
Journal of Mathematical Sciences, Vol. 207, No. 5, June, 2015

PARALLEL APPROACHES AND TECHNOLOGIES OF
DOMAIN DECOMPOSITION METHODS

Y. L. Gurieva∗ and V. P. Il’in∗,† UDC 519.612

The efficiency of two-level iterative processes in the Krylov subspaces is investigated, as well as
their parallelization in solving large sparse nonsymmetric systems of linear algebraic equations
arising from grid approximations of two-dimensional boundary-value problems for convection-
diffusion equations with various coefficient values. Special attention is paid to optimization of
the sizes of subdomain intersections, to the types of boundary conditions on adjacent boundaries
in the domain decomposition method, and to the aggregation (or coarse grid correction) algorithms.
The outer iterative process is based on the additive Schwarz algorithm, whereas parallel solution of
the subdomain algebraic systems is effected by using a direct or a preconditioned Krylov method.
The key point in the programming realization of these approaches is the technology of forming
the so-called extended algebraic subsystems in the compressed sparse row format. A comparative
analysis of the influence of various parameters is carried out based on numerical experiments.
Some issues related to the scalability of parallelization are discussed. Bibliography: 13 titles.

1. Introduction

Creating parallel iterative algorithms for solving grid systems of linear algebraic equations
(SLAEs) arising from finite element or finite volume approximations of boundary-value prob-
lems is based on decomposition of a computational domain and is a multifaceted mathematical
and technological problem. On the one hand, a high convergence rate of the applied iterative
process should be provided. On the other hand, the overall performance of a computational
tool is highly dependent on the data structure used and on the program implementation of
algorithms on a multiprocessor computer system [1].

The aim of this paper is an experimental investigation of the impact on the paralleliza-
tion scalability of the following three algorithmic factors: the sizes of intersections of adjacent
subdomains, the type of iterated boundary conditions on their inner boundaries, and ap-
plication of aggregation (or coarse grid correction) methods [2]. As the test suit, we used
a rather simple but representative SLAE family, namely, five-point approximations of linear
convection-diffusion equations on a uniform grid in a rectangular domain [3, 4]. It is this some-
what idealized situation that allows one to describe the related computational and information
issues, as well as methods for coping with them.

One of the main computational tools used in solving very large (of orders of about 109)
sparse SLAEs in parallel is the two-level iterative process in the Krylov subspaces with the
block Jacobi preconditioning, which is the additive Schwarz method.

Section 2 states the original problems and describes the computational methods for solving
them. Section 3 presents some algorithms and implementation technologies for the so-called
“extended” subdomains, based on which domain decomposition is parallelized. Results of
numerical experiments for different initial data and parameters of algorithms are discussed in
the last section.

∗Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia, e-
mail: yana@lapasrv.sscc.ru.

†Novosibirsk State University, Novosibirsk, Russia, e-mail: ilin@sscc.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 428, 2014, pp. 89–106. Original article
submitted November 10, 2014.
724 1072-3374/15/2075-0724 ©2015 Springer Science+Business Media New York

DOI 10.1007/s10958-015-2395-4

2. Problem statement and description of parallel algorithms

Consider the Dirichlet problem for the convection-diffusion equation

−∂2u

∂x2
− ∂2u

∂y2
+ p

∂u

∂x
+ q

∂u

∂y
= f(x, y), (x, y) ∈ Ω, u|Γ = g(x, y), (1)

in a computational domain Ω = (ax, bx) × (ay, by), where Γ is the boundary of Ω, and, for
simplicity, the convection coefficients p, q are given constants.

