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BOUNDS FOR THE INVERSES OF GENERALIZED
NEKRASOV MATRICES

L. Yu. Kolotilina∗ UDC 512.643

The paper considers upper bounds for the infinity norm of the inverse for matrices in two subclasses
of the class of (nonsingular) H-matrices, both of which contain the class of Nekrasov matrices.
The first one has been introduced recently and consists of the so-called S-Nekrasov matrices. For
S-Nekrasov matrices, the known bounds are improved. The second subclass consists of the so-
called QN- (quasi-Nekrasov) matrices, which are defined in the present paper. For QN-matrices,
an upper bound on the infinity norm of the inverses is established. It is shown that in application
to Nekrasov matrices the new bounds are generally better than the known ones. Bibliography: 15
titles.

1. Introduction and preliminaries

The paper considers two classes of (nonsingular) H-matrices, both containing the Nekrasov
matrices, and upper bounds on the infinity norm of the inverse for matrices in these classes.
The first class SN is the known class of S-Nekrasov matrices. The second one is a new class
of matrices, which are referred to as the QN- (quasi-Nekrasov) matrices. We show that QN-
matrices are nonsingular and, moreover, they are H-matrices. On the other hand, the class of
QN-matrices contains the class N of Nekrasov matrices. Thus, matrices from both classes SN
and QN can be regarded as generalized Nekrasov matrices.

Recall some definitions and facts, which will be used in what follows.
A matrix A = (aij) ∈ C

n×n is called an H-matrix whenever its comparison matrix M(A) =
(mij), defined by the relation

mij =
{ |aii|, i = j,

−|aij|, i �= j,

is a nonsingular M -matrix. In accordance with this definition, all H-matrices are nonsingular.
A matrix A = (aij) ∈ C

n×n, n ≥ 2, is called a Nekrasov matrix if

|aii| > hi(A), i = 1, . . . , n, (1.1)

where the quantities hi(A) are defined by the following recursive relations:

h1(A) = r1(A) =
∑
j �=1

|a1j |; hi(A) =
i−1∑
j=1

|aij |
|ajj|hj(A) +

n∑
j=i+1

|aij |, i = 2, . . . , n. (1.2)

The nonsingularity of Nekrasov matrices was established by Gudkov in [6]. The facts that
the class N contains the class SDD of strictly diagonally dominant matrices and is itself con-
tained in the class of nonsingular H-matrices were established by Robert [13].

Note that as it follows from the definition, all the diagonal entries of Nekrasov matrices are
nonzero.

In matrix terms, the vector h(A) = (hi(A)) can be written as

h(A) = |D|(|D| − |L|)−1|U |e = |D|[In − (|D| − |L|)−1M(A)]e, (1.3)
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where e = [1, . . . , 1]T ∈ R
n is the unit vector, In is the identity matrix of order n, and

A = D + L + U is the standard splitting of a matrix A ∈ C
n×n into its diagonal (D), strictly

lower triangular (L), and strictly upper triangular (U) parts, respectively. Thus, condition
(1.1) amounts to the relation (see [13])

(|D| − |L|)−1|U |e = [In − (|D| − |L|)−1M(A)]e < e, (1.4)

and (1.1) actually is the condition of strict diagonal dominance of the Z-matrix

(|D| − |L|)−1M(A) = In − (|D| − |L|)−1|U |,
obtained from the comparison matrix M(A) by premultiplying it with the lower triangular
matrix (|D| − |L|)−1.

In [9], the following upper bound on the norm of the inverse to a Nekrasov matrix was
established.

Theorem 1.1. Let A = (aij) ∈ C
n×n be a Nekrasov matrix of order n ≥ 2. Then

‖A−1‖∞ ≤ max
i∈〈n〉

zi(A)
|aii| − hi(A)

, (1.5)

where we denote 〈n〉 = {1, . . . , n}.
Here and in what follows, the vector z(A) = (zi(A)) is defined by the relation

z(A) = |D|(|D| − |L|)−1e. (1.6)

As was shown in [9], the bound (1.5) generally improves the earlier bounds proposed by
Cvetković et al. in [1] and, for an SDD matrix A = (aij), the bound (1.5) is at least as good
as the classical Varah bound [14]

‖A−1‖∞ ≤ 1
mini∈〈n〉{|aii| − ri(A)} , (1.7)

i.e.,

max
i∈〈n〉

zi(A)
|aii| − hi(A)

≤ 1
mini∈〈n〉{|aii| − ri(A)} , (1.8)

where
ri(A) =

∑
j �=i

|aij |, i = 1, . . . , n,

and equality in (1.8) occurs if and only if

min
i∈〈n〉

{M(A)e}i = min
i∈〈n〉

|aii| − hi(A)
zi(A)

.

