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TEMPERATURES OF PHASE TRANSITIONS AND
QUASICONVEX HULL OF ENERGY FUNCTIONALS
FOR A TWO-PHASE ELASTIC MEDIUM WITH
ANISOTROPIC RESIDUAL STRAIN TENSOR
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For a two-phase elastic medium with anisotropic residual strain tensors we compute the

phase transition temperatures t±. We find an explicit expression for the quasiconvex

hull of strain energy densities and obtain all solutions to the relaxed variational problem

and limit points of equilibrium states as the surface tension coefficient tends to zero. We

show that there are no equilibrium states for the initial energy functional if t ∈ (t−, t+).
Bibliography: 18 titles.

1 Introduction

In quadratic approximation, the strain energy density in an elastic medium occupying a bounded

domain Ω ⊂ Rm, m � 2, is defined by (cf. [1])

F (∇u) = aijkl(e(∇u)− ζ)ij(e(∇u)− ζ)kl, (1.1)

where the displacement field u = u(x), x ∈ Ω, is an m-dimensional vector-valued function,

(∇u)ij = uixj
, e(∇u) is the strain tensor with components eij(∇u) = 1/2(uixj

+ ujxi), and the

symmetric matrix ζ is interpreted as the residual strain. The elasticity modulus tensor aijkl
satisfies the symmetry and positive definiteness conditions

aijkl = ajikl = aklij = aijlk, aijklξijξkl � νξijξij

for all symmetric matrices ξ and some ν > 0.
(1.2)

We assume summation with respect to repeated indices from 1 to m.

There are elastic media where the crystal structure can be modified under the action of

temperature change and internal stresses [2]. If only two different crystal structures (two phases

labeled by the subscripts + and −) are possible, then for each of them the strain energy density

is defined by

F±(∇u) = a±ijkl(e(∇u)− ζ±)ij(e(∇u)− ζ±)kl. (1.3)
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In (1.3), a±ijkl and ζ±ij possess the same properties as in the one-phase case (1.1).

The strain energy functional for a two-phase elastic medium is given by

I0[u, χ, t] =

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx. (1.4)

The parameter t, interpreted as the temperature, is responsible for the rise of one “potential

hole” F+(∇u) over the other F−(∇u). The characteristic function χ(x) describes the location

of the phase labeled by + in the domain Ω.

For the domain of the functional (1.4) we take the set of admissible displacement fields X

and the set of admissible phase distributions Z′ by setting

X =
◦
W 1

2(Ω, R
m),

Z
′ is the set of all measurable characteristic functions.

(1.5)

The choice (1.5) of the set X means that we deal with only displacement fields that vanish, in

a certain sense, on ∂Ω and are continuous through the phase interface boundary.

By an equilibrium state of a two-phase elastic medium with a temperature t we mean the

solution to the variational problem

I0[ût, χ̂t, t] = inf
u∈X,χ∈Z′ I0[u, χ, t], ût ∈ X, χ̂t ∈ Z

′. (1.6)

An equilibrium state is said to be one-phase if χ̂t ≡ 0 or χ̂t ≡ 1 and two-phase in the opposite

case. It is obvious that ût ≡ 0 in the one-phase equilibrium state. We emphasize that the

unknowns of the problem (1.6) is an equilibrium displacement field ût and an equilibrium phase

distribution χ̂t. Therefore, the problem (1.6) is related to the class of problems with a free

surface. We set
Fmin(M, t) = min{F+(M) + t, F−(M)},
M is a matrix in Rm.

(1.7)

Minimizing (1.6) with respect to χ ∈ Z
′, we obtain the equivalent problem for the equilibrium

displacement field
Imin
0 [ût, t] = inf

u∈X
Imin
0 [u, t], ût ∈ X,

Imin
0 [u, t] =

∫

Ω

Fmin(∇u, t) dx,
(1.8)

from which we can restore χ̂t by the rule

χ̂t(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, Φ(x, t) < 0,

0, Φ(x, t) > 0,

arbitrary characteristic

function of x ∈ Ω, Φ(x, t) = 0,

Φ(x, t) = F+(∇ût(x))− F−(∇ût(x)) + t.

