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We study the stability of elastic systems with one-sided constraints on displacements.

We analytically solve the contact problem for rods and propose a new method for solving

contact problems with a free boundary. We present numerical results concerning the

stability of elastic systems with one-sided constraints on displacements. Bibliography:

10 titles.

We consider problems related to the following topics:

• free contact between thin-wall elements of constructions,

• stability of elastic systems with one-sided constraints on displacements.

In Section 1, we consider the contact problem for flexible elements of constructions. We

obtain an analytic solution to the contact problem for rods. We also propose a new method

(of generalized reaction) for solving contact problems with a free boundary. This method can

be applied to a large class of problems [1]. Formally, the method is an iteration scheme of

the gradient projection method applied to the energy functional of an elastic system expressed

in terms of the reaction function of obstacle. The contact problem can be formulated as a

problem of convex programming. Using the saddle point theorem for the Lagrange function [2],

we consider the dual problem which can be solved by the gradient projection method [3]. In

mechanics, the variables of the dual problem are interpreted as the reaction forces of contact. To

apply this method, it is necessary to find the inverse operators of the equilibrium equations for

contacting elements. The solution of equations for rods, plates, and shells is a rather complicated

task. However, all classical methods (grids, finite elements, boundary elements and so on) are

available for solving such problems.

The classical stability problem for elastic systems is reduced to finding eigenvalues of linear

operators. The study of stability and supercritical behavior of elastic systems with one-sided

constraints on displacements is reduced to finding bifurcation points of nonsmooth equations

or parameters for which the corresponding variational problems with one-sided constraints can

have not necessarily one solution.

In Section 2, we obtain new results concerning the stability of elastic systems with one-sided
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constraints. We analytically solve the stability problem for rods in an elastic medium provided

that the rods are compressed by a longitudnal force and their bendings are bounded from one

side by a rigid obstacle. We clarify how boundary conditions affect the critical value of the

force. We also study the stability of an annulus supported by elastic threads under the action

of the normal pressure force and a torus-like shell containing an elastic filler such that there is

a one-sided contact between the shell and the filler.

1 Contact Problem for Flexible Elements of Construction

1.1. Contact problem for two parallel beams. We consider the contact problem for

two parallel beams of length �. Denote by wi(ξ), i = 1, 2, the beam deflections and by x(ξ) the

contact reaction force. Assume that the first beam is under the action of a normal load q(ξ)

and the second one is under the action of the first beam, when the deflection of the first beam

exceeds the initial clearance between the beams ρ = const. In this case, the equilibrium equation

takes the form

d1
d4w1

dξ4
= q(ξ)− x(ξ),

d2
d4w2

dξ4
= x(ξ),

(1.1)

where d1 = EJ1, d2 = EJ2, J1, and J2 are moments of inertia of cross-sections, and E is the

Young modulus.

The deflections w1(ξ) and w2(ξ) and the contact reaction force x(ξ) satisfy the inequalities

w1(ξ) � w2(ξ) + ρ, x(ξ) � 0, (1.2)

and the equation

x(ξ)[w1(ξ)− w2(ξ)− ρ] = 0. (1.3)

The first inequality in (1.2) is the inpenetrability condition, and the second one is a one-sided

constraint. Equation (1.3) is the complementary slackness condition which means that x(ξ) > 0

implies w1(ξ)−w2(ξ)−ρ = 0 (there is contact at the point ξ). Conversely, w1(ξ)−w2(ξ)−ρ < 0

implies x(ξ) = 0.

The inequalities (1.2) and Equation (1.3) hold if for any α > 0

x(ξ) = [x(ξ) + α(w1(ξ)− w2(ξ)− ρ)]+, (1.4)

where the subscript “+” means the positive part of a function, i.e.,

ϕ+(ξ) = max{0, ϕ(ξ)} =
1

2
(ϕ(ξ) + |ϕ(ξ)|).

Indeed, from (1.4) if follows that x(ξ) � 0. If the expression in the square brackets is negative,

then x(ξ) = 0 which implies w1 − w2 − ρ � 0. In the case x(ξ) > 0, the subscript “+” can be

omitted and (1.4) implies w1−w2− ρ = 0. For the sake of definiteness we impose the boundary

conditions of hinged support

wi(0) = w′′
i (0) = wi(�) = w′′

i (�) = 0, i = 1, 2. (1.5)
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The variational statement of this problem has the form

J(w1, w2) =

�∫

0

(
EJ1
2

w′′
1
2
+

EJ2
2

w′′
2
2
+ qw1

)
dξ → min

w1,w2

(1.6)

with the condition (1.2).

Introducing the Green function for the boundary value problems (1.1), (1.5),

Gi(ξ, t) =
1

6di

[
(ξ − t)3+ +

(t− �)

�
ξ3 +

t(�− t)(2�− t)

�
ξ

]
,

we can write solutions to Equation (1.1) as wi(ξ) = Gi(q − x), where

Giϕ =

�∫

0

Gi(ξ, t)ϕ(t)dt, (1.7)

and Equation (1.4) as

x(ξ) = [x(ξ)− α(G2x+ ρ−G1(q − x))]+. (1.8)

To solve (1.8), one can use the method of successive approximations:

xn+1 = [xn − α(G2xn + ρ−G1(q − xn))]+, n = 0, 1, . . . , (1.9)

where x0(ξ) ≡ 0 can be taken for the initial approximation.

To find a function class where we look for a solution to Equation (1.8), we analytically solve

the above problem in the case q(ξ) = q = const, d1 = d2 = d0.

Assume that [ξ0, ξ1] (ξ0 < ξ1) is the contact zone. By symmetry of the problem, ξ1 = �− ξ0.

The function u(ξ) = w1(ξ)− w2(ξ) satisfies

d0
d4u

dξ4
= q − 2x(ξ), (1.10)

and u(ξ) = ρ for ξ ∈ [ξ0, ξ1]. For 0 < ξ < ξ0 we have x(ξ) ≡ 0. Therefore,

d0
d4u

dξ4
= q. (1.11)

The general solution to Equation (1.11) has the form

u(ξ) =
qξ4

24d0
+ c0 + c1ξ + c2ξ

2 + c3ξ
3.

By the boundary condition, c0 = c2 = 0. Since the function u(ξ), together with its first and

second order derivatives, is continuous at the point ξ0, we have

c1ξ0 + c3ξ
3
0 +

q

24d0
ξ40 = ρ,

c1 + 3c3ξ
2
0 +

q

6d0
ξ30 = 0,

6c3ξ0 +
q

2d0
ξ20 = 0

(1.12)
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which implies

c1 =
q

12d0
ξ30 , c3 = − q

12d0
ξ0, ξ0 =

(
24d0ρ

q

)1/4

, (1.13)

and the function u(ξ) is represented by

u(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qξ

12d0
[ξ30 − ξ0ξ

2 + ξ3], 0 � ξ � ξ0,

ρ, ξ ∈ [ξ0, �− ξ0],

q(�− ξ)

12d0
[ξ30 − ξ0(�− ξ)2 + (�− ξ)3], ξ ∈ [�− ξ0, �].

(1.14)

From (1.14) it follows that

u′′′(ξ0 − 0) =
q

2d0
ξ0, u′′′(ξ0 + 0) = 0. (1.15)

From (1.10) and (1.15) we find

x(ξ) =
q

4
ξ0δ(ξ − ξ0) +

q

4
ξ0δ(ξ − �+ ξ0) + +q[H(ξ − ξ0)−H(ξ − �+ ξ0)], (1.16)

where δ(ξ) is the generalized Dirac δ-function. We set v(ξ) = w1(ξ) +w2(ξ). Then the function

v(ξ) satisfies the equation

d0
d4v

dξ4
= q

which implies

v(ξ) =
q

24d0
[�3ξ − 2�ξ3 + ξ4]. (1.17)

The deflections are expressed as follows:

w1(ξ) =
1

2
(u(ξ) + v(ξ)), w2(ξ) =

1

2
(v(ξ)− u(ξ)).

