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ON THE INSTABILITY OF A ROTATING ELASTOPLASTIC COMPOSITE  
FLAT ANNULAR DISK 

D. M. Lila  UDC 539.3 

We propose a procedure for the investigation of possible loss of stability by a rotating composite flat an-
nular circular disk by the method of small parameter.  We deduce a characteristic equation for the criti-
cal radius of the plastic zone as the first approximation.  The critical angular rotational velocity is nu-
merically found for various parameters of the disk. 

Introduction 

The “state beyond the elasticity limit” in rapidly rotating flat disks overloaded by centrifugal tensile forces 
can be regarded as the source of a plane elastoplastic problem [21, 28, 29].  Its solution is connected with find-
ing the boundary between the elastic and plastic domains [14] and the stressed state formed in the elastic domain 
by the forces applied to the contour of the disk.  The critical values of radius of the plastic zone and rotational 
velocity accompanying the transition of the solid circular disk free of contour forces to one of its unstable 
states [4] were determined in [7, 9] by the approximate method of small parameter described later in [10] and 
characterized by a certain similarity to the second version of the method of perturbation of boundary shape in 
continuum mechanics [5].  Moreover, the loss of stability and the exhaustion of the load-carrying ability [6, 17, 
22–24, 27, 30] of solid disks made of perfectly plastic materials [15] were studied for the case where the com-
ponents of stresses in these materials satisfy the equilibrium equations of plane problem [3], the compatibility 
condition [2] in the elastic domain, and the Saint-Venant plasticity condition [8] in the plastic region. 

These investigations were continued in a series of works [11–13, 18, 19] devoted to the instability of flat 
homogeneous and inhomogeneous solid and annular circular disks, stepwise disks, and disks of any profile, in-
cluding the disks subjected to the action of radial contour pressure depending on the rotational velocity.  The 
efficiency of the analytic method of perturbation of boundary shapes was demonstrated in finding the parameters 
of superhigh-speed operation of some disk systems, which is especially important for the problems of stability 
and strength of turbines and other heavy disks [16, 20, 25, 26, 31–33]. 

In the present work, we describe a procedure of evaluation (by the method of small parameter) of the char-
acteristic critical values [1] corresponding to the loss of stability of a simple radially inhomogeneous flat annular 
circular disk loaded in its plane by given radial contour forces.  The material of the disk is perfectly plastic and 
satisfies the plasticity condition  σθθ = σ s .  

1.  Statement of the Problem 

The investigated disk   D   consists of two homogeneous and isotropic flat disks   D1   and   D2 .  The inner 
radius of the annular circular disk   D1   is equal to  a    and its outer radius coincides with the inner radius of the 
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annular circular disk   D2   and is equal to  c .  The outer radius of the disk   D2   is equal to  b .  Along the circle  
r = c ,  the disks   D1   and   D2   made of different materials are rigidly joined into a single disk   D .  The yield 
point of the material of the disk   D1   is denoted by  σ s1 ,  its modulus of elasticity by  E1 ,  density by  γ1 ,  and 
Poisson’s ratio by  ν1 .  The same parameters for the material of the disk   D2   are denoted by  σ s2 ,  E2 ,  γ 2 ,  
and  ν2 ,  respectively.  In the notation  σ s ,  E ,  and  ν   used without indication of the number of disk section 
the subscripts are omitted.  The constant angular rotational velocity of the disk   D   is equal to  ω . 

We consider the shape of the loss of stability of the disk   D ,  which is self-balanced and slightly differs 
from circular, where the equation of its outer boundary accurate to first-order infinitesimals can be represented 
in the form 

  r = b + d cosnθ, d = const, n ≥ 2, n ∈N , 

or 

 ρ = 1+ δcosnθ , (1) 

where  ρ = r /b   is a dimensionless current radius,  δ   is a small parameter, and  θ   is a polar angle.  We denote 
by  r01   or/and  r02   (Figs. 1–5) the current radius of plastic zone of the undisturbed disk.  It is necessary to ob-
tain, in the first approximation, the characteristic equation for the critical radius of plastic zone  r0 = r0∗   and to 
determine the corresponding value of critical angular rotational velocity  ω = ω∗ .  Recall that, for this purpose, 
one should establish the condition of the existence of nontrivial solutions of the system of linear homogeneous 
equations 

 ′σrr +
dσrr

0

dr
′u = 0, ′σrθ −

σθθ
0 − σrr

0

b
d ′u
dθ = 0, r = b , 

 ′σrr = 0, ′σrθ = 0, r = r0 , 

for arbitrary constants appearing in the expressions for components of the stresses and displacements  ′σrr ,  
′σrθ ,  and  ′u ,  which determine the disturbed stress-strain state of the rotating disk   D .  These linearized dis-

turbances of the first order of smallness satisfy the differential equilibrium equations of plane problem and the 
partial differential equations of constraint between the stresses and displacements, whereas the undisturbed 
stressed state (with superscript “0”) is determined by the ordinary differential equations of quasistatic equilibri-
um and constraint equations in the elastic zone or Saint-Venant yield condition in the plastic zone. 

