Journal of Mathematical Sciences, Vol. 207, No. 6, June, 2015 **SOME INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS AND FOURIER COEFFICIENTS** DOI 10.1007/s10958-015-2409-2

V. V. Zhuk[∗] **and G. Yu. Puerov**† UDC 517.5

The Bernstein inequalities for trigonometric polynomials are generalized. For sums of Fourier coefficients, upper bounds with certain constants in terms of quantities characterizing structural properties of functions are obtained. Bibliography: 9 *titles.*

Everywhere below, \mathbb{R}, \mathbb{Z}_+ , and \mathbb{N} are the sets of reals, nonnegative integers, and positive integers, respectively; $||f|| = \max_{x \in \mathbb{R}} |f(x)|$; all the functions are real-valued, and H_n is the set of trigonometric polynomials of order not exceeding n. By L_p , where $1 \leq p < \infty$, we denote the set of 2π -periodic measurable functions such that $||f||_p =$ $\sqrt{2}$ \int $-\pi$ $|f|^p\bigg)^{1/p}$ $< \infty$. For $f \in L_1$ we set

$$
\mathsf{S}_{\mathsf{C}}^{\mathsf{C}}
$$

$$
a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx, \quad b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx,
$$

$$
\rho_k(f) = \sqrt{a_k^2(f) + b_k^2(f)}.
$$

The following inequality, due to S. N. Bernshtein, is well known.

Theorem A (see [1, p. 47; 2]). Let $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $T(x_0) = ||T||$. Then, for $t \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$,

$$
T(x_0 + t) \ge ||T|| \cos nt. \tag{1}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequality (1) *turns into an equality.*

In Sec. 1 of the present paper, some generalizations of inequality (1) are obtained. In Sec. 2, for sums of the form

$$
\sum_{k=n}^{\infty} k^{\alpha} \rho_k(f) \tag{2}
$$

some upper bounds in terms of quantities characterizing the structural properties of the function f are established.

Sums of the form (2) were considered by several authors (for instance, see [1, pp. 647–648; 3]). The methods used in the present paper enable one to obtain the established inequalities with explicit constants.

1. Inequalities for trigonometric polynomials

Let a function f be given on R and let it be integrable on every finite interval; let $h > 0$, and let $r - 1 \in \mathbb{N}$.

1072-3374/15/2076-0845 ©2015 Springer Science+Business Media New York 845

[∗]St.Petersburg State University, St.Petersburg, Russia, e-mail: zhuk@math.spbu.ru.

[†]JSC "Concern 'Oceanpribor'," St.Petersburg, ITMO University, St.Petersburg, Russia, e-mail: puerov@gp11429.spb.edu, puerov@gmail.com.

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 429, 2014, pp. 64–81. Original article submitted September 3, 2014.

The Steklov function of the first order for f with step h is the function $S_{h,1}(f)$ defined by the formula

$$
S_{h,1}(f,x) = \frac{1}{h} \int_{-h/2}^{h/2} f(x+t) dt.
$$

The Steklov function of order r for the function f with step h is the function

$$
S_{h,r}(f,x) = S_{h,1}(S_{h,r-1}(f),x).
$$

For $r \in \mathbb{N}$, set

$$
\psi_r(t) = \begin{cases}\n\frac{1}{(r-1)!} \sum_{0 \le k < |t| + \frac{r}{2}} (-1)^k C_r^k \left(|t| + \frac{r}{2} - k \right)^{r-1} & \text{if } |t| \le r/2, \\
0 & \text{otherwise;} \\
\psi_{h,r}(t) = \frac{1}{h} \psi_r \left(\frac{t}{h} \right).\n\end{cases}
$$

By $\delta_t^r(f, x)$ denote the central difference of order r of the function f with step t at a point x:

$$
\delta_t^r(f, x) = \sum_{m=0}^r (-1)^m C_t^m f(x + rt/2 - mt).
$$

If $b < a$, then we set $\sum_{n=1}^{b}$ a $= 0.$

Theorem 1. Let $n \in \mathbb{N}$, $T \in H_n$, $t \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$, $k \in \mathbb{Z}_+$, and let a point x_0 be such that $T^{(2k)}(x_0) = ||T^{(2k)}||$. Then

$$
T(x_0 + t) - \sum_{l=0}^{2k-1} \frac{T^{(l)}(x_0)}{l!} t^l \ge \frac{(-1)^k}{n^{2k}} \left(\cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} \right) ||T^{(2k)}||. \tag{3}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequality (3) *turns into an equality.*

Proof. For $k = 0$ inequalities (1) and (3) coincide. Assume that $k \in \mathbb{N}$.