The above boundary-value problem is discretized on a uniform grid
xi = ax + ihx, yj = ay + jhy , i = 0, 1, . . . , Nx + 1; j = 0, 1, . . . , Ny + 1;

hx = (bx − ax)/(Nx + 1), hy = (by − ay)/(Ny + 1),
(2)

using the five-point stencil, which yields linear algebraic equations of the form

(Au)l = al,lul + al,l−1ul−1 + al,l+1ul+1 + al,l−Nxul−Nx + al,l+Nxul+Nx = fl, (3)

where
l = l(i, j) ≡ i + (j − 1)Nx = 1, . . . , N = NxNy (4)

is the “global” (or continuous) number of a node of the inner grid. The coefficients can have
different forms, and specific versions of the formulas can be found in [3, 4]. Equations (3) are
written for the inner grid nodes; for the nodes near the boundary whose numbers belong to the
index set i = 1, Nx or j = 1, Ny the values of the solution known from the boundary conditions
are substituted into the corresponding equations and moved to their right-hand sides, so that
the corresponding coefficients al,l′ in (3) vanish. SLAE (3) is written in matrix-vector form as

Au = f, A = {al,l′} ∈ RN,N , u = {ul}, f = {fl} ∈ RN . (5)

Hereinafter, by Ω we denote not only the computational domain but also the set of grid
nodes (xi, yj) ∈ Ω (we will use the term “grid computational domain”), as well as the set of
indices l = 1, . . . , N of the vectors u and f of dimension N .

Now we decompose the domain Ω, i.e., represent it, first, as a union of identical (for sim-
plicity) nonintersecting rectangular subdomains

Ω =
P⋃

s=1

Ωs, P = PxPy,

each of which contains the same number of grid nodes

M = mxmy, Nx = Pxmx, Ny = Pymy, N = PM.

In a natural way, the subdomains form a two-dimensional macrogrid, whose macrovertices are
numbered by pairs of indices p, q (similar to the grid node indices i, j), whereas the “continu-
ous” number of a subdomain is defined as follows:

s = s(p, q) ≡ p + (q − 1)Px = 1, . . . , P ; p = 1, . . . , Px, q = 1, . . . , Py. (6)

Thus, a subdomain with number s(p, q) contains the grid nodes with indices

i = Ip−1 + 1 ≡ (p − 1)mx + 1, . . . , pmx ≡ Ip,

j = Jq−1 + 1 ≡ (q − 1)my + 1, . . . , qmy ≡ Jq,
(7)

where Ip and Jq are the initial numbers of the grid nodes in the (p, q)th subdomain in x and
y directions, and the global grid numbers l(i, j) are computed in accordance with (4). Every
subdomain Ωs has its own four faces, which jointly form a boundary not passing through the
grid nodes.

725

Now from the continuous ordering of nodes we turn to their subdomain-by-subdomain or-
dering: all the nodes in Ω1 are numbered first, then the nodes in Ω2 are numbered, etc. The
components of the vectors u and f are ordered consistently, and the original SLAE (3) takes
the following block form:

As,s�us +
∑

s′∈Qs

As,s′�us′ = fs, s = 1, . . . , P. (8)

Here, �us ∈ RNs is the subvector of the vector u whose components correspond to the nodes
from the subdomain Ωs, and Qs is the set of numbers of the subdomains adjacent to the
subdomain Ωs. Hereinafter, it is stipulated that the local node ordering in every subdomain
is the natural one; the local pairs of indices i′ = 1, . . . ,mx; j′ = 1, . . . ,my are introduced, and
the continuous number is determined by the formula l′ = i′ + (j′ − 1)mx, similar to (4). If the
subdomain number equals s(p, q), then the reordering of the nodes from the local order to the
global one is effected with the use of the quantities introduced in (7) in accordance with the
relations i = i′ + Ip−1, j = j′ + Jq−1.

Note that the above formalism pertains to a decomposition of the grid domain without
subdomains overlapping and without usage of separator nodes shared by adjacent subdomains.
However, in order to increase the generality and efficiency of the algorithms discussed below,
it is necessary to turn to constructing “extended” subdomains with nonempty intersections.

