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We study the asymptotic behavior of C2-evolutions u = u(x, t) under a given action of

the m-Hessian evolution operators and boundary conditions. We obtain sufficient (close

to necessary) conditions for the convergence of solutions to the first initial-boundary

value problem for the m-Hessian evolution equations to stationary functions as t → ∞.
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1 Introduction

The development of the theory of stationary Hessian equations [1]–[4] naturally gives rise to the

study of Hessian evolution equations. Apparently, the first examples appeared in [5], where fully

nonlinear equations, in particular, the parabolic Monge–Ampère equation (cf. also [6])

−ut detuxx = f > 0, (x, t) ∈ QT = Ω× (0;T ), Ω ⊂ Rn, (1.1)

were studied within the framework of the Krylov theory of Bellman equations. Some sufficient

conditions for the existence of admissible solutions to the first initial-boundary value problem

for the equations

−ut + tr
1
m
m uxx = f > 0, (x, t) ∈ QT = Ω× (0;T ), m = 1, . . . , n, (1.2)

were obtained in [7]. Equations (1.2) look like the most natural fully nonlinear counterpart of

the heat equation, m = 1. On the other hand, the first initial-boundary value problem for the

logarithmic parabolic Hessian equations

−ut + log trm,luxx = f, trm,luxx :=
trmuxx
trluxx

, 0 � l < m � n, (1.3)
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was involved in the study of Hessian integral norms introduced in [8], where it was proved that

the first initial-boundary value problem for Equations (1.3) is solvable in the case l = 0. For

general l and m the solvability was established in [9], where also the asymptotic behavior of

admissible solutions was studied. Poincaré type inequalities for the Hessian integral norms were

proved in [9]. Further generalizations of Equations (1.3) can be found in [10].

In this paper, we study the asymptotic behavior of the classical solution to the first initial–

boundary value problem for the m-Hessian evolution equation

Em[u] = f, u|∂′QT
= ϕ, 1 � m � n, (1.4)

where ∂′QT = (Ω× {t = 0}) ∪ (∂Ω× [0;T ]), Ω is a bounded domain in Rn,

Em[u] := −utTm−1[u] + Tm[u], (x, t) ∈ QT , (1.5)

Tm[u] = Tm(uxx) := trmuxx, and uxx is the Hesse matrix of u in the spatial variables. If

T0(uxx) ≡ 1, then T1[u] = Δu and (1.5) is the heat operator, i.e., in this case, the problem (1.4)

is the classical first initial–boundary value problem for the heat equation.

The m-Hessian evolution operators (1.5), including the case m = n+ 1, were introduced in

[11]. Sufficient conditions for the solvability of the problem (1.4) in a weak (approximate) sense

were obtained by using a parabolic version of the Aleksandrov–Bakel’man maximum principle

[12, 13, 6]. In [11], the existence of an m-admissible solution was a priori assumed. Suffi-

cient solvability conditions were obtained in [14]. Similar approaches were applied in [6] to the

parabolic Monge–Ampère equation (1.1).

To illustrate our results, we consider the two-dimensional case, i.e., Ω ⊂ R2. If m = 1, then

(1.5) is the heat operator and E2[u] = −utΔu+detuxx. Assume that u ∈ C2,1(Ω× [0;∞)) and

E2[u] > 0. Let u be a strictly convex function of class C2 in Ω. Then there exists ν = ν[u] such

that detuxx � ν > 0.

Theorem 1.1. Assume that there is a point x0 ∈ Ω such that Δu(x0, 0) > 0 and

lim
t→∞ |u(x, t)− u(x)| = 0, x ∈ ∂Ω,

lim
t→∞ |E2[u]− detuxx| = 0, x ∈ Ω.

Then limt→∞ |u(x, t)− u(x)| = 0 for all x ∈ Ω.

We may say that, under the assumptions of Theorem 1.1, u = u(x) attracts {u = u(x, t)} if

f = detuxx, x ∈ Ω, and Φ = u|∂Ω attract {f = E2[u]}, (x, t) ∈ Ω × [0;∞), and {ϕ = u(x, t)},
(x, t) ∈ ∂Ω × [0;∞), respectively. We note that the function u(x, 0) in Theorem 1.1 is not

necessarily convex.