Thus, if the contact domain is a segment of nonzero length, then w
′′
i (ξ), i = 1, 2, are contin-

uous, w
′′′
i (ξ) are piecewise continuous, whereas the 4th order derivatives contain terms of Dirac

δ-function type (cf. formula (1.16)). From (1.13) we find the existence condition in the case of

a contact domain of nonzero length (ξ0 < �/2)

q � 384d0ρ

�4
. (1.18)

For

0 < q <
384d0ρ

5�4

there is no contact between the beams, i.e., w1(ξ) < ρ for all ξ ∈ [0, �], and for

384d0ρ

5�4
� q � 384d0ρ

�4
(1.19)

311



the contact domain consists of a single point ξ0 = �/2. Then (1.12) takes the form

c1
�

2
+ c3

�3

8
+

q

d0

�4

384
= ρ,

c1 + 3c3
�2

4
+

q

d0

�3

48
= 0

which implies

c1 =
ql3

384d0
+

3ρ

�
, c3 = − q�

32d0
− 4ρ

l3
. (1.20)

In this case, the function u(ξ) is defined by

u(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
c1ξ + c3ξ

3 +
ξ4q

24d0
, ξ ∈ [0, �/2],

c1(�− ξ) + c3(�− ξ)3 +
(�− ξ)4q

24d0
, ξ ∈ [�/2, �],

(1.21)

and v(ξ) is computed by formula (1.17).

From (1.20) and (1.21) we find

u′′′(�/2 + 0)− u′′′(�/2− 0) = −5q�

8d0
+

48ρ

�3

which implies

x(ξ) = q − d0
d4w

dξ4
=

(
5q�

16
− 24ρd0

�3

)
δ(ξ − �/2). (1.22)

For anchorage boundary conditions an analytic solution is found in a similar way.

1.2. Method of generalized reaction. Assume that displacements u1 and u2 of two

elastic elements of constructions (rods, plates, and shells) under certain loads cause contact

between these elements. We assume that a deformation of every element is described by the

linear equations for u1 and u2:

Liui(ξ) = fi(ξ), ξ ∈ Ωi ⊂ Rni ,

Γijui(ξ) = 0, ξ ∈ ∂Ωi, j ∈ 1 : ri, i = 1, 2.
(1.23)

With the boundary value problems (1.23) one can associate (nonlinear) operators Ai (the

boundary conditions are included in the definition of operators) in Hilbert spaces.

Thus, instead of the problem (1.23), we can study the operator equations

Aiui = fi(ξ), ξ ∈ Ωi, i ∈ 1 : 2.

Suppose that the initial clearance between thin-wall elements of construction in the initial un-

deformed state in a domain of possible contact Ω0 ⊂ Ω1 ∩ Ω2 is determined by a function ρ(ξ),
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ξ ∈ Ω0. Then the contact problem under consideration can be formulated as follows:

⎧⎨
⎩

A1u1 = f1(ξ)− x(ξ)H̃(ξ),

A2u2 = f2(ξ) + x(ξ)H̃(ξ),
(1.24)

⎧⎪⎪⎨
⎪⎪⎩

u1(ξ)− u2(ξ)− ρ(ξ) � 0, ξ ∈ Ω0,

x(ξ) � 0, ξ ∈ Ω0,

x(ξ)[u1(ξ)− u2(ξ)− ρ(ξ)] = 0.

(1.25)

Equations (1.24) are the equilibrium equations, fi(ξ), i = 1, 2, are the external forces acting on

contacting elements, x(ξ) is the contact reaction force, and

H̃(ξ) =

⎧⎨
⎩
1, ξ ∈ Ω0,

0, ξ �∈ Ω0.

The second inequality in (1.25) is a one-sided constraint, the third one is the complementary

slackness condition, i.e., x(ξ) > 0 implies u1(ξ)−u2(ξ)−ρ(ξ) = 0 and, conversely, u1(ξ)−u2(ξ)−
ρ(ξ) < 0 implies x(ξ) = 0. From (1.24) we find

x(ξ) =
1

2
(A2u2 −A1u1 + f1 − f2). (1.26)

As above, we prove (1.25) if

x(ξ) = [x(ξ) + α(u1(ξ)− u2(ξ)− ρ(ξ))]+, ξ ∈ Ω0, (1.27)

for any α > 0. Thus, instead of (1.24) and (1.25) we can consider the system

A1u1 = f1 − x, A2u2 = f2 + x, x = [x− α(u2 + ρ− u1)]+H̃(ξ). (1.28)

If the inverses of A1 and A2 exist, then from the first two equations of (1.28) we have

u1 = A−1
1 (f1 − x), u2 = A−1

2 (f2 + x). (1.29)

Substituting these expressions into the third equation, we find

x = [x− α(A−1
2 (f2 + x)−A−1

1 (f1 − x) + ρ)]+, ξ ∈ Ω0. (1.30)

Equation (1.30) can be solved by the method of successive approximations:

xk+1 = [xk − α(A−1
2 (f2 + xk)−A−1

1 (f1 − xk) + ρ)]+, ξ ∈ Ω0. (1.31)

To clarify the character of convergence of (1.31), we formulate some assertions related to the

theory of extremum problems (cf., for example, [3]).

1.2.1. Necessary extremum conditions and the gradient projection method. It is required to

find u∗ ∈ M such that

f(u∗) = min
u∈M

f(u). (1.32)
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Assume that M ∈ Rn is a convex set and f(u) is continuously differentiable in Rn.

Proposition 1.1. For a point u∗ ∈ M to be a minimum point of a functional f(u) over the

set M it is necessary and, if f(u) is convex, sufficient that(
∂f(u∗)
∂u

, u− u∗
)

� 0 ∀u ∈ M. (1.33)

Let v ∈ Rn. We denote by PM (v) the nearest point of the set M to the point v. The point

PM (v), called the projection of v onto the convex set M , is a minimum point of the functional

ϕ(u) = 1/2‖u− v‖2 over the set M. From (1.33) it follows that

(PM (v)− v, u− PM (v)) � 0 ∀u ∈ M. (1.34)

Denote z(y) = PM (y). Then

(z(y)− y, x− z(y)) � 0 ∀x ∈ M. (1.35)

Let z(y1) and z(y2) be the projections of two points on the set M . Then

||z(y1)− z(y2)|| � ||y1 − y2|| (1.36)

(the distance between the projections of points does not exceed the distance between the points).

Let α > 0. Denote by ω(u) the projection of u− α∂f(u)
∂u on the set M :

ω(u) = PM

(
u− α

∂f(u)

∂u

)
.

We assume that u ∈ M . By (1.33),

(ω(u)− u+ α
∂f(u)

∂u
, u− ω(u)) � 0

which implies (
∂f(u)

∂u
, ω(u)− u

)
� − 1

α
‖ω(u)− u‖2. (1.37)

Proposition 1.2. The condition (1.33) is equivalent to the condition

u∗ = PM

(
u∗ − α

∂f(u∗)
∂u

)
∀ α > 0. (1.38)

Proof. From (1.34) we find

(ω(u∗)− u∗ + α
∂f(u∗)
∂u

, u− ω(u∗)) � 0 ∀u ∈ M. (1.39)

Let (1.38) hold. Then (
α
∂f(u∗)
∂u

, u− u∗
)

� 0 ∀u ∈ M,

i.e., (1.33) holds.

Let (1.33) hold. From (1.38) we find

(ω(u∗)− u∗, ω(u∗)− u∗) � α

(
∂f(u∗)
∂u

, u∗ − ω(u∗)
)
.