Let ωl denote a grid stencil or a set of nodes adjacent to the lth node, i.e., the set of numbers
of those components of the desired grid solution which are involved in the corresponding lth
equation of the form (3). For a grid subdomain Ωs, by Γs = Γ0

s we denote its boundary, i.e.,
the set of nodes external with respect to Ωs and having at least one of their neighboring nodes
in Ωs (�Ωs = �Ω0

s = Ωs ∪ Γ0
s is the closure of the grid subdomain Ωs). Further, let Γ1

s denote
the first extended boundary, or the first external front �Ωs, i.e., the set of nodes that do not
lie in �Ωs but have at least one neighboring node in �Ωs (�Ω1

s is the first extension of �Ω0
s). The

subsequent stages of extending a grid subdomain are defined similarly; the number of such
stages Δ is called the parameter of the extended subdomain �ΩΔ

s = ΩΔ
s

⋃
ΓΔ

s , where the nodes
from ΓΔ

s no longer belong to ΩΔ
s ; the number of nodes in ΩΔ

s is denoted by �Ns. An example
of an extended subdomain with Δ = 3 is presented in Fig. 1.

In building an iterative Schwarz process in grid subdomains, the interface links between
adjacent subdomains can be taken into account in different ways. Let the lth node be a near-
boundary one in the subdomain ΩΔ

s , i.e., l ∈ ΓΔ−1
s . Write the corresponding equation of the

algebraic system in the following form:
(
al,l + θl

∑

l′ /∈ΩΔ
s

al,l′
)
un

l +
∑

l∈ΩΔ
s

al,l′u
n
l′ = fl +

∑

l′ /∈ΩΔ
s

al,l′
(
θlu

n−1
l − un−1

l′

)
. (9)

Here, n is the iteration number, and to the right-hand and left-hand sides of relation (9) terms
with the same coefficients and involving the factor θl, which is a parameter of the iterative
process, are added (see Fig. 2). Observe that the case θl = 0 can be interpreted as using the
Dirichlet boundary condition when solving the auxiliary subproblem in Ωs. Similarly, the case
θl = 1 corresponds to the Neumann condition, and the value θl ∈ (0, 1) corresponds to the
boundary condition of the third type (or the Robin condition).

In matrix form, the algorithm considered can be represented as the block Jacobi method

�Bs(�un+1
s − �un

s) = �fn
s − (�A�un)s ≡ �rn

s . (10)

Here, the subvectors �un
s and �fn

s correspond to the extended subdomains and have dimension �Ns;
�Bs ∈ R �Ns, �Ns are preconditioning matrices, whose diagonal entries depend on the parameters θl.

726

Fig. 1. An example of subdomain extension.

Fig. 2. A grid stencil of a near-boundary node.

The iterative process of the form (10) is underdetermined because the unknowns of �un+1
s

are not uniquely determined in the intersections of the subdomains. We will use the restricted
additive Schwarz (RAS) method, in which the subsequent iterative solution is uniquely deter-
mined by un+1 =

⋃
s

un+1
s , where un+1

s ∈ Ωs form a set of values of the subvector �un+1
s , which is

defined in the extended subdomain �Ωs, though its nodes belong to Ωs (for the sth subdomain,
one can define a restriction operator Rs : �Ωs → Ωs). The RAS method can be written in the
following form:

un+1 = un + B−1
rasr

n, B−1
ras = R �A−1W T , �A = W T AW = block-diag {As ∈ R �Ns, �Ns}, (11)

727

where W = [w1 . . . wP] ∈ RN,P is a rectangular matrix, and each of its columns ws has unit
components in the nodes from �Ωs and zeros elsewhere. Note that even if the original SLAE is
symmetric, the preconditioning matrix Bras from (11) is in general unsymmetric. In addition,
the inversion of the blocks As of the matrix �A actually reduces to solving decoupled subsystems
in the corresponding subdomains, which is the basis for parallelization of the additive Schwarz,
or the block Jacobi method.

The rate of convergence of the above iterative process depends on the number of subdomains
or, more exactly, on the diameter of the graph representing the macrogrid resulting from the
domain decomposition. This is due to the fact that a single iteration transmits the solution
perturbation from a subdomain to the neighboring (adjacent) subdomains only. In order to
speed up the iterative process, it is natural to use, at every step, not only the nearest but
also some remote subdomain couplings. To this end, in decomposition algorithms, different
approaches (deflation, coarse grid correction, aggregation, etc.), which are similar to some
extent to the multigrid principle, as well as to low-rank approximations of matrices, are used
(see the references provided at the special site [10]).