Remark 1.2. In the case E2[u] > 0, (x, t) ∈ QT , there are no points x ∈ Ω such that

Δu(x, 0) = 0. Indeed, in the opposite case, the eigenvalues of uxx either have different signs or

vanish. Hence E2[u](x, 0) = det uxx(x, 0) � 0, which is impossible.

Suppose that Δu(x, 0) < 0, x ∈ Ω, i.e., there is no point x0 as in Theorem 1.1. If the

Dirichlet problem detvxx = detuxx, v|∂Ω = −Φ possesses a convex solution v, then −v attracts

u(x, t) in view of Theorem 1.1.
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Corollary 1.3. Let ∂Ω ∈ C4+α, α > 0, be strictly convex, and let u ∈ C2(Ω × [0;∞)).

Assume that E2[u] > 0 and there is f ∈ C2+α(Ω), f > 0, such that limt→∞ |E2[u] − f | = 0. If

limt→∞ |u(x, t)| = 0, x ∈ ∂Ω, then the convex solution to the Dirichlet problem

detuxx = f , u|∂Ω = 0 (1.6)

attracts u or −u.

Corollary 1.3 means that the problem (1.6) has exactly two solutions: a convex solution u

and −u. By Remark 1.2, u(x, t) converges to u if Δu(x, 0) > 0 and to −u in the opposite case.

The aforesaid can be extended to the case of an arbitrary dimension, but for this purpose

new geometric and algebraic notions should be introduced.

The main result of the paper is formulated in Section 3 and is proved in Section 5. The proof

is based on a comparison theorem which requires construction of barriers. For such barriers we

take solutions of auxiliary first order linear ordinary differential equations (cf. Section 4).

2 Preliminaries

We denote by Sym (N) the space of symmetric N×N matrices and by Tp(S) the p-trace of a

matrix S ∈ Sym (N), i.e., the sum of all principal p-minors of S, 1 � p � N . We set T0(S) := 1.

Definition 2.1 (cf. [1]). A matrix S ∈ Sym (N) is m-positive if S ∈ Km, where

Km = {S : Tp(S) > 0, p = 1, . . . ,m}. (2.1)

The conesKm play an important role in the theory ofm-Hessian partial differential equations

and admit different definitions. One of such definitions can be extracted from [15].

Definition 2.2. The cone Km is the component of positiveness of the function Tm(S) in

Sym (N) containing S = Id.

Introducing the scalar product (S1, S2) := tr(S1S2), we can regard Sym (N) as a metric

space equipped with the norm ||S||2 = (S, S). In that sense, the cone (2.1) is an open set and

Tm(S) = 0 for S ∈ ∂Km. According to Definition 2.2, the set of nonnegative definite N × N

matrices belongs to Km for all 1 � m � N .

Remark 2.3. By [15], the matrix Id in Definition 2.2 can be replaced with an arbitrary ma-

trix S0 ∈ Km. By the G̊arding theory, the function T
1
m
m is concave in Km [16] and, consequently,

Tm is nonnegative monotone in Km, i.e., Tm(S1 + S2) � Tm(Si), i = 1, 2, for S1, S2 ∈ Km.

We consider the following subspace of Sym (N):

Sev = {Sev = (skl)
n
0 , s00 = s, s0i = si0 = 0, S = (sij)

n
1 ∈ Sym (n)} (2.2)

and denote

Em(s, S) := Tm(Sev) = sTm−1(S) + Tm(S), 1 � m � n, (2.3)

Kev
m = {s, S : Ep(s, S) > 0, p = 1, . . . ,m}. (2.4)

Denote by S〈i1,...,ik〉 ∈ Sym(N − k) the matrix obtained from S ∈ Sym(N) by crossing out

rows and columns numbered by i1, . . . , ik.

228



Then the following assertions hold.

(1) Let 1 < i < N , and let S〈i〉 be (m − 1)-positive. Then S is m-positive if and only if

Tm(S) > 0.

(2) S is m-positive if and only if there exists a collection of numbers (i1, . . . , im−1) ⊂ {i}N1
such that Tm(S) > 0, Tm−k(S

〈i1,...,ik〉) > 0.

In the case m = N , (i1, . . . , iN−2) = (N, . . . , 2) assertion (2) is the classic Sylvester criterion.