From (1.33) it follows that (ω(u∗)− u∗, ω(u∗)− u∗) � 0, i.e., u∗ = ω(u∗).
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A point u∗ ∈ M satisfying the necessary extremum condition (for example, (1.33) or (1.38))

is said to be stationary. We refer the reader to [3] for details.

We formulate the problem of minimizing f(u) over the set M .

1.2.2. The gradient projection method. We fix a number α > 0 and an initial approximation

u0 ∈ M . Suppose that uk ∈ M is already obtained. Then uk+1 = ω(uk).

Proposition 1.3. Let D = {u ∈ M : f(u) � f(u0)} be bounded. Then there exists α0 > 0

such that for all 0 < α � α0 any limit point of the sequence {uk}, k = 0, 1, 2 . . ., is a stationary

point of the functional f(u) over the set M .

Let M = {u ∈ Rn : hj(u) � 0, j ∈ J = 1 : N}, where hj(u) are convex continuously

differentiable functions, and the set M satisfies the Slater condition, i.e., there exists a point u

such that hj(u) < 0, j ∈ J . We also assume that the function f(u) is strongly convex, i.e., there

exists a constant m > 0 such that

f(u) � f(v) +

(
∂f(v)

∂u
, u− v

)
+m||u− v||2 ∀u, v ∈ Rn.

We consider the Lagrange function

L(u, x) = f(u) +

N∑
i=1

xihi(u). (1.40)

Under the above assumptions, there exists a unique solution to the problem (1.32).

1.2.3. The saddle point theorem. A point u∗ is a solution to the problem (1.32) if and only

if there exists a Lagrange multiplier x∗ = (x∗1, x∗2, . . . , x∗N ) such that u∗ and x∗ are saddle points

of the Lagrange function on the set Rn ×X

L(u∗, x) � L(u∗, x∗) � L(u, x∗) ∀u ∈ Rn, x ∈ X,

where X = {x ∈ RN : xj � 0, j ∈ J}. If a saddle point exists, the operations of taking

maximum and minimum commute:

min
u∈Rn

max
x∈X

L(u, x) = max
x∈X

min
u∈Rn

L(u, x) = L(u∗, x∗).

We consider two extremum problems

ψ(u) → min
u

, ψ(u) = max
x∈X

L(u, x), (1.41)

ϕ(x) → sup
x∈X

, ϕ(x) = min
u

L(u, x). (1.42)

The problems (1.41) and (1.42) are dual problems of nonlinear programming. If u /∈ M in (1.41),

then we set ψ(u) = ∞, i.e., (1.41) is exactly the problem (1.32). We refer the reader to [2] for

details.

We return to the problem (1.24), (1.25). We assume that the operators Ai in (1.28) are

positive definite operators defined on the same Hilbert space H of functions in the domain Ω

(Ω = Ω1 = Ω2 = Ω0)

Aiu =
∑

|α|�m

Dα(Cαi(ξ)D
αu), (1.43)
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where

Dα( ) =
∂|α|( )

∂ξα1
1 ∂ξα2

2 . . . ∂ξαn
n

,

α = (α1, α2 . . . αn) is a multi-index with length |α| = α1 +α2 + . . .+αn. With the operators Ai

we associate the bilinear forms

ai(u, v) =

∫

Ω

∑
|α|�m

(−1)|α|Cαi(ξ)D
αu ·Dαvdξ. (1.44)

The positive definiteness means that

ai(u, u) � γ2i ‖u‖2H , (1.45)

where ‖u‖H is the H-norm. We set

J(u1, u2) =
1

2
a1(u1, u1) +

1

2
a2(u2, u2)− (f1, u1)− (f2, u2).

The contact problem can be formulated as the extremum problem

J(u1, u2) → min
u1, u2

(1.46)

with the condition

u1 − u2 − ρ � 0. (1.47)

For the problem (1.46), (1.47) we introduce the Lagrangian

L(u1, u2, x) = J(u1, u2) + (x, u1 − u2 − ρ). (1.48)

We also introduce the functionals

Φ̃(x) = min
u1,u2

L(u1, u2, x), Φ(x) = −Φ̃(x). (1.49)

The functional Φ(x) is expressed by

Φ(x) =
1

2
A−1

1 (f1 − x), f1 − x) +
1

2
A−1

2 (f2 + x), f2 + x) + (x, ρ).

We consider the problem

Φ(x) → inf
x∈M

, (1.50)

where M = {x ∈ L2(Ω) |x � 0}.
The functional Φ(x) is bounded from below on M. We set Φ∗ = infx∈M Φ(x).

The quadratic functional Φ(x) is continuously differentiable, and its derivative takes the form

Φ′(x) = A−1
2 (f2 + x)−A−1

1 (f1 − x) + ρ. (1.51)

We temporarily assume that the infimum is attained at a point x∗. We write the necessary

minimum condition for the problem (1.50) in the form (1.38)

x∗ = PM (x∗ − αΦ′(x)) =
[
x∗ − α

(
A−1

2 (f2 + x)−A−1
1 (f1 − x) + ρ

)]
+

(1.52)
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(it is obvious that the projection of Φ(x) onto the set M of nonnegative functions is the “cut-off

function” of Φ(x)). The last equation coincides with (1.30).

In infinite-dimensional spaces, the point x∗ does not necessarily exist, i.e., there is no square

summable function x(ξ) such that Φ(x) = Φ∗ (cf. 1.16) and (1.22), where the contact force

contains terms of Dirack δ-function type).

However, the following assertion holds [1].

Theorem 1.1. There exists α0 > 0 such that for any 0 < α � α0 the sequence {xn} defined

by (1.31) is minimizing, i.e.,

lim
n→∞Φ(xn) = Φ∗, (1.53)

and the sequence of functions

u1k = A−1
1 (f1 − xk), u2k = A−1

2 (f2 + xk) (1.54)

converge to the solution to the problem (1.46), (1.47).

2 Stability of Elastic Systems under
One-Sided Constraints on Displacements

2.1. Statement of the problem. To study the stability of elastic systems, variational

methods are often used. Assume that the potential energy is expressed by the functional

Φ(λ,w) = F (w)− λG(w),

where F (w) is the elastic energy and G(w) is the external force work. It is required to find λ

(interpreted as the critical load in practice) such that the variational problem

Φ(λ,w) → min
w

has a nontrivial solution. To study the stability of the problem, one usually uses the quadratic

approximation of the potential energy functional, whereas an exact expression for the full energy

is used only for determining the supercritical behavior of the system after loss of stability. In

the case of quadratic approximations, the parameter λ can be found by solving the problem

F (w) → min
w

(2.1)

with the condition

G(w) = 1. (2.2)

However, for engineering design, it is actual to study the stability of elastic systems with

one-sided constraints on displacements. The influence of one-sided constraints is expressed by

the fact that the function w in the problem (2.1), (2.2) satisfies some inequalities. Since we deal

with quadratic functionals, we can formulate the variational problem as follows. Let A and Q be

selfadjoint bounded linear operators in a separable Hilbert space H. Assume that A is positive

definite and Q is nonnegative definite and compact. Thus, for any w ∈ H

(Aw,w) � c0‖w‖2, c0 > 0, (2.3)

(Qw,w) � 0. (2.4)
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We consider the problem

f(w) =
1

2
(Aw,w) → min

w
(2.5)

with the condition

g(w) =
1

2
(Qw,w) = 1, w ∈ K, (2.6)

where K is a convex closed cone in H.

Proposition 2.1. The problem (2.5), (2.6) has a solution.

Proof. The set {w ∈ H : g(w) = 1} is weakly closed in the space H. Indeed, let wn ∈ H

weakly converge to w ∈ H. Then Qwn → Qw strongly as n → ∞. Further,

g(wn)− g(w) =
1

2
(Qwn, wn)− 1

2
(Qw,w) =

1

2
(Q(wn − w), w)− 1

2
(wn, Qw −Qwn).

