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ON ASYMPTOTICALLY EFFICIENT STATISTICAL
INFERENCE ON A SIGNAL PARAMETER

M. S. Ermakov∗ UDC 519

We consider the problems of confidence estimation and hypotheses testing of the parameter of
a signal observed in a Gaussian white noise. For these problems, we point out lower bounds of
asymptotic efficiency in the zone of moderate deviation probabilities. These lower bounds are
versions of the local asymptotic minimax Hajek–Le Cam lower bound in estimation and the lower
bound for the Pitman efficiency in hypotheses testing. The lower bounds are obtained both for
logarithmic and sharp asymptotics of moderate deviation probabilities. Bibliography: 23 titles.

1. Introduction

In the normal approximation zone, lower bounds of asymptotically efficient statistical in-
ference were comprehensively studied. The local asymptotic minimax Hajek–Le Cam lower
bound [1–6] for estimation and the Pitman efficiency [4–7] for hypotheses testing are natural
measures of efficiency in parametric statistical inference. In the large deviation zone, the Ba-
hadur efficiencies [2, 6–11] are the most widespread measures of asymptotic efficiency of tests
and estimators. The goal of this paper is to study lower bounds of asymptotic efficiency in the
zone of moderate deviation probabilities for the problem of statistical inference on the value
of the parameter of a signal observed in a Gaussian white noise. Thus, for this problem, we
fill the gap between asymptotic efficiencies given by the normal approximation and Bahadur
asymptotic efficiencies.

For statistical inference on the parameter of the distribution of an independent sample, this
problem was considered in [12–16]. The goal of this paper is to obtain similar results for the
problem of statistical inference on the signal parameter. Lower bounds of asymptotic efficiency
are given both for logarithmic and sharp asymptotics of moderate deviation probabilities of
tests and estimators. The problem of asymptotic efficiency in statistical inference on the
signal parameter both for the zone of normal approximation and the zone of large deviation
probabilities was studied in a large number of papers (see [2,3,17–20] and references therein).

The asymptotic equivalence of various statistical models and the model of a signal in a
Gaussian white noise is a very popular topic of research [4,5,21,22]. These results show a tight
relation between these models and the model of a signal in a Gaussian white noise. From this
viewpoint, the paper helps one to compare different results on moderate deviation probabilities
of tests and estimators for various models.

Usually, coverage errors of confidence sets have small values. Type I error probabilities are
small in hypotheses testing. These problems are prime examples of application of large and
moderate deviation probabilities in statistics. In particular, lower bounds of asymptotic effi-
ciency of estimators in moderate deviation zone admit natural interpretation as lower bounds
of asymptotic efficiency in confidence estimation [13,14,23].

Lower bounds of asymptotic efficiency in the problem of signal detection are easily deduced
from the Neyman–Pearson lemma and are given for completeness. In the case of a one-
dimensional parameter, the proof of lower bounds in estimation is based on lower bounds for
hypotheses testing. The proof of local asymptotic minimax lower bounds for estimation of a
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multidimensional parameter is obtained by a modification of the proof of similar results for an
independent sample [14].

We use the following notation. Denote by C and c positive constants. For any x ∈ R1

denote by [x] the integer part of x. For any event A denote by χ(A) the indicator of this
event. The limits of integration are the same throughout the paper. For this reason, we omit

the limits of integration. We write
∫

instead of
1∫

0

. For any function f ∈ L2(0, 1) denote

‖f‖2 =
∫

f2(t) dt.

Define the function of standard normal distribution,

Φ(x) =
1√
2π

x∫

−∞
exp{−t2/2} dt, x ∈ R1.

We omit the index of the true value of parameter θ0 and write E[·] = Eθ0[·] and P(·) = Pθ0(·).

2. Lower bounds of asymptotic efficiency

2.1. Lower bounds of asymptotic efficiency for logarithmic asymptotics of mod-
erate deviation probabilities of tests and estimators. Let us observe a realization of a
random process Yε(t), t ∈ (0, 1), ε > 0, defined by the stochastic differential equation

dYε(t) = S(t, θ) dt + εdw(t). (2.1)

Here S ∈ L2(0, 1) is a signal and dw(t) is a Gaussian white noise. Parameter θ is unknown,
θ ∈ Θ, and Θ is an open set in Rd.

