15) are proved similarly to inequalities (5) and (10), respectively.

Remark 2. For m = 1, inequality (15) was presented in [4, p. 227].

Corollary 5. Let n ∈ N, T ∈ Hn, k ∈ Z+, h ∈ (
0, π

n

]
, and let a point x0 be such that

T (2k)(x0) = ‖T (2k)‖. Then

S2h,1(T, x0) −
k−1∑
l=0

T (2l)(x0)
(2l + 1)!

h2l ≥ (−1)k

n2k+1h

(
sinnh −

k−1∑
l=0

(−1)l

(2l + 1)!
(nh)2l+1

)
‖T (2k)‖ (16)

and

Sh,2(T, x0) − 2
k−1∑
l=0

T (2l)(x0)
(2l + 2)!

h2l ≥ 2(−1)k+1

n2k+2h2

(
cos nh −

k∑
l=0

(−1)l

(2l)!
(nh)2l

)
‖T (2k)‖. (17)

For polynomials of the form T (x) = a cos nx + b sin nx inequalities (16) and (17) turn into
equalities.

Proof. It is known (see [5, p. 100]) that

Sh,r(f, x) =

rh
2∫

− rh
2

f(x + t)ψh,r(t) dt. (18)
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In order to prove (16), it is sufficient to multiply (3) by ψ2h,1, integrate from −h to h, and use
(18) and the following relations:

h∫
−h

t2l+1ψ2h,1(t) dt = 0,

h∫
−h

t2lψ2h,1(t) dt =
h2l

2l + 1
(l ∈ Z+),

h∫
−h

ψ2h,1(t) cos nt dt =
sin nh

nh
.

Since
h∫

−h

t2l+1ψh,2(t) dt = 0,

h∫
−h

t2lψh,2(t) dt =
2h2l

(2l + 1)(2l + 2)
(l ∈ Z+),

h∫
−h

ψh,2(t) cos nt dt =
2(1 − cos nh)

(nh)2
,

multiplying (3) by ψh,2, integrating from −h to h, and taking into account (18), we have

Sh,2(T, x0) − 2
k−1∑
l=0

T (2l)(x0)
(2l + 2)!

h2l ≥ 2(−1)k

n2k

(
1 − cos nh

(nh)2
−

k−1∑
l=0

(−1)l

(2l + 2)!
(nh)2l

)
‖T (2k)‖.

Upon nondifficult transformations of the right-hand side of the latter inequality, we obtain
(17). �

Corollary 6. Let n ∈ N, T ∈ Hn, k ∈ N, h ∈ (
0, π

n

]
, and let a point x0 be such that

|T (2k)(x0)| = ‖T (2k)‖. Then∣∣∣∣S2h,1(T, x0) −
k−1∑
l=0

T (2l)(x0)
(2l + 1)!

h2l

∣∣∣∣ ≥ 1
n2k+1h

∣∣∣∣ sin nh −
k−1∑
l=0

(−1)l

(2l + 1)!
(nh)2l+1

∣∣∣∣‖T (2k)‖ (19)

and ∣∣∣∣Sh,2(T, x0) −2
k−1∑
l=0

T (2l)(x0)
(2l + 2)!

h2l

∣∣∣∣ ≥ 2
n2k+2h2

∣∣∣∣ cos nh −
k∑

l=0

(−1)l

(2l)!
(nh)2l

∣∣∣∣‖T (2k)‖. (20)

For polynomials of the form T (x) = a cos nx + b sin nx inequalities (19) and (20) turn into
equalities.

Theorem 3. Let n,m ∈ N, b, h > 0, mhb
2 ≤ π

n , T ∈ Hn, let a point x0 ∈ R be such that
|T (m)(x0)| = ‖T (m)‖, and let Φ be a nonnegative function integrable on [0, b]. Then

∣∣∣∣
b∫

0

δm
th(T, x0)Φ(t) dt

∣∣∣∣ ≥ 2
h
‖T (m)‖

mhb
2∫

0

( hb∫
2u
m

tm−1ψm

(
u

t

)
Φ

(
t

h

)
dt

)
cos nudu. (21)

For polynomials of the form T (x) = α cos nx + β sin nx inequality (21) turns into an equality.

