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SOLUTION OF THE AXISYMMETRIC PROBLEM OF CREEP AND DAMAGE
FOR A PIECEWISE HOMOGENEOUS BODY WITH MERIDIONAL SECTION
OF ANY SHAPE

S. M. Sklepus UDC 539.3

We consider the axisymmetric problem of creep and creep-induced damage for piecewise homogeneous
bodies with meridional sections of any shape. We develop a method for the solution of the initial
boundary-value problem based on the combined application of the R -function method and the Runge—
Kutta—Merson method. The structures of the solution for the main types of boundary conditions are
constructed. We present an example of calculation of creep and long-term strength for a three-layer cyl-
inder used as a computational scheme of a solid-oxide fuel element.

State-of-the-Art of the Problem. Statement of the Initial Boundary-Value Problem of Creep

The problems of determination of the stress-strain state and strength of piecewise homogeneous cylindrical
bodies are thoroughly described in the Ukrainian and foreign literature. At the same time, the nonlinear defor-
mation of piecewise homogeneous bodies, in particular, the problems of creep and damage have not been ade-
quately studied. This is connected with the complexity of solution of nonlinear initial boundary-value problems
for piecewise homogeneous systems and with difficulties connected with the construction of determining rela-
tions, which must take into account various effects of deformation of contemporary materials. Moreover, the
practical analyses of creep, damage, and long-term strength often require taking into account the complex geo-
metric shape of the body or interfaces of its components.

Consider a body of revolution of finite sizes referred to a cylindrical coordinate system Orz¢, which con-
sists of M components V;,V5,...,Vy V=V, UV, U...UV),) rigidly connected with each other. The body
is under the action of external surface loads applied to a part §, of its surface and a temperature field
T =T(r,z,t). The distribution of loads on §, and given kinematically possible displacements on the surface
S, are such that the desired solution is independent of . The external forces and temperature very slowly

vary with time that and, hence, the inertial terms in equations of motion can be neglected. The strains in the
body remain small in the process of creep.
We denote by dV,;, the interface of the neighboring parts of the body V, and V, . The axis Oz coin-

cides with the axis of revolution. The section of the body in the plane rOz has the shape of the domain €
with boundary 0. The domain € is the union of constituent domains Q;, k=1,...,M , with bounda-

ries dQy . The rates of displacements and external loads are given on the parts of the boundary 0Q, and 0Q2,,

respectively. We denote by dQ,; the interface of the neighboring domains Q, and Q. By 9Q,;, and 0Q;, ,
we denote the sides of the surface 9Q,, thatbelongto Q, and €, , respectively. Assume that the materials
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of the components of the body are isotropic and that the geometric and mechanical characteristics of each part
are independent of the angular coordinate ¢ .

The components of the total strain rate tensor €; consist of the components of the elastic strain rate ten-

sors 8; , thermal strain rate tensor 85 , and irreversible creep strain rate tensor p;;

. e T . ..
gij = £l'j+£ij +pij’ l,]:1,2,3.

In the cylindrical coordinate system, we have

.(r,z,1) = E5(r, 2,0+ €L (r,2,0) + pp(r,z,1),

&,(r.z.t) = &5(r.2.)+£L (r,z,0)+ py(r,2.1),
. R .T .
Eo(r,z,1) = £4(r,2,0) +€o(r,2,1)+ pe(r,z,1),

érz(r’zat) = éﬁz(razat)+éz;(razvt)+prz(erJ)-

Here, the overdot denotes the total derivative with respect to time ¢t .

Thermal strains are calculated by the formula
=el =a(T-Ty), el=0
¢ 0/ 4 B

where T =T(r,z,t) is the temperature, o= our,z,7T) is the linear thermal expansion coefficient, and 7 is
the temperature at which stresses and strains are absent. We assume that the temperature distribution 7'(r,z,t)
is given or known from the solution of the problem of nonstationary heat conduction.