Assume that S(t, θ) is differentiable in θ in L2(0, 1) at a point θ0, i.e., there exists a function
Sθ(t, θ0) such that

∫
(S(t, θ) − S(t, θ0) − (θ − θ0)′Sθ(t, θ0))2 dt = o(|θ − θ0|2). (2.2)

Here (θ − θ0)′Sθ(t, θ0) is the inner product of θ − θ0 and Sθ(t, θ0).
The Fisher information matrix equals

I(θ) =
∫

Sθ(t, θ)S′
θ(t, θ) dt. (2.3)

We make the following assumption.
A1. Relation (2.2) holds at the point θ0 ∈ Θ. The Fisher information matrix I(θ0) is

positive definite.
For logarithmic asymptotics, the problem on lower bounds of efficiency for large and mod-

erate deviation probabilities of tests and estimators is usually reduced to the one-dimensional
one. Thus, in this section, we assume that d = 1.

Consider the problem of testing the hypothesis H0 : θ = θ0 versus Hε : θ = θε := θ0 + uε,
where uε > 0, uε → 0, and ε−1uε → ∞ as ε → 0.

For any test Kε, denote by α(Kε) and β(Kε), respectively, its type I and type II error
probabilities.

Define the test statistics

T = I−1/2(θ0)
∫

Sθ(t, θ0) dYε(t). (2.4)
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Theorem 2.1. Assume that condition A1 holds. Then for any family of tests Kε such that
α(Kε) < c < 1 and β(Kε) < c < 1,

lim sup
ε→0

(ε−1uεI
1/2(θ0))−1(|2 log α(Kε)|1/2 + |2 log β(Kε)|1/2) ≤ 1. (2.5)

The lower bound in (2.5) is attained at the family of tests generated by the test statistics T .

Theorem 2.2. Assume that condition A1 holds. Then

lim
ε→0

sup
θ=θ0,θ0+2uε

ε2u−2
ε I−1(θ0) log Pθ(|θ̂ε − θ| ≥ uε) ≥ −1

2
(2.6)

for any estimator θ̂ε.

2.2. Lower bounds of efficiency for sharp asymptotics of moderate deviation prob-
abilities of tests and estimators. The case of one-dimensional parameter. Fix λ,
0 < λ ≤ 1.

The results are proved in the zone uε = o(ε
2

2+λ ) under the following additional assumption.
A2. The following relations hold:

∫
(S(t, θ) − S(t, θ0) − (θ − θ0)′Sθ(t, θ0))2 dt = O(|θ − θ0|2+λ) (2.7)

and
∫

(S(t, θ) − S(t, θ0))2dt − (θ − θ0)′I(θ0)(θ − θ0) = O(|θ − θ0|2+λ). (2.8)

In the case of a multidimensional parameter, the lower bound in hypotheses testing essen-
tially depends on the geometry of sets of hypotheses and alternatives. We only consider the
case of a one-dimensional parameter. Usually, in this case, the problem is reduced to the
problem of testing a simple hypothesis versus a simple alternative. Consider the problem of
testing the hypothesis H0 : θ = θ0 versus alternatives Hε : θ = θε := θ0 + uε. We additionally
assume that ε−2u2+λ

ε → 0 as ε → 0.

Theorem 2.3. Assume that conditions A1 and A2 hold. Let ε−1uε → ∞ and ε−2u2+λ
ε → 0

as ε → 0. For any family of tests Kε such that αε := α(Kε) < c < 1,

β(Kε) ≥ Φ(xαε − ε−1uεI
1/2(θ0))(1 + o(1)), (2.9)

where xαε is determined by the equation αε = Φ(xαε).
The lower bound (2.9) is attained at the tests Lε generated by the test statistic T .
If equality is attained in (2.9), then

lim
ε→0

α−1
ε Eθ0[|Kε − Lε|] = 0 (2.10)

and
lim
ε→0

(Φ(xαε − ε−1uεI
1/2(θ0)))−1Eθε [|Kε − Lε|] = 0 (2.11)

for the family of tests Lε with αε = α(Lε).