By applying inequality (1) to the polynomial $T^{(2k)}$, we obtain

$$
T^{(2k)}(x_0 + tu) \ge ||T^{(2k)}|| \cos ntu,
$$
\n(4)

where $u \in [0, 1]$. Multiplying (4) by $\frac{t^{2k}(1-u)^{2k-1}}{(2k-1)!}$ and integrating with respect to u, we have

$$
\frac{t^{2k}}{(2k-1)!} \int_{0}^{1} (1-u)^{2k-1} T^{(2k)}(x_0+tu) du \geq ||T^{(2k)}|| \frac{t^{2k}}{(2k-1)!} \int_{0}^{1} (1-u)^{2k-1} \cos ntu \, du.
$$

It remains to apply the Taylor formula:

$$
T(x_0 + t) - \sum_{l=0}^{2k-1} \frac{T^{(l)}(x_0)}{l!} t^l = \frac{t^{2k}}{(2k-1)!} \int_0^1 (1-u)^{2k-1} T^{(2k)}(x_0 + tu) du,
$$

$$
\cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} = \frac{(-1)^k n^{2k} t^{2k}}{(2k-1)!} \int_0^1 (1-u)^{2k-1} \cos ntu \, du.
$$

Straightforward computations yield that for

$$
T(x) = a\cos nx + b\sin nx = \sqrt{a^2 + b^2}\cos(nx + \varphi)
$$

and

$$
x_0 = -\frac{\varphi}{n} + \frac{\pi (1 + (-1)^{k+1})}{2n}
$$

inequality (3) with $|t| \leq \frac{\pi}{n}$ becomes an equality.

Corollary 1. Let $n \in \mathbb{N}$, $T \in H_n$, $t \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$, $k \in \mathbb{N}$, and let a point x_0 be such that $|T^{(2k)}(x_0)| = ||T^{(2k)}||$. Then

$$
\left| T(x_0 + t) - \sum_{l=0}^{2k-1} \frac{T^{(l)}(x_0)}{l!} t^l \right| \ge \frac{1}{n^{2k}} \left| \cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} \right| ||T^{(2k)}||. \tag{5}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequality (5) *turns into an equality. Proof.* If $T^{(2k)}(x_0) = ||T^{(2k)}||$, then, using the relation

$$
(-1)^k \left(\cos x - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} x^{2l}\right) \ge 0 \qquad (x \in \mathbb{R}),
$$

we ascertain that inequalities (5) and (3) coincide.

If $T^{(2k)}(x_0) = -||T^{(2k)}||$, then the result established is applied to $-T$. \Box

Theorem 2. Let $n \in \mathbb{N}$, $T \in H_n$, $k \in \mathbb{Z}_+$, and let a point x_0 be such that $T^{(2k+1)}(x_0) =$ $||T^{(2k+1)}||.$ *If* $t \in [0, \frac{\pi}{n}]$, then

$$
T(x_0 + t) - \sum_{l=0}^{2k} \frac{T^{(l)}(x_0)}{l!} t^l \ge \frac{(-1)^k}{n^{2k+1}} \left(\sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right) ||T^{(2k+1)}||, \qquad (6)
$$

 $if t \in \left[-\frac{\pi}{n}, 0 \right], then$

$$
T(x_0 + t) - \sum_{l=0}^{2k} \frac{T^{(l)}(x_0)}{l!} t^l \le \frac{(-1)^k}{n^{2k+1}} \left(\sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right) ||T^{(2k+1)}||. \tag{7}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ *inequalities* (6) and (7) *turn into equalities.*

Proof. If $u \in [0, 1]$, then, applying inequality (1) to the polynomial $T^{(2k+1)}$, we have

$$
T^{(2k+1)}(x_0+tu) \ge ||T^{(2k+1)}|| \cos ntu.
$$
 (8)

Let $t \in [0, \frac{\pi}{n}]$. On multiplying inequality (8) by $\frac{t^{2k+1}(1-u)^{2k}}{(2k)!}$ $\frac{(1-\alpha)}{(2k)!}$ and integrating with respect to u , we obtain

$$
\frac{t^{2k+1}}{(2k)!} \int_{0}^{1} T^{(2k+1)}(x_0+tu)(1-u)^{2k} du \ge ||T^{(2k+1)}|| \frac{t^{2k+1}}{(2k)!} \int_{0}^{1} (1-u)^{2k} \cos nt u \, du. \tag{9}
$$

Combining (9) with the Taylor expansions

$$
T(x_0 + t) - \sum_{l=0}^{2k} \frac{T^{(l)}(x_0)}{l!} t^l = \frac{t^{2k+1}}{(2k)!} \int_{0}^{1} (1-u)^{2k} T^{(2k+1)}(x_0 + tu) du
$$

847

and

$$
\sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} = \frac{(-1)^k n^{2k+1} t^{2k+1}}{(2k)!} \int_0^1 (1-u)^{2k} \cos ntu \, du,
$$

we arrive at (6) .