2.  Solution in the Case  
 
D1( pe)D2(e)  

The undisturbed stressed state of plastic domain  
 
D1( p)   (Fig. 1) is determined by the initial problem 

 
dσrr
dr +

σrr − σθθ
r = −

σ1

b2
r , 
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Fig. 1 

 σ1 = γ1b
2ω2 = const, σrr (a) = − pi  (2) 

at  σθθ = σ s1 .  Therefore, the tangential and radial stresses, related to the yield point  σ s2 ,  are

 σθθ =
σ s1
σ s2

= s , (3) 

 σrr = s −
σ1
3σ s2

ρ2 + β
ρ − s −

pi
σ s2

+
σ1
3σ s2

β2⎛
⎝⎜

⎞
⎠⎟ , (4) 

if one uses the dimensionless polar radius (here,  β = a/b ). 
In the elastic domain  

 
D1(e) ,  the corresponding relations can be written as  

 σθθ = C1 +
C2

ρ2 −
σ1(3ν1 +1)

8σ s2
ρ2 , (5) 

 σrr = C1 −
C2

ρ2 −
σ1(ν1 + 3)

8σ s2
ρ2 , (6) 

where  C1   and  C2   are some constants. 
The undisturbed stressed state of elastic domain  

 
D2(e)   is determined by the initial problem 

 
dσrr
dr +

σrr − σθθ
r = −

σ2

b2 r, σ2 = γ 2b
2ω2 = const, σrr (b) = pe , (7) 

and, hence, we have in this domain  
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 σθθ =
pe
σ s2

+C3 1+ 1
ρ2

⎛
⎝⎜

⎞
⎠⎟
+
σ2 (ν2 + 3)

8σ s2
−
σ2 (3ν2 +1)

8σ s2
ρ2 , (8) 

 σrr =
pe
σ s2

+C3 1− 1
ρ2

⎛
⎝⎜

⎞
⎠⎟
+
σ2 (ν2 + 3)

8σ s2
(1− ρ2 ) , (9) 

where  C3   is an unknown constant. 
To find  C1 ,  C2 ,  C3 ,  and  ω   depending on the radius of the plastic zone  β0 = r01 /b ,  it is necessary to 

take into account the continuity of radial stresses  σrr   and radial displacements  u = σ sρ(σθθ − νσrr )/E   (re-

lated to  b )  for  ρ = β0   and  ρ = c/b = β .  The corresponding rules of conjugation for stresses have the form 

 σrr (β0 + 0) = σrr (β0 − 0), σθθ (β0 + 0) = σθθ (β0 − 0) , (10) 

 σrr (β + 0) = σrr (β − 0), σθθ (β + 0) = εσθθ (β − 0)+ kσrr (β − 0) , (11) 

where  ε = E2 /E1   and  k = ν2 − εν1 .  Applying relations (10) and (11) to solutions (3)–(6), (8), and (9), we ob-
tain the following system of four linear equations for  C1 ,  C2 ,  C3 ,  and  x = σ2 /(24σ s2 ) : 

 C1 +β0
−2C2 − 3Γ(3ν1 +1)β0

2x = s , 

 
 
C1 −β0

−2C2 − Γ[(3ν1 +1)β0
2 + 8β3β0

−1 ]x = s +ββ0
−1 − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ , 

 
 
(ε + k)C1 + β

−2 (ε − k)C2 − (1+ β−2 )C3 + x =
pe
σ s2

, 

 C1 − β
−2C2 − (1− β−2 )C3 + mx =

pe
σ s2

, (12) 

where 

 
  
Γ =

γ1
γ 2

, m = − 3{ν2 + 3+ β2[Γ(ν1 + 3)− (ν2 + 3)]} , 

 
      = −3{ν2 + 3 + β2{Γ[ε(3ν1 + 1) + k(ν1 + 3)] − (3ν2 + 1)}} . 