Remark. For uε = εu, u > 0, the lower bound (2.9) becomes the lower bound for the Pitman
efficiency.

Define the statistic

T0 = I−1/2(θ0)
∫

Sθ(t, θ0) dw(t).
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Theorem 2.4. Let d = 1 and let conditions A1 and A2 be satisfied. Let ε−1uε → ∞ and
ε−2u2+λ

ε → 0 as ε → 0. Then, for any estimator θ̂ε,

lim inf
ε→0

sup
|θ−θ0|<Cεuε

Pθ(|θ̂ε − θ| > uε)
2Φ(−ε−1I1/2(θ0)uε)

≥ 1 (2.12)

for any family of constants Cε → ∞ as ε → 0.
If equality is attained in (2.12) for Cε → ∞ and ε−2C2+λ

ε u2+λ
ε → 0 as ε → 0, then

lim
ε→0

(
Φ(−ε−1I1/2(θ0)uε)

)−1
Eθε

[
|χ(|θ̂ε−θε| >uε)−χ(|I−1/2(θ0)T0−(θε−θ0)| >uε)|

]
=0 (2.13)

for any family of parameters θε, |θε − θ0| < Cεuε.

Theorems 2.1, 2.2, 2.3, and 2.4 are versions of Theorems 2.2, 2.5, 2.3, and 2.7 established
in [13] for problems of statistical inference on a parameter of the distribution of an independent
sample.

2.3. Lower bound of efficiency for the sharp asymptotic of confidence estimation
of a multidimensional parameter. For a multidimensional parameter, we can derive a
version of Theorem 2.4 under some additional assumptions.

We say that a set Ω ⊂ Rd is centrally symmetric if x ∈ Ω implies that −x ∈ Ω. Denote by
∂Ω the boundary of Ω.

We make the following assumptions.
A3. For any v ∈ Rd,

v′I(θ)v − v′I(θ0)v = O(|v|2|θ − θ0|λ). (2.14)
A4. The set Ω is bounded, convex, and centrally symmetric. The boundary ∂Ω is a C2-

manifold. The principal curvatures at each point of ∂Ω are negative.

Theorem 2.5. Assume the conditions A1–A3 hold for all θ0 ∈ Θ. Let the set Ω satisfy
condition A4. Let Θ0 be a bounded open set such that ∂Θ0⊂Θ. Let ε−1uε→∞ and ε−2u2+λ

ε →
0 as ε → 0. Then

lim inf
ε→0

inf
θ0∈Θ0

sup
|θ−θ0|<Cεuε

Pθ(I1/2(θ0)(θ̂ε − θ) /∈ uεΩ)
P(ζ /∈ ε−1uεΩ)

≥ 1 (2.15)

for any estimator θ̂ε with Cε → ∞ as ε → 0. Here ζ is a Gaussian random vector with identity
covariance matrix and E[ζ] = 0.

Theorems 2.4 and 2.5 can be considered as lower bounds of asymptotically efficient confi-
dence estimation. In confidence estimation, the covariance matrices of estimators are often
unknown. Then the confidence sets are defined on the base of pivotal statistics. Pivotal sta-
tistics are widely applied in hypotheses testing as well. For such a setup, one can modify
Theorems 2.4 and 2.5. The general approach to such a setup is given in Theorem 2.2 of [14].
We do not discuss this problem in detail in order not to overload the paper.

3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.4

Proofs of Theorems 2.1 and 2.3 are based on straightforward application of the Neyman–
Pearson lemma and analysis of the asymptotic distribution of the logarithm of the likelihood
ratio. Theorems 2.2 and 2.4 are deduced from Theorems 2.1 and 2.3, respectively, using the
same reasoning as in [13, Theorems 2.3 and 2.7]. In particular, (2.13) follows from (2.10) and
(2.11). For this reason, proofs of Theorems 2.2 and 2.4 are omitted. In [13], similar results
were obtained for the problem of statistical inference on a parameter of the distribution of an
independent sample.
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We prove Theorem 2.3. The proof of Theorem 2.1 is similar. It only suffices to replace
O(|uε|2+λ) by o(|uε|2) in all the estimates. The correctness of such a replacement follows from
Assumption A1.