Using the Schwarz inequality, from the weak convergence of wn it follows that

|g(wn)− g(w)| � 1

2
|(Q(wn − w), w)|+ 1

2
‖wn‖‖Qw −Qwn‖ → 0, n → ∞,

which implies g(w) = 1 because of the continuity of Q. Since a convex closed cone K is weakly

closed in H, the set of elements w ∈ H satisfying (2.6) is weakly closed, whereas the intersection

of this set with any ball in H is weakly compact. The functional f(w) is convex and continuous

and, consequently, weakly lower semicontinuous. Since f(w) → ∞ as ‖w‖ → ∞ in view of (2.3),

the functional f attains the minimum.

We consider the problem of nonlinear programming

f(u) =
1

2
(Au, u) → min

u
(2.7)

with the constraints

g(u) =
1

2
(Qu, u) = 1, (2.8)

(bj , u) � 0, j ∈ J = 1 : m, (2.9)

where A is a positive definite matrix of order n, Q is a nonnegative definite matrix of order

n, and bj ∈ Rn. The problem (2.7)–(2.9) can be obtained by finite-dimensional approximation

of the problem (2.5), (2.6). Denote by Γ the cone defined by the inequalities (2.9). Let u∗

be a solution to the problem (2.7)–(2.9). By the Kuhn–Tucker theorem, there exist Lagrange

multipliers μj � 0, j ∈ 1 : m, λ∗ such that

Au∗ − λ∗Qu∗ +
m∑
j=1

μjbj = 0,

1

2
(Qu∗, u∗) = 1,

μj(bj , u) = 0, j ∈ 1 : m.

(2.10)

A point u∗ satisfying (2.10) is said to be stationary.
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We describe an algorithm for solving the problem (2.7)–(2.9). Suppose that u0 ∈ Γ and

g(u0) = 1 is an initial approximation. Assume that uk ∈ Γ, g(uk) = 1, is already known. We set

Γ̃k = {u ∈ Γ|(Quk, u− uk) = 0}. (2.11)

We find ũk ∈ Γ̃k such that
1

2
(Aũk, ũk) = min

u∈˜Γk

1

2
(Au, u). (2.12)

Then we set

uk+1 = s−1
k ũk, (2.13)

where sk =
√

g(ũk). Since ũk is a solution to the problem (2.12), there exist Lagrange multipliers

μk,j � 0 and λk such that

Aũk − λkQuk +

m∑
j=1

μk,jbj = 0,

(Quk, ũk − uk) = 0,

μk,j(bj , ũk) = 0, j ∈ 1 : m.

(2.14)

It is possible to show [4] that the sequence {λk} is monotone decreasing and bounded from

below. Consequently, {λk} has limit λ∗ and any limit point of {uk} is stationary.

Remark 2.1. The auxiliary problem (2.12) is a problem of convex quadratic programming.

Methods for solving such problems are well developed.

Remark 2.2. If J = ∅, i.e., Γ = Rn, and Q is the identity matrix, then we deal with the

known Kellogg method for determining a minimal eigenvalue of the matrix A.

Remark 2.3. The problem (2.7)–(2.9) can have several local minima. Therefore, it can turn

out that λ∗ > λ∗ and the algorithm converges to one of the local minima.

We introduce the matrix B(λ) = A− λQ. It is easy to see that if λ < λ∗, then (B(λ)u, u) �
μ||u||, where μ > 0, for all u ∈ Γ. Conversely, for λ > λ∗ there is a vector u ∈ Γ such that

(B(λ)u, u) < 0. Thus, the problem (2.7)–(2.9) is reduced to identifying the conditional positive

definiteness of quadratic forms on cones.

2.2. One-sided constraints on displacements. Consider a rod of length � in an elastic

medium with rigidity C under the action of a longitudnal force P . We denote by D the rod

rigidity under bending. We consider the functional

J(w) =
1

2

�∫

0

(Dw′′2 + Cw2 − Pw′2)dx. (2.15)

We assume that the rod deflection w is bounded from one side by a rigid obstacle so that

w(x) � 0, x ∈ [0, �]. (2.16)

Computation of the stability of a rod is reduced to finding a minimal value of P such that the

variational problem

J(w) → min
w

(2.17)
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with the condition (2.16) has a nontrivial solution. We consider boundary conditions of three

types:

• boundary conditions of anchorage

w(0) = w(�) = 0, w′(0) = w′(�) = 0, (2.18)

• boundary conditions of hinged support

w(0) = w(�) = 0, w′′(0) = w′′(�) = 0, (2.19)

• boundary condition of anchorage at x = 0 and free boundary condition at x = �

w(0) = 0, w′(0) = 0, w
′′
(�) = 0, Dw

′′′
(�) + Pw

′
(�) = 0. (2.20)

2.2.1. Boundary conditions of anchorage. The problem of finding a critical force is reduced

to the following isoperimetric type problem

J̃(w) =
1

2

�∫

0

(Dw′′2 + Cw2)dx → min (2.21)

with the constraint

J1(w) =
1

2

�∫

0

w′2dx = 1 (2.22)

and the conditions (2.16) and (2.18).

The extremum problem (2.21), (2.22) with (2.16), (2.18) has a solution since the set of

functions w ∈ W 2
2 [0, �] satisfying (2.16) and (2.22) is weakly compact and the functional J̃(w)

is convex. It is known that a continuous convex functional attains the minimum on a weakly

compact set. Here, W 2
2 [0, �] is the Sobolev space of functions that are square integrable, together

with the first and second order derivatives, on [0, �] (the first order derivative is absolutely

continuous).

We look for a solution to the problem (2.21), (2.22), (2.16), (2.18) among functions that are

strictly positive on an interval (0, �1), 0 < �1 � �, and vanish outside this interval [5].

Since w > 0 for x ∈ (0, �1), it satisfies the Euler equation on (0, �1):

wIV + ωw + ρ2w
′′
= 0, (2.23)

where ω = C/D, ρ2 = λ/D, λ is the Lagrange multiplier for the constraint (2.22).

In this case, Equation (2.23) is the equilibrium equation for a rod compressed by a longitudnal

force in an elastic medium. We note that (2.23) coincides with the equilibrium equation for a

cylindrical shell compressed by a longitudnal force in the axisymmetric case. It is possible

to show that for the existence of a nontrivial solution to Equation (2.23) with the boundary

condition (2.18) or (2.19) the following condition is necessary:

ρ2 � 2
√
ω. (2.24)

Under this condition, the general solution to Equation (2.23) has the form

w(x) = c1 sin(m1x) + c2 sin(m2x) + +c3 cos(m1x) + c4 cos(m2x), (2.25)
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where

m1 =

√
ρ2

2
+

√
ρ4

4
− ω, m2 =

√
ρ2

2
−
√

ρ4

4
− ω. (2.26)

Since w(x) > 0 for x ∈ (0, �1) and w(x) ≡ 0 for x ∈ (�1, �), we conclude that either �1
coincides with � or �1 is found by solving the problem

J(w) =
1

2

�1∫

0

(w′′2 + ωw2)dx → min
w,�1

(2.27)

with the constraint

J1(w) =
1

2

�1∫

0

w′2dx = 1. (2.28)

By the minimum condition on �1 in the problem (2.27), (2.28) and the conditions w(�1) = 0,

w′(�1) = 0, from (2.27) we obtain the boundary condition w′′(�1) = 0.