(1.9)

Since for F+(M) �≡ F−(M) the function (1.7) is not necessarily convex with respect to the first

variable for all temperatures, the problem (1.6) is related to the class of nonconvex problems
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in Calculus of variations. In our situation (free surface and nonconvexity), the problem (1.6) is

not necessarily solvable for any temperatures and residual strain tensors (cf. [3]).

Regarding the solvability of the problem (1.6), we mention the results of [4, 5] concerning

the existence of phase transition temperatures t− � t+, independent of Ω and such that

• for t < t− a unique solution to the problem (1.6) is the one-phase equilibrium state ût ≡ 0,

χ̂t ≡ 1,

• for t > t+ a unique solution to the problem (1.6) is the one-phase equilibrium state ût ≡ 0,

χ̂t ≡ 0,

• for t ∈ (t−, t+) �= ∅ the problem (1.6) has no one-phase equilibrium states,

• t− � t∗ � t+, t
∗ = −(a+ijklζ

+
ij ζ

+
kl − a−ijklζ

−
ij ζ

−
kl), where equalities hold simultaneously.

In [4, 5], two-sided estimates of t± were obtained, which allows us to derive sufficient condi-

tions for the coincidence (t− = t+) or difference (t− < t+) of the temperatures. By properties

of temperatures, if for some t ∈ (t−, t+) the problem (1.6) is solvable, then the solution is

two-phase. From the physical point of view, it is reasonable to expect the existence of phase

transition temperatures t± for the functional (1.4).

Since the solvability of the problem (1.6) is not guaranteed for t ∈ (t−, t+) �= ∅, we need to

modify the problem by introducing the notion of a weak solution. We discuss two approaches.

The first approach is based on considering a relaxed problem instead of (1.8), and the second

approach takes into account the surface energy of the phase interface boundary.

We construct the quasiconvex hull F (M, t) of (1.7) by (cf. [6]–[8])

|Ω|F (M, t) = inf
u∈X

∫

Ω

Fmin(M +∇u, t) dx (1.10)

and associate the variational problem

J[ǔt, t] = inf
u∈X

J[u, t], ǔt ∈ X, J[u, t] =

∫

Ω

F (∇u, t) dx. (1.11)

The problem (1.11) is the relaxed problem for (1.8). It is known that

• F is independent of Ω,

• the problem (1.11) is always solvable and each solution to the problem (1.8) is a solution

to the problem (1.11); moreover, infu∈X Imin
0 [u, t] = minu∈X J[u, t] for all t,

• every weakly converging in X minimizing sequence of the functional Imin
0 [., t] converges

weakly in X to some solution to the problem (1.11),

• every solution to the problem (1.11) is a weak limit in X of some minimizing sequence of

the functional Imin
0 [., t].

Owing to the above properties of the problem (1.11), we can take the solution to the problem

(1.11) for a weak solution to the problem (1.8). By the relations

|Ω|F (0, t) = inf
u∈X

Imin
0 [u, t] = min

u∈X
J[u, t] = min

u∈X

∫

Ω

F (∇u, t) dx,

the function ǔt ≡ 0 is a solution to the problem (1.11) for all t.
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We restrict the set of admissible phase distributions Z′ by setting

Z = Z
′ ∩BV (Ω), (1.12)

where BV (Ω) is the space of functions of bounded variation [9, 10]. For χ ∈ Z we define the

area of the phase interface boundary:

S[χ] = sup
h∈C1

0 (Ω,Rm),|h(x)|�1

∫

Ω

χ div h dx ≡
∫

Ω

|Dχ| (1.13)

(for χ ∈ Z the right-hand side of (1.13) is finite). We assume that the surface energy of the

phase interface boundary is proportional to its area. The positive proportionality coefficient σ

is called the surface tension coefficient. Taking into account the surface energy, we replace the

functional (1.4) with

I[u, χ, t, σ] = I0[u, χ, t] + σS[χ], u ∈ X, χ ∈ Z, t ∈ R1, σ > 0. (1.14)

By an equilibrium state of the energy functional of a two-phase elastic medium (1.14) we mean

the solution to the problem

I[ût,σ, χ̂t,σ, t, σ] = inf
u∈X,χ∈Z

I[u, χ, t, σ], ût,σ ∈ X, χ̂t,σ ∈ Z. (1.15)

As is known [11, 12], if Ω is a Lipschitz domain, then the problem (1.15) is solvable and any

sequence ût,σn as σn → 0 is minimizing for the functional Imin
0 [., t].