Straightforward computations show that for

$$
T(x) = a\cos nx + b\sin nx = \sqrt{a^2 + b^2}\cos(nx + \varphi)
$$

and

$$
x_0 = -\frac{\varphi}{n} + (-1)^{k+1} \frac{\pi}{2n}
$$

inequality (6) with $|t| \leq \frac{\pi}{n}$ becomes an equality.

If $t \in \left[-\frac{\pi}{n}, 0\right]$, then (7) is proved in a similar fashion, the only difference being that the sign of inequality (9) is changed for the opposite one. \Box

Corollary 2. Let $n \in \mathbb{N}$, $T \in H_n$, $t \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$, $k \in \mathbb{Z}_+$, and let a point x_0 be such that $|T^{(2k+1)}(x_0)| = ||T^{(2k+1)}||$. Then

$$
\left| T(x_0 + t) - \sum_{l=0}^{2k} \frac{T^{(l)}(x_0)}{l!} t^l \right| \ge \frac{1}{n^{2k+1}} \left| \sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right| \| T^{(2k+1)} \|.
$$
 (10)

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequality (10) *turns into an equality.*

Proof. Let $T^{(2k+1)}(x_0) = ||T^{(2k+1)}||, t \in [0, \frac{\pi}{n}]$. For $k = 0$, inequality (10) stems from (6) and the inequality $\sin nt \geq 0$. For $k \in \mathbb{N}$, (10) follows from (6) and the inequality

$$
(-1)^k \left(\sin x - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} x^{2l+1} \right) \ge 0 \qquad (x \ge 0).
$$

If $t \in \left[-\frac{\pi}{n}, 0\right]$, then for $k = 0$ inequality (10) is implied by (7) and the relation

$$
(-1)^k \left(\sin x - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} x^{2l+1} \right) \le 0 \qquad (x \le 0).
$$

In the case where $T^{(2k+1)}(x_0) = -||T^{(2k+1)}||$, the above-proved assertion should be applied to the polynomial $-T$.

Corollary 3. Let $n \in \mathbb{N}$, $T \in H_n$, $m \in \mathbb{Z}_+$, $t \in [0, \frac{\pi}{n}]$, and let a point x_0 be such that $T^{(m)}(x_0) = ||T^{(m)}||.$

If $m = 2k$ $(k \in \mathbb{Z}_+),$ then

$$
T(x_0 + t) + T(x_0 - t) - 2\sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l)!} t^{2l} \ge \frac{2(-1)^k}{n^{2k}} \left(\cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} \right) ||T^{(2k)}||; \tag{11}
$$

if $m = 2k + 1$ $(k \in \mathbb{Z}_+)$, then

$$
T(x_0 + t) - T(x_0 - t) - 2 \sum_{l=0}^{k-1} \frac{T^{(2l+1)}(x_0)}{(2l+1)!} t^{2l+1}
$$

$$
\geq \frac{2(-1)^k}{n^{2k+1}} \left(\sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right) ||T^{(2k+1)}||. \quad (12)
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequalities (11) and (12) *turn* into *equalities.*

Proof. Applying (3), we have

$$
T(x_0 - t) - \sum_{l=0}^{2k-1} \frac{T^{(l)}(x_0)}{l!} (-1)^l t^l \ge \frac{(-1)^k}{n^{2k}} \left(\cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} \right) ||T^{(2k)}||. \tag{13}
$$

In order to prove (11) , suffice it to sum (3) and (13) .

Similarly, using (7), we derive

$$
-T(x_0 - t) + \sum_{l=0}^{2k} \frac{T^{(l)}(x_0)}{l!} (-1)^l t^l \ge \frac{(-1)^k}{n^{2k+1}} \left(\sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right) ||T^{(2k+1)}||.
$$

suming the inequality obtained with (6), we come to (12).

Summing the inequality obtained with (6) , we come to (12) .

Remark 1. For $m = 1$, inequality (12) is presented in [2].

Corollary 4. Let $n \in \mathbb{N}$, $T \in H_n$, $m \in \mathbb{N}$, $t \in [0, \frac{\pi}{n}]$, and let a point x_0 be such that $|T^{(m)}(x_0)| = ||T^{(m)}||.$ *If* $m = 2k$ ($k \in \mathbb{N}$), then

$$
\left| T(x_0 + t) + T(x_0 - t) - 2 \sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l)!} t^{2l} \right| \ge \frac{2}{n^{2k}} \left| \cos nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l)!} (nt)^{2l} \right| ||T^{(2k)}||; \quad (14)
$$

if $m = 2k + 1$ $(k \in \mathbb{Z}_{+})$ *, then*

$$
\left| T(x_0 + t) - T(x_0 - t) - 2 \sum_{l=0}^{k-1} \frac{T^{(2l+1)}(x_0)}{(2l+1)!} t^{2l+1} \right|
$$

$$
\geq \frac{2}{n^{2k+1}} \left| \sin nt - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nt)^{2l+1} \right| ||T^{(2k+1)}||. \quad (15)
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequalities (14) and (15) *turn into equalities.*

Inequalities (14) and (15) are proved similarly to inequalities (5) and (10), respectively.