We can write the determining relations of creep and kinetic equations for the state parameters within the

framework of the Rabotnov theory of structural parameters, in the general case, for the material of the k th com-
ponent of the body, in the form [3]

-k k
Pi = Jii CeksWksqik-q2ks----qNK) »
Vi = &k(Oetk>Wk>Giksq2ks---+qNK) »

dix = hix(Ce2k>Vi>q1k>92k -+ »4NK) -

Here, G., Ook> Oe2k, k=1,...,M , are equivalent stresses, and Y, gy, i=1,...,N, are the scalar
damage parameters and structural state parameters.
The boundary-value problem of creep and creep-induced damage for the axisymmetrically loaded body of

revolution of finite sizes at an arbitrary moment of time 7 # 0 can be reduced to the variational problem of
finding the minimum of a functional in the Lagrange form [1]:
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1S 2 2L . T
AU) = 2 3 [ Miry +2e #7772+ Gy i 0 o 20 Gy i+ 1y Gy k) ™)
i=1 Q

M
> [a,,,N,f; i N i NG+ NG i) ] rdrdz
=10,

- J. (P,?un+PTOut)daQ, (1)

Q,

where U(r,z,t) = @, (r,z,t),u,(r,z,1)) is the vector of the rates of displacements; u,(r,z,t), u,(r,z,t) are
the rates of displacements along the axes Or and Oz, respectively, which are continuous in € and satisfy

the kinematic boundary conditions in 0%, ; P,? (r,z,t) and PTO (r,z,t) are the rates of the normal component

and tangential component of the external surface forces; N rf , N g ,and N ,f; are the velocities of “fictitious”
forces; m and 7T are the external normal and tangent to 0Q; i, =u,n +u,n, and i, =u,n —un, are
the normal component and tangential component of the vector of displacement rates; n; and n, are the direc-
Evi

=ML a=M+2Gi, Gi = GiraT) =
(1=2v)(1+V,) li i i i i(r,z,T)

tion cosines of the normal n; A; = A;(r,z,T) =

E;i
2(1+v;)’
general case, are continuous functions of the coordinates and temperature within the boundaries of each compo-

E,=Er,z,T), and v;=v;(r,z,T), i=1,...,M , are the elastic characteristics, which, in the

nent of the body.
The velocities of the “fictitious” forces induced by creep and thermal strains in the ith component of the
body are calculated by the formulas

N} = [ i +Ai(eg +égi) ] N = [ Mz + Nl +ég) ]
(2)
N({i = [ Mg +Ni(ey + ) | NL, = 2Gié,
where

5 : v . . .T ) . T

€ri = Prit &, ei = Pite€y, €oi = Poi T E€qis
. . . T T . T .
el’zi = prZi’ Erl = SZl = a(Pl = O(,lT,

and pyi, Pz, Pei» 2Pr; depend on the form of the determining relations of creep of the material of the cor-

responding component.
If the range of variation of the temperature 7 €[7},7,] and the elastic characteristics of the materials of

the components of the body V;, j=1,...,M , attemperatures 77 and 7, are known, then, for Young’s
moduli E s

take the simplest linear interpolation

shear moduli G o Poisson’s ratios Vv j» and linear thermal expansion coefficient « j» We can
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Fi(r,z,T) = Ky;(r,2)+ Ky ;(r,2)T,
where the coefficients Kj; and K,; have the form

TyF;(r,2, 1) = TiF(r,z,T5)
Kijr.z) = ————"— ,
27 1]

Fi(r,z,T5)— F;(r,z,T})
Kyj(r,2) = 22—
I, =T

Here, Fj(r,z,T1) and F;(r,z,T,) are the values of any elastic characteristic or the linear thermal expansion
coefficient at temperatures 77 and T, , respectively.

The creep strain rates in functional (1) are assumed to be given and invariable.

Based on functional (1), we can formulate the functional in the Lagrange form defined in the space of the
vectors of displacement rates of the form Uk(r,z,t) = (Li,k(r,z,t),uzk(r,z,t)), k=1,....,M :

M
H(U],U2,...,UM) = %ZJJ.I:X]k(uer’r +uz2k,z+u3kr_2)
k=10,

. . 2 . . . . . -1
+ Gz +iig )" + 20 (urk,ruzk,z F g (U + Thgge T )]V drdz

M
= ] [t B+t N+ i W e 4 W (a4, )]rdrde

kzlgk
=3 | (Bl + P, )doQ. (3)
s 90,

Here, A;, Ay, and Gy are the functions of the elastic characteristics of the kth component, i, (r,z,t)
and uy(r,z,t), k=1,...,M , are the rates of radial and axial displacements in the kth component, and s is

the number of the component of the body to which external forces are applied; the velocities of the “fictitious”

forces in the k th component of the body are calculated by formulas (2).
The collection of the functions of the rates of displacements i, (r,z,t) and u,4(r,z,f) must satisfy the

following conditions:

1° be continuous in the corresponding constituent domains Q, , k =1,K ,M;
2° coincide on the boundaries of neighboring domains

ura(r’Zat) = I’Zrb(rsz’t)’ I’Zza(r’Z7t) = uzb(r’z’t) on aQab;
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3° satisfy the following kinematic boundary conditions if the corresponding component V, is adjacent
to the boundary of the body

. »0 . 0
uré(rvzat) = fré» uzé(rvzat) = fzé on aQLtf'

Here, fr% and fz% are given functions.
On the boundaries of the neighboring domains 0Q,, , the following conditions of equilibrium must be sat-
isfied:

o4, (r.2) =0, (r,2) = 0, T (r.2.) =T, (r.2) = 0, )

where Gfla (r,2), Gl,’lh (r,z) and ‘tflu (r,z,1), ‘tﬁb (r,z) are the normal and the tangential stresses that act on

the surfaces 0Q;, and 0%Qj,, respectively; n, and m, are the outer normals to the surfaces 0Q,;, and
0Q,,, n,=—ny.

Conditions (4) can be obtained as conditions of stationarity or, in other words, as natural boundary condi-
tions of functional (3) if the functions ,,, i, , u,,, and i, satisfy conditions 1° and 2°.

The main unknown problems of creep and creep-induced damage at any point of the body can be found

from the solution of the Cauchy problem with respect to time for a system of differential equations, which, for
the jth component of the body has the form

di: du,;
rj — Lirj’ 9 - I/.lzja
dt dt
dSrj . ngj
a a I
deg 1y dY der
@ _ i, 7] =2 Y = U, +U.:
dt r di dt R
dc,; . . . ; : 5
T T Mg g =& =) T h(E =),
(5)
do ; . . . ; : 5
dtz} = hj(&j+Eg = by — )+ My —€y)
do ;i . . ; 5 : >
dt(Pj = NjEy+Ey—éy—éy)+hj(Eg —ég)
doc,; . . dpy; : g _
7 Gi(Yrgj = 265), a P a P
dpg; . Apr v, 4ay 1
a P a P a0 a — "
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The initial conditions for the desired functions at the time ¢ =0 are found from the solution of the prob-
lem of elastic deformation. For the solution of the elastic problem, a functional of the form of (1) or (3) can be
used. In this case, in the formula for the functional, it is necessary to replace the derivatives of the functions
with respect to time by these functions and, in calculation of the “fictitious” forces by formulas (2), set creep
strains equal to zero.

Method of Solution. Structures of the Solution

We solve the initial problem (5) by the Runge—Kutta—Merson method with automatic choice of the step [2].
The variational problems for functional (1) or (3) at times corresponding to the Runge—Kutta—Merson scheme
are solved by the Ritz method in combination with the R -function method [4,5]. The R -function method en-
ables us to exactly take into account the geometry of the domain and the boundary conditions of the most gen-
eral form. In this case, the approximate solution of the boundary-value problem is represented in the form of a
formula, i.e., of the structure of the solution exactly satisfying either all boundary conditions (the general struc-
ture of the solution) or a part of boundary conditions (partial structure of the solution) and is invariant with re-
spect to the shape of the domain €2. The structures of the solution form a base for the construction of systems
of coordinate functions of variational methods.

Consider some conditions of fastening, the corresponding boundary conditions, and the structures of the so-
lution within the framework of the statement of the boundary-value problem on the basis of functional (1).

Let, on the part 0d€, of the boundary €, the following rates of displacements be given:

lftr(r,z,t) = froa ﬂz(r,z,t) = ‘]Z‘ZO' (6)

Assume also that the other part of the boundary 02, , where external forces are applied, belongs to the mth

p 9
component of the body, and, on it, the following normal stress rate and tangential stress rate are given:

6, = Gpni +26,.mny +6.n5 = Py,
(7)
. . . . 2 2 50
Ty = (GZ—Gr)n]nz +Grz(n1 —I’lz) = Pt .
Conditions (7) can be written in terms of the rates of displacements [1]
N Gy s + 1 Ao i 1y — i Am = PO+ Bf
lm(ur,nnl +uz,nn2)+ m(uz,rnl ur,rn2)+ m = Iy try,
3)

. . . . -0 .
G iy oy =ty ity + 1 gty + 1 213) = PP+ P

where P,,f = N,fn]2 + 2N,Cnln2 +N{n% , Prf = (sz - Nf)nlnz +]\7,j;(n]2 —n%) .
Conditions (8) are natural for functional (1).