Thus, the function w(x) is twice continuously differentiable on the entire interval [0, �] and

satisfies the conditions

w(0) = w(�1) = 0, w′(0) = w′(�1) = 0, w′′(�1) = 0. (2.29)

Substituting (2.25) into (2.18), we obtain the system of equations for arbitrary constants c1, . . . , c4
and �1

c3 + c4 = 0,

m1c1 +m2c2 = 0,

c1 sin y + c2 sin z + c3 cos y + c4 cos z = 0,

c1m1 cos y + c2m2 cos z − c3m1 sin y − c4m2 sin z = 0,

c1m
2
1 sin y + c2m

2
2 sin z + c3m

2
1 cos y + c4m

2
2 cos z = 0,

(2.30)

where y = m1�1 and z = m2�1. Considering the first four equations for the unknowns c1, . . . , c4
and equating to zero the determinant of the coefficient matrix, we see that for the existence of

a nontrivial solution it is necessary that

2zy(1− cos z cos y)− (z2 + y2) sin z sin y = 0. (2.31)

Considering the 1st, 2nd, 3rd, and 5th equations of the system (2.30), we obtain the equation

z cos z sin y − y sin z cos y = 0. (2.32)

With the minimal critical force it is associated the solution y = 3π, z = π to Equations (2.31),

(2.32), i.e., 3π = m1�1, π = m2�1. Using (2.26), we find

ρ2 =
10

3

√
ω, �1 =

√
3π

4
√
ω
. (2.33)

If �1 < �, then

w(x) = c · sin3(m2x)H(�1 − x), x ∈ [0, �], (2.34)
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where m2 = 4
√
ω/

√
3 and H(t) is the Heaviside function.

2.2.2. Boundary condition of hinged support. In this case,

w(0) = w(�1) = 0, w′′(0) = w′′(�1) = 0, w′(�1) = 0. (2.35)

Then it is necessary to replace the second equation in (2.30) with the equation m2
1c3+m2

2c4 = 0,

which implies c3 = c4 = 0 in view of the first equation, and (2.30) is replaced with the system

c1 sin y + c2 sin z = 0,

c1m1 cos y + c2m2 cos z = 0,

c1m
2
1 sin y + c2m

2
2 sin z = 0.

(2.36)

For the existence of a nontrivial solution to the system (2.36) it is necessary that

det

(
sin y sin z

m1 cos y m2 cos z

)
= 0, (2.37)

det

(
sin y sin z

m2
1 sin y m2

2 sin z

)
= 0, (2.38)

which yields

m2 cos z sin y = m1 cos y sin z,

m2
2 sin y sin z = m2

1 sin y sin z.

The second equation implies sin y = 0 or sin z = 0. If sin y = 0, then from the first equation we

find sin z = 0 (otherwise, cos y = 0, which is impossible). Hence

y = m1�1 = πi, z = m2�1 = πj, i, j = 1, 2, . . . . (2.39)

From (2.39) and the second equation in (2.36) we find

c2 = −c1β
m1

m2
, β =

{
1, (i− j) is even,

−1, (i− j) is odd.

From (2.25) it follows that

w(x) = c1

(
sinm1x− β

m1

m2
sinm2x

)
, 0 � m2x � πj, j = 1, 2, . . . . (2.40)

Denote α = m1m
−1
2 = i · j−1. Then from (2.26) and

ρ2 =
1 + α2

α

√
ω

we obtain the value of the critical force. Choosing i and j such that ρ2 = λ/D is minimal and

w(x) in (2.40) is nonnegative, we find

ρ2 =
5

2

√
ω, �1 =

√
2π

4
√
ω
.
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If �1 < �, then

w(x) = c

(
2 sin

πx

�1
+ sin

2πx

�1

)
H(�1 − x), c > 0. (2.41)

2.2.3. Free boundary condition. In the case of the boundary condition of anchorage at x = 0

and the free boundary condition at x = �, we have (2.20). Then the inequality (2.24) is replaced

with ρ2 < 2
√
ω and the general solution to Equation (2.23) takes the form

w(x) = c1e
αx sin(βx) + c2e

αx cos(βx) + c3e
−αx sin(βx) + c4e

−αx cos(βx), (2.42)

where

α =
1

2

√
2
√
ω − ρ2, β =

1

2

√
2
√
ω + ρ2. (2.43)

Assume that there exists a region that is closely adjacent to the wall, i.e.,

w(x) = 0, x ∈ [0, �1],

w(x) > 0, x ∈ (�1, �].
(2.44)

As above, w = 0, w′ = 0, and w′′ = 0 for x = �1. Thus, we have two systems of equations

w(�1) = 0, w′(�1) = 0, w
′′
(�) = 0, w

′′′
(�) + ρ2w

′
(�) = 0, ρ2 =

P

D
, (2.45)

w(�1) = 0, w′(�1) = 0, w
′′
(�) = 0, w

′′′
(�) + ρ2w

′
(�) = 0. (2.46)

For the existence of a nontrivial solution it is necessary that the determinants of the coefficient

matrices at c1, . . . , c4 vanish. It is clear that we can put �1 = 0 in Equations (2.45) and (2.46)

(it suffices to replace x with x − �1). Then � is the unknown which should be found. We set

�̃ = �− �1. The determinant of the system (2.45) takes the form

�1(ω, �̃, ρ) = cos2(β�̃)(ωρ2 −√
ωρ4 + 2

√
ω3) +

1

2
eα

˜�
(√

ω3 − 1

2
ωρ2 − 1

2

√
ωρ4

)

+
1

2
e−α˜�

(√
ω3 − 1

2
ωρ2 − 1

2

√
ωρ4

)
+
√
ω3 − 1

2
ωρ2 +

1

2

√
ωρ4,

whereas the determinant of the system (2.46) is equal to

�2(ω, �̃, ρ) =
1

2
sin(β�̃)β(ρ2ω − ρ4

√
ω + 2

√
ω3)

+
1

4
eα

˜�α(ρ2ω + ρ4
√
ω − 2

√
ω3)− 1

4
e−α˜�α(ρ2ω + ρ4

√
ω − 2

√
ω3).

The determinants�1(ω, �̃, ρ) and�2(ω, �̃, ρ) were computed with the help of the systemMAPLE.

Thus, for �̃ and ρ2 we have the system of two nonlinear equations

�1(ω, �̃, ρ) = 0, �2(ω, �̃, ρ) = 0. (2.47)

The system (2.47) was solved by the Newton method. The numerical results are given in Table 1.
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Table 1. The values of the critical force depending on the rigidity ω.

N 1 2 3 4 5 6

ω 100 200 350 450 550 800

�̃ 0.745 0.627 0.545 0.512 0.487 0.443

ρ2 12.6 17.8 23.5 26.7 29.5 35.6

ρ2∗ 11.9 15.6 19.5 21.8 23.8 28.5

In Table 1, the values of ρ2 correspond to the critical load on the rod under one-sided

constraints on displacements with different rigidity ω. The last row contains the values of

P = ρ2∗ in the case where no one-sided constraints are imposed on displacements.

2.3. Stability of annuli under one-sided constraints. We study the stability of an

elastic annulus reinforced by elastic threads which do not react on compression loads. Suppose

that one thread end is fixed at the center and the other is attached at some point of the annulus.

Assume that the thread is inextensible, i.e., the distance between the annulus center and the

attachment point does not increase under deformations. Denote by ϑ the central angle, by w(ϑ)

the radial displacement (deflection), and by v(ϑ) the tangent displacement of annulus points.

Since the annulus axis is incompressible, we have

v′ = −w. (2.48)

Furthermore, the threads are placed so frequently that we can assume that they are continuously

distributed along the annulus. Then the stability problem is reduced to finding values of P such

that the variational problem

J(w) =
B

2R3

2π∫

0

(w′′ + w)2dϑ− P

2

2π∫

0

(w′2 − w2)dϑ → min
w

(2.49)

has a nontrivial solution such that

w(ϑ) � 0, (2.50)

where B is the bending rigidity of the annulus plane and R is the annulus radius. The first

integral in (2.49) is the elastic energy and the second one is the work of the normal pressure

forces.

