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SOLUTION OF THE AXISYMMETRIC PROBLEM OF CREEP AND DAMAGE  
FOR A PIECEWISE HOMOGENEOUS BODY WITH MERIDIONAL SECTION  
OF ANY SHAPE  

S. M. Sklepus  UDC 539.3 

We consider the axisymmetric problem of creep and creep-induced damage for piecewise homogeneous 
bodies with meridional sections of any shape.  We develop a method for the solution of the initial 
boundary-value problem based on the combined application of the R -function method and the Runge–
Kutta–Merson method.  The structures of the solution for the main types of boundary conditions are 
constructed.  We present an example of calculation of creep and long-term strength for a three-layer cyl-
inder used as a computational scheme of a solid-oxide fuel element. 

State-of-the-Art of the Problem.  Statement of the Initial Boundary-Value Problem of Creep 

The problems of determination of the stress-strain state and strength of piecewise homogeneous cylindrical 
bodies are thoroughly described in the Ukrainian and foreign literature.  At the same time, the nonlinear defor-
mation of piecewise homogeneous bodies, in particular, the problems of creep and damage have not been ade-
quately studied.  This is connected with the complexity of solution of nonlinear initial boundary-value problems 
for piecewise homogeneous systems and with difficulties connected with the construction of determining rela-
tions, which must take into account various effects of deformation of contemporary materials.  Moreover, the 
practical analyses of creep, damage, and long-term strength often require taking into account the complex geo-
metric shape of the body or interfaces of its components. 

Consider a body of revolution of finite sizes referred to a cylindrical coordinate system  Orzϕ ,  which con-
sists of  M   components   V1,V2,…,VM    (V = V1 V2 …VM )  rigidly connected with each other.  The body 
is under the action of external surface loads applied to a part  Sp   of its surface and a temperature field  
T = T (r, z, t) .  The distribution of loads on  Sp   and given kinematically possible displacements on the surface  
Su   are such that the desired solution is independent of  ϕ .  The external forces and temperature very slowly 
vary with time that and, hence, the inertial terms in equations of motion can be neglected.  The strains in the 
body remain small in the process of creep. 

We denote by  ∂Vab   the interface of the neighboring parts of the body  Va   and  Vb .  The axis  Oz   coin-
cides with the axis of revolution.  The section of the body in the plane  rOz   has the shape of the domain  Ω   
with boundary  ∂Ω .  The domain  Ω   is the union of constituent domains  Ωk ,   k = 1,…,M ,  with bounda-
ries ∂Ωk .  The rates of displacements and external loads are given on the parts of the boundary ∂Ωu  and ∂Ω p , 

respectively.  We denote by ∂Ωab  the interface of the neighboring domains Ωa  and Ωb .  By ∂Ωab
∗  and  ∂Ωba

∗ ,  
we denote the sides of the surface  ∂Ωab   that belong to  Ωa   and  Ωb ,  respectively.  Assume that the materials 
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of the components of the body are isotropic and that the geometric and mechanical characteristics of each part 
are independent of the angular coordinate  ϕ .  

The components of the total strain rate tensor   εij   consist of the components of the elastic strain rate ten-

sors   εij
e ,  thermal strain rate tensor   εij

T ,  and irreversible creep strain rate tensor   pij  

  
εij = εije + εijT + pij , i, j = 1, 2, 3 . 

In the cylindrical coordinate system, we have 

  εr (r, z, t) = εre(r, z, t) + εrT (r, z, t) + pr (r, z, t) , 

  εz (r, z, t) = εze(r, z, t) + εzT (r, z, t) + pz (r, z, t) , 

  
εϕ (r, z, t) = εϕe (r, z, t) + εϕT (r, z, t) + pϕ (r, z, t) , 

  εrz (r, z, t) = εrze (r, z, t) + εrzT (r, z, t) + prz (r, z, t) . 

Here, the overdot denotes the total derivative with respect to time  t . 
Thermal strains are calculated by the formula 

 εrT = εzT = εϕT = α(T − T0 ), εrzT = 0 , 

where  T = T (r, z, t)   is the temperature,  α = α(r, z,T )   is the linear thermal expansion coefficient, and  T0   is 
the temperature at which stresses and strains are absent.  We assume that the temperature distribution  T (r, z, t)   
is given or known from the solution of the problem of nonstationary heat conduction. 

We can write the determining relations of creep and kinetic equations for the state parameters within the 
framework of the Rabotnov theory of structural parameters, in the general case, for the material of the k th com-
ponent of the body, in the form [3] 

  pij
k = fijk (σek ,ψ k , q1k , q2k ,…, qNk ) , 

  ψ k = gk (σe1k ,ψ k , q1k , q2k ,…, qNk ) , 

  qik = hik (σe2k ,ψ k , q1k , q2k ,…, qNk ) . 