We will consider the following approach based on the interpolation principle. Let Ωc be a
coarse grid with Nc nodes, Nc � N , in the computational domain Ω; the nodes of the original
and coarse grids are not necessarily the same.

By ϕ1, . . . , ϕNc denote a set of basis interpolating polynomials of order M on the grid Ωc.
Without loss of generality, we assume that they are finite and form an expansion of unity, i.e.,

Nc∑

k=1

ϕk(x, y) = 1.

In this basis, the desired solution of SLAE (5) can be represented as

u =
{

ui,j ≈ uc
i,j =

Nc∑

k=1

ckϕk(xi, yj)
}

= Φ�u + ψ, (12)

where �u = {ck} ∈ RNc is the vector of coefficients of the expansion in terms of the basis
functions; ψ is the approximation error, and Φ = [ϕ1 . . . ϕNc] ∈ RN,Nc is the rectangular
matrix whose kth column, k = 1, . . . , N , consists of the values of the basis function ϕk(xi, yj)
at the nodes of the original grid Ω (most of the entries of Φ vanish because the basis is
finite). The columns, or the functions ϕk can be treated as orthonormal but not necessarily.
If at a certain kth node Pk of the coarse grid Ωc only one basis function is not vanishing
(ϕk(Pk′) = δk,k′), then �uk = ck is the exact value of the desired solution at the node Pk. On
substituting (12) into the original SLAE, we obtain the system

AΦ�u = f − Aψ; (13)

premultiplying the latter by ΦT , we have

�A�u ≡ ΦTAΦ�u = ΦTf − ΦTAψ ≡ �f ∈ RNc . (14)

In what follows, we assume that the error ψ in (12) is sufficiently small and omit it. In this
way, for an approximate coarse grid solution �u we obtain the system

�A�u = ΦT f ≡ �f. (15)

If the matrix A is nonsingular and Φ is a full-rank matrix (the rank of Φ is much less
than N), which is stipulated below, then from (14) it follows that

u ≈ �u = Φ�u = Φ �A−1
�f = B−1

c f, B−1
c = Φ(ΦT AΦ)−1ΦT .

728

Moreover, for the error of the approximate solution we have

u − �u = (A−1 − B−1
c)f. (16)

The error of the approximate solution can also be represented in terms of the approximation
error ψ. By subtracting Eqs. (14) and (15) term by term, we obtain

�A(�u − �u) = −ΦT Aψ,

which yields the desired equation

u − �u = Φ�u + ψ − Φ�u = ψ − B−1
c Aψ.

The matrix B−1
c introduced above can be regarded as a low-rank approximation to the

matrix A−1 and used as a preconditioner to build an iterative process. In particular, for an
arbitrary vector u−1, the initial guess can be chosen in accordance with the formula

u0 = u−1 + B−1
c r−1, r−1 = f − Au−1. (17)

In this case, the corresponding initial residual r0 = f − Au0 is orthogonal to the coarse-grid
subspace

Φ = span {ϕ1, . . . , ϕNc} (18)
in the sense that

ΦT r0 = ΦT (r−1 − AΦ �A−1ΦT r−1) = 0. (19)
The relations provided in [7] form the basis for the deflated conjugate gradient method,

wherein the initial direction vector is given by the formula

p0 = (I − B−1
c A)r0, (20)

implying that the following orthogonality condition is fulfilled:

ΦT Ap0 = 0. (21)

Subsequent iterations are performed based on the relations

un+1 = un + αnpn, rn+1 = rn − αnApn, pn+1 = rn+1 + βnpn − B−1
c Arn+1,

αn = (rn, rn)/(pn, Apn), βn = (rn+1, rn+1)/(rn, rn).
(22)

At every step of this method, which will be referred to as the DCG, the following relations
hold:

ΦT rn+1 = 0, ΦT Apn+1 = 0. (23)
If now we turn back to the additive Schwarz method (11), then we can attempt to accelerate

it by the coarse-grid preconditioner B−1
c (in addition to the preconditioner B−1

ras). We will
consider this issue in a more general context, assuming that the matrix A is unsymmetric and
a few (rather than two) preconditioning matrices are available. Moreover, the preconditioners
can change from iteration to iteration, which corresponds to the so-called dynamic (or flexible)
preconditioning.