We write the Euler equation for the functional (2.49)

wIV + (2 + k2)w′′ + (1 + k2)w = 0, (2.51)

where k2 =
PR3

B
. The corresponding characteristic equation

λ4 + (2 + k2)λ2 + (1 + k2) = 0

has a solution λ1,2 = ±i, λ3,4 = ±√
1 + k2i. Then the bending function is written as

w = A1 sinϑ+A2 cosϑ+A3 sinαϑ+A4 cosαϑ, (2.52)

where α =
√
1 + k2.
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We fix an angle β > 0. As in the case of rods, we assume that w(ϑ) < 0 for ϑ ∈ (0, β)

and w(ϑ) ≡ 0 for ϑ ∈ (β, 2π). The first order derivative w′(ϑ) is continuous for ϑ ∈ (0, 2π).

Therefore, w satisfies the boundary conditions

w(0) = 0, w′(0) = 0, w(β) = 0, w′(β) = 0. (2.53)

Substituting (2.52) into (2.53), we obtain the system of linear equations

A2 +A4 = 0,

A1 + αA3 = 0,

A1 sinβ +A2 cosβ +A3 sin(αβ) +A4 cos(αβ) = 0,

A1 cosβ −A2 sinβ + αA3 cos(αβ)− αA4 sin(αβ) = 0.

(2.54)

Simplifying, we find

A3(sin(αβ)− α sinβ) +A4(cos(αβ)− cosβ) = 0,

A3(α cos(αβ)− α cosβ) +A4(sin β − α sin(αβ)) = 0.
(2.55)

The system of equations has a nontrivial solution provided that its determinant vanishes, i.e.,

d(α) = −2α cos(αβ) cos β + 2α− sin(αβ) sin β − α2 sin(αβ) sin β = 0. (2.56)

Solving Equation (2.56) with respect to α, we obtain the function α = α(β). For a given β

the equation has infinitely many roots. It is obvious that α = 1 is a root of the equation for

any β. Note that α = 1 corresponds to P = 0. Further, we find the bending shape by formula

(2.52). It is easy to see that formula (2.52) with α = 1 means that the annulus moves like a

rigid body. Consequently, we need to find the minimal root of Equation (2.56) such that α > 1.

The condition (2.50) is also necessary. We see that the greater the angle β the less k2 and,

consequently, the force P . The values of the critical parameter α depending on β are presented

in Table 2.

Table 2. The values of the critical parameter α depending on β.

β π
4

π
2

3π
4 π 5π

4

α 4.9801 4.2915 3.2136 3 2.4841

In the case β > π, numerical experiments show that the graph of w changes the sign on

(0, β), i.e., w does not satisfy the nonnegativity condition.

Thus, the minimal critical value of α is 3, which implies k2 = 8, which corresponds to the

equality P = 8B/R3. Note that the critical value of P is equal to 3B/R3 for a nonreinforced

annulus.

We consider arbitrarily located and absolutely rigid threads. Suppose that an annulus is

reinforced by M absolutely rigid threads. One thread end is fixed at the annulus point A

corresponding to the angle ϑ = ε1j and the second end is fixed at the point B corresponding

to the angle ϑ = ε2j , j ∈ 1 : M . Displacements of annulus points are denoted by wi = w(εij),

vi = v(εij), i = 1, 2, j ∈ 1 : M .
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We set αj = ε2j − ε1j . Denote by �j the distance between the points A and B before

deformation. Let us compute the distance �∗j between A and B after deformation. We introduce

the unit vectors i, j and i′, j′ such that i is directed along the annulus radius at the point

ϑ = ε1j , j is obtained by the anticlockwise rotation of i by the angle π/2, i′ is directed along

the annulus radius at the point ϑ = ε2j , and j′ is obtained by the anticlockwise rotation of i′ by
the angle π/2. The angle between i and i′ is equal to αj . The matrix of transition from (i,j) to

(i′,j′) has the form (
cosαj − sinαj

sinαj cosαj

)
.

The displacement vector at ϑ = ε2j can be written as

w2i
′ + v2j

′ = (w2 cosαj − v2 sinαj)i+ (w2 sinαj + v2 cosαj)j,

whereas the distance between the points A and B before deformation is �j = 2R sin
αj

2
. Then

the distance between these points after deformation is equal to

�∗j =
[(

−�j sin
αj

2
+w2 cosαj − v2 sinαj −w1

)2
++

(
�j cos

αj

2
+w2 sinαj + v2 cosαj − v1

)2]1/2

or (after suitable transformations)

�∗j =
[
�2j + 2�j(w2 + w1) sin

αj

2
+ (v2 − v1) cos

αj

2

+ (w2 cosαj − v2 sinαj − w1)
2 + (w2 sinαj + v2 cosαj − v1)

2
]1/2

.

Under small deformations of the annulus, we can approximately set

�∗j = �j + (w2 + w1) sin
αj

2
+ (v2 − v1) cos

αj

2
. (2.57)

Denote by Δ�j = �∗j − �j the lengthening of the jth thread.

Using (2.57), we formulate the stability problem: Find the minimal value of P such that the

variational problem

V =
B

2R3

2π∫

0

(w′′ + w)2dϑ+
P

2

2π∫

0

w′(v − w′)dϑ → min
w,v

(2.58)

with the condition

Δ�j = (w2 + w1) sin
αj

2
+ (v2 − v1) cos

αj

2
� 0, j ∈ 1 : M, (2.59)

has a nontrivial solution.

The first integral in (2.58) is the elastic energy of the deformed annulus, and the second

integral is the work of the normal pressure force. We look for v(ϑ) in (2.58), (2.59) as the partial

sum of the Fourier series

v(ϑ) =
n∑

k=2

(xk sin kϑ+ yk cos kϑ) (2.60)
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(the harmonics with k = 0 and k = 1 correspond to displacements of the annulus regarded as

a rigid body). Taking into account the incompressibility condition (2.48), we obtain, instead of

(2.58), (2.59), the problem

Ṽ =
1

2

n∑
k=2

k2(k2 − 1)

[
B

R3
(k2 − 1)− P

]
(x2k + y2k) → min, (2.61)

Δ�̃j =

n∑
k=2

(ckjxk + dkjyk) � 0, j ∈ 1 : M, (2.62)

where

ckj = cos
αj

2
(sin kε2j − sin kε1j)− sin

αj

2
(k cos kε2j + k cos kε1j),

dkj = cos
αj

2
(cos kε2j − cos kε1j) + sin

αj

2
(k sin kε2j + k sin kε1j).

In the case where the threads are located along the sides of a regular M -gon (αj = 2π/M,

ε1j = αj · (j − 1), ε2j = αj · j), for solving the problem (2.61), (2.62) the method of branches

and boundaries was used.

Table 3. The values of the critical pressure depending on the number of threads.

M 3 4 5 6 7 8 9 10

P ∗R3/B 4.32 3.00 4.57 5.27 6.28 6.50 7.26 7.37

The results of numerical experiments are presented in Table 3. If the annulus is reinforced by

threads fixed at the vertices of the square (M = 4), then the value of the critical force coincides

with the critical pressure for the annulus without reinforcements (P = 3B/R3), i.e., in this case,

the annulus is transformed to an ellipse without increasing the distance between points at the

square vertices.

2.4. Stability of rectangular plates. Suppose that a rectangular plate is loaded by the

normal force σ for x = 0, x = a, 0 � y � b, and by the tangent force τ on the all boundaries.