Given a nonempty subset S ⊆ 〈n〉, the notion of SDD matrices can be generalized as follows
(see [4, 15]). Define the partial sums

rSi (A) =
∑

j∈S\{i}
|aij |, i ∈ S. (1.9)

In these terms, a matrix A = (aij) ∈ C
n×n, n ≥ 2, is said to be S-SDD (S-strictly diagonally

dominant) if the following two conditions are fulfilled:

|aii| > rSi (A) for all i ∈ S (1.10)

and [|aii| − rSi (A)
] [

|ajj| − rS̄j (A)
]

> rS̄i (A) rSj (A) for all i ∈ S and j ∈ S̄. (1.11)
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The S-SDD matrices (under a different name) were first introduced in [5], where it was
proved that they are H-matrices. Essentially the same matrix class was also considered in
[7] as a special case of block matrices satisfying pseudoblock diagonal dominance conditions
of the Ostrowski–Brauer type. Under the name of PBDD(n1, n2) essentially the same matrix
class also appeared in [8].

Obviously, the SDD matrices form a proper subclass of the class of S-SDD matrices, unless
S = 〈n〉.

We will need the following upper bound on the inverses of S-SDD matrices, which was
originally established in [11] and proved in a different way in [8].

Theorem 1.2. Let A = (aij) ∈ C
n×n, n ≥ 2, be an S-SDD matrix for a nonempty proper

subset S of the index set 〈n〉. Then

‖A−1‖∞ ≤ max
i∈S,
j∈S̄

max
{

ρSij(A), ρS̄ji(A)
}

, (1.12)

where

ρSij(A) =
|aii| − rSi (A) + rSj (A)

(|aii| − rSi (A))(|ajj | − rS̄j (A)) − rS̄i (A)rSj (A)
, i ∈ S, j ∈ S̄. (1.13)

The paper is organized as follows. Section 2 considers the S-Nekrasov matrices. For such
matrices, a new upper bound on the infinity norm of the inverse is established; it is proved
that it generally improves the previous bounds. Also it is shown that for Nekrasov matrices
the new bound is better than the bound of Theorem 1.1.

The QN-matrices are introduced in Sec 3. It is shown that the class of QN-matrices is a
subclass of the H-matrices and contains the Nekrasov matrices. For the norm of the inverse
to a QN-matrix, an upper bound is established. For Nekrasov matrices, the bound obtained
is shown to improve the bound of Theorem 1.1.

2. Upper bounds for the inverse of an SN-matrix

The class SN of S-Nekrasov matrices, where S is a nonempty proper subset of the index
set, was defined in [3] in terms of the quantities

hS
1 (A) = rS1 (A); hS

i (A) =
i−1∑
j=1

|aij |
|ajj|h

S
j (A) +

∑
j≥i+1
j∈S

|aij |, i = 2, . . . , n. (2.1)

A matrix A = (aij) ∈ C
n×n, n ≥ 2, is said to be an S-Nekrasov (shortly, SN-) matrix if

|aii| > hS
i (A) for all i ∈ S (2.2)

and [|aii| − hS
i (A)

] [
|ajj| − hS̄

j (A)
]

> hS̄
i (A) hS

j (A) for all i ∈ S and j ∈ S̄. (2.3)

Denote

eS = (eSi ), eSi =
{

1, i ∈ S,
0, i ∈ S̄.

Then, as is not difficult to realize, relations (2.1) can be written in matrix-vector form as

hS(A) = |L||D|−1hS(A) + |U |eS ,

implying that
hS(A) = |D|(|D| − |L|)−1|U |eS . (2.4)
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As is readily seen from the definitions, the Nekrasov matrices form a subclass of the S-Nek-
rasov matrices. On the other hand, the class SN contains the class S-SDD (see [3, 2]).

In [2], for the inverses of S-Nekrasov matrices the following two upper bounds were estab-
lished.