Remark 2. For $m = 1$, inequality (15) was presented in [4, p. 227].

Corollary 5. Let $n \in \mathbb{N}$, $T \in H_n$, $k \in \mathbb{Z}_+$, $h \in \left(0, \frac{\pi}{n}\right]$, and let a point x_0 be such that $T^{(2k)}(x_0) = ||T^{(2k)}||$. Then

$$
S_{2h,1}(T,x_0) - \sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l+1)!} h^{2l} \ge \frac{(-1)^k}{n^{2k+1}h} \left(\sin nh - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nh)^{2l+1} \right) ||T^{(2k)}|| \tag{16}
$$

and

$$
S_{h,2}(T,x_0) - 2\sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l+2)!} h^{2l} \ge \frac{2(-1)^{k+1}}{n^{2k+2}h^2} \left(\cos nh - \sum_{l=0}^k \frac{(-1)^l}{(2l)!} (nh)^{2l}\right) ||T^{(2k)}||. \tag{17}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ inequalities (16) and (17) *turn into equalities.*

Proof. It is known (see [5, p. 100]) that

$$
S_{h,r}(f,x) = \int_{-\frac{rh}{2}}^{\frac{rh}{2}} f(x+t)\psi_{h,r}(t) dt.
$$
 (18)

In order to prove (16), it is sufficient to multiply (3) by $\psi_{2h,1}$, integrate from $-h$ to h, and use (18) and the following relations:

$$
\int_{-h}^{h} t^{2l+1} \psi_{2h,1}(t) dt = 0, \qquad \int_{-h}^{h} t^{2l} \psi_{2h,1}(t) dt = \frac{h^{2l}}{2l+1} \qquad (l \in \mathbb{Z}_{+}),
$$

$$
\int_{-h}^{h} \psi_{2h,1}(t) \cos nt dt = \frac{\sin nh}{nh}.
$$

Since

$$
\int_{-h}^{h} t^{2l+1} \psi_{h,2}(t) dt = 0, \quad \int_{-h}^{h} t^{2l} \psi_{h,2}(t) dt = \frac{2h^{2l}}{(2l+1)(2l+2)} \qquad (l \in \mathbb{Z}_{+}),
$$

$$
\int_{-h}^{h} \psi_{h,2}(t) \cos nt dt = \frac{2(1 - \cos nh)}{(nh)^2},
$$

multiplying (3) by $\psi_{h,2}$, integrating from $-h$ to h, and taking into account (18), we have

$$
S_{h,2}(T,x_0) - 2\sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l+2)!} h^{2l} \ge \frac{2(-1)^k}{n^{2k}} \left(\frac{1-\cos nh}{(nh)^2} - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+2)!} (nh)^{2l} \right) ||T^{(2k)}||.
$$

Upon nondifficult transformations of the right-hand side of the latter inequality, we obtain $(17).$ \Box

Corollary 6. *Let* $n \in \mathbb{N}$, $T \in H_n$, $k \in \mathbb{N}$, $h \in (0, \frac{\pi}{n}]$, and let a point x_0 be such that $|T^{(2k)}(x_0)| = ||T^{(2k)}||$. Then

$$
\left| S_{2h,1}(T,x_0) - \sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l+1)!} h^{2l} \right| \ge \frac{1}{n^{2k+1}h} \left| \sin nh - \sum_{l=0}^{k-1} \frac{(-1)^l}{(2l+1)!} (nh)^{2l+1} \right| ||T^{(2k)}|| \tag{19}
$$

and

$$
\left| S_{h,2}(T,x_0) - 2 \sum_{l=0}^{k-1} \frac{T^{(2l)}(x_0)}{(2l+2)!} h^{2l} \right| \ge \frac{2}{n^{2k+2} h^2} \left| \cos nh - \sum_{l=0}^k \frac{(-1)^l}{(2l)!} (nh)^{2l} \right| ||T^{(2k)}||. \tag{20}
$$

For polynomials of the form $T(x) = a \cos nx + b \sin nx$ *inequalities* (19) *and* (20) *turn into equalities.*