It is easy to verify that the partial structure of the solution that satisfies the kinematic boundary condi-
tions (6) can be written in the form

Uy = fr +0,P; + mzq)lOa u, = fz +w,0, + 0)2(1)20 .
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Here, f, and fz are the continuations of the functions fro and fzo into the domain QUJQ,;
o, (r,z)=0 are the equations of the area 9dQ, (®, >0 beyond 0Q,); ®(r,z)=0 is the equation of the
boundary of the domain Q (® >0 inside Q); ®; and ®;y, i=1,2, are the undefined components of the

structure of the solution [4]. The functions f, and fz can be constructed with the help of the operator of the
continuation of the boundary values EC(...) [4]. If we have only two characteristic parts of the boundary of

the domain Q, namely, 0Q, and 0dQ,, then we represent the functions f. and f, in the form

0 0
_Jrop 7 = EC(J%) = _J20p

0, +0, 0, +0,

fr = EC(f?) =
where ®,(r,z)=0 are the equations of the area 92, (®, >0 beyond 0Q,).
The general structure of the solution which exactly satisfies conditions (6) and (8) has the form [1]
U, = Uo, + Uy, u; = Upy Ty, )

where 1y, and g, satisfy the inhomogeneous boundary conditions, and i, , u;, satisfy the homogeneous

boundary conditions

‘ . 1 . , . A
P X—P,,(omp’,—G—Prmo)p,z+f,—mD1(”)f,+0)(l+x—m]
1m m Im

; o Am 2 2 A /i
X (Dp’r(')p,ZTl(p)fr _mTl(p)fZ ( }\’m (DPJ” _mP,Z - ;\‘m (DOJPJ TF ’
1

Im m

1 1 . . A
iy, = — P,ow, , +— Poo,, + f, - oD{"f, —m(1+—m]
klm Gm 7\']m
; A 2 A b
X Q)p,r(’)p,le(p)fz - (”T1(p)fr ( xm WOp=Wp, |~ x o0, .,
Im Im

. A
i, = ®0, - [ DY (®10,) - T (@10,)0,,0,., ( 1+ x—’"]
Im

A, ©® A
—m 0w, , - Tl(”)((l)zwu)((of,’z - s, H+ 00,03,
klm 7\'1m
. (p) (p) }Lm
Uy, = (I)Z(Du_('o D] (®2mu)+Tl ((DZwu)(Dp,r(Dp,z 1+T
1m
A, ©® A
—xm — mp,z+T1(1’)(q>1wu)(w§,,r——’" wf,,zﬂ+mmpq>4.
1m r 7\'lm
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Here, w(r,z)=0 is the equation of the boundary of the domain €2 normalized to the first order (0, =-1
on d0Q, >0 inside Q); w,(r,z)=0 and ®,(r,z)=0 are the equations of the regions 0Q, and BQI,
normalized to the first order; ®;, i=1,...,4, are undefined components of the structure of the solution;
9w, 9 90, 9 (p)__9®p 000, 9

and T, + — are differential operators [4, 5]; P, and P
Jr or Jz 0z ! dz Jdr Or 0z P 4,55 5 f

are the continuations of the function of contour forces into the domain QU 0Q,,

D](P) -

B, = EC(B))+EC(B]), P, = EC(PY)+EC(P!)
or
1y 273?0)” +Nlo?, +2NLo,,0, . + N o?
"oo,te, TP rp rpz TP
P = hHNf—Nf)m o,.+NLo3, -0?,)
Too,t0, @ S prTipe TN TEpa

Note that the structures of the solution for the main axisymmetric problems of the theory of elasticity were
obtained in the monograph [5]. They can be used for the solution of the problem of elastic deformation, in find-
ing the initial conditions for the main unknowns of the initial boundary-value problem of creep and creep-
induced damage.