Assume that the hypothesis is valid. Then the logarithm of the likelihood ratio equals
(see [2, 3])

L(θ0 + uε, θ0) := ε−2

∫
(S(t, θε)−S(t, θ0)) dYε(t)−(2ε2)−1(‖S(t, θε)‖2−‖S(t, θ0)‖2)

= ε−1

∫
(S(t, θε)−S(t, θ0))dw(t)−(2ε2)−1‖S(t, θε)−S(t, θ0)‖2.

(3.1)

Therefore, the test statistics can be defined as follows:

T1 = ξ(θε, θ0) = ε−1

∫
(S(t, θε) − S(t, θ0)) dYε(t). (3.2)

By condition A2, to prove the asymptotic efficiency of the tests Lε, it suffices to estimate the
difference of stochastic parts of T1 and (θε − θ0)I1/2(θ0)T defined by the statistics

T1ε = ε−1

∫
(S(t, θε) − S(t, θ0)) dw(t)

and ε−1I1/2(θ0)(θε − θ0)T0, respectively.
Denote

ρ2(θε, θ0) = ‖S(t, θε) − S(t, θ0)‖2.

Straightforward calculations show that

Eθ0 [T1ε] = 0, (3.3)

and it follows from (2.8) that

Eθ0[T
2
1ε] = ε−2ρ2(θε, θ0) = ε−2u2

εI(θ0) + O(ε−2u2+λ
ε ). (3.4)

For the alternative, we get the relations

Eθε [T1ε] = ε−1Eθ0[ξ(θε, θ0) exp{ε−1ξ(θε, θ0) − (2ε2)−1ρ2(θε, θ0)}]
= ε−2ρ2(θε, θ0) = ε−2(u2

εI(θ0) + O(u2+λ
ε )) (3.5)

and
Varθε [T

2
1ε] = ε−2ρ2(θε, θ0) = ε−2u2

εI(θ0) + O(u2+λ
ε ). (3.6)

The lower bound (2.9) follows from (3.1)-(3.6)
The proof of asymptotic efficiency of the test statistics T is based on the following lemma.

Lemma 3.1. Let 
ηε =(η1ε, η2ε)′ be Gaussian random vectors such that E[η1ε] = 0, E[η2ε] = 0,
E[ξ2

1ε] = 1, E[ξ2
2ε] = O(|uε|λ), and E[η1εη2ε] = O(|uε|λ). Then

P(η1ε > ε−1uε) = P(η1ε + η2ε > ε−1uε)(1 + o(1)). (3.7)

Proof. Denote by Aε the covariance matrix of the random vector 
ηε. Let ζ1 and ζ2 be inde-
pendent random variables having the standard normal distribution. Define the random vector

ζ = (ζ1, ζ2). Denote 
ωε = (ω1ε, ω2ε)′ = A

1/2
ε


ζ. Then

P(η1ε + η2ε > ε−1uε) = P(ω1ε + ω2ε > ε−1uε). (3.8)

A straightforward calculation using the identity A
1/2
ε A

1/2
ε = Aε shows that entries of the matrix

A
1/2
ε = {aε,ij}2

i,j=1 have the following orders: aε,22 = O(|uε|λ/2) and aε,12 = O(|uε|λ/2). Hence,
using (3.8), we get (3.7).
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Thus, it remains to verify that the normalized random variables

η1ε = u−1
ε ξ(θε, θ0) and η2ε = u−1

ε (ξ(θε, θ0) − uετ)

satisfy the assumptions of Lemma 3.1 in the case of the hypothesis and alternative. Here

τ = τθ0 =
∫

Sθ(t, θ0) dw(t).

Assume that the hypothesis is valid.
By (3.4),

Eη2
1ε = I + O(|uε|λ). (3.9)

We note that

E[η1εη2ε] = u−2
ε ρ2(θε, θ0) − u−1

ε

∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt. (3.10)

By (2.7),

O(u2+λ
ε ) = ‖S(t, θε) − S(t, θ0) − uεSθ(t, θ0)‖2 (3.11)

= ρ2(θε, θ0) − 2uε

∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt + u2

εI(θ0).