Proof. Let T (m)(x0) = ‖T (m)‖ (in the case where T (m)(x0) = −‖T (m)‖, one should consi-
der −T ).
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Set

A =

b∫
0

δm
th(T, x0)Φ(t) dt.

By using (18) and the relation

S
(r)
h,r(f, x) =

1
hr

δr
h(f, x),

we obtain

δm
t (T, x) = tm−1

mt
2∫

−mt
2

T (m)(x + u)ψm

(u

t

)
du

= tm−1

mt
2∫

0

(
T (m)(x + u) + T (m)(x − u)

)
ψm

(u

t

)
du.

Therefore,

A =
1
h

hb∫
0

δm
t (T, x0)Φ

( t

h

)
dt

=
1
h

hb∫
0

tm−1

(∫ mt
2

0

(
T (m)(x0+u)+T (m)(x0−u)

)
ψm

(u

t

)
du

)
Φ

( t

h

)
dt.

Changing the order of integration, we have

A =
1
h

mbh
2∫

0

(
T (m)(x0 + u) + T (m)(x0 − u)

) ⎛
⎜⎝

hb∫
2u
m

tm−1ψm

(u

t

)
Φ

(
t

h

)
dt

⎞
⎟⎠ du.

It remains to use inequality (1).
Obviously, for

T (x) = α cos nx + β sin nx =
√

α2 + β2 cos (nx + ϕ)

and

x0 = −ϕ

n
+

π
(
1 + (−1)m+1

)
4n

inequality (21) with |t| ≤ π
n becomes an equality. �

Now we derive a number of corollaries, taking the Steklov kernels as Φ. Denote

C(m, b, r, h, n) =
2
h

mhb
2∫

0

⎛
⎜⎝

hb∫
2u
m

tm−1ψm

(u

t

)
ψr

(
t

h

)
dt

⎞
⎟⎠ cos nudu.
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Corollary 7. Let n ∈ N, 0 < h ≤ 4π
n , T ∈ Hn, and let a point x0 ∈ R be such that

|T ′(x0)| = ‖T ′‖. Then

‖T ′‖ ≤ n2h

4(1 − cos nh
4 )

∣∣∣∣∣∣∣
1
2∫

0

δ1th(T, x0) dt

∣∣∣∣∣∣∣ .

Proof. As is known (see, e.g., [6, p. 332]),∫
xl cos nxdx =

l∑
p=0

p!Cp
l

xl−p

np+1
sin

(
nx + p

π

2

)
+ C (C ∈ R). (22)

Consequently,

I1(c) =

c∫
0

u cos nudu =
nc sin nc + cos nc

n2
− 1

n2
. (23)

Thus,

C

(
1,

1
2
, 1, h, n

)
=

2
h

h
4∫

0

⎛
⎜⎝

h
2∫

2u

dt

⎞
⎟⎠ cos nudu =

2
h

h
4∫

0

(
h

2
− 2u

)
cos nudu

=
2
h

(
h

2n
sin

nh

4
− 2I1

(
h

4

))
=

4
n2h

(
1 − cos

nh

4

)
.

The proof is completed by applying Theorem 3 with m = 1, b = 1
2 , and Φ = ψ1. �

Corollary 8. Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that |T ′(x0)| = ‖T ′‖. Then

‖T ′‖ ≤ πn

2

∣∣∣∣∣∣∣
1
2∫

0

δ14πt
n

(T, x0) dt

∣∣∣∣∣∣∣ .

Proof. Set h = 4π
n in Corollary 7. �

Corollary 9. Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that |T ′(x0)| = ‖T ′‖. Then

‖T ′‖ ≤ πn

2

∣∣∣∣∣∣∣
1
2∫

0

δ12πt
n

(T, x0) dt

∣∣∣∣∣∣∣ .

Proof. Set h = 2π
n in Corollary 7. �

Corollary 10. Let n ∈ N, 0 < h ≤ 2π
n , T ∈ Hn, and let a point x0 ∈ R be such that

|T ′(x0)| = ‖T ′‖. Then

‖T ′‖ ≤ n3h2

4(nh − 2 sin nh
2 )

∣∣∣∣∣∣
1∫

0

δ1th(T, x0)(1 − t) dt

∣∣∣∣∣∣ .