The solution of system (12) is given by 

 
 
C1 = s + 0.5ββ0

−1 − s −
pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ + 2Γ[(3ν1 +1)β0

2 + 2β3β0
−1 ]x , (13) 
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C2 = −0.5ββ0 − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ + Γβ0

2[(3ν1 +1)β0
2 − 4β3β0

−1 ]x , (14) 

 
  
C3 = G (1−m−1)

pe
σ s2

− (1−m−1(ε+ k))C1 + β
−2 (1+m−1(ε− k))C2

⎧
⎨
⎩

⎫
⎬
⎭

, (15) 

 
 
x = 1

24
ω2

q2
2 =

−Hs + K
pe
σ s2

− 0.5ββ0
−1(H − Jβ−2β0

2 ) − s −
pi
σ s2

⎛
⎝⎜

⎞
⎠⎟

 + Γ(3ν1 +1)(2H + Jβ−2β0
2 )β0

2 + 4Γβ3β0
−1(H − Jβ−2β0

2 )
, (16) 

where 

 
 
G = 1

m−1(1+ β−2 )− (1− β−2 )
, q2 = 1

b
1
γ 2

σ s2 , 

  H = ε + k +G(1+ β−2 )(1− m−1(ε + k)), K = 1+G(1+ β−2 )(1− m−1) , 

  J = ε − k −G(1+ β−2 )(1+ m−1(ε − k)) . 

Thus, in view of relations (13)–(16), dependences (3)–(6), (8), and (9) assign the components  σrr
0   and  σθθ

0   of 
zero-order approximation to the solution 

  σrr = σrr
0 + δ ′σrr + δ

2…, σθθ = σθθ
0 + δ ′σθθ + δ

2… , 

  σrθ = σrθ
0 + δ ′σrθ + δ

2… , 

  u = u0 + δ ′u + δ2…, v = v0 + δ ′v + δ2…  

of the problem of plastic equilibrium, determining the location of elastoplastic boundary. 

Remark 1.  Setting  ε = s = Γ = 1 ,  ν1 = ν2 = ν ,  and  pe = 0 ,  we obtain the following known [13] relation 
from (16):  

 ω2

q2 =
24 +12ββ0

−1(1+β0
2 ) −1−

pi
σ s

⎛
⎝⎜

⎞
⎠⎟

3(ν + 3)− (3ν +1)(2 −β0
2 )β0

2 − 4β3β0
−1(1+β0

2 )
 

between the angular rotational velocity and radius of the plastic zone of a flat homogeneous annular circular 
disk, subjected to the action of a given internal radial pressure  pi . 
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In order to use the boundary and conjugation conditions 

 ′σrr
e + A1 ′u e = 0, ρ = 1 , (17) 

 ′σrθ
e − A2

d ′u e

dθ = 0, ρ = 1 , (18) 

 ′σrr
e = 0, ρ = β0 , (19) 

 ′σrθ
e = 0, ρ = β0 , (20) 

we recall the form of disturbances of the first order of smallness  ′σrr
e ,  ′σrθ

e ,  and  ′u e .  For the radial and tan-
gential stresses, related to the yield point  σ s2 ,  and radial displacement, related to  b ,  in the domain  

 
D2(e) ,  

we have [12] 

  
′σrr
e = [aI (β,ρ)a2 + aII (β,ρ)a1 + aIII (β,ρ)b2 + aIV (β,ρ)b1 ]cosnθ , 

  
′σrθ
e = [cI (β,ρ)a2 + cII (β,ρ)a1 + cIII (β,ρ)b2 + cIV (β,ρ)b1 ]sinnθ , 

 
 
′u e =

σ s2
E2

[dI
∗∗(β,ρ)a2 + dII

∗∗(β,ρ)a1 + dIII
∗∗ (β,ρ)b2 + dIV

∗∗ (β,ρ)b1 ]cosnθ  

and, in  
 
D1(e) , 

 ′σrr
e = aI

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
a1 + aII

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
a0 + aIII

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
b1 + aIV

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
b0

⎡
⎣⎢

⎤
⎦⎥
cosnθ , 

 ′σrθ
e = cI

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
a1 + cII

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
a0 + cIII

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
b1 + cIV

β0
β

, ρ
β

⎛
⎝⎜

⎞
⎠⎟
b0

⎡
⎣⎢

⎤
⎦⎥
sinnθ , 

where 

 a0 = ′q1a2 + ′q2a1 + ′q3b2 + ′q4b1, b0 = ′q5a2 + ′q6a1 + ′q7b2 + ′q8b1 . 

Here,  a2 ,  a1 ,  b2 ,  and  b1   are undetermined coefficients;   ′q1,…, ′q8   are coefficients that can be expressed 

via  n ,  β0 ,  β ,  ν1 ,  ν2 ,  and  ε ,  and   aI (⋅),…,aIV (⋅) ,   cI (⋅),…,cIV (⋅) ,   dI
∗∗(⋅),…,dIV