Hence, by (2.8),

uε

∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt = u2

εI(θ0) + O(|uε|2+λ). (3.12)

It follows from (2.8), (3.10), and (3.12) that

E[η1εη2ε] = O(|uε|λ). (3.13)

By (3.9) and (3.13), the assumptions of Lemma 3.1 are satisfied if the hypothesis is valid.
Assume that the alternative is valid. Straightforward calculations using (3.12) show that

Eθε [τ ] = Eθ0[τ exp{ε−1ξ(θε, θ0) − (2ε2)−1ρ2(θε, θ0)}]
= ε−1

∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt = ε−1uεI(θ0) + O(ε−1|uε|1+λ),

(3.14)

and, arguing similarly, we conclude that

Eθε [ξ(θ0, θε)] = ε−1ρ2(θε, θ0) = ε−1u2
εI(θ0) + O(ε−1|uε|2+λ). (3.15)

The same reasoning shows that

Eθε [ξ
2(θε, θ0)] = ρ2(θε, θ0) + ε−2ρ4(θε, θ0) (3.16)

= u2
εI(θ0) + ε−2u4

εI
2(θ0) + O(|uε|2+λ + ε−2|uε|4+λ),

uεEθε [ξ(θε, θ0)τ ] = uε

∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt(1 + ε−2ρ2(θε, θ0))

= u2
εI(θ0) + ε−2u4

εI
2(θ0) + O(|uε|2+λ + ε−2|uε|4+λ),

(3.17)

and

u2
εEθε [τ

2] = u2
εI(θ0) + ε−2u2

ε

(∫
(S(t, θε) − S(t, θ0))Sθ(t, θ0) dt

)2

= u2
εI(θ0) + ε−2u4

εI
2(θ0) + O(|uε|2+λ + ε−2|uε|4+λ).

(3.18)

By (3.16)–(3.18),

Eθε [η
2
2ε] = O(|uε|λ + ε−2|uε|2+λ)
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and

Eθε [η1εη2ε] = O(|uε|λ + ε−2|uε|2+λ).

This implies that the assumptions of Lemma 3.1 are satisfied in the case of the alternative. �

Our proof of Theorem 2.4 is based on the following version of Theorem 2.3. In this version,
we treat the problem of testing the hypothesis H0 : θ = θ0 + C1uε versus the alternatives
H1ε : θ = θ0 + C2uε.

Lemma 3.2. Assume that conditions A1 and A2 hold. Then for any family of tests Kε such
that αε := α(Kε) < c < 1,

β(Kε) ≥ Φ(xαε − ε−1(C2 − C1)uεI
1/2(θ0))(1 + o(1)), (3.19)

where xαε is determined by the equation αε = Φ(xαε).
The lower bound (3.19) is attained at the tests Lε generated by the tests statistics T .
If equality is attained in (3.19), then

lim
ε→0

α−1
ε Eθ0[|Kε − Lε|] = 0 (3.20)

and

lim
ε→0

(Φ(xαε − ε−1(C2 − C1)uεI
1/2(θ0)))−1Eθε [|Kε − Lε|] = 0 (3.21)

for any family of tests Lε such that αε := α(Lε).

The remaining reasoning in the proof of Theorem 2.4 is identical to the proof of Theorem 2.7
of [13] and is omitted.

4. Proof of Theorem 2.5

In Theorem 2.1 of [14], a version of Theorem 2.5 has been proved for confidence estimation
of a parameter of the distribution of an independent sample. The proof of Theorem 2.5 is a
revised version of the proof of this theorem.

In what follows, we assume that θ0 = 0.
We divide the proof into the following steps.
1. The Bayes approach. We refer to the fact that the Bayes risk does not exceed the minimax

one and reduce the problem to the problem of calculation of asymptotics of Bayes risks. We
define a uniform Bayes a priori distribution on the lattice Λε in the cube Kvε = (−vε, vε)d,
where vε = Cεuε, Cε → ∞, and ε−2(Cεuε)2+λ → 0. The lattice spacing equals δ1ε = c1εε

2u−1
ε

with c1ε → 0 and c−3
1ε ε−2u2+λ

ε → 0 as ε → 0. Denote lε = [vε/δ1ε].