Here,  σek ,  σe1k ,  σe2k ,   k = 1,…,M ,  are equivalent stresses, and  ψ k ,  qik ,   i = 1,…, N ,  are the scalar 
damage parameters and structural state parameters. 

The boundary-value problem of creep and creep-induced damage for the axisymmetrically loaded body of 
revolution of finite sizes at an arbitrary moment of time  t ≠ 0   can be reduced to the variational problem of 
finding the minimum of a functional in the Lagrange form [1]: 
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Λ( U) = 1
2

λ1i ( ur,r2 + uz,z2 + ur2r−2 ) +Gi ( ur,z + uz,r )2 + 2λi ( ur,r uz,z + ur ( ur,r + uz,z )r−1)⎡⎣ ⎤⎦ r dr dz
Ωi

∫∫
i=1

M

∑  

  – 
 Ωi

∫∫
i=1

M

∑ ur,r Nri
f + uz,z Nzi

f + ur Nϕi
f r−1 + Nrzi

f ( ur,z + uz,r )⎡⎣ ⎤⎦ r dr dz   

  – 
 

Pn0 un + Pτ0 uτ( ) d ∂Ω
∂Ω p

∫ ,  (1) 

where   
U(r, z, t) = ( ur (r, z, t), uz (r, z, t))   is the vector of the rates of displacements;   ur (r, z, t) ,   uz(r, z, t)   are 

the rates of displacements along the axes  Or   and  Oz ,  respectively, which are continuous in  Ω   and satisfy 
the kinematic boundary conditions in  ∂Ωu ;   

Pn0(r, z, t)   and   
Pτ0(r, z, t)   are the rates of the normal component 

and tangential component of the external surface forces;   
Nr
f ,   
Nz
f ,  and   

Nrz
f   are the velocities of “fictitious” 

forces;  n   and  ττ   are the external normal and tangent to  ∂Ω ;   un = urn1 + uzn2   and   uτ = uzn1 − urn2     are 
the normal component and tangential component of the vector of displacement rates;  n1   and  n2   are the direc-

tion cosines of the normal  n ;  λi  = λi (r, z,T )  = Eiνi
(1− 2νi )(1+ νi )

,  λ1i = λi + 2Gi ,  Gi  = Gi (r, z,T )  = 

Ei
2(1+ νi )

,  Ei = Ei (r, z,T ) ,  and  νi = νi (r, z,T ) ,   i = 1,…,M ,  are the elastic characteristics, which, in the 

general case, are continuous functions of the coordinates and temperature within the boundaries of each compo-
nent of the body. 

The velocities of the “fictitious” forces induced by creep and thermal strains in the i th  component of the 
body are calculated by the formulas 

 
 
Nri

f = λ1i eri + λi ( ezi + eϕi )⎡⎣ ⎤⎦ , Nzi
f = λ1i ezi + λi ( eri + eϕi )⎡⎣ ⎤⎦ , 

   (2) 

 
 
Nϕi
f = λ1i eϕi + λi ( eri + ezi )⎡⎣ ⎤⎦ , Nrzi

f = 2Gi erzi , 

where 

  eri = pri + εriT , ezi = pzi + εziT , eϕi = pϕi + εϕiT , 

  erzi = przi , εriT = εziT = εϕiT = αi T , 

and   pri ,   pzi ,   pϕi ,   2 przi   depend on the form of the determining relations of creep of the material of the cor-
responding component. 

If the range of variation of the temperature  T ∈[T1,T2 ]   and the elastic characteristics of the materials of 
the components of the body  Vj ,   j = 1,…,M ,  at temperatures  T1   and  T2   are known, then, for Young’s 
moduli  E j ,  shear moduli  Gj ,  Poisson’s ratios  ν j ,  and linear thermal expansion coefficient  α j ,  we can 
take the simplest linear interpolation 



SOLUTION OF THE AXISYMMETRIC PROBLEM OF CREEP AND DAMAGE FOR A PIECEWISE HOMOGENEOUS BODY 647 

 Fj (r, z,T ) = K1 j (r, z) + K2 j (r, z)T , 

where the coefficients  K1 j   and  K2 j   have the form 

 K1 j (r, z) =
T2Fj (r, z,T1) − T1F(r, z,T2 )

T2 − T1
, 

 K2 j (r, z) =
Fj (r, z,T2 ) − Fj (r, z,T1)

T2 − T1
. 

Here,  Fj (r, z,T1)   and  Fj (r, z,T2 )   are the values of any elastic characteristic or the linear thermal expansion 
coefficient at temperatures  T1   and  T2 ,  respectively. 