∗∗ (⋅)   are known func-
tions [2].  In addition, 

 A1 = 2C3 − 6(ν2 + 3)x, A2 = A1 + 24x ; (21) 
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in expressions (15) and (16) in this case here, the forces  pi /σ s2   and  pe /σ s2   must be connected with  β0 .  
Suppose that 

 pi = εiσ s2 + κ iγ 2b
2ω2 , pe = εeσ s2 + κeγ 2b

2ω2 , (22) 

where, with regard for (2) and (7), the coefficient  εi > 0   corresponds, for example, to the interference fit of the 
disk   D   under study on a shaft;  κ i > 0   determines the compressive action of the rotating shaft on the rotating 
disk;  εe > 0   can mean the appearing compression of the disk under study in the course of mounting blades 
over its outer contour, and  κe < 0   the stretching action of the blades at disk rotation.  Then we obtain from (16) 
and (22) for  κ i ≠ 0  

 
pe
σ s2

= εe − µ(s + εi + ξ(β0 )) , (23) 

 
 
− s −

pi
σ s2

= ξ(β0 ) = −
(s + εi )τ + 24κ i (−Hs + K[εe − µ(s + εi )])
τ − 24κ i (Kµ + 0.5ββ0

−1(H − Jβ−2β0
2 ))

 (24) 

and for  κe ≠ 0  

 − s −
pi
σ s2

= − s − εi − µ
−1(η(β0 )− εe ) , (25) 

 
 

pe
σ s2

= η(β0 ) =
εeτ + 24κe (−Hs − 0.5ββ0

−1(H − Jβ−2β0
2 )[− s − εi + µ

−1εe ])
τ − 24κe (K + 0.5βµ−1β0

−1(H − Jβ−2β0
2 ))

, (26) 

where 

 
 
µ =

κe
κ i

, τ =  + Γ(3ν1 +1)(2H + Jβ−2β0
2 )β0

2 + 4Γβ3β0
−1(H − Jβ−2β0

2 ) . 

Rewriting now conditions (17)–(20) in detailed form in view of relations (21)–(26), we arrive at a system of 
linear homogeneous equations for  a2 ,  a1 ,  b2 ,  and  b1 .  The required characteristic equation has the form 

  
Δ(β0 ) = 0 , (27) 

where   
Δ(β0 )   is the determinant of the matrix  (aij )i, j=1

4   of this system, in which 

 a11 = 1+ A1dI
∗∗(β,1)σ s2

1
E2

, a12 = A1dII
∗∗(β,1)σ s2

1
E2

, 

 a13 = A1dIII
∗∗ (β,1)σ s2

1
E2

, a14 = A1dIV
∗∗ (β,1)σ s2

1
E2

, 
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 a21 = nA2dI
∗∗(β,1)σ s2

1
E2

, a22 = nA2dII
∗∗(β,1)σ s2

1
E2

, 

 a23 = 1+ nA2dIII
∗∗ (β,1)σ s2

1
E2

, a24 = nA2dIV
∗∗ (β,1)σ s2

1
E2

, 

 a31 = ′q1, a32 = ′q2 , a33 = ′q3, a34 = ′q4 , 

 a41 = ′q5 , a42 = ′q6 , a43 = ′q7 , a44 = ′q8 . 

We obtain the critical value of the square of angular velocity, corresponding to the critical radius of plastic 
domain  β0∗ ,   β0∗ ∈[β,β],  from relation (16): 

 
  
ω∗

2 =
24q2

2[−Hs + K[εe − µ(s + εi + ξ(β0∗ ))]− 0.5ββ0∗
−1(H − Jβ−2β0∗

2 )ξ(β0∗ )]
 + Γ(3ν1 +1)(2H + Jβ−2β0∗

2 )β0∗
2 + 4Γβ3β0∗

−1(H − Jβ−2β0∗
2 )

 

for  κ i ≠ 0 ; 

 
   
ω∗

2 =
24q2

2(−Hs + Kη(β0∗ )− 0.5ββ0∗
−1(H − Jβ−2β0∗

2 )[− s − εi − µ
−1(η(β0∗ )− εe )])

 + Γ(3ν1 +1)(2H + Jβ−2β0∗
2 )β0∗

2 + 4Γβ3β0∗
−1(H − Jβ−2β0∗

2 )
 

for  κe ≠ 0 ,  and 

 
  
ω∗

2 =
24q2

2[−Hs + Kεe − 0.5ββ0∗
−1(H − Jβ−2β0∗

2 )(− s − εi )]
 + Γ(3ν1 +1)(2H + Jβ−2β0∗

2 )β0∗
2 + 4Γβ3β0∗

−1(H − Jβ−2β0∗
2 )

 

for  κ i = κe = 0 . 