Using (1), (2) it is possible to specify the description of Kev
m as follows:

Kev
m = {s, S : Em(s, S) > 0, S ∈ Km−1}. (2.5)

Suppose that Ω ⊂ Rn is a bounded domain, QT = Ω× (0;T ), ∂′′QT = ∂Ω× [0;T ], ∂′QT =

(Ω×{0})∪∂′′QT , u ∈ C2,1(QT ). We introduce functional analogs of (2.2), (2.3), (2.4) by letting

Sev[u] with s[u] = −ut, S[u] = uxx:

Em[u] := Tm(Sev[u]) = −utTm−1(uxx) + Tm(uxx), 1 � m � n, (2.6)

Kev
m (QT ) = {u ∈ C2,1(QT ) : S

ev[u] ∈ Kev
m , (x, t) ∈ (QT )}, (2.7)

where uxx is the Hesse matrix of u.

Unlike (2.5), the cone (2.7) is closed on bounded sets in C2,1(QT ). Indeed, let u ∈ C2,1(QT ).

Then the set {Sev[u], u ∈ C2,1(QT )} is compact in Sym (n + 1), which implies that for u ∈
Kev

m (QT ) there exists ν = ν[u] > 0 such that Em[u] � ν, (x, t) ∈ QT .

Definition 2.4. The operator (2.6) is called the m-Hessian evolution operator and u ∈
Kev

m (QT ) is referred to as an m-admissible evolution in QT .

3 The Main Result

We consider the problem (1.4), (1.5) for the operator Em[u] defined by (2.6):

Em[u] = −utTm−1(uxx) + Tm(uxx) = f, u|∂′QT
= ϕ, 1 � m � n, (3.1)

and the Dirichlet problem

Tm[u] = f , x ∈ Ω, u|∂Ω = Φ. (3.2)

We formulate the main result of this paper.

Theorem 3.1. Suppose that

(i) f � νm > 0 and there is a point x0 ∈ Ω where the matrix ϕxx(x0, 0) is (m− 1)-positive,

(ii) the problem (3.1) has a solution u ∈ C2,1(Ω× [0;∞)),

(iii) the problem (3.2) has an m-admissible solution u in Ω,

(iv) limt→∞ |f(x, t)− f(x)| = 0, x ∈ Ω, and limt→∞ |ϕ(x, t)− Φ(x)| = 0, x ∈ ∂Ω.

Then limt→∞ |u(x, t)− u(x)| = 0, x ∈ Ω.

The proof of Theorem 3.1 is contained in Sections 4 and 5.

Theorem 3.2. Let Assumption (i) be satisfied. Assume that there is a point x1 ∈ Ω such

that a matrix ϕxx(x1, 0) is not (m− 1)-positive. Then there are no solutions of class C2,1(QT )

to the problem (3.1) if T > 0 is small.
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Necessary conditions for the solvability of the problem (3.1) were obtained in Theorem 1.2 in

[14]. We formulate a refined version of this theorem. Denote by km−1[∂Ω] the m− 1-curvature

of ∂Ω (cf. the definition in [18]).

Theorem 3.3. Assume that ∂Ω ∈ C4+α, km−1[∂Ω] > 0, f > 0, f ∈ C2+α,1+α/2(QT ),

ϕ ∈ C4+α,2+α(∂′QT ), ϕ(x, 0) ∈ Km−1(Ω), and f , ϕ satisfy the compatibility condition

−ϕt(x, 0)Tm−1(ϕxx(x, 0)) + Tm(ϕxx(x, 0))− f(x, 0) = 0, x ∈ ∂Ω. (3.3)

Then there exists a unique solution u ∈ Kev
m (QT ) to the problem (3.1) in C2,1(QT ); moreover,

u ∈ C2+α,1+α/2(QT ).

By Theorem 3.2, the condition ϕ(x, 0) ∈ Km−1(Ω) is necessary for the solvability of the

problem (3.1) in C2,1(QT ) provided that n is odd. It is also necessary in a certain sense if n is

even since −ϕ(x, 0) ∈ Km−1(Ω).

An analog of Theorem 3.3 for the problem (3.2) was proved in [3, Theorem 1.2]. We formulate

this result in our terminology.

Theorem 3.4. Suppose that ∂Ω ∈ C4+α, f ∈ C2+α(Ω), Φ(x) ∈ C4+α(∂Ω). If km−1[∂Ω] > 0,

f > 0, then there exists a unique m-admissible solution u to the problem (3.2).