Further, we consider the main boundary conditions, conditions of joining of the parts of the body, and the
corresponding structures of the solution within the framework of the statement of the problem on the basis of
functional (3). In this case, the problem is reduced to the determination of the rates of the radial displacements
u,; and axial displacements i, in each of the domains €;, i=1,...,M . Then the functions u,; and iy
must satisfy the equations of equilibrium written for the rates, conditions 2° on the boundaries of neighboring
components, and the kinematic boundary conditions 3° if the corresponding component is adjacent to the
boundary of the body.

Denote by Q,, n=1,...,N, the domains adjacent to the boundary of the body. We set the rates of dis-

placements on parts of the boundaries 0, of the domains €, , the stress rates on parts 0d<Q and condi-

pn >
tions of joining of neighboring parts on parts 0d€.,. The entire boundary of the domain €, can be represent-
ed as the union of boundaries 0Q, = 0Q,, UdQ,, UdQ,, . If only the rates of displacements or only the rates
of stresses are given, then the corresponding part (dQ,, or 02,,) of the boundary can be absent.

Let the boundary conditions for the rates of displacements on the part 0, have the form

(7, 2,1) = fo, ligy (r2,1) = f5. (10)

Then the partial structures of the solution for the rates of displacements #,, and i, can be written in the

form

Upy, = UQpy + Uipp, uzn = I;lOzn"'b"lzn’ (11)

where ug,, and ug, satisfy the inhomogeneous boundary conditions, and uy,,, uy, are homogeneous
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conditions and are determined by the following formulas:

tom = Jpr  tom = fors (12)

i = 0,®)+0 @ + 05, Dy, i = 0, +0 @) + 0 Doy (13)

Here, ®(r,z)=0 is the equation of the boundary of the body dQ (w >0 inside Q); w,(r,z)=0 isthe
equation of the area 0dQ, (®, >0 beyond 0Q,); ®,.,(r,z)=0 is the equation of the area 09Q,., =
0Q,, U0Q., (0, >0 beyond 0Q,.,). The functions f,, and f,, can be written in the form

: : o . : FATO)

Jm = Ec(fr%):Mv S = EC(fz%) = M7

Wy, + O pen Wy, + O pen

where ®,,(r,z)=0 is the equation of the area 0Q ., =9Q,, UdQ, (®,, >0 beyond 0Q,,) and
Oyn(rz) = 0 is the equation of the area 09, (®,, >0 beyond 0L,,).

The structures of the solution represented by formulas (11)—(13), satisfy exactly the kinematic boundary
conditions on 0L, and the conditions of joining 2° for any choice of the undefined components @®;, ®,,

Dy, Dy, Dy;, and @y; i=1,...,.M .

If on the external boundary of some domain € s only the rates of stresses are given, i.e., in other words,
the boundary E)QW» is absent, then, in this case, in formulas (12) and (13), we must take Ugyj = 0, Uz = 0,
®,ej = W¢, where ®.(r,z)=0 is the equation of area dQ. (w, >0 beyond 0Q).

For the internal components Q,, ¢=1,...,L, the domains €, on the boundaries of which only the con-

dition of joining with the neighboring components must be satisfied, in the structures of the solution, we must
take g, =0, g,y =0, and ®,,=w®,;, where ®y(r,z)=0 is the equation of the boundary of the do-

main Q, (®, >0 inside Q).

The equations of the boundary of the domain £ and its components in the structures of the solution are
constructed with the help of R -functions [4].

In discretization of the boundary-value problem, the undefined components of the structures of the solution
are represented in the form [4]

Ny
Dy(x) = Dyy(x) = > Ciop, x=(r,2),
k=1

where {(pf} are the known elements of some functional space M ¢ in which @, are contained and form a

certain sequence in it, and Cﬁ are unknown coefficients. As {(pﬁ} , we can choose ordinary power polynomi-

als, Chebyshev polynomials, splines, etc. [4].

Numerical Results

As an example, we consider the processes of creep and damage of a three-layer cylinder used as a computa-
tional scheme of a solid-oxide fuel cell (Fig. 1) developed by the Siemens-Westinghouse Power Corp. [8].
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Interconnection

Electrolyte
Cathode
Air feed tube

. v Air flow
— * ‘f T. = 8.66 mm
Tee = 10.86 mm
Tel Teel Teal Ta Toq = 10.90 mm
T, =11.00 mm
Fig. 1

In the contemporary engineering, the solid-oxide fuel cells (SOFC) are among the most efficient power-
generating systems converting chemical energy into electric energy. Solid-oxide fuel cells consist of an electro-
lyte, a cathode, and an anode. The electrolyte layer is laid between two thin porous electrodes. The cathode,
anode, and electrolyte are made of ceramic materials. The theory and technology of production of SOFC are
now extensively developed and investigated [7-10].