3.  Solution in the Case   D1(p)D2(e)  

The mechanism of the loss of stability of the disk   D   whose plastic state is spread to the entire annular 
domain   D1   for the elastic annular domain   D2   (Fig. 2) is called special (01°°) in [11, 12].  Since the plasticity 
of materials of the sections   D1   and   D2   is different, and there is a discontinuity of the tangential stress,  
β0 = β   and  ω   in a certain range of angular velocities remain independent quantities, and further increase in 
the rotational velocity not necessarily leads to the appearance of plastic state along the circle  ρ = β   in   D2 .  
At the same time, the values of coefficients of the characteristic equation change till, at a certain (required) value  
ω = ω∗ ,  it turns into identity   

Δ(β) ≡ 0 . 
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Fig. 2 

To obtain these coefficients, we must first conjugate solutions (4) and (9) on the circle  ρ = β .  We have

 (1− β−2 )C3 +
pe
σ s2

+ 3(ν2 + 3)(1− β2 )x = s − 8Γβ2x +ββ−1 − s −
pi
σ s2

+ 8Γβ2x⎛
⎝⎜

⎞
⎠⎟ , 

whence 

   C3 = {s − εe +ββ
−1(− s − εi )− [24κe + 3(ν2 + 3)+ (8Γ − 3(ν2 + 3))β2  

+ 8ββ−1(3κ i −β
2Γ)]x}{1− β−2}−1 . (28)

Since the elastic domain is homogeneous in the case under consideration, we have in the characteristic equa-
tion (27) 

 a31 = 0, a32 = 1, a33 = 0, a34 = 0 , 

a41 = 0, a42 = 0, a43 = 0, a44 = 1.

Furthermore,  A1   and  A2 ,  determined from relations (21) and (28), depend on the variable  x .  The solution 

of Eq. (27) on the segment   [x, x ] ,  where  x   is determined from (16) for  β0 = β : 

 
 
x =

−Hs + Kεe + 0.5ββ−1(H − J )(s + εi )
−24Kκe +  + Γ(3ν1 +1)(2H + J )β2 − 4ββ−1(H − J )(3κ i −β

2Γ)
, 

and  x   is determined from the condition  σθθ (β + 0) = 1   [see (8)]: 
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Fig. 3 

   x = {[1− εe ](1− β
−2 )− [s − εe +ββ

−1(− s − εi )](1+ β
−2 )}{[24κe  

   + 3(ν2 + 3)− 3(3ν2 +1)β
2 ](1− β−2 )− [24κe + 3(ν2 + 3)  

    + (8Γ − 3(ν2 + 3))β2 + 8ββ−1(3κ i −β
2Γ)](1+ β−2 )}−1 , 

gives the required critical value  ω∗ . 

4.  Solution in the Case  
 
D1( p)D2( pe)  

Suppose that, prior to the loss of stability of the disk   D ,  the plastic state had time to spread over a certain 
annular domain  

 
D2( p) in  D2 preliminarily covering the entire ring  D1 (Fig. 3).  The undisturbed stressed 

state of the disk   D under study is determined by relations (3) and (4) in the domain  
 
D1( p) ; in the do-

main
 
D2( p) ,  we get

 σθθ = 1 , (29) 

 σrr = 1−
σ2
3σ s2

ρ2 +
C2
ρ , (30) 

and the stresses in  
 
D2(e) are given by relations (8) and (9).  The conjugation of solutions (4) and (30) on the 

circle  ρ = β   and the conjugation of (29), (8) and (30), (9) on the circle  ρ = β0 = r02 /b   lead to a system of 
equations for  C2 ,  C3 ,  and  x : 

 
 
β−1C2 + 8[(Γ −1)β2 − Γβ3β−1 ]x = s −1+ββ−1 − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ , 



ON THE INSTABILITY OF A ROTATING ELASTOPLASTIC COMPOSITE FLAT ANNULAR DISK 593 

 
 
(1+β0

−2 )C3 + 3[ν2 + 3− (3ν2 +1)β0
2 ]x = 1−

pe
σ s2

, 

 
 
−β0

−1C2 + (1−β0
−2 )C3 + [3(ν2 + 3)− (3ν2 +1)β0

2 ]x = 1−
pe
σ s2

. 

Its solution has the form 

 
 
C2 = β(s −1)+β − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ − 8[(Γ −1)β3 − Γβ3 ]x , 

 
 
C3 =

1−
pe
σ s2

− 3[ν2 + 3− (3ν2 +1)β0
2 ]x

1+β0
−2 , 

 x =
2 1−

pe
σ s2

⎛
⎝⎜

⎞
⎠⎟ +β0

−1(1+β0
2 ) β(s −1)+β − s −

pi
σ s2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

τ , (31) 

where [with regard for (22), (23), and (25)] 

 
 
ξ(β0 ) = −

(s + εi )τ + 24κ i[2(1− [εe − µ(s + εi )])+ ββ0
−1(s −1)(1+β0

2 )]
τ + 24κ i (2µ +ββ0

−1(1+β0
2 ))

, 

 
 
η(β0 ) =

εeτ + 24κe[2 +β0
−1(1+β0

2 )(β(s −1)+β[− s − εi + µ
−1εe ])]

τ + 24κe (2 +βµ
−1β0

−1(1+β0
2 ))

, 

  τ = (1+β0
2 )[3(ν2 + 3)− (3ν2 +1)β0

2 + 8β0
−1((Γ −1)β3 − Γβ3 )]+ 3(1−β0

2 )[ν2 + 3− (3ν2 +1)β0
2 ] . 