2. We split the cube Kvε into small cubes,

Γiε = xεi + (−c2εε
2u−1

ε , c2εε
2u−1

ε ]d, 1 ≤ i ≤ mn,

with c2ε → 0, c2εc
−1
1ε → ∞, and c−3

1ε ε−2b2+λ
ε → 0 as ε → 0.

Using the fact that a normalized a posteriori Bayes risk tends to a constant in probability
as ε → 0, we study the asymptotics of a posteriori Bayes risks independently for each event
Wiε : τ ∈ ε−1Γεi.

3. To narrow down the set of parameters for a posteriori Bayes risk minimization, we split
the lattice Λε into subsets Λie, 1 ≤ i ≤ m2iε. Each set Λie is a lattice in the union of a finite
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number of very narrow parallelepipeds Kije. The problem of minimization of a posteriori
Bayes risk is solved independently for each set Λie, and the results are added:

inf
θ̂ε

sup
θ∈Kvε

Pθ(θ̂ε − θ /∈ uεΩ) ≥ inf
θ̂ε

(2lε)−d
mn∑

i=1

∑

θ∈Λε

Pθ(θ̂ε − θ /∈ uεΩ,Wiε)

≥ (2lε)−d
mε∑

i=1

m2iε∑

e=1

inf
θ̂ε

∑

θ∈Λie

Pθ(θ̂ε − θ /∈ uεΩ,Wiε).

(4.1)

4. To estimate the accuracy of a linear approximation of the stochastic part of the loga-
rithm of the likelihood ratio, we prove the following inequalities (see also Lemma 4.2 and, for
comparison, (3.4) and Lemma 5.3 of [14]). For any θj , θk ∈ Λε ∩ Kije and κ > 0,

P(ε−1|ξ(θj , θk) − (θk − θj)′τθj
− ρ′ετθj

| > κ,Wiε)

≤ C

∫

Γεi

exp
{

− |t|2
2ε2‖Sθ(t, 0)‖2

}

dt exp
{
−cκ2|θk − θj|−2−λε−2

}
, (4.2)

where

ρε = ρε(θj , θk) = ε2‖Sθ(t, θj)‖−2

∫
Sθ(t, θj)(S(t, θk) − S(t, θj) − (θk − θj)′Sθ(t, θj)) dt.

Since τ ∈ ε−1Γiε, it is easy to show that

ρ′ε

∫
Sθ(t, 0)dw(t) < δε → 0 (4.3)

as ε → 0.
5. Estimates similar to (4.2) and (4.3) and the “chaining” method allow us to apply to

terms of the right-hand side of (4.1) the technique of the proof of the multidimensional local
asymptotic minimax lower bound [2] based on the same reasoning as in [14].

For clarity, we define parallelepipeds Kij in the case where xiε is parallel to the first ort e1

of the coordinate system. Consider the subspace Π1 orthogonal to e1. Define in the lattice
Λε∩Π1 a sublattice Λ1

i = {θij}1≤j≤m1iε with spacing 2c3εδ1ε, where c3ε is such that c3ε/c2ε → ∞,
c3εδ1ε = o(ε2u−1

ε ), and c3
3εc

−3
1ε ε−2u2+λ

ε → 0 as ε → 0.
Set

Kij =K(θij)=
{

x :x=λxiε+ u+ θij, u={uk}d
k=1, u⊥xni, |uk|≤c3nδ1n, λ∈R1, u∈Rd

}
∩ Kvε ,

1 ≤ j ≤ m1iε.

We define the sets Λie for the most simple geometry in which the distance from the set ∂Ω to
zero is attained only at two points. Each set Λie consists of subsets K(θij) ∩ Λε such that

θij ∈ Θie = Θi(k1, . . . , kd−d1) = {θ : θ = θij + (−1)t22k2c3εδ1εe2

+ · · · + (−1)td2kdc3εδ1εed; t2, . . . td = 0, 1},
where k2, . . . , kd are fixed for each Λie and 0 ≤ k2, . . . , kd < C1ε with C1εc3εc1ε → ∞ and
ε−2C3

1εc
3
3εc

3
1εu

2+λ
ε → 0 as ε → 0.