In order to solve a SLAE with an unsymmetric matrix A, we build a family of multi-
preconditioned semiconjugate residuals methods, which are based on combining two ideas
presented in [5, 6].

Let r0 = f − Au0 be the initial residual of the algebraic system, and let B
(1)
0 , . . . , B

(m)
0

be some nonsingular easily invertible preconditioning matrices. Using them, compose the
rectangular matrix of the initial direction vectors p0

k, k = 1, . . . ,m,

P0 = [p0
1 · · · p0

m] ∈ RN,m, p0
l =

(
B

(l)
0

)−1
r0, (24)

which are assumed to be linearly independent.

729

(Note that the algorithms considered can readily be extended to block iterative methods in
the Krylov subspaces, in which case m different initial guesses u0

l rather than an only one are
used. The initial direction vectors in (24) are then defined by the formulas

p0
l =

(
B

(l)
0

)−1
r0
l , r0

l = f − Au0
l , l = 1, . . . ,m,

but we do not dwell on this any further.)
Successive approximations un and the corresponding residuals rn = f −Aun are sought for

with the use of the recursive relations

un+1 = un + Pn�αn = u0 + P0�α0 + · · · + Pn�αn,

rn+1 = rn − APn�αn = r0 − AP0�α0 − · · · − APn�αn.
(25)

Here, �αn = (α1
n, . . . , αm

n)T are m-dimensional vectors. The direction vectors pn
l , which are the

columns of the rectangular matrices Pn = [Pn
1 · · ·Pn

m] ∈ RN,m, are orthogonal in the sense
that they satisfy the relations

P T
n AT APk = Dn,k = 0 for k �= n, (26)

where Dn,n is a symmetric positive-definite matrix, provided that the matrices Pk are of full
rank, which is stipulated.

It is obvious that under conditions (26) the residuals satisfy the relations

(
rn+1, rn+1

)
=

(
r0, r0

) −
n∑

k=0

[2(r0, APk�αk) − (APk�αk, APk�αk)]. (27)

Then the functional minimization conditions

∂
(
rn+1, rn+1

)
/∂α

(l)
k = 0, k = 0, 1, . . . , n; l = 1, . . . ,m,

yield the following formula for the “vector coefficients” �αn:

�αn =
(
D−1

n,n

)−1
P T

n AT r0. (28)

For such values of �αn, as is readily verified, the vectors pn
k and rn

k satisfy the semiconjugation
conditions

P T
k AT rn+1 = 0, k = 0, 1, . . . , n. (29)

In this case, for the functionals of the residuals we have the relations
(
rn+1, rn+1

)
=

(
rn, rn

) − (
Cnr0, r0

)
=

(
r0, r0

) − (
C0r

0, r0
) − · · · − (

Cnr0, r0
)
,

Cn = PnAD−1
n,nAT P T

n .
(30)

The matrices composed of the direction vectors will be computed from the recursive relations

Pn+1 = Qn+1 +
n∑

k=0

Pk
�βk,n, (31)

where
Qn+1 =

[
qn+1
1 . . . qn+1

m

]
, qn+1

l =
(
B

(l)
n+1

)−1
rn+1, (32)

are auxiliary matrices; B
(l)
n+1 are preconditioning matrices, and �βk,n are coefficient vectors,

which are determined from (31) with account for the orthogonality conditions (26) by the
formula

�βk,n = −D−1
k,kP

T
k AT AQn+1. (33)

730

By using (31) and (25), we obtain the relations

QT
k AT rn =

(
P T

k AT −
k−1∑

j=0

�βT
i,kP

T
i AT

)(
r0 −

k−1∑

i=0

APi�αi

)
, (34)

implying that for k = n,
QT

nAT rn = P T
n AT r0.