Theorem 3. Let $n, m \in \mathbb{N}$, $b, h > 0$, $\frac{mhb}{2} \leq \frac{\pi}{n}$, $T \in H_n$, let a point $x_0 \in \mathbb{R}$ be such that $|T^{(m)}(x_0)| = ||T^{(m)}||$, and let Φ be a nonnegative function integrable on [0, b]. Then

$$
\left| \int_{0}^{b} \delta_{th}^{m}(T, x_{0}) \Phi(t) dt \right| \geq \frac{2}{h} \|T^{(m)}\| \int_{0}^{\frac{m_{h}b}{2}} \left(\int_{\frac{2u}{m}}^{h} t^{m-1} \psi_{m}\left(\frac{u}{t}\right) \Phi\left(\frac{t}{h}\right) dt \right) \cos nu \, du. \tag{21}
$$

For polynomials of the form $T(x) = \alpha \cos nx + \beta \sin nx$ *inequality* (21) *turns into an equality. Proof.* Let $T^{(m)}(x_0) = ||T^{(m)}||$ (in the case where $T^{(m)}(x_0) = -||T^{(m)}||$, one should consider $-T$).

Set

$$
A = \int_{0}^{b} \delta_{th}^{m}(T, x_0) \Phi(t) dt.
$$

By using (18) and the relation

$$
S_{h,r}^{(r)}(f,x) = \frac{1}{h^r} \delta_h^r(f,x),
$$

we obtain

$$
\delta_t^m(T, x) = t^{m-1} \int_{-\frac{mt}{2}}^{\frac{mt}{2}} T^{(m)}(x+u) \psi_m\left(\frac{u}{t}\right) du
$$

= $t^{m-1} \int_{0}^{\frac{mt}{2}} \left(T^{(m)}(x+u) + T^{(m)}(x-u) \right) \psi_m\left(\frac{u}{t}\right) du.$

Therefore,

$$
A = \frac{1}{h} \int_{0}^{hb} \delta_t^m(T, x_0) \Phi\left(\frac{t}{h}\right) dt
$$

=
$$
\frac{1}{h} \int_{0}^{hb} t^{m-1} \left(\int_{0}^{\frac{mt}{2}} (T^{(m)}(x_0 + u) + T^{(m)}(x_0 - u)) \psi_m\left(\frac{u}{t}\right) du \right) \Phi\left(\frac{t}{h}\right) dt.
$$

Changing the order of integration, we have

$$
A = \frac{1}{h} \int_{0}^{\frac{mbh}{2}} \left(T^{(m)}(x_0 + u) + T^{(m)}(x_0 - u) \right) \left(\int_{\frac{2u}{m}}^{hb} t^{m-1} \psi_m \left(\frac{u}{t} \right) \Phi \left(\frac{t}{h} \right) dt \right) du.
$$

It remains to use inequality (1). Obviously, for

$$
T(x) = \alpha \cos nx + \beta \sin nx = \sqrt{\alpha^2 + \beta^2} \cos (nx + \varphi)
$$

and

$$
x_0 = -\frac{\varphi}{n} + \frac{\pi (1 + (-1)^{m+1})}{4n}
$$

inequality (21) with $|t| \leq \frac{\pi}{n}$ becomes an equality.

Now we derive a number of corollaries, taking the Steklov kernels as Φ. Denote

$$
C(m, b, r, h, n) = \frac{2}{h} \int_{0}^{\frac{mhb}{2}} \left(\int_{\frac{2u}{m}}^{hb} t^{m-1} \psi_m\left(\frac{u}{t}\right) \psi_r\left(\frac{t}{h}\right) dt \right) \cos nu \, du.
$$

851

Corollary 7. Let $n \in \mathbb{N}$, $0 \le h \le \frac{4\pi}{n}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T'(x_0)| = ||T'||$. Then

$$
||T'|| \leq \frac{n^2 h}{4(1 - \cos \frac{nh}{4})} \left| \int_{0}^{\frac{1}{2}} \delta_{th}^1(T, x_0) dt \right|.
$$

Proof. As is known (see, e.g., [6, p. 332]),

$$
\int x^{l} \cos nx \, dx = \sum_{p=0}^{l} p! C_{l}^{p} \frac{x^{l-p}}{n^{p+1}} \sin \left(nx + p \frac{\pi}{2} \right) + C \quad (C \in \mathbb{R}). \tag{22}
$$

Consequently,

$$
I_1(c) = \int_0^c u \cos nu \, du = \frac{nc \sin nc + \cos nc}{n^2} - \frac{1}{n^2}.
$$
 (23)

Thus,

$$
C\left(1, \frac{1}{2}, 1, h, n\right) = \frac{2}{h} \int_{0}^{\frac{h}{4}} \left(\int_{2u}^{\frac{h}{2}} dt\right) \cos nu \, du = \frac{2}{h} \int_{0}^{\frac{h}{4}} \left(\frac{h}{2} - 2u\right) \cos nu \, du
$$

$$
= \frac{2}{h} \left(\frac{h}{2n} \sin \frac{nh}{4} - 2I_1\left(\frac{h}{4}\right)\right) = \frac{4}{n^2 h} \left(1 - \cos \frac{nh}{4}\right).
$$

The proof is completed by applying Theorem 3 with $m = 1$, $b = \frac{1}{2}$, and $\Phi = \psi_1$. \Box **Corollary 8.** Let $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T'(x_0)| = ||T'||$. Then

$$
||T'|| \leq \frac{\pi n}{2} \left| \int_{0}^{\frac{1}{2}} \delta^1_{\frac{4\pi t}{n}}(T, x_0) dt \right|.
$$

Proof. Set $h = \frac{4\pi}{n}$ in Corollary 7.