Proof. In view of relation (22), we have

I2(c) =

c∫
0

u2 cos nudu =
(n2c2 − 2) sin nc + 2nc cos nc

n3
. (24)
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Thus, with regard to (23) and (24), we obtain

C (1, 1, 2, h, n) =
2
h

h
2∫

0

(∫ h

2u

(
1 − t

h

)
dt

)
cos nudu =

1
h2

h
2∫

0

(h − 2u)2 cos nudu

=
1
h2

⎛
⎜⎝h2

h
2∫

0

cos nudu − 4hI1

(
h

2

)
+ 4I2

(
h

2

)⎞
⎟⎠ =

4(nh−2 sin nh
2 )

n3h2
.

(25)

The proof is completed by applying Theorem 3 with m = 1, b = 1, and Φ = ψ2. �

Corollary 11. Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that |T ′(x0)| = ‖T ′‖. Then

‖T ′‖ ≤ πn

2

∣∣∣∣∣∣
1∫

0

δ12πt
n

(T, x0)(1 − t) dt

∣∣∣∣∣∣ .

Proof. Set h = 2π
n in Corollary 10. �

Corollary 12. Let n ∈ N, 0 < h ≤ 2π
n , T ∈ Hn, and let a point x0 ∈ R be such that

|T ′′(x0)| = ‖T ′′‖. Then

‖T ′′‖ ≤ n3h

nh − 2 sin nh
2

∣∣∣∣∣∣∣
1
2∫

0

δ2th(T, x0) dt

∣∣∣∣∣∣∣ .

Proof. Similarly to (25) , we have

C

(
2,

1
2
, 1, h, n

)
=

2
h

h
2∫

0

(∫ h
2

u
t
(
1 − u

t

)
dt

)
cos nudu

=
1
4h

h
2∫

0

(h − 2u)2 cos nudu =
nh − 2 sin nh

2

n3h
.

It remains to apply Theorem 3 with m = 2, b = 1
2 , and Φ = ψ1. �

Corollary 13. Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that |T ′′(x0)| = ‖T ′′‖. Then

‖T ′′‖ ≤ n2

∣∣∣∣∣∣∣
1
2∫

0

δ22πt
n

(T, x0) dt

∣∣∣∣∣∣∣ .

Proof. Set h = 2π
n in Corollary 12. �

Corollary 14. Let n ∈ N, 0 < h ≤ π
n , T ∈ Hn, and let a point x0 ∈ R be such that

|T ′′(x0)| = ‖T ′′‖. Then

‖T ′′‖ ≤ n4h2

n2h2 + 2cos nh − 2

∣∣∣∣∣∣
1∫

0

δ2th(T, x0)(1 − t) dt

∣∣∣∣∣∣ .
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Proof. Using relation (22), we derive

I3(c)=

c∫
0

u3 cos nudu=
(n3c3 − 6nc) sin nc+(3n2c2 − 6) cos nc

n4
+

6
n4

. (26)

Thus, with account for (23), (24), and (26), we obtain

C (2, 1, 2, h, n)=
2
h

h∫
0

(∫ h

u
t
(
1−u

t

)(
1− t

h

)
dt

)
cos nudu=

1
3h2

h∫
0

(h − u)3 cos nudu

=
1

3h2

⎛
⎝h3

h∫
0

cos nudu−3h2I1(h) + 3hI2(h)−I3(h)

⎞
⎠ =

2cos nh + n2h2 − 2
n4h2

.

It remains to apply Theorem 3 with m = 2, b = 1, and Φ = ψ2. �
Corollary 15. Let n ∈ N, T ∈ Hn, and let a point x0 ∈ R be such that |T ′′(x0)| = ‖T ′′‖. Then

‖T ′′‖ ≤ π2n2

π2 − 4

∣∣∣∣∣∣
1∫

0

δ2πt
n

(T, x0)(1 − t) dt

∣∣∣∣∣∣ .

Proof. Set h = π
n in Corollary 14. �

2. Inequalities for the Fourier coefficients

2.1. First, we establish a simple lemma on positive series.

Lemma 1. Let ak ≥ 0 for k ∈ N, m, r ∈ R, p ∈ (0, 1), r − mp < 0, qn =
n∑

k=1

kmak. Then

∞∑
k=1

krap
k ≤ (mp − r)

∞∑
n=1

nr−p(m+1)qp
n.

Proof. Set

tn =
n∑

k=1

kmpap
k, n ≥ 1; t0 = 0, α = r − mp.