Since the functional (1.14) is coercive, from any sequence ût,σn , σn → 0, we can extract a

weakly converging subsequence in X. It is natural to call its weak limit a weak solution to the

problem (1.8).

A question arises about connections between solutions to the problem (1.8) (consequently,

the problem (1.6)) and the problems (1.11) and (1.15).

Explicit formulas for t± and the quasiconvex hull F (M, t) are found in [12]–[15]; moreover

the set of all solutions to the problems (1.6), (1.8), (1.11) and the set of limit points of the family

ût,σ in the weak topology of the space X as σ → 0 are described in the case of the isotropic

elasticity modulus tensors a±ijkl and the residual strain tensors ζ±ij

a±ijkl =
a±
2
(δikδjl + δilδjk) + b±δijδkl, a± > 0, b± � 0, (1.16)

ζ±ij = c±δij (1.17)

under the additional condition a± = a.

The goal of this paper is to realize the same program for the coefficients (1.16) under the

additional assumption b± = 0 (and, sometimes, a± = a), for the anisotropic residual strain

tensors

ζ±ij = c±(λ⊗ λ)ij = c±λiλj , λ ∈ Rm, |λ| = 1, c± ∈ R1. (1.18)

Under the above assumptions, the formula for the strain energy density takes the form

F±(∇u) = a± tr(e(∇u)− c±λ⊗ λ)2. (1.19)
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2 The Main Results

We formulate the main results. The square brackets mean the jump [β] = β+ − β−.

Theorem 1. For the energy densities (1.19) the phase transition temperatures are given by

t+ = t∗ +
[ac]2

a+
, t− = t∗ − [ac]2

a−
, t∗ = −[ac2]. (2.1)

By (2.1), for a± = 1, [c] �= ∅ the phase transition temperatures are different.

Theorem 2. For the energy densities (1.19), under the additional condition a± = 1, c+ �= c−,
the quasiconvex hull is given by

F (M, t) = eij(M)eij(M)− z2(M) +Hmin
c (z(M), t), (2.2)

where z(M) = (e(M)λ, λ) and Hmin
c (., t) for every t is the convex hull of Hmin(., t),

Hmin(z, t) = min{H+(z, t), H−(z)}, z ∈ R1,

H+(z, t) = (z − c+)
2 + t, H−(z) = (z − c−)2.

(2.3)

Theorem 3. For the energy densities (1.19) and every t the function ǔt = 0 is a unique

solution to the problem (1.11).

Theorem 4. For the energy densities (1.19) the problem (1.6) is not necessarily solvable for

any t ∈ (t−, t+).

Theorem 5. For the energy densities (1.19) any solution ût,σ, χ̂t,σ to the problem (1.15)

satisfies the relation

ût,σ ⇁ 0 in X as σ → 0. (2.4)

In Theorems 1–4, it is assumed that the domain Ω ⊂ Rm, m � 2, is bounded, whereas the

domain Ω is Lipschitz in Theorem 5.

Thus, for the densities (1.19) the problem (1.6) (and, consequently, the problem (1.8)) is not

solvable for any t ∈ (t−, t+), whereas its weak solution vanishes in both approaches (the relaxed

problem and the method of vanishing surface tension).

3 Proof of Theorem 1

(1) One-dimensional model case. In the one-dimensional case, Ω = (0, l), l > 0, X =
◦
W 1

2(0, l),

Z
′ is the set of measurable characteristic functions on (0, l), F±(M) = a±(M − c±)2, M ∈ R1.