The creep strain rates in functional (1) are assumed to be given and invariable. 
Based on functional (1), we can formulate the functional in the Lagrange form defined in the space of the 

vectors of displacement rates of the form   
Uk (r, z, t) = urk (r, z, t), uzk (r, z, t)( ) ,   k = 1,…,M : 

 
 

Π U1, U2,…, UM( ) = 1
2

λ1k urk,r2 + uzk,z2 + urk2 r−2( )⎡
⎣

Ωk

∫∫
k=1

M

∑  

  + 
 
Gk ( urk,z + uzk,r )2 + 2λk urk,r uzk,z + urk ( urk,r + uzk,z )r−1( ) ⎤⎦ r dr dz  

  – 
   Ωk

∫∫
k=1

M

∑ urk,r
Nrk

f + uzk,z
Nzk

f + urk
Nϕk

f r−1 + Nrzk
f urk,z + uzk,r( )⎡⎣ ⎤⎦ r dr dz  

  – 
   

Pn
0 uns + Pτ

0 uτs( )d ∂Ω
∂Ωps

∫
s
∑ . (3) 

Here,  λk ,  λ1k ,  and  Gk   are the functions of the elastic characteristics of the  k th  component,   urk (r, z, t)   
and   uzk (r, z, t) ,   k = 1,…,M ,  are the rates of radial and axial displacements in the  k th  component, and  s   is 
the number of the component of the body to which external forces are applied; the velocities of the “fictitious” 
forces in the  k th component of the body are calculated by formulas (2). 

The collection of the functions of the rates of displacements   urk (r, z, t)   and   uzk (r, z, t)   must satisfy the 
following conditions: 

 1°°  be continuous in the corresponding constituent domains  kΩ ,  1, ,k M= K ; 

 2°°  coincide on the boundaries of neighboring domains 

  ura (r, z, t) = urb (r, z, t), uza (r, z, t) = uzb (r, z, t)       on    ∂Ωab ; 
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 3°°  satisfy the following kinematic boundary conditions if the corresponding component   V   is adjacent 
to the boundary of the body 

   ur (r, z, t) = fr0 , uz (r, z, t) = fz0       on     ∂Ωu . 

Here,    
fr0   and    

fz0   are given functions. 
On the boundaries of the neighboring domains  ∂Ωab ,  the following conditions of equilibrium must be sat-

isfied: 

  σna
a (r, z) − σnb

b (r, z) = 0, τna
a (r, z, t) − τnb

b (r, z) = 0 , (4) 

where   σna
a (r, z) ,   σnb

b (r, z)   and   τna
a (r, z, t) ,   τnb

b (r, z)   are the normal and the tangential stresses that act on 

the surfaces  ∂Ωab
∗   and  ∂Ωba

∗ ,  respectively;  na   and  nb   are the outer normals to the surfaces  ∂Ωab
∗   and  

∂Ωba
∗ ,  na = − nb . 
Conditions (4) can be obtained as conditions of stationarity or, in other words, as natural boundary condi-

tions of functional (3) if the functions   ura ,   uza ,   urb ,  and   uzb   satisfy conditions 1°°  and 2°° . 
The main unknown problems of creep and creep-induced damage at any point of the body can be found 

from the solution of the Cauchy problem with respect to time for a system of differential equations, which, for 
the j th  component of the body has the form 

 
 

durj

dt
= urj ,

duzj

dt
= uzj , 

 
 

dεrj

dt
= urj,r ,

dεzj

dt
= uzj,z  

  

dεϕj
dt

=
urj

r
,

dγ rzj

dt
= 2

dεrzj

dt
= urj,z + uzj,r

, 

 
 

dσrj

dt
= λ j (εzj + εϕj − ezj − eϕj ) + λ1 j (εrj − erj ) , 

   (5) 

 
 

dσ zj

dt
= λ j (!εrj + !εϕj − !erj − !eϕj ) + λ1 j (!εzj − !ezj ) , 

 
 

dσϕj

dt
= λ j (εrj + εzj − erj − ezj ) + λ1 j (εϕj − eϕj ) , 

 
 

dσrzj

dt
= Gj ( γ rzj − 2 erzj ),

dprj
dt

= prj ,
dpzj

dt
= pzj , 

 
 

dpϕj
dt

= pϕj ,
dprzj

dt
= przj ,

dψ j

dt
= ψ j ,

dqij

dt
= qij . 
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The initial conditions for the desired functions at the time   t = 0   are found from the solution of the prob-
lem of elastic deformation.  For the solution of the elastic problem, a functional of the form of (1) or (3) can be 
used.  In this case, in the formula for the functional, it is necessary to replace the derivatives of the functions 
with respect to time by these functions and, in calculation of the “fictitious” forces by formulas (2), set creep 
strains equal to zero. 

