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APPROXIMATION OF PERIODIC FUNCTIONS BY
MODIFIED STEKLOV AVERAGES IN L,

V. O. Dron’ and V. V. Zhuk* UDC 517.5

In the space Lo of periodic functions, sharp (in the sense of constants) lower estimates for the
deviation of the modified Steklov functions of the first and second orders in terms of the modulus of
continuity are established. Similar results are also obtained for even continuous periodic functions
with nonnegative Fourier coefficients in the space C. Bibliography: 3 titles.

Let Lo be the space of 2w-periodic complex-valued functions f square-integrable on the

period, and let
h/2

Sh,l(f,fff):}ll/f(x—l—t)dt

—h/2
and

Shalf, x) = i/hf(xﬂ) <1— ‘ZD dt
“h

be the Steklov functions of the first and second orders, respectively.
Set
1

Uh,r(f7 IL’) = 3(4Sh77«(f,$) - SQhﬂ‘(f? JI)),
Unri(f) = (E = (E = Up)")(f)-

The main issue considered in the present paper is the question on the least constant C(r, 1, a)
in the inequality

wy(f,ah)y < C(r,La)llf — Unri(f)l2
for r = 1 and r = 2, where wg(f,h)2 is the modulus of continuity of order k of a function
f in the space Lo. The counterparts of the results obtained for the case of approximation of

even continuous periodic functions with nonnegative Fourier coefficients in the space C' are
established in Sec. 3.2.

1. INTRODUCTION

1.1. In what follows, C, R, Ry, Z, and N are the sets of complex, real, nonnegative real,
integer, and positive integer numbers; L, (with 1 < p < o0) is the space of 27-periodic
complex-valued functions f p-integrable on the interval @ = [—m, 7] with the norm

p

1/
1£llp = / r@r|
Q

Lo, = C is the space of continuous 2m-periodic functions f: R — C with the norm
1flloe = IfIl = max | f(z)];
zeR
FE is the identity operator in Lj.
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Functions given on subsets of R that have a removable singularity at a certain point and
are not defined at this point are defined at it by continuity. In other cases, the symbol 0/0 is
understood as 0.

By 07 (f,x) the central difference of order r of a function f with step ¢ at a point z is
denoted, i.e.,

r

5 (frx)y="> (=1)"Cf (x+ 7 —mt).

m=0

For f € L,, and r € N, we set

wr (f; h)p = sup (|67 (f)lp-

[tI<h

The quantity w,(f), is called the modulus of continuity of order r of the function f in the
space L.
For feLi,h>0,r—1€N,and z € R, we set

h/2

Spa(f,x) = }11 / flx +t)dt,
—h/2
Shﬂ“(f? IL') = Sh,l(Sh,r—l(f)7 3'3)

The function S, .(f) is called the Steklov function of order r with step h for the function f.
For r € N, we set

(DRl —k) .

T if [t <
Pr(t) = 0§k<%+r/2 M(r=h)! <
0 if [t] > 7.

If f € Ly and x € R, then (see [1, p. 100])

Snalf. 1) = / f(x + thy, (£)dt

R
Let f € L1, r, m € N. Then
2 m m+1
Shrm(F2) = o SR S, () = / (e () + S ().
2m p—1
If1<p<oo, feLy and h >0, then
1 = ShrnPlls = | o, [ S Dr(0) /||5 )l (£t
h,r,m p = Cgan T > Cm p¥r
Ry
2
< o [ @l " (1)
2m
Ry
< CQmWQm s 2 /% CQmw2m(f7 r2h)
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Letl e N, f e L. We set

Unr (F,2) = Shra(f,2) = (4 (7,2) = Sonr (F ),
Unealf) = (B = (B~ Un) ().

The paper mainly deals with the question on the least constant C(r,l,a) in the inequality

w4l(f7 ah)? < C(T7 l7 a)Hf - Uh,r,l(f)”?
for r =1 and r = 2. In particular, it is proved (see Theorems 1 and 2) that
w4l(f7 ah)?

!
sup sup — 94 (304 0>l leN )
>0 feLs IF = Un1a(f)ll2 (30a%)" (a =, ) (2)
and )
aup sup IS qung (o3 1), ®

w0 fers If = Un2a(f)ll2
In connection with relations (2) and (3), it is appropriate to mention that for [ € N, r € N,
h>0,1 < p < oo, and f € Ly, the following inequality holds:

1f = Unra(P)llp < Clr, Dwar(f, h)p- (4)

Relation (4) can be readily proved based on Theorem 1 in the monograph [2, p. 201], but we
do not dwell on it.