This allows us to obtain, instead of (28), the new formula

�αn = D−1
n,nQT

nAT rn.

For k < n, from (34) we infer the semiconjugacy property of the residuals,

QT
k AT rn = 0, k < n, (35)

which justifies the name of the method under consideration.

3. Some features of parallel implementation technologies

The purpose of this paper is to verify, test, and compare the efficiency of various algo-
rithms for solving large sparse SLAEs in order to optimize them and then incorporate into
the KRYLOV library [11] of parallel algebraic solvers. The main requirements to an adequate
software are its high and scalable performance, and no formal restrictions on the orders of the
SLAEs to be solved and on the number of processors or computational cores used. Note that
according to [8], the strong and weak scalabilities are distinguished. The first notion character-
izes a decrease in the execution time for a large problem as the number of computing devices
increases, whereas the second notion means that the solution time remains approximately the
same as the problem dimension (the number of degrees of freedom) and the number of devices
increase.

The algorithms were coded with account for the architecture of the SSCC SD RAS clus-
ter [12] (where the KRYLOV library is available) but without using the GPGPU, as their
utilization in the domain decomposition methods considered has its own technological compu-
tational complexity and needs a special study.

Computations were carried out in the following natural way: if a computational domain was
divided into P subdomains, then the solution was performed on P + 1 CPUs (one being the
root processor, and every other processor corresponding to its own subdomain), and the same
number of MPI processes was formed. The auxiliary algebraic subsystems in the subdomains
were solved simultaneously on the multicore CPUs with the usage of multithread OpenMP
calculations.

The algorithms from the KRYLOV library are designed for solving large sparse SLAEs
arising from approximation of multidimensional boundary-value problems on nonstructured
grids. For this reason, the well-known compressed sparse row (CSR) format of the matrix
storage is used to store the nonzero matrix entries. At the preliminary stage, the global
matrix A is stored on the root processor, and then the distributed storage of the block rows �As

from (10) for the sth extended subdomains on the respective processors is used.
Note that for the two-dimensional grid boundary-value problems under consideration, a

two-dimensional balanced domain decomposition into subdomains is considered, where, for
approximately equal numbers of nodes NS ≈ N/P in every subdomain, the macrogrid diame-
ter d (for the macrogrid composed of the subdomains) is equal, approximately, to

√
P . As the

number of iterations of the additive Schwarz method, even with the usage of the Krylov meth-
ods, is proportional to dγ , γ > 0, this yields a significant advantage over the one-dimensional
decomposition, for which d ≈ P .

731

A scalable parallelization of the algorithms is provided by synchronizing computations in
the subdomains by means of MPI and by minimizing the time losses during interprocessors
communications. The isolated SLAEs in Ωs are solved by a direct or an iterative method,
requiring (N/P)γ1 , γ1 > 0, operations at every step of the two-level process. Since only the
data corresponding to the peripheral nodes of adjacent subdomains must be exchanged, the
volume of this information is much less and proportional to (N/P)γ1/2, allowing one to carry
out arithmetic and communication operations simultaneously.

A high performance of the code based on the approach presented is ensured by an active
usage of the standard functions and matrix-vector operations from BLAS and SPARSE BLAS
included into MKL INTEL [9].

4. Numerical results

We present results of numerical solution of five-point SLAEs corresponding to the Dirichlet
problem in a square on square grids with 1282 and 2562 nodes. Computations were carried
out on P = 22, 42, 82 processors, each one corresponding to one of the subdomains forming a
square macrogrid. Iterations over the subdomains were realized with the use of the BiCGStab
algorithm [13] and the stopping criterion

||rn||2 ≤ 10−8||f ||2.
The auxiliary subdomain subsystems were solved by the direct algorithm from the multi-
thread program PARDISO from Intel MKL [9]. It should be emphasized that the most time-
consuming part of the LU matrix decomposition was performed only once prior to iterations.