One of the central problems in the design and operation of solid-oxide fuel cells is to guarantee their long-
term strength and increase the period of failure-free operation.

The sizes of the fuel cell in the radial direction are shown in Fig. 1. The layers of the cylinder are rigidly
connected with each other. The length of the electrochemically active part is ¢=1.5m. The thickness of the

cathode is h; =2.2- 10~ m, the thickness of the electrolyte is h, = 0.04 - 10 m, and the thickness of the an-

odeis h3=0.1 10 m. The cathode was made of WPC3 material, the electrolyte was made of 8YSZ material

(zirconium dioxide stabilized by yttrium oxide), and the anode was made of Ni+YSZ material (nickel cer-
met) [8]. The working temperature was 7 =900°C. Young’s moduli and Poisson’s ratios of the materials of
the cathode, electrolyte, and anode at a temperature of 900° C are as follows [8, 13]: E; =58.0GPa, E, =

1550 GPa, E;=640GPa, v; =025, v,=0316, and v3=0.25. The linear thermal expansion coeffi-
cients are o4 =10.7- 107K, oy = 103-10°K™!, and a3 =12.0- 10°K™". The temperature at which
stresses and strains are absent is 7;) = 1250° C. External surface forces are absent, i.e., P,? =0 and PT0 =0.

For the existing level of stress intensity, the material of the cathode does not reveal creep. The law of uni-
axial creep and the kinetic equation of damage for the materials of electrolyte and anode have the form

b= ACXP(_g)t-kc_, A Bexp(_A)G;.
RT (1-y)" dt RT ) (1-y)"

Here, y is the scalar damage parameter, which at the initial moment of time ¢ =0, is equal to zero and, at the

moment ¢ =t, offracture,is Yy =1; R=0.0083144kJ/(mole - K) is a universal gas constant; T is absolute

temperature. The creep constants of the electrolyte material are as follows [12]: A = 704.5(MPa)™"-h7!,
B=1.1722 (MPa)™ - h’l, m=17, n=1, k=0, Q=3200kJ/mole, and A =4423kJ/mole. The creep
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constants of the anode material are the following [11]: A=9.145- 10713 (MPa)™ - h’l, B=0, m=0,
n="7.181, k=0943, and Q = 72.5k]J/mole.

For the complex stressed state, we write the determining relations of creep and the kinetic equation of dam-
age in the form

n—1
pPr = EACXP(_g)t_k el n(cr_lll),
2 RT (1-wy) 3
n—1
p; = EACXP(_g)t_k o n(cz_lll),
2 RT (1-wy) 3
n—1
Py = EAGXP(_g)t_k o n(GqJ_lh),
2 RT (1-wy) 3
n—1
Pr; = EACXP(_Q)I_I{ o w Orzs
2 RT (1-y)

vy _ Bexp(_A)Gii,
dt RT ) (1—-y)™

where

o, = \/63 + 0% + G(zp -0,6,-0,05—0y0,+ 3(53Z
is the intensity of stresses and I} =G, +0,+ 0.
Further, we consider the boundary conditions and the corresponding structures of the solution. The lateral
boundaries of the cylinder r=r.=8.66- 10°m and r= r,=110- 10 m are free from fastening and exter-

nal loads. The ends z=1/¢/2 of the fuel element can move freely along the Oz -axis.
The boundary conditions on the ends of the cylinder z==1/¢/2 are

G, (thy,uy) = 0, Gy, uy,) = 0, i=1,2,3.

On the internal surface r =r, and external surface r =7, of the cylinder,
G,j(ty,z) = 0, Gy i) = 0,  j=13.

