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APPROXIMATION OF PERIODIC FUNCTIONS BY
MODIFIED STEKLOV AVERAGES IN L2

V. O. Dron’∗ and V. V. Zhuk∗ UDC 517.5

In the space L2 of periodic functions, sharp (in the sense of constants) lower estimates for the
deviation of the modified Steklov functions of the first and second orders in terms of the modulus of
continuity are established. Similar results are also obtained for even continuous periodic functions
with nonnegative Fourier coefficients in the space C. Bibliography: 3 titles.

Let L2 be the space of 2π-periodic complex-valued functions f square-integrable on the
period, and let

Sh,1(f, x) =
1
h

h/2∫

−h/2

f(x + t) dt

and

Sh,2(f, x) =
1
h

h∫

−h

f(x + t)
(

1 −
∣∣∣∣ t

h

∣∣∣∣
)

dt

be the Steklov functions of the first and second orders, respectively.
Set

Uh,r(f, x) =
1
3
(4Sh,r(f, x) − S2h,r(f, x)),

Uh,r,l(f) = (E − (E − Uh,r)l)(f).

The main issue considered in the present paper is the question on the least constant C(r, l, a)
in the inequality

ω4l(f, ah)2 ≤ C(r, l, a)‖f − Uh,r,l(f)‖2
for r = 1 and r = 2, where ωk(f, h)2 is the modulus of continuity of order k of a function
f in the space L2. The counterparts of the results obtained for the case of approximation of
even continuous periodic functions with nonnegative Fourier coefficients in the space C are
established in Sec. 3.2.

1. Introduction

1.1. In what follows, C, R, R+, Z, and N are the sets of complex, real, nonnegative real,
integer, and positive integer numbers; Lp (with 1 ≤ p < ∞) is the space of 2π-periodic
complex-valued functions f p-integrable on the interval Q = [−π, π] with the norm

‖f‖p =

⎛
⎜⎝

∫

Q

|f(x)|p
⎞
⎟⎠

1/p

;

L∞ = C is the space of continuous 2π-periodic functions f : R → C with the norm

‖f‖∞ = ‖f‖ = max
x∈R

|f(x)|;
E is the identity operator in L1.
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Functions given on subsets of R that have a removable singularity at a certain point and
are not defined at this point are defined at it by continuity. In other cases, the symbol 0/0 is
understood as 0.

By δr
t (f, x) the central difference of order r of a function f with step t at a point x is

denoted, i.e.,

δr
t (f, x) =

r∑
m=0

(−1)mCm
r f

(
x + rt

2 − mt
)
.

For f ∈ Lp, and r ∈ N, we set

ωr(f, h)p = sup
|t|≤h

‖δr
t (f)‖p.

The quantity ωr(f)p is called the modulus of continuity of order r of the function f in the
space Lp.

For f ∈ L1, h > 0, r − 1 ∈ N, and x ∈ R, we set

Sh,1(f, x) =
1
h

h/2∫

−h/2

f(x + t)dt,

Sh,r(f, x) = Sh,1(Sh,r−1(f), x).

The function Sh,r(f) is called the Steklov function of order r with step h for the function f .
For r ∈ N, we set

ψr(t) =

⎧⎪⎨
⎪⎩

r
∑

0≤k<|t|+r/2

(−1)k(|t|+ r
2
−k)r−1

k!(r−k)! if |t| ≤ r
2 ,

0 if |t| > r
2 .

If f ∈ L1 and x ∈ R, then (see [1, p. 100])

Sh,r(f, x) =
∫

R

f(x + th)ψr(t)dt.

Let f ∈ L1, r, m ∈ N. Then

Sh,r,m(f, x) =
2

Cm
2m

m∑
k=1

(−1)k+1Cm+k
2m Skh,r(f, x) =

2(−1)m+1

Cm
2m

∫

R+

δ2mth (f, x)ψr(t)dt + f(x).