In Table 1, every cell contains the numbers of iterations over subdomains and the times
of solving SLAEs on the grids of sizes 1282 and 2562 (two upper and lower pairs of figures,
respectively); the first and third lines correspond to the zero convection, whereas the second
and fourth lines correspond to the convection coefficients p = q = 4.

P \ Δ 0 1 2 3 4 5
18 1.75 11 1.45 9 1.37 7 1.26 7 1.26 6 1.20

4 31 2.45 17 1.77 13 1.66 12 1.53 11 1.50 10 1.35
27 6.85 16 4.37 12 3.51 10 3.02 9 2.82 8 2.49
46 11.37 25 6.53 19 5.16 17 4.74 15 4.28 13 3.76
32 1.42 18 1.18 14 1.19 12 1.09 11 0.89 9 0.79

16 41 2.23 25 2.6 19 2.44 16 1.90 14 1.28 14 1.78
41 3.85 24 2.83 20 2.20 17 1.80 14 1.38 14 1.66
58 5.96 35 3.55 28 3.03 22 2.58 19 1.99 18 1.99
43 1.56 26 1.66 19 1.39 16 1.50 14 1.56 12 0.86

64 57 2.02 34 1.91 26 1.78 21 1.98 20 1.69 18 1.35
60 4.75 36 4.16 27 3.35 22 3.11 20 3.00 18 4.66
87 7.04 47 5.61 38 4.89 31 4.13 28 4.02 25 4.48

Table 1. The numbers of iterations and solution times (in seconds) on the grids
of sizes 1282 and 2562.

The results obtained demonstrate that as the overlapping parameter Δ increases up to 5,
the number of iterations reduces 3–4 times; however, for large values of Δ, the solution time
increases. Thus, for almost all grids and numbers of processors, the optimal value of Δ is
about 3–4. If the convection coefficients p, q have nonzero values, then the number of iterations
increases approximately by 30–50%.

732

In the tables below, for the sake of brevity, only the results for the Poisson equation (with
zero convection coefficients in Eq. (1)) are presented. As the experiments show, for moderate
values of p and q (|p| + |q| < 50) the behavior of the iterative process varies slightly.

Table 2 presents the numbers of iterations for different values of θ from Eq. (9), which
specify the interface boundary conditions for the adjacent subdomains (in every cell, the left
and right figures correspond to the grids with 1282 and 2562 nodes, respectively).

P \ θ 0 0.5 0.6 0.7 0.9975
4 18 27 16 26 16 24 14 23 10 12
16 32 41 28 40 27 39 27 40 31 75
64 43 60 42 56 40 55 41 55 93 86

Table 2. The numbers of iterations on the grids with 1282 and 2562 nodes for
different values of θ.

As can be seen from Table 2, for both grids and different numbers of subdomains, there is
an optimal value of θ, close to one, but the gain is only within 10-40%. These computations
were carried out without subdomain overlapping, whereas for Δ ≥ 1 the best value of θ is
zero, which corresponds to the Dirichlet conditions on the adjacent boundaries.

The above data show that the behavior of iterations varies slightly as the initial error varies.
The experiments presented above were conducted for the zero initial guess, u0 = 0, and the
exact SLAE solution u = 1.

Table 3 shows the effect of applying two deflation methods when using the unpreconditioned
conjugate gradient method (without the additive Schwarz method) for three square grids with
different numbers of nodes N . The basis functions φk(x, y) are the bilinear finite functions.
In the three rightmost columns, the upper and lower numbers in every cell correspond to the
single orthogonalization of the form (17), (21) and to the orthogonalization (22), (23) at every
iteration, respectively. If these data are compared with the algorithm using no deflation (the
column with Nc = 0), one can see acceleration up to three times as P increases. However,
it should be taken into account that the implementation of multiple orthogonalization makes
each iteration more expensive. For this reason, practical optimization of the algorithms needs
additional investigation.

N \ Nc 0 22 42 82

176 167 166 103
642

118 87 56
338 309 255 181

1282

220 159 104
609 544 442 276

2562

376 294 190

Table 3. The influence of deflation on the conjugate gradient method.