Corollary 9. Let $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T'(x_0)| = ||T'||$. Then

$$
||T'|| \leq \frac{\pi n}{2} \left| \int_{0}^{\frac{1}{2}} \delta^1_{\frac{2\pi t}{n}}(T, x_0) dt \right|
$$

Proof. Set $h = \frac{2\pi}{n}$ in Corollary 7.

Corollary 10. Let $n \in \mathbb{N}$, $0 < h \leq \frac{2\pi}{n}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T'(x_0)| = ||T'||.$ Then

$$
||T'|| \leq \frac{n^3h^2}{4(nh-2\sin\frac{nh}{2})} \left| \int_0^1 \delta_{th}^1(T,x_0)(1-t) dt \right|.
$$

Proof. In view of relation (22), we have

$$
I_2(c) = \int_0^c u^2 \cos nu \, du = \frac{(n^2c^2 - 2)\sin nc + 2nc \cos nc}{n^3}.
$$
 (24)

.

852

Thus, with regard to (23) and (24), we obtain

$$
C(1,1,2,h,n) = \frac{2}{h} \int_{0}^{\frac{h}{2}} \left(\int_{2u}^{h} \left(1 - \frac{t}{h} \right) dt \right) \cos nu \, du = \frac{1}{h^2} \int_{0}^{\frac{h}{2}} (h - 2u)^2 \cos nu \, du
$$

$$
= \frac{1}{h^2} \left(h^2 \int_{0}^{\frac{h}{2}} \cos nu \, du - 4hI_1 \left(\frac{h}{2} \right) + 4I_2 \left(\frac{h}{2} \right) \right) = \frac{4(nh - 2\sin\frac{nh}{2})}{n^3 h^2}.
$$
(25)

The proof is completed by applying Theorem 3 with $m = 1$, $b = 1$, and $\Phi = \psi_2$. \Box **Corollary 11.** Let $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T'(x_0)| = ||T'||$. Then

$$
||T'|| \leq \frac{\pi n}{2} \left| \int_{0}^{1} \delta^1_{\frac{2\pi t}{n}}(T, x_0)(1-t) dt \right|.
$$

Proof. Set $h = \frac{2\pi}{n}$ in Corollary 10.

Corollary 12. Let $n \in \mathbb{N}$, $0 < h \leq \frac{2\pi}{n}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T''(x_0)| = ||T''||$. *Then*

$$
||T''|| \leq \frac{n^3h}{nh - 2\sin\frac{nh}{2}} \left| \int\limits_{0}^{\frac{1}{2}} \delta_{th}^2(T, x_0) dt \right|.
$$

Proof. Similarly to (25) , we have

$$
C\left(2, \frac{1}{2}, 1, h, n\right) = \frac{2}{h} \int_{0}^{\frac{h}{2}} \left(\int_{u}^{\frac{h}{2}} t\left(1 - \frac{u}{t}\right) dt\right) \cos nu \, du
$$

$$
= \frac{1}{4h} \int_{0}^{\frac{h}{2}} (h - 2u)^2 \cos nu \, du = \frac{nh - 2\sin\frac{nh}{2}}{n^3h}.
$$

It remains to apply Theorem 3 with $m = 2$, $b = \frac{1}{2}$, and $\Phi = \psi_1$.

Corollary 13. Let $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T''(x_0)| = ||T''||$. Then

$$
||T''|| \leq n^2 \left| \int_0^{\frac{1}{2}} \delta^2_{\frac{2\pi t}{n}}(T, x_0) dt \right|.
$$

Proof. Set $h = \frac{2\pi}{n}$ in Corollary 12.