Denote Kie =
⋃

θ∈Θie

K(θ).

For an arbitrary geometry of ∂Ω, the definition of the sets Λie is more complicated, and,
moreover, the indexation becomes cumbersome (see [14]). However, the reasoning remains
almost unchanged.
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Fix δ > 0. For all θ ∈ Λie define the events Ai(0, θ, δ) : ε−1(ξ(0, θ) − θ′τ) > δ. Denote
Aie =

⋂

θ∈Θie

Ai(0, θ, δ). Denote by Bie the event additional to Aie.

Arguing similarly to (3.8) and (3.9) in [14], we conclude that

inf
θ̂ε

∑

θ∈Λie

Pθ(θ̂ε − θ /∈ uεΩ,Wiε)

≥ inf
θ̂ε

∑

θ∈Λie

E
[
χ(θ̂ε − θ /∈ uεΩ) exp{ε−1τ − (2ε2)−1ρ2(θ0, θε)}, Wiε, Ai(θ, 0, κ)

]

≥ E
[

inf
t

∑

θ∈Λie

χ(t − θ /∈ uεΩ) exp
{
ε−1θ′τ − (2ε2)−1θ′Iθ + o(1)

}
, Wiε, Aie

]
= Rε

(4.4)

if δ = δε tends to zero sufficiently slowly as ε → 0.
Denote Δε = exp{τ ′τ/2} and y = yθ = ε−1θ − τ . Since ε−2uεδ1ε → 0 and ε−2u2+λ

ε → 0 as
ε → 0, we see that

(2lε)−dRε≥(2lε)−dE

[

Δεinf
t

∑

θ∈Λie

χ(t−yθ−τ /∈ε−1uεΩ) exp
{

−1
2
y′θIyθ

}

,Wiε,Aie

]

(1+o(1))

= (2vε)−dE
[

Δε inf
t

∫

ε−1Kie−ψε

χ(t−y /∈ε−1uεΩ) exp
{

−1
2
y′Iy

}

dy,Wiε, Aie

]

(1 + o(1))

:= (2vε)−dIieε(1 + o(1)).

(4.5)

For κ ∈ (0, 1) denote

Kiκ(θij)=
{

x : x=λxiε + u + θij, u = {uk}d
1, |uk| ≤ (c3ε−Cc2ε)δ1ε, u⊥xiε, λ ∈R1

}
∩K(1−κ)vε

and

Kieκ =
⋃

θ∈Θie

Kiκ(θ).

Here u⊥xiε indicates that the vectors u and xiε are orthogonal.
If τ ∈ ε−1Γiε, then ε−1Kieκ ⊂ ε−1Kie − τ , and, therefore,

Iieε ≥ UieεJ ieε(1 + o(1)), (4.6)

where
Uieε = E [Δε,Wiε, Aie]

and

J ieε := inf
t

Jieε(t) := inf
t

∫

ε−1Kieκ

χ(t − y /∈ ε−1uεΩ) exp
{

−1
2
y′Iy

}

dy.

By Lemma 3.1 of [14],
J ieε = Jieε(0). (4.7)

We note that
E [Δε,Wiε] = mes(Γiε)(1 + o(1)). (4.8)

Thus, to prove Theorem 2.5, it only remains to prove that

U2ieε := E [Δε,Wiε, Bie] = exp{ε−2|xiε|2/2}P(Wiε, Bie) = o(mes(Γiε)). (4.9)

Then Theorem 2.5 follows from (4.1) and (4.4)–(4.9).
Thus, it remains to estimate P(Wiε, Bie). For this estimation, we implement the “chaining”

method.
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To simplify notation, we assume that lε = 2m. Fix θ ∈ Θie. Define sets Ψj , j = 0, 1, 2, . . . ,m,
by induction. We put Ψ0 = {θ}. Set

Ψj = {θ : θ = θj−1 ± vε2−jxiε, θj−1 ∈ Ψj−1}, 1 ≤ j ≤ m.