The results in Table 4 present the same data as in Table 3 but with the additive Schwarz
method and domain decomposition into P subdomains. The nodes of the coarse grid Ωc are

733

chosen near the subdomain corners, i.e., for P = 22, 42, 82 the numbers of the coarse grid nodes
(the values of Nc) are 32, 52, and 92, respectively. As in the previous series of experiments
from Table 3, the basis functions φk(x, y) are bilinear and finite. In every cell of Table 4,
the number of iterations carried out without deflation and those corresponding to the single
orthogonalization of the initial guess are the upper and lower ones, respectively.

N \ P 22 42 82

19 26 37
642

23 21 28
29 35 51

1282

24 26 36
38 53 71

2562

31 35 40

Table 4. The influence of aggregation in the additive Schwarz method (decom-
position without subdomain intersection).

The results presented for the grids and macrogrids considered have approximately the same
character as in Table 3, namely, as the dimension of the deflation space increase, the iteration
number decreases, but the amount of computations at every step grows. In these experiments,
the outer iterations were the conjugate gradient iterations, which was feasible because the
domain was decomposed into nonoverlapping subdomains.

Note that the experiments described in Tables 3 and 4 were carried out for the initial guess
u0 = 0 and the exact SLAE solution u(xi, yj) = x2

i − y2
j . Naturally, the efficiency of the

considered “interpolation” deflation depends on the behavior of the solution sought for. For
example, if it is of the form u(xi, yj) = x − y, then the bilinear basis functions ϕk(x, y) for
Nc ≥ 4 yield convergence in one iteration.

This work was supported by the Russian Science Foundation (project No. 14-11-00485).

Translated by Y. L. Gurieva and V. P. Il’in.

REFERENCES

1. V. P. Il’in, “Parallel methods and technologies of domain decomposition,” Vestnik YuUrGU.
Ser. Vychisl. Matem. Inform., 46 (305), 31–44 (2012).

2. A. Toselli and O. B. Widlund, Domain Decomposition Methods – Algorithms and Theory
(Springer Ser. Comput. Math., 34), Springer–Verlag (2005).

3. M. Yu. Andreeva, V. P. Il’in, and E. A. Itskovich, “Two solvers for nonsymmetric SLAE,”
Bull. NCC, Ser. Numer. Anal., 12, 1–16 (2003).

4. V. P. Il’in, Finite Difference and Finite Volume Methods for Elliptic Equations [in Russian],
IVMMG Publ., Novosibirsk (2001).

5. R. Bridson and C. A. Greif, “A multipreconditioned conjugate gradient algorithm,” SIAM
J. Matrix Anal. Appl., 27, No. 4, 1056–1068 (2006).

6. V. P. Il’in and E. A. Itskovich, “On the semiconjugate directions methods with dynamic
preconditioning,” Sib. Zh. Industr. Mat., 10, No. 4, 41–54 (2007)

734

7. A. Chapman and Y. Saad, “Deflated and augmented Krylov subspace techniques,” Numer.
Linear Algebra Appl., 4, No. 1, 43–66 (1997).

8. O. Dubois, M. J. Gander, S. Loisel, A. St-Cyr, and D. Szyld, “The optimized Schwarz
method with a coarse grid correction,” SIAM J. Sci. Comput., 34, No. 1, 421–458 (2012).

9. URL: https://software.intel.com/en-us/intel-mkl
10. URL: http://www.ddm.org
11. D. S. Butyugin, Y. L. Gurieva, V. P. Il’in, D. V. Perevozkin, A. V. Petukhov, and

I. N. Skopin, “Functionality and algebraic solvers technologies in the Krylov library,” Vest-
nik YuUrGU. Ser. Vychisl. Matem. Inform., 2, No. 3, 92–105 (2013).

12. URL: http://www2.sscc.ru
13. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publ., New York (1996).

735

	Abstract
	1. Introduction
	2. Problem statement and description of parallel algorithms
	3. Some features of parallel implementation technologies
	4. Numerical results
	REFERENCES