As was shown in [3], the condition km−1[∂Ω] > 0 is necessary for the solvability of the

problem (3.2) if Φ = const (cf. also [16]). More precisely, if there is a point M0 ∈ ∂Ω such that

km−1[∂Ω](M0) < 0, then there are no solutions of class C2(Ω) to Equation (3.2) with constant

Dirichlet data. The following assertion extends this result to m-Hessian evolution equations.

Theorem 3.5. Let ∂Ω ∈ C4+α, f ∈ C2+α,1+α/2(QT ), f � νm > 0, ϕ ∈ C4+α,2+α(∂′QT ),

ϕ(x, 0) ∈ Km−1(Ω), 1 < m � n. Assume that there are x0 ∈ ∂Ω, t0 ∈ (0;T ), and r > 0 such

that km−1[∂Ω](x0) < 0, ϕt(x0, t0) � 0, ϕ(x, t0) = C = const in Br(x0). Then there are no

C2,1-solutions to the problem (3.1), (3.3) for t � t0.

Proof. Assume the contrary. Let there exist such a solution u ∈ C2,1(Qt0). Then u is

unique, and belongs to Kev
m (Qt0). Hence u(x, t0) ∈ Km−1(Ω). However, from (3.1) it follows

that Tm(uxx)(x0, t0) > 0 and, by continuity, u(x, t0) ∈ Km(Ω) ∩ Br1(x0) with some 0 < r1 < r.

Moreover, ∂Ω ∩ Br1(x0) is a level surface of an m-admissible function since ϕ(x, t0) = C in

Br(x0) and, consequently, km−1[∂Ω](x0) > 0. We arrive at a contradiction.

To prove Theorem 3.1, we need the following assertion.

Theorem 3.6. Let v, w ∈ C(QT ) be such that v ∈ C2,1(QT ) and w ∈ Kev
m (QT ). If

Em[v]−Em[w] � 0, (x, t) ∈ QT , (w − v)|∂′QT
� 0, (3.4)

then w � v in QT .

Proof. For wε = w − εt, ε > 0 we have

Tm−1[w
ε] = Tm−1[w] > 0, Em[wε] = εTm−1[w] + Em[w] > Em[w], (x, t) ∈ QT . (3.5)
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Taking into account that w is an m-admissible evolution and using (2.5), (2.6), we see that

wε ∈ Kev
m (QT ). From (3.4) and (3.5) it follows that

Em[v]− Em[wε] < 0, (x, t) ∈ QT , (wε − v)|∂′QT
� 0. (3.6)

Assume that

sup
QT

(wε − v) = (wε − v)(x0, t0), (x0, t0) ∈ QT \∂′QT , (3.7)

and denote Sev[ · ](x0, t0) = Sev
0 [ · ]. From (3.7) it follows that Sev

0 [v − wε] � 0. Since Kev
m is

a convex set, we have Sev
0 [v] = Sev

0 [wε] + Sev
0 [v − wε] ∈ Kev

m . Since Em is monotone in Kev
m

(cf. Remark 2.3), we find Em[v] − Em[wε] � 0 which contradicts the first inequality in (3.6).

Hence the assumption (3.7) is impossible. Therefore, (x0, t0) belongs to ∂′QT and the second

inequality in (3.6) is valid for all (x, t) ∈ QT . This is equivalent to the inequality w − v � εT .

Letting ε to zero, we obtain the required assertion.

4 Functions θ, σ, and V

We consider the Cauchy problem for the linear ordinary differential equation

θ′ + b(θ + h) = 0, t � 0, θ(0) = θ0, b = const > 0. (4.1)

We have

θ = exp(−bt)

(
θ0 − b

t∫
0

exp(bτ)h(τ)dτ

)
. (4.2)

The following two assertions are obvious.

Lemma 4.1. Let θ be a solution to Equation (4.1) with h = h+ > 0, (h+)′(t) � 0, h+0 < 1/m.

If θ0 + h+0 � 0, then

θ(t) + h+(t) � 0, θ′(t) � 0. (4.3)

If, in addition, limt→∞ h+(t) = h
+
, then limt→∞ θ(t) = −h

+
and limt→∞ θ′(t) = 0.

Lemma 4.2. Assume that h = −h− < 0, (h−)′(t) � 0, θ0 − h−0 � 0. Then

θ(t)− h−(t) � 0, θ′(t) � 0. (4.4)

If, in addition, limt→∞ h−(t) = h−, then limt→∞ θ(t) = h− and limt→∞ θ′(t) = 0.