Corollary 14. Let $n \in \mathbb{N}$, $0 < h \leq \frac{\pi}{n}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T''(x_0)| = ||T''||$. *Then*

$$
||T''|| \leq \frac{n^4h^2}{n^2h^2 + 2\cos nh - 2} \left| \int_0^1 \delta_{th}^2(T, x_0)(1-t) dt \right|.
$$

853

 \Box

$$
\Box
$$

Proof. Using relation (22), we derive

$$
I_3(c) = \int_0^c u^3 \cos nu du = \frac{(n^3c^3 - 6nc)\sin nc + (3n^2c^2 - 6)\cos nc}{n^4} + \frac{6}{n^4}.
$$
 (26)

 \Box

 \Box

Thus, with account for (23) , (24) , and (26) , we obtain

$$
C(2,1,2,h,n) = \frac{2}{h} \int_{0}^{h} \left(\int_{u}^{h} t \left(1 - \frac{u}{t}\right) \left(1 - \frac{t}{h}\right) dt \right) \cos nu \, du = \frac{1}{3h^2} \int_{0}^{h} (h - u)^3 \cos nu \, du
$$

$$
= \frac{1}{3h^2} \left(h^3 \int_{0}^{h} \cos nu \, du - 3h^2 I_1(h) + 3h I_2(h) - I_3(h) \right) = \frac{2 \cos nh + n^2 h^2 - 2}{n^4 h^2}.
$$

It remains to apply Theorem 3 with $m = 2$, $b = 1$, and $\Phi = \psi_2$.

Corollary 15. *Let* $n \in \mathbb{N}$, $T \in H_n$, and let a point $x_0 \in \mathbb{R}$ be such that $|T''(x_0)| = ||T''||$. *Then*

$$
||T''|| \leq \frac{\pi^2 n^2}{\pi^2 - 4} \left| \int_0^1 \delta_{\frac{\pi t}{n}}^2(T, x_0)(1 - t) dt \right|.
$$

Proof. Set $h = \frac{\pi}{n}$ in Corollary 14.

2. Inequalities for the Fourier coefficients

2.1. First, we establish a simple lemma on positive series.

Lemma 1. *Let* $a_k \ge 0$ *for* $k \in \mathbb{N}$ *,* $m, r \in \mathbb{R}$ *,* $p \in (0, 1)$ *,* $r - mp < 0$ *,* $q_n = \sum_{k=1}^n$ kmak. *Then* \sum^{∞} $_{k=1}$ $k^r a_k^p \le (mp - r) \sum^{\infty}$ $n=1$ $n^{r-p(m+1)}q_n^p$.

Proof. Set

$$
t_n = \sum_{k=1}^n k^{mp} a_k^p
$$
, $n \ge 1$; $t_0 = 0$, $\alpha = r - mp$.

Then

$$
\sum_{k=1}^{l} k^{r} a_{k}^{p} = \sum_{k=1}^{l} k^{\alpha} (t_{k} - t_{k-1}) = l^{\alpha} t_{l} + \sum_{k=1}^{l-1} \{k^{\alpha} - (k+1)^{\alpha}\} t_{k}.
$$
 (27)

Since the series

$$
\sum_{k=1}^{\infty} \{k^{\alpha} - (k+1)^{\alpha}\} t_k
$$

is convergent, we have $\lim_{l\to\infty} l^{\alpha}t_l = 0$. Indeed, let $\varepsilon > 0$ be fixed. Then, by the Cauchy convergence test, there is a number n_{ε} such that for all $n \geq n_{\varepsilon}$,

$$
\varepsilon > \sum_{k=n}^{2n-1} \{k^{\alpha} - (k+1)^{\alpha}\} t_k \ge t_n n^{\alpha} (1 - 2^{\alpha}).
$$

Therefore, from (27) it follows that

$$
\sum_{k=1}^{\infty} k^r a_k^p = \sum_{k=1}^{\infty} \{k^{\alpha} - (k+1)^{\alpha}\} t_k.
$$
 (28)

Applying Hölder's inequality for sums, we conclude that $t_k \leq k^{1-p} q_k^p$. Further, we have

$$
\{k^{\alpha} - (k+1)^{\alpha}\}k^{1-p} = -\alpha k^{1-p} \int\limits_{k}^{k+1} t^{\alpha-1} dt \leq -\alpha \int\limits_{k}^{k+1} t^{\alpha-p} dt \leq -\alpha k^{\alpha-p}.
$$

The proof is completed by combining the inequalities obtained with (28) .

Remark 3. In connection with assertions similar to Lemma 1, see [7, pp. 306–308; 8]. **2.2.** For $f \in L_1$, set

$$
S_k(f, x) = \frac{a_0(f)}{2} + \sum_{l=1}^k (a_l(f) \cos lx + b_l(f) \sin lx).
$$

Theorem 4. *Let* $f \in L_1$ *,* $p \in (0,1)$ *,* $m, n \in \mathbb{N}$ *,* $r \in \mathbb{Z}_+$ *,* $r − 2mp < 0$ *. Then*

$$
\sum_{k=n}^{\infty} k^r \rho_k^{2p}(f) \le (2mp - r)\pi^{-p} \sum_{k=n}^{\infty} k^{r-p(2m+1)} \|S_k^{(m)}(f)\|_2^{2p}.
$$
 (29)