If 1 ≤ p ≤ ∞, f ∈ Lp, and h > 0, then

‖f − Sh,r,m(f)‖p =

∥∥∥∥∥∥∥
2

Cm
2m

∫

R+

δ2mth (f)ψr(t)dt

∥∥∥∥∥∥∥
p

≤ 2
Cm
2m

∫

R+

‖δ2mth (f)‖pψr(t)dt

≤ 2
Cm
2m

∫

R+

ω2m(f, th)pψr(t)dt

≤ 2
Cm
2m

ω2m(f, rh
2 )p

∫

R+

ψr(t)dt =
1

Cm
2m

ω2m(f, rh
2 )p.

(1)
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Let l ∈ N, f ∈ L1. We set

Uh,r(f, x) = Sh,r,2(f, x) =
1
3
(4Sh,r(f, x) − S2h,r(f, x)),

Uh,r,l(f) = (E − (E − Uh,r)l)(f).

The paper mainly deals with the question on the least constant C(r, l, a) in the inequality

ω4l(f, ah)2 ≤ C(r, l, a)‖f − Uh,r,l(f)‖2
for r = 1 and r = 2. In particular, it is proved (see Theorems 1 and 2) that

sup
h>0

sup
f∈L2

ω4l(f, ah)2
‖f − Uh,1,l(f)‖2 = 24l

(
30a4

)l (
a ≥ 1

2 , l ∈ N
)

(2)

and

sup
h>0

sup
f∈L2

ω4l(f, ah)2
‖f − Uh,2,l(f)‖2 = 24l

(
45
8 a4

)l (
a ≥ 3

4 , l ∈ N
)
. (3)

In connection with relations (2) and (3), it is appropriate to mention that for l ∈ N, r ∈ N,
h > 0, 1 ≤ p ≤ ∞, and f ∈ Lp, the following inequality holds:

‖f − Uh,r,l(f)‖p ≤ C(r, l)ω4l(f, h)p. (4)

Relation (4) can be readily proved based on Theorem 1 in the monograph [2, p. 201], but we
do not dwell on it.

1.2. Here, we present a brief overview of the results obtained in the paper. Introduce the
following notation:

αr(x) = 1 − 4
3

(
sin x

2
x
2

)r

+
1
3

(
sin x

x

)r

;

for a > 0,

D(a) = sup
x∈R

sin4 ax

α1(2x)
, G(a) = sup

x∈R
sin4 ax

α2(2x)
.

The paper consists of three sections. In Sec. 2, it is proved that D(a) = 30a4 for a ≥ 1
2 and

G(a) = 45
8 a4 for a ≥ 3

4 ; also the values of D(a) and G(a) for some other values of a, obtained
by a computing technique, are provided. In Sec. 3, relations (2) and (3) are established (some
auxiliary results used in proving (2) and (3) are stated in Sec. 2), and the counterparts of
relations (2) and (3) for the case of approximation of even continuous periodic functions with
nonnegative Fourier coefficients in the space C are presented.

2. Auxiliary results

2.1. Lemma 1. Let a ≥ 1
2 . Then

D(a) = 30a4.

Proof. Set b = 1
2 ,

fa(x) =
sin4 ax

α1(2x)
.

As is readily seen
fa(0) = lim

x→0
fa(x) = 30a4.

Thus, it is sufficient to prove that for all x > 0 and a ≥ b,

fa(x) ≤ 30a4. (5)
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Assume that (5) is established for a = b. Then, taking into account that for 0 ≤ t ≤ 3π
4 and

α ≥ 1,
| sin αt| ≤ α sin t, (6)

for 0 < x < 3π/2 we derive

fa(x) =
sin4 a

b bx

α1(2x)
≤

(a

b

)4 sin4 bx

α1(2x)
≤

(a

b

)4
30b4 = 30a4.

In the case where x ≥ 3π/2 and a ≥ b, we have

fa(x) =
sin4 ax

1 − 4
3
sinx

x + 1
3
sin 2x
2x

≤ 1
1 − 4

3x − 1
6x

=
1

1 − 3
2x

≤ π

π − 1
<

15
8

≤ 30a4.