Then
l∑

k=1

krap
k =

l∑
k=1

kα(tk − tk−1) = lαtl +
l−1∑
k=1

{kα − (k + 1)α}tk. (27)

Since the series ∞∑
k=1

{kα − (k + 1)α}tk
is convergent, we have lim

l→∞
lαtl = 0. Indeed, let ε > 0 be fixed. Then, by the Cauchy conver-

gence test, there is a number nε such that for all n ≥ nε,

ε >

2n−1∑
k=n

{kα − (k + 1)α}tk ≥ tnnα(1 − 2α).

Therefore, from (27) it follows that
∞∑

k=1

krap
k =

∞∑
k=1

{kα − (k + 1)α}tk. (28)
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Applying Hölder’s inequality for sums, we conclude that tk ≤ k1−pqp
k. Further, we have

{kα − (k + 1)α}k1−p = −αk1−p

k+1∫
k

tα−1 dt ≤ −α

k+1∫
k

tα−p dt ≤ −αkα−p.

The proof is completed by combining the inequalities obtained with (28). �
Remark 3. In connection with assertions similar to Lemma 1, see [7, pp. 306–308; 8].

2.2. For f ∈ L1, set

Sk(f, x) =
a0(f)

2
+

k∑
l=1

(al(f) cos lx + bl(f) sin lx).

Theorem 4. Let f ∈ L1, p ∈ (0, 1), m,n ∈ N, r ∈ Z+, r − 2mp < 0. Then
∞∑

k=n

krρ2pk (f) ≤ (2mp − r)π−p
∞∑

k=n

kr−p(2m+1)‖S(m)
k (f)‖2p2 . (29)

Proof. Setting ak = ρ2k(f) in Lemma 1, changing m for 2m, and taking into account the
relation

‖S(m)
k (f)‖22 = π

k∑
l=1

l2mρ2l (f),

we come to (29) with n = 1. It remains to apply the inequality obtained to the function
f − Sn−1(f). �
2.3. We will need the following two known assertions.

Theorem B (see [4, p. 230]). Let n, r ∈ N, T ∈ Hn. Then

‖T (r)‖2 ≤
(n

2

)r ∥∥∥δr
π
n
(T )

∥∥∥
2
.

By W
(r)
p denote the set of 2π-periodic continuous functions whose derivatives of order r− 1

are absolutely continuous on every interval, whereas the derivatives of order r belong to Lp.

Theorem C (see [9, p. 136]). Let r ∈ N, 1 ≤ p ≤ q ≤ ∞, f ∈ W
(1)
p . Then

‖δr+1
h (f)‖q ≤ |h|1− 1

p
+ 1

q ‖δr
h(f ′)‖p.

Theorem 5. Let 1 ≤ q ≤ 2, p ∈ (0, 1), m,n ∈ N, r ∈ Z+, r − 2mp < 0, f ∈ Lq. Then

∞∑
k=n

krρ2pk (f) ≤ (2mp − r)π2p
(
1− 1

q

)

2(m+1)2p

∞∑
k=n

k
r−2p

(
1− 1

q

)
‖δm

π
k
(f)‖2pq . (30)

Proof. Without loss of generality, we may assume that a0(f) = 0. By f (−1) denote the

primitive of f such that
π∫

−π
f (−1) = 0. Using Theorems B and C, we derive

‖S(m)
k (f)‖2 = ‖S(m+1)

k (f (−1))‖2 ≤
(

k

2

)m+1

‖δm+1
π
k

(Sk(f (−1)))‖2

≤
(

k

2

)m+1

‖δm+1
π
k

(f (−1))‖2 ≤
(

k

2

)m+1 (π

k

) 3
2
− 1

q ‖δm
π
k
(f)‖q. (31)

It remains to combine (29) with (31). �
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Remark 4. For q = 2, inequality (30) can be changed for the stronger relation
∞∑

k=n

krρ2pk (f) ≤ (2mp − r)4−mpπ−p
∞∑

k=n

kr−p‖δm
π
k
(f)‖2p2 ,

which is obtained by combining (29) with Theorem B.

In conclusion, we indicate that Sec. 1 was written jointly by both authors, whereas Sec. 2
was written by V. V. Zhuk.

Translated by L. Yu. Kolotilina.
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