On the boundaries of the layers, the following conditions of joining must be satisfied:

Upg = Tpicss Ug = Ugyr, k=12, (14)
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In numerical realization, we use the symmetry of the problem. In this case, on the axis of symmetry, in the
section z=0, we give the following conditions:

i, =0, aaLZ”' =0, i=123. (15)

Using the methods of construction of the structures of the solution described in the foregoing, we obtain
structures satisfying conditions (14) and (15)

A (u 2 2
iy = @ - 0,D"P| + 0’ + 0Py,
iy = 0,0 +0 Dy + 02Dy,
a — Wur2 20 uci = 2i -
Here, ®, =z, ©,; =0, Ag W, =O, + O, — 0)5 + u)f,- , and ®. =0 are the equations of the interfaces of
the layers of the cylinder
(r=n)(rs—r)

Wy = -1, Wep = —— We3 = r—rs,
nB—n

Ag is the symbol of the R-conjunction operation [4]; H=7., 1 =V, B3 =Ty, I4=TI,; Dl(”) =
0w, d . 0w,
or or dz dz

defined components of the structure of the solution. Note that here, the functions ®,.; can also be obtained as

is a differential operator; @®;, ®,, @y, Py, ®,;, and P,;, i=1,2,3, are the un-

ordinary products ®,., =®, - ®; .
The equation of the boundary of the domain Q (w=0, ®,=-1 on dQ, w>0 inside Q) has the

form
2 2
W =0, A0, = O, +0, -0 +0; = 0,
r—n)ry—r 2z( ¢
where w,=w, Q)Z:_(__Z)
ry—n Y4 2

In the numerical realization, the functions ®;, ®,, @5, Py, P®,;, and P,; are present in the form

of linear combinations of Schoenberg bicubic splines [6].
Systems of spline functions were constructed on uniform rectilinear meshes. In this case, ®;, ®,, Dy,

and ®,;, were given in the whole domain €, and ®y;, ®,;, i=1,2,3, were given only in the correspond-
ing subdomains €; with equations of the boundaries (®; =0, ®;, =1 on 0dQ;, and ®; >0 inside ;)

W = W AW, = Wy +O, — (x)fi+0)§ =0,

(r—r))tig1—1) _

i1 =1

where ®,; =
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As a result of calculations, we established that the time to fracture is t. = 4360h. Fracture begins in the

electrolyte layer at the points lying on the boundary with the anode. Figures 2—4 show the results of calculations
of stresses and damage in the section z=0.

In Fig. 2, we show the results on the intensity of stresses at different moments of time, where the dashed
line corresponds to =0 and the solid line corresponds to ¢ =t,. For the better visualization of the results,
along the abscissa axis, we plot the dimensionless radial coordinate & , which, in the corresponding layers, was

calculated by the formula

n—1
r—r, _
E.:n :an nl+za‘k’ n:192’3a
Tn = Th—1 k=0

where 71y =8.66 mm, n =10.86mm, n» =109 mm, and 3 =11.0mm; o are weight coefficients: oy=0,
o =05, oy, =0.18, and o3 =0.32. Figure 3 shows the distribution of damage in the electrolyte layer at dif-
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ferent moments of time: curve / corresponds to ¢ =2000h, curve 2 corresponds to ¢=3000h, and curve 3
corresponds to ¢ =t, = 4360 h.

In Fig. 4, we show the plots of increase in the degree of damage with time at different points of the electro-
lyte: curve I corresponds to the degree of damage on the boundary of the electrolyte and anode
(r =10.8999 mm), curve 2 corresponds to the degree of damage on the boundary of the electrolyte and cathode
(r =10.8601 mm), and curve 3 corresponds to the degree of damage inside the electrolyte (r =10.88 mm).

Conclusions

We develop a numerical-analytic method for the solution of the axisymmetric initial boundary-value prob-
lem of creep and creep-induced damage for a piecewise homogeneous body of revolution with meridional sec-
tion of any shape subjected to the action of force and temperature loads. The method is based on the combined
use of the R-function method and the Runge—Kutta—Merson method. We construct the structures of the solu-
tions for the main types of boundary conditions. As an example, we solved the problem of creep, damage, and
long-term strength for a solid-oxide tubular fuel cell by using a three-layer cylinder as its computational scheme.
The results of our investigations enable us to conclude that, during operation, the redistribution of mechanical
stresses and accumulation of damage occur in solid-oxide fuel cells as a result of creep. The levels of stresses in
the electrolyte and anode remain high for the whole time. This eventually leads to the fracture of the fuel cell.
To extend the failure-free period of operation of fuel cells, it is necessary to decrease the level of stresses, e.g.,
as a result of the decrease in the difference between the linear thermal expansion coefficients of the materials of
the layers.
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