Method of Solution.  Structures of the Solution 

We solve the initial problem (5) by the Runge–Kutta–Merson method with automatic choice of the step [2].  
The variational problems for functional (1) or (3) at times corresponding to the Runge–Kutta–Merson scheme 
are solved by the Ritz method in combination with the R -function  method [4, 5].  The  R -function method en-
ables us to exactly take into account the geometry of the domain and the boundary conditions of the most gen-
eral form.  In this case, the approximate solution of the boundary-value problem is represented in the form of a 
formula, i.e., of the structure of the solution exactly satisfying either all boundary conditions (the general struc-
ture of the solution) or a part of boundary conditions (partial structure of the solution) and is invariant with re-
spect to the shape of the domain  Ω .  The structures of the solution form a base for the construction of systems 
of coordinate functions of variational methods. 

Consider some conditions of fastening, the corresponding boundary conditions, and the structures of the so-
lution within the framework of the statement of the boundary-value problem on the basis of functional (1). 

Let, on the part  ∂Ωu   of the boundary  Ω ,  the following rates of displacements be given: 

  ur (r, z, t) = fr0, uz (r, z, t) = fz0 . (6) 

Assume also that the other part of the boundary  ∂Ω p ,  where external forces are applied, belongs to the  m th  
component of the body, and, on it, the following normal stress rate and tangential stress rate are given: 

  σn = σrn1
2 + 2 σrzn1n2 + σ zn2

2 = Pn
0 , 

   (7) 
  τn = ( σ z − σr )n1n2 + σrz (n12 − n22 ) = Pτ

0 . 

Conditions (7) can be written in terms of the rates of displacements [1] 

 
 
λ1m ( ur,nn1 + uz,nn2 ) + λm ( uz,τn1 − ur,τn2 ) + λm

ur
r

= Pn0 + Pnf , 

   (8) 
  Gm ( ur,τn1 − ur,nn2 + uz,nn1 + uz,τn2 ) = Pτ0 + Pτf , 

where   
Pnf = Nr

f n12 + 2 Nrz
f n1n2 + Nz

f n22 ,   
Pτf = ( Nz

f − Nr
f )n1n2 + Nrz

f (n12 − n2
2 ) . 

Conditions (8) are natural for functional (1). 
It is easy to verify that the partial structure of the solution that satisfies the kinematic boundary condi-

tions (6) can be written in the form 

  ur = fr + ωuΦ1 + ω2Φ10, uz = fz + ωuΦ2 + ω2Φ20 . 
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Here,   
fr   and   

fz   are the continuations of the functions   
fr0   and   

fz0   into the domain   Ω  ∂Ω p ;  
ωu (r, z) = 0   are the equations of the area  ∂Ωu   (ωu > 0   beyond  ∂Ωu );  ω(r, z) = 0   is the equation of the 
boundary of the domain  Ω   (ω > 0   inside  Ω );  Φi   and  Φi0 ,  i = 1, 2 ,  are the undefined components of the 
structure of the solution [4].  The functions   

fr   and   
fz   can be constructed with the help of the operator of the 

continuation of the boundary values   EC(… )   [4].  If we have only two characteristic parts of the boundary of 
the domain  Ω ,  namely,  ∂Ωu   and  ∂Ω p ,  then we represent the functions   

fr   and   
fz   in the form 

 
 

fr = EC( fr0 ) =
fr0ω p

ωu + ω p
, fz = EC( fz0 ) =

fz0ω p

ωu + ω p
, 

where  ω p (r, z) = 0   are the equations of the area  ∂Ω p   (ω p > 0   beyond  ∂Ω p ). 

The general structure of the solution which exactly satisfies conditions (6) and (8) has the form [1] 

  ur = u0r + u1r , uz = u0z + u1z , (9) 

where   u0r   and   u0z   satisfy the inhomogeneous boundary conditions, and   u1r ,   u1z   satisfy the homogeneous 
boundary conditions 

 
 
u0r = 1

λ1m
Pnωω p,r −

1
Gm
Pτωω p,z + fr − ωD1

(p) fr + ω 1+ λm
λ1m

⎛
⎝⎜

⎞
⎠⎟

 

  × 
 
ω p,rω p,zT1

(p) fr − ωT1
(p) fz

λm
λ1m

ω p,r
2 − ω p,z

2⎛
⎝⎜

⎞
⎠⎟
− λm
λ1m

ωω p,r
fr
r

, 

 
 
u0z = 1

λ1m
Pnωω p,z +

1
Gm
Pτωω p,r + fz − ωD1

(p) fz − ω 1+ λm
λ1m

⎛
⎝⎜

⎞
⎠⎟

 