Thus, taking in the characteristic equation (27) 

 a11 = 1+ A1dI
∗∗(β0 ,1)σ s2

1
E2

, a12 = A1dII
∗∗(β0 ,1)σ s2

1
E2

, 

 a13 = A1dIII
∗∗ (β0 ,1)σ s2

1
E2

, a14 = A1dIV
∗∗ (β0 ,1)σ s2

1
E2

, 

 a21 = nA2dI
∗∗(β0 ,1)σ s2

1
E2

, a22 = nA2dII
∗∗(β0 ,1)σ s2

1
E2

, 

 a23 = 1+ nA2dIII
∗∗ (β0 ,1)σ s2

1
E2

, a24 = nA2dIV
∗∗ (β0 ,1)σ s2

1
E2

, 
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 a31 = 0, a32 = 1, a33 = 0, a34 = 0 , 

 a41 = 0, a42 = 0, a43 = 0, a44 = 1  

or 

 a11 = n + A1
σ s2
E2

(ν2 +1)n
n −1 , a12 = n − A1

σ s2
E2

(ν2 +1)n
n +1 , 

 a13 = n − 2 + A1
σ s2
E2

n − 2 + ν2 (n + 2)
n +1 , 

 a14 = n + 2 − A1
σ s2
E2

n + 2 + ν2 (n − 2)
n −1 , 

 a21 = −1+ A2
σ s2
E2

(ν2 +1)n
n −1 , a22 = 1− A2

σ s2
E2

(ν2 +1)n
n +1 , 

 a23 = −1+ A2
σ s2
E2

n − 2 + ν2 (n + 2)
n +1 , a24 = 1− A2

σ s2
E2

n + 2 + ν2 (n − 2)
n −1 , 

 a31 = nβ0
n−2 , a32 = nβ0

−n−2 , a33 = (n − 2)β0
n , a34 = (n + 2)β0

−n , 

 a41 = −β0
n−2 , a42 = β0

−n−2 , a43 = −β0
n , a44 = β0

−n , 

we now see that it remains to take into account relations (21) and (31). 

5.  Solution in the Case  
 
D1(e)D2( pe)  

The plastic zone  
 
D2( p)   has the form of an annular domain  β ≤ ρ ≤ β0   in   D2 .  The state of   D1   is elas-

tic (Fig. 4).  The functions 

 2 2 2 21
1 1 1

2 2
( ) (( 3) (3 1) )

8
i

s s

p
C − −

θθ

σ
σ = − + β + ρ + ν + β − ν + ρ

σ σ
, (32) 

 2 2 2 21 1
1

2 2

( 3)
( ) ( )

8
i

rr
s s

p
C − − σ ν +

σ = − + β − ρ + β − ρ
σ σ

 (33) 

and (29), (30) are subjected to conjugation at  ρ = β ,  and (29), (30) and (8), (9) at  0ρ = β .   
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Fig. 4 

From the corresponding system of equations, we find 

 
  
C1 =

1+ (ε + k)
pi
σ s2

− 3Γ[(ε + k)(ν1 + 3)β2 − {ε(3ν1 +1)+ k(ν1 + 3)}β2 ]x

(ε + k)β−2 + (ε − k)β−2 , 

 C2 =
2β0 −1+

pe
σ s2

+ [3(ν2 + 3)− (3ν2 +1)(2 −β0
2 )β0

2 ]x⎧
⎨
⎩

⎫
⎬
⎭

1+β0
2 , 

 
 
C3 = −

−1+
pe
σ s2

+ 3[ν2 + 3− (3ν2 +1)β0
2 ]x

1+β0
−2 , 

 x = (1+β0
2 ) (ε+ k −1)β−2 + (ε − k +1)β−2 + 2εβ−2 pi

σ s2

%
&'

(
)*{   

 
 
+2β−1β0[(ε+ k)β−2 + (ε − k)β−2 ] −1+ pe

σ s2

%
&
'

(
)
*}τ−1   (34) 

Here, 

   τ = 2{(1+β0
2 )[3Γε(−2(ν1 +1)+ (ν1 + 3)β2β−2 + (ν1 −1)β

−2β2 )+ 4(ε − k)  

    + 4(ε + k)β−2β2 ]− β−1β0[(ε + k)β−2 + (ε − k)β−2 ][3(ν2 + 3)− (3ν2 +1)(2 −β0
2 )β0

2 ]} . 