We introduce the function σ = σ(t) by

(1 + σ)m = 1 +mθ, 1 � m � n. (4.5)

Denote by θ+ the function θ from Lemma 4.1 and by σ+ the corresponding solution to Equation

(4.5). Since h+0 < 1/m, the function σ+ is well defined, and (4.5), (4.3) imply

mθ+(t) � σ+(t) < θ+(t) < 0, (σ+(t))′ > 0. (4.6)

Denote by θ− the function θ from Lemma 4.2 and by σ− the corresponding solution to

Equation (4.5). Then an analog of (4.6) in the case θ0 � 1 is written as

0 <
(1 +mθ−0 )

1
m − 1

θ−0
θ−(t) < σ−(t) < θ−(t), (σ−(t))′ � 0. (4.7)
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To prove Theorem 3.1, we use Theorem 3.6 with barriers of the form

V = σ(u−A) + u, (x, t) ∈ QT , (4.8)

where σ = σ(t) and a positive constant A > 0 are to be chosen, whereas u = u(x) is a given

C2-function. The following identity plays a crucial role in the further considerations:

Em[V ] = (A− u)Tm−1[u]θ
′ +mTm[u](θ + 1). (4.9)

We will assume that u is an m-admissible solution to the problem (3.2) in Ω and there are

parameters νm, μk such that

0 < νm � f , Tk[u] � μk, k = m− 1,m, x ∈ Ω. (4.10)

5 Asymptotic Behavior of m-Hessian Evolutions

We obtain an upper bound for m-admissible evolutions in a bounded cylinder QT .

Lemma 5.1. Suppose that u ∈ Kev
m (QT ) ∩ C(QT ) and Em[u] � ν > 0. Assume that there

exist nonincreasing functions h+i = h+i (t) > 0, i = 1, 2, such that

(u− Φ)|∂′QT
� h+1 ,

1

m

(
1− Em[u]

f

)
� h+2 , (x, t) ∈ QT . (5.1)

Then

u(x, t)− uu(x) � m(2mh+1 (0) + oscΩu)(−θ+(t)), (x, t) ∈ QT , (5.2)

where θ+ = θ is given by (4.2) with

b+ =
mνm

(2mh+1 (0) + osc Ωu)μm−1
,

− h = h+ = max

{
max{1− ν/μm; 1/2}

mh+1 (0)
h+1 (t);h

+
2 (t)

}
,

(5.3)

the constants νm, μk, k = m− 1,m, satisfy (4.10), and θ+0 = h0.

Proof. Applying Theorem 3.6 with w = u, we reduce the proof to construction of an upper

barrier V = V + (cf. (4.8)). We begin by constructing the function σ = σ+ in (4.8). By the

inequalities 0 < h+0 < 1/m and (4.3), we have −1 < −mθ+ < 0. Hence the function σ = σ+ is

uniquely defined by (4.5) and the relation (4.6) holds. By (4.3), 0 < −σt � h+1 (t).

We define the constant A in (4.8) by

A = A+ = A+
1 + sup

Ω
u, A+

1 = 2mh+1 (0). (5.4)

By (5.3), u − V + � 0 on the parabolic boundary of QT . Thus, the second inequality in (3.4)

holds. To prove the first inequality in (3.4), we use (4.9) and represent Em[V +]−Em[u] as

Em[V +]− Em[u] = (A− u)Tm−1[u]
(
(θ+)′ +

mf

(A− u)Tm−1[u]

(
θ+ +

f − Em[u]

mf

))
. (5.5)
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By (5.3), the relations (4.3), (4.1), and (5.5) imply

Em[V +]− Em[u] � (A− u)Tm−1[u]
(
(θ+)′ + b(θ+ + h+)

)
= 0,

i.e., the first inequality in (3.4) holds. Thus, w = u, v = V + satisfy the assumptions of Theorem

3.6. Hence u− V + � 0 in QT . The inequality (5.2) is verified by a direct computation.

Theorem 3.6 provides lower bounds for C2,1-evolutions under certain conditions that are

weaker than (5.1).