  × 
 
ω p,rω p,zT1

(p) fz − ωT1
(p) fr

λm
λ1m

ω p,z
2 − ω p,r

2⎛
⎝⎜

⎞
⎠⎟
− λm
λ1m

ωω p,z
fr
r

, 

 
 
u1r = Φ1ωu − ω D1

(p)(Φ1ωu ) − T1
(p)(Φ1ωu )ω p,rω p,z 1+ λm

λ1m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢  

  + λm
λ1m

Φ1ωu
r

ω2,r − T1
(p)(Φ2ωu ) ω p,z

2 − λm
λ1m

ω p,r
2⎛

⎝⎜
⎞
⎠⎟
⎤
⎦
⎥ + ωω pΦ3 , 

 
 
u1z = Φ2ωu − ω D1

(p)(Φ2ωu ) + T1
(p)(Φ2ωu )ω p,rω p,z 1+ λm

λ1m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢  

  + λm
λ1m

Φ1ωu
r

ω p,z + T1
(p)(Φ1ωu ) ω p,r

2 − λm
λ1m

ω p,z
2⎛

⎝⎜
⎞
⎠⎟
⎤
⎦
⎥ + ωω pΦ4 . 
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Here,  ω(r, z) = 0   is the equation of the boundary of the domain  Ω   normalized to the first order  (ω,n = −1   
on  ∂Ω ,  ω > 0   inside  Ω );  ωu (r, z) = 0   and  ω p (r, z) = 0   are the equations of the regions  ∂Ωu   and  ∂Ω p   
normalized to the first order;  Φi ,   i = 1,…, 4 ,  are undefined components of the structure of the solution;  

D1
(p)  = 

∂ω p

∂r
∂
∂r

+
∂ω p

∂z
∂
∂z

  and  T1
(p) = −

∂ω p

∂z
∂
∂r

+
∂ω p

∂r
∂
∂z

  are differential operators [4, 5];   
Pn   and   

Pτ   

are the continuations of the function of contour forces into the domain   Ω  ∂Ωu  

  
Pn = EC( Pn0 ) + EC( Pnf ), Pτ = EC( Pτ0 ) + EC( Pτf )  

or 

 
 

Pn =
Pn0ωu

ωu + ω p
+ Nr

fω p,r
2 + 2 Nrz

fω p,rω p,z + Nz
fω p,z

2 , 

 
 

Pτ =
Pτ0ωu

ωu + ω p
+ ( Nz

f − Nr
f )ω p,rω p,z + Nrz

f (ω p,r
2 − ω p,z

2 ) . 

Note that the structures of the solution for the main axisymmetric problems of the theory of elasticity were 
obtained in the monograph [5].  They can be used for the solution of the problem of elastic deformation, in find-
ing the initial conditions for the main unknowns of the initial boundary-value problem of creep and creep-
induced damage. 

Further, we consider the main boundary conditions, conditions of joining of the parts of the body, and the 
corresponding structures of the solution within the framework of the statement of the problem on the basis of 
functional (3).  In this case, the problem is reduced to the determination of the rates of the radial displacements  

 uri   and axial displacements   uzi   in each of the domains  Ωi ,   i = 1,…,M .  Then the functions   uri   and   uzi   
must satisfy the equations of equilibrium written for the rates,  conditions 2°°  on the boundaries of neighboring 
components, and the kinematic boundary conditions 3°°  if the corresponding component is adjacent to the 
boundary of the body. 

Denote by  Ωn ,   n = 1,…, N ,  the domains adjacent to the boundary of the body.  We set the rates of dis-
placements on parts of the boundaries  ∂Ωun   of the domains  Ωn ,  the stress rates on parts  ∂Ω pn ,  and condi-
tions of joining of neighboring parts on parts  ∂Ωcn .  The entire boundary of the domain  Ωn   can be represent-
ed as the union of boundaries   ∂Ωn = ∂Ωun  ∂Ω pn  ∂Ωcn .  If only the rates of displacements or only the rates 
of stresses are given, then the corresponding part  ( ∂Ωun   or  ∂Ω pn )  of the boundary can be absent. 

Let the boundary conditions for the rates of displacements on the part  ∂Ωun   have the form 

 urn (r, z, t) = frn0 , uzn (r, z, t) = fzn0 . (10) 

Then the partial structures of the solution for the rates of displacements   urn   and   uzn   can be written in the 
form 

  urn = u0rn + u1rn , uzn = u0zn + u1zn , (11) 

where  u0rn   and  u0zn   satisfy the inhomogeneous boundary conditions, and  u1rn ,  u1zn   are homogeneous 
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conditions and are determined by the following formulas: 

  u0rn = frn , u0zn = fzn , (12) 

  u1rn = ωuΦ1 + ω2Φ10 + ωucn
2 Φ1n , u1zn = ωuΦ2 + ω2Φ20 + ωucn

2 Φ2n . (13) 

Here,  ω(r, z) = 0   is the equation of the boundary of the body  ∂Ω   (ω > 0   inside  Ω );  ωu (r, z) = 0   is the 
equation of the area  ∂Ωu   (ωu > 0   beyond  ∂Ωu );  ωucn (r, z) = 0   is the equation of the area  ∂Ωucn  = 