For  κ i ≠ 0 ,  it is necessary to take 
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 −1+
pe
σ s2

= −1+ εe − µ(εi − ξ(β0 )) , (35) 

 
  

pi
σ s2

= ξ(β0 ) = {εiτ + 24κ i[(1+β0
2 )[(ε + k −1)β−2 + (ε − k +1)β−2 ] 

    + 2β−1β0[(ε + k)β−2 + (ε − k)β−2 ](−1+ εe − µεi )]}{τ − 48κ i  

    × (εβ−2 (1+β0
2 )+ β−1µβ0[(ε + k)β−2 + (ε − k)β−2 ])}−1 , (36) 

and, for  κe ≠ 0 , 

 
pi
σ s2

= εi + µ
−1(1− εe + η(β0 )) , (37) 

 
  
−1+

pe
σ s2

= η(β0 ) = {(−1+ εe )τ + 24κe (1+β0
2 )[(ε + k −1)β−2  

    + (ε − k +1)β−2 + 2εβ−2 (εi + µ
−1(1− εe ))]}{τ − 48κe  

    × (εβ−2µ−1(1+β0
2 )+ β−1β0[(ε + k)β−2 + (ε − k)β−2 ])}−1 . (38) 

In this case, in view of relations (21) and (34)–(38), we get the same characteristic equation as in Sec. 4. 

6.  Solution in the Case  
 
D1( pe)D2( pe)  

The annular subdomains  
 
D1( p)   and  

 
D2( p)   of partial disks   D1   and   D2   of the analyzed composite an-

nular disk   D   are simultaneously in the plastic state (Fig. 5).  The undisturbed stressed state of   D   is described 
by four pairs of relations: (3), (4) in 

 
D1( p) , (5), (6) in 

 
D1(e) , (29), (30) (with C2 := C2

∗ )  in  
 
D2( p) , and (8), (9) 

in  
 
D2(e) .  The conjugation of the components of stresses (3) and (5), (4) and (6) on the circle  ρ = β01 = r01 /b ,  

(5) and (29), (6) and (30) on the circle  ρ = β ,  and also (29) and (8), (30) and (9) on  ρ = β0 = r02 /b   leads to 
the system of equations 

 C1 +β01
−2C2 − 3Γ(3ν1 +1)β01

2 x = s ,s 

 
 
C1 −β01

−2C2 − Γ[(3ν1 +1)β01
2 + 8β3β01

−1 ]x = s +ββ01
−1 − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ , 

 (ε + k)C1 + β
−2 (ε − k)C2 − 3β2Γ(ε(3ν1 +1)+ k(ν1 + 3))x = 1 , 
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 C1 − β
−2C2 − β

−1C2
∗ − β2 (3Γ(ν1 + 3)− 8)x = 1 , 

 (1+β0
−2 )C3 + 3(ν2 + 3− (3ν2 +1)β0

2 )x = 1−
pe
σ s2

, 

 −β0
−1C2

∗ + (1−β0
−2 )C3 + (3(ν2 + 3)− (3ν2 +1)β0

2 )x = 1−
pe
σ s2

, 

which gives 

 
C1 = 0.5(1+ ε − k)(1+β0

2 )+ β−1β0 (ε − k) −1+
pe
σ s2

⎛
⎝⎜

⎞
⎠⎟ + [2β2 (1+β0

2 ){
  × (3Γε(ν1 +1)− 2(ε − k))+ β−1β0 (ε − k)(3(ν2 + 3)  

  
  
− (3ν2 +1)(2 −β0

2 )β0
2 )]x⎫⎬

⎭
{ε(1+β0

2 )}−1 , 

 
 
C2 = 0.5(1− (ε + k))(1+β0

2 )− β−1β0 (ε + k) −1+
pe
σ s2

⎛
⎝⎜

⎞
⎠⎟ + [β2 (1+β0

2 )
⎧
⎨
⎩

 

  × (3Γε(ν1 −1)+ 4(ε + k))− β−1β0 (ε + k)(3(ν2 + 3)  

  
  
− (3ν2 +1)(2 −β0

2 )β0
2 )]x⎫⎬

⎭
{β−2ε(1+β0

2 )}−1 , 
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 C2
∗ =

2β0 −1+
pe
σ s2

+ (3(ν2 + 3)− (3ν2 +1)(2 −β0
2 )β0

2 )x⎧
⎨
⎩

⎫
⎬
⎭

1+β0
2 , 

 C3 = −
−1+

pe
σ s2

+ 3(ν2 + 3− (3ν2 +1)β0
2 )x

1+β0
−2 , 

 x = τ1 + τ2 −1+
pe
σ s2

⎛
⎝⎜

⎞
⎠⎟  (39) 

and the rational equation for  β01   with a parameter  β0  

 
 
f (β01) ≡ C1 −β01

−2C2 − Γ[(3ν1 +1)β01
2 + 8β3β01

−1 ]x − s −ββ01
−1 − s −

pi
σ s2

⎛
⎝⎜

⎞
⎠⎟ = 0 , (40) 

where 

 
 