Prove the inequality fb(x) ≤ 15
8 for x ∈ R. To this end, suffice it to ascertain that for x > 0,

sin4 x

2
≤ 15

8

(
1 − 4

3
sin x

x
+

1
3

sin 2x
2x

)
. (7)

Inequality (7) holds trivially for x ≥ 45
14 . Therefore, it is sufficient to consider the case where

0 < x < 45
14 . Using the known relations

sin t

t
≥

n∑
k=0

(−1)k
t2k

(2k + 1)!
(
t ∈ R, n+1

2 ∈ N
)
,

sin t

t
≤

n∑
k=0

(−1)k
t2k

(2k + 1)!
(
t ∈ R, n+2

2 ∈ N
)
,

sin4 t ≤ 1
2

n∑
k=2

(−1)k+1 (2t)2k

(2k)!
+

1
8

m∑
k=2

(−1)k
(4t)2k

(2k)!
(
t ∈ R, n−1

2 , m
2 ∈N

)
,

(8)

we strengthen inequality (7) as follows:

1
2

5∑
k=2

(−1)k+1 x2k

(2k)!
+

1
8

6∑
k=2

(−1)k
(2x)2k

(2k)!

− 15
8

(
1 − 4

3

6∑
k=0

(−1)k
x2k

(2k + 1)!
+

1
3

5∑
k=0

(−1)k
(2x)2k

(2k + 1)!

)
≤ 0.

(9)

In view of (9), we must prove that for 0 < x < 45
14 ,

1
2

5∑
k=3

(−1)k+1 x2k

(2k)!
+

1
8

6∑
k=3

(−1)k
(2x)2k

(2k)!

− 15
8

(
− 4

3

6∑
k=3

(−1)k
x2k

(2k + 1)!
+

1
3

5∑
k=3

(−1)k
(2x)2k

(2k + 1)!

)
= x6p(x) ≤ 0.

(10)

Straightforward computations show that p
(
45
14

)
< 0 and p′(x) ≥ 0 for x > 0, implying that

(10) holds for 0 < x < 45
14 . �

Remark 1. If 0 < a ≤ 1
2 , then D(a) ≤ D

(
1
2

)
= 15

8 .

Proof. The function sin t is increasing on (0, π
2 ]. Therefore, for a ≤ 1

2 and x ∈ (0, π], we have

fa(x) =
sin4 ax

α1(2x)
≤ sin4 1

2x

α1(2x)
= f 1

2
(x) ≤ 15

8
.
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If x > 45
14 , then

fa(x) ≤ 1
1 − 4

3
sinx

x + 1
3
sin 2x
2x

≤ 1
1 − 4

3x − 1
6x

=
1

1 − 3
2x

≤ 1
1 − 3·14

2·45
=

15
8

.

For x ∈ (
π, 45

14

)
, the function sin x is negative and increasing, whereas sin 2x is positive and

increasing, whence

fa(x) ≤ 1
1 − 4

3
sinx

x + 1
3
sin 2x
2x

≤ 1
1 − 4

3
sinπ

x + 1
3
sin 2π
2x

= 1 <
15
8

. �

Lemma 2. Let a ≥ 3
4 . Then

G(a) =
45
8

a4.

Proof. Set b = 3
4 and

ga(x) =
sin4 ax

α2(2x)
.

As is readily seen,

ga(0) = lim
x→0

ga(x) =
45
8

a4.

Consequently, it is sufficient to prove that for all x > 0 and a ≥ b,

ga(x) ≤ 45
8

a4. (11)

Assume that (11) is established for a = b. Then, applying inequality (6), we find that

ga(x) =
sin4 a

b bx

α2(2x)
≤

(a

b

)4 sin4 bx

α2(2x)
≤

(a

b

)4 45
8

b4 =
45
8

a4

whenever 0 < bx < 3π
4 , i.e., 0 < x < π. If x ≥ π, then

ga(x) ≤ 1
α2(2x)

≤ 1
1 − 4

3x2

≤ 3π2

3π2 − 4
<

45
8

a4.