 ∂Ωun  ∂Ωcn   (ωucn > 0   beyond  ∂Ωucn ).  The functions   
frn   and   

fzn   can be written in the form 

 
 

frn = EC( frn0 ) =
frn0ω pcn

ωun + ω pcn
, fzn = EC( fzn0 ) =

fzn0ω pcn

ωun + ω pcn
, 

where  ω pcn (r, z) = 0   is the equation of the area   ∂Ω pcn = ∂Ω pn  ∂Ωcn   (ω pcn > 0   beyond  ∂Ω pcn )  and  
ωun(r,z) = 0   is the equation of the area  ∂Ωun   (ωun > 0   beyond  ∂Ωun ).   

The structures of the solution represented by formulas (11)–(13), satisfy exactly the kinematic boundary 
conditions on  ∂Ωu   and the conditions of joining 2°°  for any choice of the undefined components  Φ1 ,  Φ2 ,  
Φ10 ,  Φ20 ,  Φ1i ,  and  Φ2i    i = 1,…,M . 

If on the external boundary of some domain  Ω j ,  only the rates of stresses are given, i.e., in other words, 
the boundary  ∂Ωuj   is absent, then, in this case, in formulas (12) and (13), we must take   u0rj ≡ 0 ,   u0zj ≡ 0 ,  
ωucj = ωcj ,  where  ωcj (r, z) = 0     is the equation of area  ∂Ωcj   (ωcj > 0   beyond  ∂Ωcj ). 

For the internal components   Ω ,     = 1,…, L ,  the domains  Ω ,  on the boundaries of which only the con-
dition of joining with the neighboring components must be satisfied, in the structures of the solution, we must 
take    u0r ≡ 0 ,    u0z ≡ 0 ,  and   ωuc = ω ,  where   ω (r, z) = 0   is the equation of the boundary of the do-
main   Ω   ( ω > 0   inside   Ω ). 

The equations of the boundary of the domain  Ω   and its components in the structures of the solution are 
constructed with the help of  R -functions  [4]. 

In discretization of the boundary-value problem, the undefined components of the structures of the solution 
are represented in the form [4] 

 
  
Φ(x) ≈ ΦN (x) = Ck

ϕk


k=1

N
∑ , x = (r, z) , 

where    {ϕk
 }   are the known elements of some functional space   M  ,  in which   Φ   are contained and form a 

certain sequence in it, and    qk
   are unknown coefficients.  As    {ϕk

} ,  we can choose ordinary power polynomi-
als, Chebyshev polynomials, splines, etc. [4]. 

Numerical Results 

As an example, we consider the processes of creep and damage of a three-layer cylinder used as a computa-
tional scheme of a solid-oxide fuel cell (Fig. 1) developed by the Siemens-Westinghouse Power Corp. [8]. 
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Fig. 1 

In the contemporary engineering, the solid-oxide fuel cells (SOFC) are among the most efficient power-
generating systems converting chemical energy into electric energy.  Solid-oxide fuel cells consist of an electro-
lyte, a cathode, and an anode.  The electrolyte layer is laid between two thin porous electrodes.  The cathode, 
anode, and electrolyte are made of ceramic materials.  The theory and technology of production of SOFC are 
now extensively developed and investigated [7–10]. 

One of the central problems in the design and operation of solid-oxide fuel cells is to guarantee their long-
term strength and increase the period of failure-free operation. 

The sizes of the fuel cell in the radial direction are shown in Fig. 1.  The layers of the cylinder are rigidly 
connected with each other.  The length of the electrochemically active part is    = 1.5m.  The thickness of the 
cathode is  h1 = 2.2 ⋅10−3 m, the thickness of the electrolyte is  h2 = 0.04 ⋅10−3 m, and the thickness of the an-

ode is  h3 = 0.1 ⋅10−3 m.  The cathode was made of WPC3 material, the electrolyte was made of 8YSZ material 
(zirconium dioxide stabilized by yttrium oxide), and the anode was made of Ni+YSZ material (nickel cer-
met) [8].  The working temperature was  T = 900°С.  Young’s moduli and Poisson’s ratios of the materials of 
the cathode, electrolyte, and anode at a temperature of  900° С are as follows [8, 13]:  E1 = 58.0 GPa,  E2  = 
155.0 GPa,  E3 = 64.0 GPa,  ν1 = 0.25 ,  ν2 = 0.316 ,  and  ν3 = 0.25 .  The linear thermal expansion coeffi-

cients are  α1 = 10.7 ⋅10−6 К–1,  α2 = 10.3 ⋅10−6 К–1,  and  α3 = 12.0 ⋅10−6 К–1.  The temperature at which 

stresses and strains are absent is   T0 = 1250
 С.  External surface forces are absent, i.e.,  Pn0 = 0   and  Pτ0 = 0 . 