Proof. Setting $a_k = \rho_k^2(f)$ in Lemma 1, changing m for 2m, and taking into account the relation

$$
||S_k^{(m)}(f)||_2^2 = \pi \sum_{l=1}^k l^{2m} \rho_l^2(f),
$$

we come to (29) with $n = 1$. It remains to apply the inequality obtained to the function $f - S_{n-1}(f).$ \Box

2.3. We will need the following two known assertions.

Theorem B (see [4, p. 230]). *Let* $n, r \in \mathbb{N}, T \in H_n$. *Then*

$$
||T^{(r)}||_2 \leq \left(\frac{n}{2}\right)^r \left\|\delta_{\frac{\pi}{n}}^r(T)\right\|_2.
$$

By $W_p^{(r)}$ denote the set of 2π -periodic continuous functions whose derivatives of order $r-1$ are absolutely continuous on every interval, whereas the derivatives of order r belong to L_p .

Theorem C (see [9, p. 136]). *Let* $r \in \mathbb{N}$, $1 \le p \le q \le \infty$, $f \in W_p^{(1)}$. *Then* $\|\delta_h^{r+1}(f)\|_q \leq |h|^{1-\frac{1}{p}+\frac{1}{q}} \|\delta_h^r(f')\|_p.$

Theorem 5. *Let* $1 \leq q \leq 2$ *,* $p \in (0,1)$ *,* $m, n \in \mathbb{N}$ *,* $r \in \mathbb{Z}_+$ *,* $r − 2mp < 0$ *,* $f \in L_q$ *. Then*

$$
\sum_{k=n}^{\infty} k^r \rho_k^{2p}(f) \le \frac{(2mp-r)\pi^{2p\left(1-\frac{1}{q}\right)}}{2^{(m+1)2p}} \sum_{k=n}^{\infty} k^{r-2p\left(1-\frac{1}{q}\right)} \|\delta_{\frac{\pi}{k}}^m(f)\|_q^{2p}.\tag{30}
$$

Proof. Without loss of generality, we may assume that $a_0(f) = 0$. By $f^{(-1)}$ denote the primitive of f such that \int_{0}^{π} $-\pi$ $f^{(-1)} = 0$. Using Theorems B and C, we derive

$$
||S_k^{(m)}(f)||_2 = ||S_k^{(m+1)}(f^{(-1)})||_2 \le \left(\frac{k}{2}\right)^{m+1} ||\delta_{\frac{\pi}{k}}^{m+1}(S_k(f^{(-1)}))||_2
$$

\n
$$
\le \left(\frac{k}{2}\right)^{m+1} ||\delta_{\frac{\pi}{k}}^{m+1}(f^{(-1)})||_2 \le \left(\frac{k}{2}\right)^{m+1} \left(\frac{\pi}{k}\right)^{\frac{3}{2}-\frac{1}{q}} ||\delta_{\frac{\pi}{k}}^{m}(f)||_q.
$$
 (31)
\ncombine (29) with (31).

It remains to combine (29) with (31) .

855

Remark 4. For $q = 2$, inequality (30) can be changed for the stronger relation

$$
\sum_{k=n}^{\infty} k^r \rho_k^{2p}(f) \le (2mp - r)4^{-mp} \pi^{-p} \sum_{k=n}^{\infty} k^{r-p} ||\delta_{\frac{\pi}{k}}^m(f)||_2^{2p},
$$

which is obtained by combining (29) with Theorem B.

In conclusion, we indicate that Sec. 1 was written jointly by both authors, whereas Sec. 2 was written by V. V. Zhuk.

Translated by L. Yu. Kolotilina.

REFERENCES

- 1. N. K. Bari, *Trigonometric Series* [in Russian], Moscow (1961).
- 2. S. B. Stechkin, "Generalizations of some inequalities of S. N. Bernstein," *Dokl. AN SSSR*, **60**, No. 9, 1511–1514 (1948).
- 3. A. A. Konyushkov, "The best approximations by trigonometric polynomials and Fourier coefficients," *Mat. Sb.*, **44** (86), No. 1, 53–84 (1958).
- 4. A. F. Timan, *The Theory of Approximation of Functions of a Real Variable* [in Russian], Moscow (1960).
- 5. V. V. Zhuk and V. F. Kuzyutin, *Approximation of Functions and Numerical Integration* [in Russian], St.Petersburg (1995).
- 6. A. F. Timofeev, *Integration of Functions* [in Russian], Moscow–Leningrad (1948).
- 7. G. G. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities* [Russian translation], Moscow (1948).
- 8. G. G. Hardy and J. E. Littlewood, "Elementary theorems concerning power series with positive coefficients and moment constants of positive functions," *J. reine angew. Math.*, **157**, 141–158 (1927).
- 9. V. V. Zhuk, *Approximation of Periodic Functions* [in Russian], Leningrad (1982).