Now we prove that gb(x) ≤ 45
8

(
3
4

)4 = 3645
2048 for x ∈ R. Write the latter inequality as

sin4 3x
4

≤ 3645
2048

(
1 − 4

3

(
sin x

x

)2

+
1
3

(
sin 2x

2x

)2
)

. (12)

Inequality (12) holds trivially for x ≥ 7
4 . Therefore, suffice it to consider the case 0 < x < 7

4 .
Using the known relations

sin2 t ≥
n∑

k=1

(−1)k+1 22k−1t2k

(2k)!
(
t ∈ R, n

2 ∈ N
)
,

sin2 t ≤
n∑

k=1

(−1)k+1 22k−1t2k

(2k)!
(
t ∈ R, n+1

2 ∈ N
)

and inequality (8), we strengthen (12) as follows:

3645
2048

(
1 − 4

3

7∑
k=1

(−1)k+1 22k−1x2k−2

(2k)!
+

1
3

8∑
k=1

(−1)k+1 22k−1(2x)2k−2

(2k)!

)

−1
2

7∑
k=2

(−1)k+1

(
3
2x

)2k
(2k)!

− 1
8

6∑
k=2

(−1)k
(3x)2k

(2k)!
≥ 0.

(13)
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In order to prove (13), it is sufficient to show that for 0 < y < 49
16 ,

q(y) =
3645
2048

(
4
3

7∑
k=4

(−1)k
22k−1yk−4

(2k)!
− 1

3

8∑
k=4

(−1)k
24k−3yk−4

(2k)!

)

− 1
2

7∑
k=3

(−1)k+1 (32 )
2kyk−3

(2k)!
− 1

8

6∑
k=3

(−1)k
32kyk−3

(2k)!
≥ 0.

We strengthen the latter inequality as

v(y) = q(y) − 351y
5 · 216 ≥ 0.

Straightforward computations demonstrate that v
(
49
16

)
> 0 and v′(y) < 0 for y > 0. It follows

that (12) holds for 0 < x < 7
4 . �

Remark 2. If 0 < a ≤ 3
4 , then G(a) ≤ G

(
3
4

)
= 3645

2048 .

Proof. For a ≤ 3
4 , the function sin4 ax is an increasing function of x on

(
0, 2π

3

]
. Therefore, on

the interval indicated, ga(x) ≤ g 3
4
(x) ≤ G

(
3
4

)
. If x > 2π

3 > 2, then

ga(x) ≤ 1
1 − 4

3x2

≤ 3
2

<
3645
2048

. �

2.2. Below, we provide values of D(a) and G(a) obtained by a computing technique. Set

fa(x) =
sin4 ax

α1(2x)

and consider this function on the interval [0,+∞). By x0 = x0(a) denote the point at which
D(a) is attained. Enumerate the maxima of the function fa(x) in the increasing order of x.
By n0 = n0(a) denote the number of the maximum corresponding to x0.

Set

ga(x) =
sin4 ax

α2(2x)
and consider this function on the interval [0,+∞). By x0 = x0(a) denote the point at which
G(a) is attained. Enumerate the maxima of the function ga(x) in the increasing order of x.
Let n0 = n0(a) denote the number of the maximum corresponding to x0.

2.3. If dk ∈ C, then, by definition,
∞∑

k=−∞
dk =

∑
k∈Z

dk = d0 +
∞∑

k=1

(d−k + dk).

Let f ∈ L1. Then

ck(f) =
1
2π

∫

Q

f(t)e−iktdt

are the Fourier coefficients, and

σ(f, x) =
∞∑

k=−∞
ck(f)eikt

is the Fourier series.
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Table 1. Values of the function D(a).

a fa(0) x0 n0 D(a)
1 max 0 1 30

0.9 max 0 1 19.683
0.8 max 0 1 12.288
0.7 max 0 1 7.203
0.6 max 0 1 3.888
0.5 max 0 1 1.875
0.45 max 0 1 1.230188

0.43142 max 0 1 1.039256
0.43141 max 32.792169 5 1.039267
0.425 max 33.258949 5 1.042971
0.4125 min 26.674585 4 1.052067

0.4 min 27.435558 4 1.043096
0.35 min 13.589278 2 1.074429
0.3 min 26.261611 3 1.041487
0.25 min 6.852485 1 1.046843
0.2 min 7.920941 1 1.205494
0.15 min 52.276633 3 1.02588
0.1 min 14.648387 1 1.073388
0.05 min 32.856915 2 1.029758

Lemma 3. Let a > 0, h > 0, r ∈ N, l ∈ N, f ∈ L2, and let

Dr(a, h) = sup
k∈Z

sin4 akh
2

αr(kh)
.