Denote by w(x, y), 0 � x � a, 0 � y � b, the plate deflection. The potential strain energy of

the plate has the form [6]

U(w) =
D

2

a∫

0

b∫

0

(
(�w)2 − (1− ν)L(w,w)

)
dxdy, (2.63)

where

�w =
∂2w

∂x2
+

∂2w

∂y2
, L(w,w) = 2

(
∂2w

∂x2
· ∂

2w

∂y2
−
(

∂2w

∂x∂y

)2)
.

The work of the external force is expressed by [6]

V (w) =
1

2

a∫

0

b∫

0

(
σ

(
∂w

∂x

)2

+ 2τ
∂w

∂x

∂w

∂y

)
dxdy. (2.64)
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We assume that the plate is located over two rigid edges along the x-axis in such a way that

w(x, b0) � 0, w(x, b1) � 0, (2.65)

where 0 < b0 < b1 < b. The study of the plate stability is reduced to finding the forces σ and τ

such that the variational problem

U − V → min
w∈P

(2.66)

has a nontrivial solution. Here, P is the set of functions w(x, y) satisfying (2.65). Assume that

the boundary conditions of hinged support

w(x, 0) = w(x, b) = 0,
∂2w(x, 0)

∂y2
=

∂2w(x, b)

∂y2
= 0, (2.67)

w(0, y) = w(a, y) = 0,
∂2w(0, y)

∂x2
=

∂2w(a, y)

∂x2
= 0 (2.68)

or the boundary conditions of anchorage

w(x, 0) = w(x, b) = 0,
∂w(x, 0)

∂y
=

∂w(x, b)

∂y
= 0, (2.69)

w(0, y) = w(a, y) = 0,
∂w(0, y)

∂x
=

∂w(a, y)

∂x
= 0 (2.70)

hold. Then the expression for the plate energy is simplified because, in this case,

a∫

0

b∫

0

L(w,w) dxdy = 0.

The critical loads σ∗ and τ∗ can be found as follows. We fix σ and τ and solve the problem

U =
D

2

a∫

0

b∫

0

(�w)2 dxdy → min
w∈P

(2.71)

with the constraint

V =
1

2

a∫

0

b∫

0

(
σ

(
∂w

∂x

)2

+ 2τ
∂w

∂x

∂w

∂y

)
dxdy = 1. (2.72)

Let w∗ be a solution to the problem (2.71), (2.72), and let λ = U(w∗). Then the critical loads

are computed by

σ∗ = λσ, τ∗ = λτ. (2.73)

In the domain [0, a] × [0, b], we introduce the uniform grid T = Tx × Ty and denote by N

and K the number of grid points along the x– and y–axes respectively. In the case of arbitrary

328



boundary conditions for the finite-dimensional approximations of the problem (2.63)–(2.65), the

plate deflection w(x, y) will be approximated by interpolation cubic splines in two variables.

Let wij = w(xi, yj), i ∈ 0 : N , j ∈ 0 : K, be the values of w at grid points. Replacing w(x, y)

with an interpolation cubic spline and computing the integrals (2.63) and (2.64), we obtain the

potential energy f(wij) and the work of the external forces g(wij). The functions f(wij) and

g(wij), are quadratic forms of the variables wij . Thus, instead of the problem (2.71), we obtain

the problem of nonlinear programming (2.7)–(2.9). Table 4 contains the numerical results for

a = 1, b = 0.2, N = 20, K = 10, D = 1. The 3rd row contains the values of λ for the plate

that is hinged around the contour without any restrictions on the plate deflection. The 4th row

contains the values of λ∗ under the restrictions on deflection given by two rigid edges (b0 = b/3

and b1 = 2b/3). The 6th and 7th rows present the corresponding results for a plate which is

rigidly fixed over all the edges.

Table 4.

τ 1 1 0 1 2 3 4 5

σ 3 2 1 1 1 1 1 1

λ 313.0 444.6 988.4 723.6 492.1 366.1 290.3 240.1

λ∗ 357.4 515.7 1107 871.0 599.6 443.2 351.0 288.7

λ 551.0 775.7 1757 1237 827 611.5 482.5 399.2

λ∗ 750.2 1049 2384 1640 1079 790.5 623.6 513.7

2.5. Stability of a torus-like shell with one-sided reinforcement.

2.5.1. Definition of the elastic energy and external force work. Assume that a shell with

a median surface S takes the shape S̃ under a deformation. We denote by gij , hij , g̃ij , h̃ij ,

i, j = 1, 2, the coefficients of the first and second quadratic forms of nondeformed and deformed

surfaces respectively.

We assume that a deformation is axisymmetric. By [7], the strain energy caused by transition

from a state S to a state S̃ is expressed as

U =

∫∫
Φ1(ε1, ε2,κ1,κ2)ds, (2.74)

where

Φ1 =
Eh3

24(1− ν2)
(κ2

1 + κ
2
2 + 2νκ1κ2) +

Eh

2(1− ν2)
(ε21 + ε22 + 2νε1ε2), (2.75)

E is the Young modulus, ν is the Poisson ratio, ε1 and ε2 are the extremum values of the ratio

2∑
i,j=1

(g̃ij − gij)duiduj

2∑
i,j=1

gijduiduj

, (2.76)

whereas κ1 and κ2 are the extremum values of the ratio

2∑
i,j=1

(h̃ij − hij)duiduj

2∑
i,j=1

gijduiduj

. (2.77)
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As a result, under an axisymmetric deformation, the surface S̃ becomes a surface of revolution

of the curve γ about the z-axis in the XOZ-plane, given by the equations x = ϕ(θ), z = ψ(θ).

The point (ϕ(θ), 0, ψ(θ)) of the curve γ goes to the point (ϕ(θ) cosλ, ϕ(θ) sinλ, ψ(θ)) under

rotation by the angle λ. Hence the equations of the surface of revolution take the form [8]

x = ϕ(θ) cosλ,

y = ϕ(θ) sinλ,

z = ψ(θ).

(2.78)

We consider a torus under the action of a normal pressure force. Then, in (2.76) and (2.77),

u1 = θ is the polar angle in the meridian plane and u2 = λ is the angle in the plane of parallel

disc. Denote by w(θ) and u(θ) the normal and tangent displacements of points on the torus

surface. The Cartesian coordinates of points on the torus-like surface before deformation are as

follows:
x = (R+ a cos θ) cosλ,

y = (R+ a cos θ) sinλ, 0 � θ � 2π, 0 � λ � 2π,

z = a sin θ,

(2.79)

i.e., ϕ = R + a cos θ, ψ = a sin θ in the case of an undeformed torus. After deformation, the

equations take the form (2.78), where

ϕ(θ) = R+ (a+ w(θ)) cos θ − u(θ) sin θ,

ψ(θ) = (a+ w(θ)) sin θ − u(θ)cosθ.
(2.80)

We study the case where the axisymmetric form loses stability in small when the obtained

buckles have the form of annulus folds directed along the λ-coordinate (displacements are in-

dependent of λ). For surfaces of revolution the first and second quadratic forms are written as

[8]

I =
(
ϕ

′2 + ψ
′2
)
dθ2 + ϕ2dλ2,

II =

(
ψ

′′
ϕ

′ − ψ
′
ϕ

′′

√
ϕ′2 + ψ′2

)
dθ2 +

ψ
′
ϕ√

ϕ′2 + ψ′2
dλ2.

(2.81)

For the undeformed surface we have

I0 = a2dθ2 + (R+ a cos θ)2dλ2,

II0 = adθ2 + cos θ(R+ a cos θ)dλ2.
(2.82)

Using (2.76), (2.77), (2.79), (2.81), and (2.82), it is possible to express ε1, ε2 and κ1, κ2. Under

an axisymmetric deformation, the quadratic forms I and II take the diagonal form. Therefore,

ε1 =
ϕ′2 + ψ′2 − a2

a2
,

ε2 =
ϕ2 − (R+ a cos θ)2

(R+ a cos θ)2
,

κ1 =
ψ

′′
ϕ

′ − ψ
′
ϕ

′′

a2
√

ϕ′2 + ψ′2
− 1

a
,

κ2 =
ψ

′
ϕ− cos θ(R+ a cos θ)

√
ϕ′2 + ψ′2

cos2 θ(R+ a cos θ)2
√

ϕ′2 + ψ′2
.