For the existing level of stress intensity, the material of the cathode does not reveal creep.  The law of uni-
axial creep and the kinetic equation of damage for the materials of electrolyte and anode have the form 

 
 
p = A exp − Q

RT
⎛
⎝⎜

⎞
⎠⎟ t

−k σn

(1− ψ)n
, dψ

dt
= B exp − Δ

RT
⎛
⎝⎜

⎞
⎠⎟

σm

(1− ψ)m
. 

Here,  ψ   is the scalar damage parameter, which at the initial moment of time  t = 0 ,  is equal to zero and, at the 
moment  t = t∗   of fracture, is  ψ = 1 ;  R = 0.0083144 kJ/(mole ⋅ К)  is a universal gas constant;  T   is absolute 
temperature.  The creep constants of the electrolyte material are as follows [12]:  A = 704.5 (MPa)–n ⋅ h–1,  
B = 1.1722 (MPa)–m ⋅ h–1,  m = 1.7 ,  n = 1 ,  k = 0 ,  Q = 320.0 kJ/mole,  and  Δ = 44.23 kJ/mole.  The creep 
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constants of the anode material are the following [11]:  A = 9.145 ⋅10−13 (MPa)–n ⋅ h–1, B = 0 , m = 0 , 
n = 7.181 ,  k = 0.943 ,  and  Q = 72.5 kJ/mole. 

For the complex stressed state, we write the determining relations of creep and the kinetic equation of dam-
age in the form 

 
 
pr = 3

2
A exp − Q

RT
⎛
⎝⎜

⎞
⎠⎟ t

−k σ i
n−1

(1− ψ)n
σr −

1
3
I1

⎛
⎝⎜

⎞
⎠⎟ , 

 
 
pz = 3

2
A exp − Q

RT
⎛
⎝⎜

⎞
⎠⎟ t

−k σ i
n−1

(1− ψ)n
σ z −

1
3
I1

⎛
⎝⎜

⎞
⎠⎟ , 

 
 
pϕ = 3

2
A exp − Q

RT
⎛
⎝⎜

⎞
⎠⎟ t

−k σ i
n−1

(1− ψ)n
σϕ − 1

3
I1

⎛
⎝⎜

⎞
⎠⎟ , 

 
 
prz = 3

2
A exp − Q

RT
⎛
⎝⎜

⎞
⎠⎟ t

−k σ i
n−1

(1− ψ)n
σrz , 

 dψ
dt

= B exp − Δ
RT

⎛
⎝⎜

⎞
⎠⎟

σ i
m

(1− ψ)m
, 

where   

 σ i = σr
2 + σ z

2 + σϕ
2 − σrσ z − σrσϕ − σϕσ z + 3σrz

2    

is the intensity of stresses and  I1 = σr + σ z + σϕ . 
Further, we consider the boundary conditions and the corresponding structures of the solution.  The lateral 

boundaries of the cylinder  r = rc = 8.66 ⋅10−3 m  and  r = ra = 11.0 ⋅10−3m  are free from fastening and exter-
nal loads.  The ends    z = ± /2   of the fuel element can move freely along the Oz -axis. 

The boundary conditions on the ends of the cylinder    z = ± /2   are 

  σ zi ( uri , uzi ) = 0, σ zri ( uri , uzi ) = 0, i = 1, 2, 3 . 

On the internal surface  r = rc   and external surface  r = ra   of the cylinder, 

  
σrj ( urj , uzj ) = 0, σrzj ( urj , uzj ) = 0, j = 1, 3 . 

On the boundaries of the layers, the following conditions of joining must be satisfied: 

  urk = urk+1, uzk = uzk+1, k = 1, 2 . (14) 
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In numerical realization, we use the symmetry of the problem.  In this case, on the axis of symmetry, in the 
section  z = 0 ,  we give the following conditions: 

 
 
uzi = 0, ∂ uri

∂z
= 0, i = 1, 2, 3 . (15) 

Using the methods of construction of the structures of the solution described in the foregoing, we obtain 
structures satisfying conditions (14) and (15) 

  uri = Φ1 − ωuD1
(u)Φ1 + ω2Φ10 + ωuci

2 Φ1i , 

  uzi = ωuΦ2 + ω2Φ20 + ωuci
2 Φ2i . 