Then
‖δ4lah(f)‖2 ≤ 24lDl

r(a, h)‖f − Uh,r,l(f)‖2.
Proof. Using Parseval’s identity

‖g‖22 =
∫

Q

|g|2 = 2π
∑
k∈Z

|ck(g)|2

for g ∈ L2 and the relations

δ4lah(f, x) = 24l
∑
k∈Z

ck(f)eikx sin4l akh

2
,

f(x)−Uh,r,l(f, x)=
∑
k∈Z

ck(f)eikx

(
1− 4

3

(
sin kh

2
kh
2

)r

+
1
3

(
sin kh

kh

)r
)l

,

we derive

‖δ4lah(f)‖22 = (2π)28l
∑
k∈Z

|ck(f)|2 sin8l akh

2
,

‖f − Uh,r,l(f)‖22 = 2π
∑
k∈Z

|ck(f)|2α2l
r (kh).
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Table 2. Values of the function G(a).

a ga(0) x0 n0 G(a)
1 max 0 1 5.625

0.9 max 0 1 3.690563
0.8 max 0 1 2.304
0.75 max 0 1 1.779785
0.732 max 0 1 1.614979
0.7315 min 0.149508 1 1.610578
0.725 min 0.59855 1 1.555982
0.7125 min 0.9879 1 1.463396

0.7 min 1.249736 1 1.38486
0.65 min 1.920253 1 1.172278
0.6 min 2.375294 1 1.063513
0.55 min 2.761446 1 1.013748
0.5 min 3.141593 1 1
0.45 min 3.562653 1 1.011964
0.4 min 4.029026 1 1.043056
0.35 min 4.500236 1 1.066309
0.3 min 5.068232 1 1.040981
0.25 min 6.283185 1 1
0.2 min 7.827639 1 1.022169
0.15 min 10.569266 1 1.009132
0.1 min 15.707963 1 1
0.05 min 31.415927 1 1

Therefore,

‖δ4lah(f)‖22 = (2π)28l
∑
k∈Z

|ck(f)|2 sin8l akh
2

α2l
r (kh)

α2l
r (kh)

≤ sup
k∈Z

sin8l akh
2

α2l
r (kh)

(2π)28l
∑
k∈Z

|ck(f)|2α2l
r (kh) = 28lD2l

r (a, h)‖f − Uh,r,l(f)‖22.
(14)

The proof is completed by taking the square roots of both sides of relation (14). �

Remark 3. For the function f(x) = cos x we have

‖δ4lah(f)‖2 = 24l
(

sin4 ah
2

αr(h)

)l

‖f − Uh,r,l(f)‖2,

whence

sup
h>0

‖δ4lah(f)‖2
‖f − Uh,r,l(f)‖2 = 24l sup

x∈R

(
sin4 ax

αr(2x)

)l

.

Corollary 1. Let a > 0, r, l ∈ N. Then

sup
h>0

sup
f∈L2

‖δ4lah(f)‖2
‖f − Uh,r,l(f)‖2 = 24l sup

x∈R

(
sin4 ax

αr(2x)

)l

.

In order to prove Corollary 1, it is sufficient to combine Lemma 3 with Remark 3.
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3. Main results

3.1. Theorem 1. Let a ≥ 1
2 , l ∈ N. Then

sup
h>0

sup
f∈L2

ω4l(f, ah)2
‖f − Uh,1,l(f)‖2 = 24l

(
30a4

)l
.