Theorem 2.1. Let S be a nonempty proper subset of the set 〈n〉, n ≥ 2, and let A = (aij) ∈
C
n×n be an SN-matrix. Then

‖A−1‖∞ ≤ max
i∈〈n〉

zi(A) · max
i∈S,
j∈S̄

max
{

χS
ij(A), χS̄

ji(A)
}

, (2.5)

and

‖A−1‖∞ ≤ max
i∈〈n〉

zi(A)
|aii| · max

i∈S,
j∈S̄

max
{
χ̃S
ij(A), χ̃S̄

ji(A)
}

, (2.6)

where the vector z(A) is defined in (1.6) and

χS
ij(A) =

|aii| − hS
i (A) + hS

j (A)[|aii| − hS
i (A)

] [
|ajj| − hS̄

j (A)
]
− hS̄

i (A)hS
j (A)

, i ∈ S, j ∈ S̄; (2.7)

χ̃S
ij(A) =

|aii||ajj| − |ajj |hS
i (A) + |aii|hS

j (A)[|aii| − hS
i (A)

] [
|ajj| − hS̄

j (A)
]
− hS̄

i (A)hS
j (A)

, i ∈ S, j ∈ S̄. (2.8)

As indicated in [2], in the particular case of Nekrasov matrices, the bounds (2.5) and (2.6)
improve the corresponding bounds presented in [1].

The bounds of Theorem 2.1 are improved in the following theorem, whose proof is based on
the same idea as that of Theorem 1.1.

Theorem 2.2. Let S be a nonempty proper subset of the set 〈n〉, n ≥ 2, and let A = (aij) ∈
C
n×n be an SN-matrix. Then

‖A−1‖∞ ≤ max
i∈S,
j∈S̄

max
{

ξSij(A), ξS̄ji(A)
}

, (2.9)

where

ξSij(A) =
zj(A)

[|aii| − hS
i (A)

]
+ zi(A)hS

j (A)[|aii| − hS
i (A)

] [
|ajj| − hS̄

j (A)
]
− hS̄

i (A)hS
j (A)

, i ∈ S, j ∈ S̄. (2.10)

Proof. Since A ∈ SN, then the matrix

C = (cij) = |D|(|D| − |L|)−1M(A) = |D| − |D|(|D| − |L|)−1|U | (2.11)

is an S-SDD matrix by Theorem 3.2 in [10]. Define the diagonal matrix Δ = diag (δ1, . . . , δn)
from the condition

Δe = |D|(|D| − |L|)−1e = z(A).

Then Δ has positive diagonal entries and

Δ−1|D|(|D| − |L|)−1e = e,

so that
‖Δ−1|D|(|D| − |L|)−1‖∞ = 1. (2.12)
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Using (2.11) and (2.12), we derive

‖M(A)−1‖∞ = ‖(Δ−1C)−1
[
Δ−1|D|(|D| − |L|)−1

] ‖∞
≤ ‖(Δ−1C)−1‖∞ · ‖Δ−1|D|(|D| − |L|)−1‖∞
= ‖(Δ−1C)−1‖∞.

(2.13)

From relation (2.4),
hS(A) = |D|(|D| − |L|)−1|U |eS ,

and (2.11) it follows that

hS
i (A) = |aii| − {CeS}i, i = 1, . . . , n,

or, since C has positive diagonal and nonpositive off-diagonal entries,

|cii| − rSi (C) = |aii| − hS
i (A), i ∈ S, (2.14)

and
rSj (C) = hS

j (A), j ∈ S̄. (2.15)

By applying Theorem 1.2 to the S-SDD matrix Δ−1C and taking into account relations (2.13)
and (2.14)–(2.15), we obtain

‖M(A)−1‖∞ ≤ max
i∈S,
j∈S̄

max
{

ρSij(Δ
−1C), ρS̄ji(Δ

−1C)
}

= max
i∈S,
j∈S̄

max
{

ξSij(A), ξS̄ji(A)
}

.

Now, in order to complete the proof, it only remains to recall that, by the Ostrowski theorem
[12], for the H-matrix A we have

‖A−1‖∞ ≤ ‖M(A)−1‖∞. �

Below, we demonstrate that the new bound (2.9) of Theorem 2.2 improves both bounds
of Theorem 2.1 and also that for Nekrasov matrices, the bound (2.9) generally improves the
known bound (1.5).

Theorem 2.3. Let S be a nonempty proper subset of the set 〈n〉, n ≥ 2, and let A = (aij) ∈
C
n×n be an SN-matrix. Then

max
i∈S,
j∈S̄

max
{

ξSij(A), ξS̄ji(A)
}
≤ max

i∈〈n〉
zi(A) · max

i∈S,
j∈S̄

max
{

χS
ij(A), χS̄

ji(A)
}

(2.16)

and

max
i∈S,
j∈S̄

max
{

ξSij(A), ξS̄ji(A)
}
≤ max

i∈〈n〉
zi(A)
|aii| · max

i∈S,
j∈S̄

max
{
χ̃S
ij(A), χ̃S̄

ji(A)
}

, (2.17)

where the quantities ξSij(A), χS
ij(A), and χ̃S

ij(A) are defined in (2.10), (2.7), and (2.8), respec-
tively.