(2.83)
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By the Euler–Bernoulli theorem, in the case of the external normal pressure force, the external

force work is equal to A = PΔV , where ΔV is the change of shell volume under deformation.

It is known [9] that the volume of a body with surface x = x(θ, λ), y = y(θ, λ), z = z(θ, λ) is

found (up to the sign) by

V =
1

3

2π∫

0

2π∫

0

det

⎡
⎢⎣
x y z

x
′
θ y

′
θ z

′
θ

x
′
λ y

′
λ z

′
λ

⎤
⎥⎦ dθdλ . (2.84)

In the case of an axisymmetric deformation, the determinant in (2.84) is independent of λ.

Using (2.78)–(2.80), it is possible to compute the shell volume under deformation by

V =
2π

3

2π∫

0

Φ2

(
w, u,w

′
, u′
)
dθ, (2.85)

where

a11 = R+ a cos θ + w(θ) cos θ − u(θ) sin θ,

a13 = a sin θ + w(θ) sin θ + u(θ) cos θ,

a21 = −a sin θ + w
′
(θ) cos θ − w(θ) sin θ − u

′
(θ) sin θ − u(θ) cos θ,

a23 = a cos θ + w
′
(θ) sin θ + w(θ) cos θ + u

′
(θ) cos θ − u(θ) sin θ,

a32 = R+ a cos θ + w(θ) cos θ − u(θ) sin θ,

a32 = R+ a cos θ + w(θ) cos θ − u(θ) sin θ,

a12 = 0, a22 = 0, a31 = 0, a33 = 0.

Assume that, inside the shell, there is an elastic filler serving as an elastic base with rigidity

C. Then the full strain energy takes the form J = J1 + J2 − PJ3, where

J1 = 2π

2π∫

0

Φ1(ε1, ε2,κ1,κ2)a(R + a cos θ)dθ,

J2 = 2π

2π∫

0

C

2
w2a(R+ a cos θ)dθ,

J3 = ΔV.

(2.86)

In the stable equilibrium state, the full energy takes the minimal value. Thus, we arrive at

the variational problem

J → min
w,u

, (2.87)

where the functions w and u satisfy the periodicity condition.

2.5.2. Numerical method. The displacements w(θ) and u(θ) will be approximated by inter-

polation splines. Denote

wi = w(θi), vi = v(θi), i ∈ [0..n− 1], θi =
2πi

n
(2.88)

331



and introduce the vector z ∈ R2n: z1 = w0, z2 = w1, . . . , zn = wn−1, zn+1 = u0, zn+2 =

u1, . . . , z2n = un−1. Thus, using finite-dimensional approximation of J1, J2, J3, we obtain the

functions f1(z), f2(z), f3(z), f(z;P ) = f1(z) + f2(z)− Pf3(z) respectively.

The necessary extremum condition is written as

∂f (z, P )

∂z
= 0. (2.89)

To solve the stability problem for a shell, it is required to find the minimal value of P such

that the solution to the system (2.89) bifurcates. The necessary bifurcation condition is the

singularity of the matrix of second order derivatives, i.e.,

det

[
∂2f (z, P )

∂z2

]
= 0. (2.90)

We introduce the matrices

Q =
∂2f1 (0)

∂z2
, Q2 =

∂2f2 (0)

∂z2
, G =

∂2f3 (0)

∂z2
.

By (2.90), the system of equations

Qz +Q2z = μGz (2.91)

has a nontrivial solution, where μ = P is a generalized eigenvalue. Note that

f2(z) =
1

2
(Gz, z) .

The problem about a generalized eigenvalue of the system (2.91) can be formulated as the

extremum problem

χ(z) =
1

2
(Qz, z) +

1

2
(Q2z, z) → min (2.92)

with the constraint

ξ(z) =
1

2
(Qz, z) = 1. (2.93)

Assume that the shell can deflect from the filler for w > 0, i.e., the reaction force of the filler

has the form

Cw− = Cmin {0, w} = −C

2
(|w| − w) , (2.94)

whereas the energy connected with the elastic filler is computed by

Ψ1 = π

2π∫

0

C(w−)2a(R+ a cos θ)dθ. (2.95)

We introduce a 2π-periodic function v(θ) and the functional

Ψ2 = 2π

2π∫

0

C

2
v2(θ)a(R+ a cos θ)dθ.
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We consider the extremum problem

J̃ = J1 +Ψ2 − PJ3 → min
w,u,v

(2.96)

with the conditions
v(θ)− w(θ) � 0,

v(θ) � 0.
(2.97)

The problem (2.96), (2.97) is equivalent to minimizing the functional

Ψ = J1 +Ψ1 − PJ3. (2.98)

Under finite-dimensional approximation of Ψ1, we have f̃2(z) instead of f2(z). Therefore,

Equation (2.91) fails because the matrix Q2 does not exist. Note that f̃2(z) is a positive ho-

mogeneous function, i.e., f̃2(αz) = α2f̃2(z) for any α > 0. Therefore, instead of the problem

(2.92)–(2.93), we have the problem of minimizing

Φ(z) =
1

2
(Qz, z) + f̃2(z) → min (2.99)

with the constraint (2.93). The function Φ(z) is continuously differentiable, but does not possess

continuous second order partial derivatives.

For (2.93)–(2.99) the method of successive approximations (2.11)–(2.13) can be used.

2.5.3. Results of numerical experiments. Based on the linear theory of thin shells, a formula

for the critical normal pressure for a torus-like shell is given in [6]:

q =
ψEh

a(1− ν2)
, (2.100)

where

ψ =
4k2

(
n2 + 1−ν2

2 n2k2 + (1 + ν)2k2 + (1 + ν)
)

(4 + k2) (n4 (2 + k2) + (1 + ν) k2n2)

+
2h2

3a2 (4 + k2)

(
n2 − 1 + n2k2

2

)(
n2
(
1 + k2

2

)
+ k2

)

n2 (2 + k2) + (1 + ν) k2
+

h2k2

6a2 (4 + k2)
,

k = a/R, n = 1, 2, 3 . . ., and n is chosen from the minimum condition for q in (2.100).

Table 5 contains the values of q̃ = h3

12(1−ν2)
P and the parameter q computed by formula

(2.100). The numerical results agree with the theoretical results.

Table 5. Comparison of results with a given critical pressure.

h 0.346 0.346 0.346 0.489 0.489 0.489

R 20 15 15 10 15 20

a 5 5 4 2.5 5 5

q̃ 0.012 0.017 0.021 0.036 0.014 0.022

q 0.012 0.012 0.019 0.037 0.017 0.017
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Table 6. The values of the critical pressure for a torus-like shell

with an elastic filler inside the shell.

h 0.346 0.346 0.346 0.346 0.489 0.489

R 20 20 15 15 20 20

a 5 5 5 5 5 5

C 1 3 1 3 1 3

q∗ 0.017 0.026 0.022 0.030 0.034 0.058

q∗ 0.015 0.021 0.021 0.026 0.029 0.041

In Table 6, C is the filler rigidity, q∗ is the value of the critical parameter in the case where

the shell and elastic filler are rigidly connected (cf. (2.86)), and q∗ is the value of the critical

parameter in the case where the shell can deflect from the filler (cf. (2.95)).

Thus, a contact between shell and filler should be taken into account if we are interested in

the study of stability. Note that stability problems for elastic systems with one-sided constraints

were considered in [5, 4, 10].
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