1.2. Here, we present a brief overview of the results obtained in the paper. Introduce the

following notation:
4 (sin3\" 1 (sinz\"
oo =1-4 (37) 5 (1)

for a > 0,
4 4
sin® ax sin® ax
D(a) = sup G(a) = sup .
z€R (1 (2%) ’ z€R OtQ(QZE)
The paper consists of three sections. In Sec. 2, it is proved that D(a) = 30a* for a > ; and

G(a) = Pa* for a > 3; also the values of D(a) and G(a) for some other values of a, obtained

by a computing technique, are provided. In Sec. 3, relations (2) and (3) are established (some
auxiliary results used in proving (2) and (3) are stated in Sec. 2), and the counterparts of
relations (2) and (3) for the case of approximation of even continuous periodic functions with
nonnegative Fourier coefficients in the space C' are presented.

2. AUXILIARY RESULTS

2.1. Lemma 1. Let a > ; Then

D(a) = 30a’.
Proof. Set b = 5,
sin* az
falz) = ap(2z)

As is readily seen
fa(0) = lim fo(x) = 30a".
Thus, it is sufficient to prove that for all z > 0 and a > b,
falz) < 30a*. (5)
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Assume that (5) is established for a = b. Then, taking into account that for 0 < ¢ < ” and
a>1,

|sin at| < arsint, (6)
for 0 < x < 3w/2 we derive

falz) = sin’ jor_ (Z)4 sin ba_ <a)430b4 — 30a*.

ai1(2z) a1 (2x) b
In the case where x > 37/2 and a > b, we have
4
sin® ax 1 1 0 15 4
Ja(z) = 4 Lsinow < . = 3 < < <30a”.
1 - 3SIEI+3SII21$I 1_336 6z 1_2:c m—1 8

Prove the inequality fp(x) < 185 for z € R. To this end, suffice it to ascertain that for > 0,

a4z 15 <1_4sinx 1sin2x>' 7)

Sy S g 3 2 T3 9

Inequality (7) holds trivially for x > 45 Therefore, it is sufficient to consider the case where
O0<x < 15 Using the known relatlons

sint " nal
_Z 2k+1) (teR, "' eN),
sint 2k n
_Z 2k+1) (tE]R, ;2 EN), (8)
m 2k
sintt < Z k+1 2t + Z 4t ! (tER"l,mEN)

=2
we strengthen 1nequahty (7) as follows:
5

1 x2k 6 2:1: 2k
2 2 DM o T Z
k=2 k
(9)

6 5
15 ( 4 L a2k e (20) 2k
B (R SR NN s & :
8 324 (2k+1)! " 34 2k+1)
In view of (9), we must prove that for 0 < z < 1},

5
1 Z k—i—l 332"3 1 ( l)k(2$)2k

2 1 g2 (2k)!
k=3 =3
(10)
15/ 4d<~, ., ° e (20) 2k o .
— — -1 = <0.
8< 3];)( )(2k+1 * kz 2k+1)> Tp) <
Straightforward computations show that p( ) < 0 and p/(z) > 0 for z > 0, implying that

45
(10) holds for 0 < z < 3. O
Remark 1. If0 <a < 3, then D(a) < D (3) = 185.

Proof. The function sint is increasing on (0, 5]. Therefore, for a < } and z € (0,7], we have
: 4 41
sin“ax _ sin® yx 15
= < .
falw) a1(2z) 7 ai(2x) fé (z) < 8
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If x> %i, then
1 1 1 1 15

fa(x)§1_4sinx_’_ésir21§x§1_4 1:1 3§1_314:8’

3 " 6z 2x 2.45

For z € (7r, 1 4) the function sinx is negative and increasing, whereas sin 2x is positive and
increasing, whence

1 1 15

fa(l') < 1 _ 4sinz 1 sin 2z < 1 _ 4sinw 1sin2r 1< 8" .

3 =z +3 2z 3 x +3 2z
Lemma 2. Letazi. Then

G(a) = 485 a’
Proof. Set b = i and
sin? az
ga() = as(2x)

As is readily seen,
, 45 4
9a(0) = ili]%ga(x) = g9

Consequently, it is sufficient to prove that for all z > 0 and a > b,

4
ga(x) < 85 a’.
Assume that (11) is established for a = b. Then, applying inequality (6), we find that

(11)

sin* %bx 4 gin? 4
9a(®) = a2(2b:13) = <Z> ::(233 = <Z> 485b4 - 485‘14
whenever 0 < bz < ?’I, ie,0<axz<m If x> m, then
() < o1 32 _ 45 4
Tap2r) T 1,0, T34 8

Now we prove that gy(z) < 485 (2)4 = ggig for z € R. Write the latter inequality as

. 2 . 2
sin 3z < 3645 1 4 (sinz + 1 [sin2x ' (12)
4 2048 3 x 3 2z
Inequality (12) holds trivially for = > Z. Therefore, suffice it to consider the case 0 < = < Z.
Using the known relations