Here,  ωu = z ,  ωuci = ωu ∧0 ωci = ωu + ωci − ωu
2 + ωci

2 ,  and  ωci = 0   are the equations of the interfaces of 
the layers of the cylinder 

 ωc1 = r2 − r, ωc2 = (r − r2 )(r3 − r)
r3 − r2

, ωc3 = r − r3 , 

∧0   is the symbol of the  R -conjunction  operation [4];  r1 = rc ,  r2 = rce ,  r3 = rea ,  r4 = ra ;  D1
(u)  = 

∂ωu
∂r

∂
∂r

 + ∂ωu
∂z

∂
∂z

  is a differential operator;  Φ1 ,  Φ2 ,  Φ10 ,  Φ20 ,  1iΦ ,  and  Φ2i ,  i = 1, 2, 3 ,  are the un-

defined components of the structure of the solution.  Note that here, the functions  ωuci   can also be obtained as 
ordinary products  ωuci = ωu ⋅ωci . 

The equation of the boundary of the domain  Ω   (ω = 0 ,  ω,n = −1   on  ∂Ω ,  ω > 0   inside  Ω )  has the 
form 

 ω = ωr ∧0 ω z = ωr + ω z − ωr
2 + ω z

2 = 0 , 

where  ωr =
(r − r1)(r4 − r)

r4 − r1
,  

 
ω z =

2z




2
− z⎛

⎝⎜
⎞
⎠⎟ . 

In the numerical realization, the functions  Φ1 ,  Φ2 ,  Φ10 ,  Φ20 ,  1iΦ ,  and  Φ2i   are present in the form 
of linear combinations of Schoenberg bicubic splines [6]. 

Systems of spline functions were constructed on uniform rectilinear meshes.  In this case,  Φ1 ,  Φ2 ,  Φ10 ,  
and  Φ20   were given in the whole domain  Ω ,  and  Φ1i ,  Φ2i ,  i = 1, 2, 3 ,  were given only in the correspond-
ing subdomains  Ωi   with equations of the boundaries  (ω i = 0 ,  ω i,n = 1   on  ∂Ωi ,  and  ω i > 0   inside  Ωi ) 

 ω i = ωri ∧0 ω z = ωri + ω z − ωri
2 + ω z

2 = 0 , 

where  ωri =
(r − ri )(ri+1 − r)

ri+1 − ri
. 
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Fig. 2 

 

Fig. 3 

As a result of calculations, we established that the time to fracture is  t∗ = 4360 h.  Fracture begins in the 
electrolyte layer at the points lying on the boundary with the anode.  Figures 2–4 show the results of calculations 
of stresses and damage in the section  z = 0 . 

In Fig. 2, we show the results on the intensity of stresses at different moments of time, where the dashed 
line corresponds to  t = 0   and the solid line corresponds to  t = t∗ .  For the better visualization of the results, 
along the abscissa axis, we plot the dimensionless radial coordinate  ξ ,  which, in the corresponding layers, was 
calculated by the formula 

 ξn = αn
r − rn−1
rn − rn−1

+ αk
k=0

n−1

∑ , n = 1, 2, 3 , 

where  r0 = 8.66 mm,  r1 = 10.86 mm,  r2 = 10.9 mm,  and  r3 = 11.0 mm;  αk   are weight coefficients:  α0 = 0,  
α1 = 0.5 ,  α2 = 0.18 ,  and  α3 = 0.32 .  Figure 3 shows the distribution of damage in the electrolyte layer at dif- 
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Fig. 4 

ferent moments of time: curve 1 corresponds to  t = 2000 h,  curve 2 corresponds to  t = 3000 h,  and curve 3 
corresponds to  t = t∗ = 4360 h. 

In Fig. 4, we show the plots of increase in the degree of damage with time at different points of the electro-
lyte: curve 1 corresponds to the degree of damage on the boundary of the electrolyte and anode  
( r = 10.8999 mm), curve 2 corresponds to the degree of damage on the boundary of the electrolyte and cathode  
( r = 10.8601mm), and curve 3 corresponds to the degree of damage inside the electrolyte  ( r = 10.88 mm). 

Conclusions 

We develop a numerical-analytic method for the solution of the axisymmetric initial boundary-value prob-
lem of creep and creep-induced damage for a piecewise homogeneous body of revolution with meridional sec-
tion of any shape subjected to the action of force and temperature loads.  The method is based on the combined 
use of the R -function  method and the Runge–Kutta–Merson method.  We construct the structures of the solu-
tions for the main types of boundary conditions.  As an example, we solved the problem of creep, damage, and 
long-term strength for a solid-oxide tubular fuel cell by using a three-layer cylinder as its computational scheme.  
The results of our investigations enable us to conclude that, during operation, the redistribution of mechanical 
stresses and accumulation of damage occur in solid-oxide fuel cells as a result of creep.  The levels of stresses in 
the electrolyte and anode remain high for the whole time.  This eventually leads to the fracture of the fuel cell.  
To extend the failure-free period of operation of fuel cells, it is necessary to decrease the level of stresses, e.g., 
as a result of the decrease in the difference between the linear thermal expansion coefficients of the materials of 
the layers. 
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