Proof. In view of Remark 1 and Lemma 1 in Sec. 2, for a ≥ 1
2 we have

sup
0<t≤1

D(at) = 30a4.

Using this fact and applying Lemma 3, we find that

ω4l(f, ah)2 = sup
0≤t≤1

‖δ4lath(f)‖2 ≤ 24l
(

sup
0<t≤1

D(at)
)l

‖f − Uh,1,l(f)‖2

≤ 24l
(
30a4

)l‖f − Uh,1,l(f)‖2.
Therefore,

sup
h>0

sup
f∈L2

ω4l(f, ah)2
‖f − Uh,1,l(f)‖2 ≤ 24l

(
30a4

)l
.

The opposite inequality is obvious by virtue of Corollary 1 in Sec.2. �

Theorem 2. Let a ≥ 3
4 , l ∈ N. Then

sup
h>0

sup
f∈L2

ω4l(f, ah)2
‖f − Uh,2,l(f)‖2 = 24l

(
45
8

a4
)l

.

The proof of Theorem 2 is similar to that of Theorem 1 and is based on Remark 2, Lemmas 2
and 3, and Corollary 1 in Sec. 2.

Corollary 2. Let a ≥ 1
2 , h > 0, f ∈ L2. Then

1
480a4

ω4(f, ah)2 ≤ ‖f − Sh,1,2(f)‖2 ≤ 1
6
ω4

(
f, h

2

)
2
.

In order to prove Corollary 2, it is sufficient to combine Theorem 1 (with l = 1) and
inequality (1) with r = 1 and m = 2.

In particular, Corollary 2 implies that for any f ∈ L2 and h > 0,

1
30

ω4

(
f, h

2

)
2
≤ ‖f − Sh,1,2(f)‖2 ≤ 1

6
ω4

(
f, h

2

)
2
.

Corollary 3. Let a ≥ 3
4 , h > 0, f ∈ L2. Then

1
90a4

ω4(f, ah)2 ≤ ‖f − Sh,2,2(f)‖2 ≤ 1
6
ω4(f, h)2.

In order to prove Corollary 3, suffice it to combine Theorem 2 (with l = 1) and inequality
(1) with r = 2 and m = 2.

In particular, Corollary 3 implies that for any f ∈ L2 and h > 0,

1
90

ω4(f, h)2 ≤ ‖f − Sh,2,2(f)‖2 ≤ 1
6
ω4(f, h)2.
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3.2. By A denote the set of even real functions f from C with the Fourier coefficients

ak(f) =
1
π

∫

Q

f(x) cos kxdx ≥ 0, k = 0, 1, 2 . . . .

As is known [3, p. 277], if f ∈ A, then its Fourier series uniformly converges on R, and the
following relation holds:

f(x) =
a0(f)

2
+

∞∑
k=1

ak(f) cos kx. (15)

Based on (15), we find that if f ∈ A, then

δ4lt (f, x) = 24l
∞∑

k=1

ak(f) sin4l kt

2
cos kx,

f(x) − Uh,r,l(f, x) =
∞∑

k=1

ak(f)

(
1 − 4

3

(
sin kh

2
kh
2

)r

+
1
3

(
sin kh

kh

)r
)l

cos kx,

‖δ4lt (f)‖ = 24l
∞∑

k=1

ak(f) sin4l kt

2
,

‖f − Uh,r,l(f)‖ =
∞∑

k=1

ak(f)αl
r(kh).

Using the above relations and arguing as in proving Theorems 1 and 2, we readily obtain
the following assertions.

Theorem 1′. Let a ≥ 1
2 , l ∈ N. Then

sup
h>0

sup
f∈A

ω4l(f, ah)∞
‖f − Uh,1,l(f)‖ = 24l

(
30a4

)l
.

Theorem 2′. Let a ≥ 3
4 , l ∈ N. Then

sup
h>0

sup
f∈A

ω4l(f, ah)∞
‖f − Uh,2,l(f)‖ = 24l

(
45
8

a4
)l

.

Translated by L. Yu. Kolotilina.
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