22k 1t2k

smt>z 2h)! (teR,geN),
22k 142k -
n
sin t<z 2%)! (tER, 5 EN)
and inequality (8), we strengthen (12) as follows:
7 8
3645 4 22k—1 2k—2 1 22k—1 9 2k—2
1= S v S (-1 (2z)
2048\ 34 (2k)! 3 £ (2k)!
- . (13)
- I<:+1 x)zk Iy 333 2
> 0.
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49
16°

() = 3645 /4 i(_l)k22k—1yk—4 - 1 28:(—1)’“ 24k—3yk:—4
M= 9048\ 3 2k) 3 (2k)!
k=4 k=4
7 _ 6 _
(g)zk k=3 4 k32kyk 3

1
2 2 (-1 (Qky! 8 2 (1) (2k) 0

k=3 k=3

In order to prove (13), it is sufficient to show that for 0 <y <

We strengthen the latter inequality as

351y
Straightforward computations demonstrate that v (‘112) > 0 and v'(y) < 0 for y > 0. It follows
that (12) holds for 0 < z < Z. O

Remark 2. If0 < a <}, then G(a) < G (}) = 504a-

Proof. For a < i, the function sin® az is an increasing function of  on (0, 25’ ] Therefore, on

the interval indicated, g,(z) < 93 () <G (3). If x> % > 2, then

1 <3<3645
1— .4 —2 " 2048°

3x2

IA

9a(T)

2.2. Below, we provide values of D(a) and G(a) obtained by a computing technique. Set

sin® ax

a1 (2x)

and consider this function on the interval [0,+00). By z¢p = xg(a) denote the point at which
D(a) is attained. Enumerate the maxima of the function f,(x) in the increasing order of .
By ng = ng(a) denote the number of the maximum corresponding to zg.

Set

fa(z) =

() = sin* ax

Jal?) = ag(2x)

and consider this function on the interval [0,+00). By zp = xg(a) denote the point at which
G(a) is attained. Enumerate the maxima of the function g,(z) in the increasing order of x.
Let ng = ng(a) denote the number of the maximum corresponding to .

2.3. If dj, € C, then, by definition,

Z dp, = de =dy+ Z(d_k + dy,).
k=1

k=—o00 keZ
Let f € L. Then

wf) = 5y [ Ft)e e
Q

are the Fourier coefficients, and

o0

o(fr)= Y alf)e™

k=—o00
is the Fourier series.
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Table 1. Values of the function D(a).

a fa(0) xo no | D(a)

1 max 0 1 30
0.9 max 0 1 19.683
0.8 max 0 1 12.288
0.7 max 0 1 7.203
0.6 max 0 1 3.888
0.5 max 0 1 1.875

0.45 max 0 1 |1.230188
0.43142 | max 0 1 | 1.039256
0.43141 | max | 32.792169 | 5 | 1.039267

0.425 | max |33.258949 | 5 | 1.042971
0.4125 | min | 26.674585 | 4 | 1.052067
0.4 min | 27.435558 | 4 | 1.043096
0.35 min | 13.589278 | 2 | 1.074429
0.3 min | 26.261611 | 3 | 1.041487
0.25 min | 6.852485 | 1 | 1.046843
0.2 min | 7.920941 | 1 | 1.205494
0.15 min | 52.276633 | 3 | 1.02588
0.1 min | 14.648387 | 1 | 1.073388
0.05 min | 32.856915 | 2 | 1.029758

Lemma 3. Leta >0, h>0,reN, €N, f € Lo, and let

sin 4 akh

D,(a,h) =su
( ) kEIZ) ar(kh)

Then
1635, (F)ll2 < 24 DL(a, )| f = Unpa(f) 2.

Proof. Using Parseval’s identity

lgll3 = / g =27 3" leno)

keZ

for g € Lo and the relations

L(f, 1) _24126 otk gip 4l akh

2
kez
!
Jika 4 (sin " 1 /sinkh\"
o)~ Thrith =g (et (1_3< kh2> +3< kh )) |
kez 2
we derive
kh
5ar, (I3 = (2m)2% ) " e (f)[ sin® a2 :
kEZ
Hf_Uh,rl Hg = 27TZ|Ck ‘2 2l kh)
kezZ
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Table 2. Values of the function G(a).