Proof. In order to prove (2.16), it is sufficient to ascertain that

ξSij(A) ≤ max
i∈〈n〉

zi(A) · χS
ij(A), i ∈ S, j ∈ S̄. (2.18)

Indeed, since the denominators of ξSij(A) and χS
ij(A) coincide, (2.18) stems from the trivial

inequality

zj(A)
[|aii| − hS

i (A)
]
+ zi(A)hS

j (A) ≤ max
i∈〈n〉

zi(A) · [|aii| − hS
i (A) + hS

j (A)
]
.
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In order to establish (2.17), we denote

α = max
i∈〈n〉

zi(A)
|aii| .

Then we have
zi(A) ≤ α|aii| and zj(A) ≤ α|ajj |.

By using the latter inequalities, we obtain

zj(A)
[|aii| − hS

i (A)
]
+ zi(A)hS

j (A) ≤ α
[|aii||ajj| − |ajj|hS

i (A) + |aii|hS
j (A)

]
,

which shows that the numerator of ξSij(A) never exceeds that of maxi∈〈n〉
{

zi(A)
|aii|

}
χ̃S
ij(A). It

only remains to observe that the denominators of the two fractions are the same. �
Theorem 2.4. Let A = (aij) ∈ C

n×n be a Nekrasov matrix. Then

max
i∈S,
j∈S̄

max
{
ξSij(A), ξS̄ji(A)

}
≤ max

i∈〈n〉
zi(A)

|aii| − hi(A)
, (2.19)

where ξSij(A) are defined in (2.10).

Proof. Observe that as it follows from their proofs, the bounds (1.5) and (2.9) are the Varah
bound (1.7) and the bound (1.12), respectively, on the inverse of the same SDD matrix C =
|D|(|D| − |L|)−1M(A). Consequently, inequality (2.19) stems from the known fact (see [8])
that for an SDD matrix, the bound (1.12) is generally sharper than (1.7). �

3. QN-matrices

A matrix A = D+L+U ∈ C
n×n, n ≥ 2, with nonzero diagonal entries is called a QN-matrix

if the matrix
G = M−1M(A) = In − M−1|L||D|−1|U | (3.1)

is strictly diagonally dominant. Here and in what follows, we denote

M = (|D| − |L|)|D|−1(|D| − |U |) = M(A) + |L||D|−1|U |. (3.2)

Obviously, the matrix M is monotone, i.e., it is invertible and M−1 is a nonnegative matrix.
Since, by (3.1), G is a Z-matrix (i.e., its off-diagonal entries are nonpositive), from the

property of strict diagonal dominance of G it follows that it is a nonsingular M -matrix, and
the strict diagonal dominance amounts to the condition

Ge = M−1M(A)e = (In − M−1|L||D|−1|U |)e > 0. (3.3)

Thus, A ∈ QN if and only if
e > M−1|L||D|−1|U |e. (3.4)

First we prove that QN-matrices are H-matrices.

Theorem 3.1. Let A ∈ C
n×n, n ≥ 2, be a QN-matrix. Then A is an H-matrix.

Proof. By (3.1), we have
M(A) = MG,

so that M(A) is a product of a monotone matrix times an M -matrix. Therefore, M(A) is a
monotone matrix. This means that M(A) is an M -matrix, whereas A is an H-matrix. �

Next we show that the class QN contains the class N.

Theorem 3.2. Let A ∈ C
n×n, n ≥ 2, be a Nekrasov matrix. Then A is a QN-matrix.
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Proof. Indeed, since A ∈ N, the Z-matrix

C = (|D| − |L|)−1M(A) = In − (|D| − |L|)−1|U |
is strictly diagonally dominant, i.e., the vector Ce is positive. But then the vector

Ge = (|D| − |U |)−1|D|Ce

is positive a fortiori. This means that the Z-matrix G = M−1M(A) is strictly diagonally
dominant, whence A is a QN-matrix. �

Now we provide an upper bound on the infinity norm of the inverse to a QN-matrix.

Theorem 3.3. Let A ∈ C
n×n, n ≥ 2, be a QN-matrix. Then

‖A−1‖∞ ≤ max
i∈〈n〉

{M−1e}i
{M−1M(A)e}i . (3.5)

Proof. The matrix A being a QN-matrix, the matrix G defined in (3.1) is strictly diagonally
dominant, and we have

M(A) = MG. (3.6)

Now define the diagonal matrix Δ = diag (δ1, . . . , δn) via the relation

M−1e = Δe. (3.7)

Observe that since M is monotone, Δ has positive diagonal entries. By (3.7), we have

(MΔ)−1e = e.