We put Ψm+1 = Λieε \
m⋃

j=1
Ψj. For each θj ∈ Ψj denote by θj−1 the nearest to it point θ ∈ Ψj−1

that lies between zero and θj.
We have the equalities

S(θj , 0) = ξ(θj , 0) − (θj − θ)′τ = S1(θj, θj−1) + S(θj−1, 0) + S2(θj, θj−1), (4.10)

where
S1(θj , θj−1) = ξ(θj , θj−1) − (θj − θj−1)′τθj−1

(4.11)

and
S2(θj , θj−1) = (θj − θj−1)′(τθj−1

− τ). (4.12)

Then

P(Wiε, Bie) ≤ C

⎛

⎝
∑

θ0∈Θie

⎛

⎝V0(θ0) +
∑

θ∈Λ1ile(θ0)

(V1(θ) + V2(θ))

⎞

⎠

⎞

⎠ , (4.13)

where Λ1ie(θ0) = Λie(θ0) \ Θie,

V0(θ0) = P(|S(0, θ0) > δ/4,Wiε),

and

Vs(θj) = P(j2|Ss(θj, θj−1)| > δ/4,Wiε), s = 1, 2.

Lemma 4.1. The estimate

V0(θ) < C exp
{ − C|θ|−2−λδ2ε−2

}
P(Wiε) (4.14)

holds. For θj ∈ Ψj ,

Vs(θj) < C exp
{ − C|θj − θj−1|−2uλ

ε δ2j−4ε−2
}
P(Wiε) (4.15)

for s = 1, 2.

Substituting (4.14) and (4.15) into (4.13), we get (4.9).
The proofs of (4.14) and (4.15) are akin to the proofs of (5.6) and (5.7) in [14] and are based

on the same estimates of Lemmas 5.4–5.8 of [14]. The proofs of these lemmas for the setup of
this paper do not differ from those in [14]. We omit the proofs of versions of Lemmas 5.4–5.6
of [14] for our setup. We only give versions of Lemmas 5.7 and 5.8 of [14] and their proofs.

Denote h = θj − θj−1, h = θj, and h1 = θj−1.

Lemma 4.2. For any u ∈ Rd,

E[(u′(τ − τh))2] = O(|u|2|h|λ). (4.16)

Lemma 4.3. Let v ⊥ h, v ∈ Rd. Then

E[(h ′(τh1 − τ))(v′τ)] = O(|v||h||h1|λ/2). (4.17)

If v ‖ h, then

E[(h′(τh1 − τ))(v′τ)] = O(|v||h||h1|λ). (4.18)
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Proof of Lemma 4.2. Using (2.7), we conclude that

J(h, u) := E[(ξ(h, h + u) − ξ(0, u))2] ≤ C(E[(ξ(θ0, h + u) − (h + u)′τ)2]

+ E[(ξ(θ0, h + u) − u′τ)2] + E[(ξ(θ0, h) − h′τ)2]) ≤ C(|h + u|2+λ + |h|2+λ + |u|2+λ).
(4.19)

At the same time,

E[(u′(τ − τh))2] ≤ C(E[(ξ(h, h + u) − u′τh − ξ(0, u) + u′τ)2] + J(h, u)))

≤ C(E[(ξ(h, h + u) − u′τh)2] + E[(ξ(0, u))2 − u′τ)2] + J(h, u))

≤ C(|h + u|2+λ + |h|2+λ + |u|2+λ).

(4.20)

Putting |u| = C|h|, we get (4.16). �

Proof of Lemma 4.3. Applying the Cauchy inequality and Lemma 4.2, we see that

|E[(h′(τh1 − τ))(v′τ)]| ≤ (E[((h′(τh1 − τ)))2])1/2(E[(v′τ)2])1/2 = O(|v||h||h1|λ/2). (4.21)

Let us prove (4.18). Note that

O(|v|2|h|λ) = E[(v′(τ − τh))2] = v′I(0)v + v′I(h)v − 2E[(v′τ)(v′τh)]. (4.22)

Hence, using (2.8), we get the relation

E[(v′τ)(v′τh)] = v′I(0)v + O(|v|2|h|λ). (4.23)

Hence,

E[(h′(τh1 − τ))(v′τ)] = C(E[(h′τh1)(hτ)] − E[(h′τ)(hτ)]) = O(|v||h||h1|λ). (4.24)

�
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