a 9a(0) xo no | Gla)
1 max 0 1 5.625
0.9 max 0 1 |3.690563
0.8 max 0 1 2.304
0.75 | max 0 1 |1.779785
0.732 | max 0 1 |1.614979
0.7315 | min | 0.149508 | 1 | 1.610578
0.725 | min | 0.59855 | 1 | 1.555982
0.7125 | min 0.9879 1 |1.463396
0.7 min | 1.249736 | 1 | 1.38486
0.65 min | 1.920253 | 1 | 1.172278
0.6 min | 2.375294 | 1 | 1.063513
0.55 min | 2.761446 | 1 | 1.013748
0.5 min | 3.141593 | 1 1
0.45 | min | 3.562653 | 1 | 1.011964
0.4 min | 4.029026 | 1 | 1.043056
0.35 | min | 4.500236 | 1 | 1.066309
0.3 min | 5.068232 | 1 | 1.040981
0.25 min | 6.283185 | 1 1
0.2 min | 7.827639 | 1 | 1.022169
0.15 | min | 10.569266 | 1 | 1.009132
0.1 min | 15.707963 | 1 1
0.05 | min |31.415927 | 1 1
Therefore,
SlIlSl akh
I IE = G2 D gy o 61
< sin® akh (2m)28 )2a2(kh) = 28D (a, h U 2 -
<sup” ) M2 (1) (kh) = 2D (@ WIS ~ Un (DI
keZ
The proof is completed by taking the square roots of both sides of relation (14). O
Remark 3. For the function f(x) = cosx we have
sin* @ h :
168, = 2" < o ) 15 = U )l

whence

1625 (F)ll2 4l <Sm aﬂf)
sup = 27 sup .
h>0 [1f = U (F)ll2 zer \ o (27)
Corollary 1. Let a >0, r, l € N. Then
. !
1537, ()2 4l <Sm4 aﬂ?)
sup sup = 2% sup .
>0 feLs 1 = Unpa(f)l2 zeR \ Qr(22)

In order to prove Corollary 1, it is sufficient to combine Lemma 3 with Remark 3.
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3. MAIN RESULTS

3.1. Theorem 1. Let a > %, l €N. Then

w4l(fa ah)?
sup sup

— 24 (3044)".
h>0 felo If = Una,i(f)ll2 (30a%)

Proof. In view of Remark 1 and Lemma 1 in Sec. 2, for a > é we have

sup D(at) = 30a*.
0<t<1

Using this fact and applying Lemma 3, we find that

l
wai(f,ah)y = sup ([0, (f)ll2 < 2% < sup D(at)> If = Unaa(H)ll2
0<t<1 0<t<1

< 24(30a")'[1f — Up 10 ()2

Therefore,
wa(f,ah)2 Al (o 401
sup sup < 27(30a™)".
>0 feLy [If = Unaa(f)ll2 (30a’)
The opposite inequality is obvious by virtue of Corollary 1 in Sec.2. ]

Theorem 2. Let a > i, Il € N. Then
l
wa(f,ah)2 41 <45 4>
sup sup =2 a .
r>0 feLy |1 = Un21(f)ll2 8

The proof of Theorem 2 is similar to that of Theorem 1 and is based on Remark 2, Lemmas 2
and 3, and Corollary 1 in Sec. 2.

Corollary 2. Let a > ;, h >0, f € Ls. Then

1 1
48Oa4w4(f’ ah)y <||f = Shi2(f)|l2 < 6w4(f’ "),
In order to prove Corollary 2, it is sufficient to combine Theorem 1 (with [ = 1) and

inequality (1) with »r =1 and m = 2.
In particular, Corollary 2 implies that for any f € Ly and h > 0,

1
30

Corollary 3. Let a > i, h >0, f € Ly. Then

s(£,8)y <17 = Snas(Dlla < gwalf, )y

1

0102 < 1f = Sn2a(Dll < genlf, e

In order to prove Corollary 3, suffice it to combine Theorem 2 (with [ = 1) and inequality

(1) with r = 2 and m = 2.
In particular, Corollary 3 implies that for any f € Ly and h > 0,

st stz < I1F = SuzalPlla < gt f. 2.
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3.2. By A denote the set of even real functions f from C' with the Fourier coefficients

1
ak(f)zﬁ/f(x)coskxdxzo, kE=0,1,2....

As is known [3, p. 277], if f € A, then its Fourier series uniformly converges on R, and the
following relation holds:

flx) = aogf) + Zak(f) cos k. (15)

Based on (15), we find that if f € A, then

f,x —24l E ap(f sm cos kx,

r l
sin kP 1 [sinkh\"
f(@) = Unpi(f, o) = Zak ( ( k2h2 +3< kh > cos kx,

kt
||54l HI= 24l Z ay sm4l ,

1f = Unpa(H)Il = Zak(f)al
k=1

Using the above relations and arguing as in proving Theorems 1 and 2, we readily obtain
the following assertions.

Theorem 1'. Let a > %, I € N. Then

sup sup w4l(f7 ah)oo
h>0 fea If = Uni(f)ll

Theorem 2'. Let a > i, l € N. Then

wai(f;ah)oo Al <45 4>l
sup sup =2 a* | .
h>0 fea |f = Un21(f)]| 8

— 24 (30a%)".

Translated by L. Yu. Kolotilina.
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