τ1 =

0.5(β01
2 [1+ ε − k − 2εs]+ β2[1− (ε + k)])(1+β0

2 )
τ , 

 τ2 =
β−1β0 (β01

2 (ε − k)− β2 (ε + k))
τ , 

 τ = 3Γεβ01
4 (3ν1 +1)(1+β0

2 )− τ∗ , 

  τ
∗ = β2 (1+β0

2 )(2β01
2 [3Γε(ν1 +1)− 2(ε − k)]+ β2[3Γε(ν1 −1)+ 4(ε + k)])  

  + β−1β0 (β01
2 (ε − k)− β2 (ε + k))(3(ν2 + 3)− (3ν2 +1)(2 −β0

2 )β0
2 ) , 

 −1+
pe
σ s2

=
−1+ εe + 24κeτ1

1− 24κeτ2
, 

 − s −
pi
σ s2

= − s − εi −
24κ i (τ1 + τ2 (−1+ εe ))

1− 24κeτ2
. 

Combining Eq. (40) with the characteristic equation  det (aij ) = 0   [see Sec. 4 and (21), (39)], we obtain, 

a system of equations for determining the critical value  (β01∗,β0∗ )∈[β,β)× [β,1) .  On finding the critical radii 
of the domains  

 
D1( p)   and  

 
D2( p) ,  we also find the critical rotational velocity  ω∗ . 
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7.  Numerical Examples and Discussion 

For a composite disk with parameters  β = 0.2 ,  β = 0.94 ,  ν1 = 0.31 ,  ν2 = 0.3 ,  ε = 1 ,  Γ = 0.99 ,  
s = 0.99 ,  σ s2 /E2 = 0.01 ,  and  εi = εe = κe = 0 ,  which loses, according to our assumption, its stability by the 
scenario  

 
D1( pe)D2(e) ,  the values of the critical radius  β0∗   of the plastic zone  

 
D1( p)   and the relative critical 

rotational velocity  ω∗ /q2   calculated for different  n   [see (1)] are presented in Table 1. 

Table 1 

                                                                      n  2 3 4 5 

κ i = 0  
β0∗  0.7351 0.8560 0.9052 0.9314 

ω∗ /q2  1.5068 1.5385 1.5470 1.5502 

κ i = 0.01  
β0∗  0.7356 0.8564 0.9055 0.9316 

ω∗ /q2  1.5024 1.5339 1.5423 1.5456 

κ i = 0.1  
β0∗  0.7401 0.8592 0.9075 0.9331 

ω∗ /q2  1.4646 1.4944 1.5023 1.50533 

The calculated values of the critical radius  β0∗   of the plastic zone  
 
D2( p)   and relative critical rotational 

velocity  ω∗ /q2   in the case of realization of the mechanism  
 
D1( p)D2( pe)   of the loss of stability of a composite 

disk with parameters  β = 0.2 ,  β = 0.5 ,  ν1 = 0.3 ,  ν2 = 0.2 ,  ε = 1.2 ,  Γ = 0.9 ,  s = 1.1 ,  σ s2 /E2 = 0.01,  
and  εi = εe = κe = 0   are summarized in Table 2. 

Table 2 

                                                                      n  2 3 4 5 

κ i = 0  
β0∗  0.7308 0.8537 0.9036 0.9302 

ω∗ /q2  1.5523 1.5800 1.5875 1.5904 

κ i = 0.01  
β0∗  0.7313 0.8540 0.9038 0.9303 

ω∗ /q2  1.5477 1.5753 1.5827 1.5855 

κ i = 0.1  
β0∗  0.7359 0.8569 0.9059 0.9319 

ω∗ /q2  1.5080 1.5344 1.5414 1.5440 

As follows from these examples, the described method for the investigation of the instability of composite 
annular disks in the elastoplastic state enables one to find the critical sizes of plastic domain and the critical rota-
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tional velocity caused by the geometry of the disks, their determining physical properties, and the parameters of 
loading.  The corresponding results were obtained as applied to the self-balanced form of instability, which is 
natural just for annular disks.  

In view of the results presented in [11, 12], the proposed method for finding the time of transition of the 
overloaded rapidly rotating disk into the unstable state enables us to determine the approximate solution of the 
plane elastoplastic problem corresponding to the realization of all possible mechanisms of the loss of stability 
typical of the disks with radially inhomogeneous materials.  This plays a decisive role in the problem of avoid-
ing the overloading of disk parts especially susceptible to the loss of strength. 
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