Lemma 5.2. Let u ∈ C2,1(QT ) ∩ C(QT ). We assume that there exists a nonincreasing

function h− > 0 such that

(u− Φ)|∂′QT
� −h−,

1

m

(
1− Em[u]

f

)
� −h−, (x, t) ∈ QT . (5.6)

Then

u(x, t)− u(x) � −(A−
1 + osc Ωu)θ

−(t), A−
1 =

h−0
((1 +mh−0 )

1
m − 1)

, (x, t) ∈ QT , (5.7)

where θ− = θ is given by (4.2) with

b− =
mνm

(A−
1 + osc Ωu)μm−1

, θ−0 = h−0 , (5.8)

νm, μk, k = m− 1,m, are the constants in (4.10).

Proof. We apply Theorem 3.6 to w = V − = σ−(u − (A−
1 + supΩ u)) + u, v = u, where

σ− satisfies (4.5) with θ = θ−, which requires the inclusion V − ∈ Kev
m (QT ). To ensure this

inclusion, we note that V −
xx = (σ− + 1)uxx ∈ Km ⊂ Km−1 for all x ∈ Ω, t ∈ [0;T ] in view of

the inequality σ− > 0 and the choice of u (cf. Remark 2.3). By (2.5) and (2.7), it suffices to

verify the inequality Em[V −] > 0. Indeed, the relations (4.9), (4.1), (4.4), (5.8) and the second

inequality in (5.6) imply

Em[V −] > (A−
1 + sup

Ω
u− u)Tm−1[u]((θ

−)′ + b−θ−) > b−h− > 0, (x, t) ∈ QT . (5.9)

In a similar way, we obtain the first inequality in (3.4) in QT , i.e., Em[V −]− Em[u] � 0.

By (4.4), (4.7) and the choice of A−
1 (cf. (5.2)), we have

(u− V −)|∂′QT � −h− +A−
1

(1 +mh−0 )
1
m

h−0
θ− � 0.

By Theorem 3.6, u− V − � 0 for all (x, t) ∈ QT and, consequently, we obtain (5.7).

If the assumptions of Lemmas 5.1 and 5.2 are satisfied for all T > 0, then u attracts all

solutions to the problem (3.1) with data subject to Assumptions (i)–(iv) in C(Q), Q = Ω×[0;∞).

Lemmas 5.1 and 5.2 lead to the following more general assertion.
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Theorem 5.3. Let u ∈ C2,1(Q)∩C(Q). Assume that there is a point (x0, t0) ∈ Q such that

uxx(x0, t0) is an m-positive matrix, 0 < ν � Em[u] � μ in Q0 = Ω × [t0;∞), and (5.1), (5.6)

are satisfied in Q0. Then |u|Q is bounded independently on t. If, in addition,

lim
t→∞h(t) = 0, h = max{h+;h−}, t > t0, (5.10)

then u = u(x) attracts u = u(x, t) in C(Q).

It is obvious that Assumption (iv) of Theorem 3.1 guarantees the existence of a function

h in (5.10). Moreover, Assumptions (i)–(iii) are sufficient for the validity of the remaining

assumptions of Theorem 5.3 with t0 = 0. Hence Theorem 3.1 is a special case of Theorem 5.3.

To conclude the paper, we consider the heat operator E1[u] = −ut +Δu. In this case, u is

a solution to the Poisson equation

Δu = f , u ∈ C2(Ω) ∩ C(Ω). (5.11)

Corollary 5.4. Suppose that u ∈ C2,1(Q) ∩ C(Ω× [0;∞)) and |f | � μ1. We assume that

lim
t→∞E1[u](x, t) = f(x), x ∈ Ω,

lim
t→∞u(x, t) = u(x), x ∈ ∂Ω.

(5.12)

Then

lim
t→∞u(x, t) = u(x), x ∈ Ω. (5.13)

Proof. The equality (5.13) does not follow from Theorem 5.3 with m = 1 since it is not

assumed that f � ν > 0 in (5.11). Therefore, we represent u as

u = u1 + u2, u1 =
1

2
(u+ Cx2), u2 =

1

2
(u− Cx2), C =

μ+ ν

2n
, (5.14)

with some ν > 0. It is obvious that u1 and −u2 are solutions to problems similar to (5.11) with

fi � ν/2, i = 1, 2. With (5.14) we associate the evolutions ui, i = 1, 2, u = u1 + u2, satisfying

some relations similar to (5.12). We see that all the assumptions of Theorem 5.3 with m = 1

hold for u1, −u2, which leads to the required relation (5.13).
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