For the monotone matrix MΔ, the latter relation means that

‖(MΔ)−1‖∞ = 1. (3.8)

Using (3.6) and (3.8), we derive

‖M(A)−1‖∞=‖(Δ−1G)−1(MΔ)−1‖∞≤‖(Δ−1G)−1‖∞ ‖(MΔ)−1‖∞=‖(Δ−1G)−1‖∞. (3.9)

Since, by Theorem 3.1, A is an H-matrix, by the Ostrowski theorem [12], we have

‖A−1‖∞ ≤ ‖M(A)−1‖∞. (3.10)

Now the proof is completed by combining (3.9) with (3.10) and applying the classical Varah
bound (1.7) to the SDD M -matrix Δ−1G,

‖(Δ−1G)−1‖∞ ≤ 1
min
i∈〈n〉

{Δ−1Ge}i = max
i∈〈n〉

δi
{Ge} i

= max
i∈〈n〉

{M−1e}i
{M−1M(A)e}i . �

As is readily seen, in view of (1.6) and (1.3), the bound (3.5) can also be written in the form

‖A−1‖∞ ≤ max
i∈〈n〉

{(|D| − |U |)−1z(A)}i
{(|D| − |U |)−1(|D|e − h(A))}i ,

exhibiting the interrelation between (3.5) and (1.5).
The theorem below claims that for a Nekrasov matrix, the bound (3.5) of Theorem 3.3 is

in general tighter that the bound (1.5) of Theorem 1.1.

Theorem 3.4. Let A ∈ C
n×n, n ≥ 2, be an N-matrix. Then

max
i∈〈n〉

{M−1e}i
{M−1M(A)e}i ≤ max

i∈〈n〉
zi(A)

|aii| − hi(A)
. (3.11)
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Proof. Denote
M̃ = (|D| − |L|)|D|−1. (3.12)

Then we have (see (1.6))
M̃−1e = |D|(|D| − |L|)−1e = z(A) (3.13)

and
M̃−1M(A)e = |D| [In − (|D| − |L|)−1|U |] e.

In view of (1.3), the latter relation yields

{M̃−1M(A)e}i = |aii| − hi(A), i = 1, . . . , n. (3.14)

From (3.13) and (3.14) we obtain

max
i∈〈n〉

{M̃−1e}i
{M̃−1M(A)e}i

= max
i∈〈n〉

zi(A)
|aii| − hi(A)

. (3.15)

Denote

α = max
i∈〈n〉

{M̃−1e}i
{M̃−1M(A)e}i

. (3.16)

Then we obviously have

{M̃−1e}i ≤ α{M̃−1M(A)e}i, i = 1, . . . , n,

or, in vector notation,
M̃−1e ≤ αM̃−1M(A)e.

Premultiplying the relation obtained by the nonnegative matrix (|D|− |U |)−1 and using (3.2),
we arrive at the inequality

M−1e ≤ αM−1M(A)e,
which means that

{M−1e}i ≤ α{M−1M(A)e}i, i = 1, . . . , n. (3.17)
Now, in view of (3.15), (3.16), and (3.17), we have

max
i∈〈n〉

zi(A)
|aii| − hi(A)

= max
i∈〈n〉

{M̃−1e}i
{M̃−1M(A)e}i

= α ≥ max
i∈〈n〉

{M−1e}i
{M−1M(A)e}i .

This completes the proof of the theorem. �
In conclusion, it is worth mentioning that if A = D + L + U is a QN-matrix and

B = (D + L)D−1(D + U) = A + LD−1U,

then the (preconditioned) matrix

B−1A = In − B−1LD−1U

is an SDD matrix, along with the matrix G = M−1M(A).
Indeed, by Ostrowski’s theorem, we have

|(D + L)−1| ≤ (|D| − |L|)−1 and |(D + U)−1| ≤ (|D| − |U |)−1,

whence |B−1| ≤ M−1. This implies that

M(B−1A)e ≥ [
In − |B−1||L||D|−1|U |] e ≥ [

In − M−1|L||D|−1|U |] e = Ge > 0,

where (3.3) has been used.
Thus, not only the comparison matrix M(A) is transformed into an SDD matrix when

premultiplied by M−1, but the same holds for the QN-matrix A premultiplied by B−1.
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In particular, the splitting A = B − LD−1U is a convergent monotone splitting of a QN-
matrix A, and ρ(B−1LD−1U) < 1, where ρ is the spectral radius.

Translated by L. Yu. Kolotilina.
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3. L. Cvetković, V. Kostić, and S. Raus̆ki, “A new subclass of H-matrices,” Appl. Math.
Comput., 208, 206–210 (2009).
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