Since for all M,λ ∈ R1

F±(M) = a±(M −
(
c± − λ

a±
)
)2

+ 2c±λ− λ2

a±
− 2Mλ,

for any χ ∈ Z
′ we have

χF+(M) + (1− χ)F−(M) = (a+χ+ a−(1− χ))
(
M − χ

(
c+ − λ

a+

)
− (1− χ)

(
c− − λ

a−

))2
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+ 2λ(χc+ + (1− χ)c−)− λ2
( χ

a+
+

1− χ

a−

)
− 2Mλ.

It is easy to verify this equality by comparing with the above equality for χ(x) = 1 and χ(x) = 0.

We fix λ by the condition

l∫

0

(
χ
(
c+ − λ

a+

)
+ (1− χ)

(
c− − λ

a−

))
dx = 0.

After some transformations, for all u ∈ X, χ ∈ Z
′ we find

I0[u, χ, t] =

l∫

0

{χ(F+(u′) + t) + (1− χ)F−(u′)} dx

=

l∫

0

(a+χ+ a−(1− χ))(u′ − α(Q)(χ−Q))2 dx+ lG(Q, t),

Q =
1

l

l∫

0

χdx, α(Q) =
[ac]

a−Q+ a+(1−Q)
,

G(Q, t) = tQ+ a+c
2
+Q+ a−c2−(1−Q)− [ac]α(Q)Q(1−Q).

(3.1)

By (3.1), the set of all solutions to the problem (1.6) in the one-dimensional case has the form

χ̂t(x) ∈ Z
′ :

1

l

l∫

0

χ̂t(x) dx = Q̂(t), x ∈ (0, l),

ût(x) = α(Q̂(t))

x∫

0

(χ̂t(y)− Q̂(t)) dy, x ∈ (0, l),

(3.2)

where Q̂(t) is found from

G(Q̂(t), t) = min
Q∈[0,1]

G(Q, t), Q̂(t) ∈ [0, 1]. (3.3)

Analyzing the problem (3.3), we obtain the following result (we use the notation (2.1)):

for t− < t+: Q̂(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, t � t−,

0, t � t+,

h(t), [a] = 0, t ∈ (t−, t+),
a+ + a−
2[a]

+
1

2
− 1

[a]g1/2(t)
, [a] �= 0, t ∈ (t−, t+),

h(t) =
t+ − t

t+ − t−
, g(t) =

h(t)

a2−
+

1− h(t)

a2+
,

(3.4)

for t− = t+(= t∗): Q̂(t) =

{
1, t < t∗,

0, t > t∗,
Q̂(t∗) ∈ [0, 1]. (3.5)
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From the equalities (3.4), (3.5) it follows that t± defined in (2.1) are the phase transition

temperatures for the energy densities (1.19) in the one-dimensional case.

Here, we used some methods of [16].

(2) Lower estimate for the energy functional. Since the phase transition temperatures are

independent of Ω, we consider the cylinder Ω = B × (0, l), where B is the unit ball in Rm−1.

The cylinder axis and the coordinate xm-axis are directed along the vector λ. We denote by x′

the remaining coordinates x1, . . . , xm−1. Since

tr(e(M)− c±λ⊗ λ)2 = (emm(M)− c±)2 +Σi,j=1,...,m,i+j<2meij(M)eij(M),

we have

I0[u, χ, t] = J1[u, χ, t] + J2[u, χ],

J1[u, χ, t] =

∫

Ω

{χ(a+(emm(∇u)− c+)
2 + t) + (1− χ)a−(emm(∇u)− c−)2} dx,

J2[u, χ] =

∫

Ω

(a+χ+ a−(1− χ))Σi,j=1,...,m,i+j<2meij(∇u)eij(∇u) dx,

(3.6)

where u ∈ X, χ ∈ Z
′. Consequently,

I0[u, χ, t] � J1[u, χ, t] =

∫

B

( l∫

0

{χ(a+(umxm
− c+)

2+ t)+ (1−χ)a−(umxm
− c−)2} dxm

)
dx′, (3.7)

where χ = χ(x′, xm), um = um(x′, xm).

For almost all x′ ∈ B the function χ(x′, .) is measurable and characteristic on (0, l), whereas

the function um(x′, .) belongs to the space
◦
W 1

2(0, l). Since the internal integral on the right-hand

side of (3.7) coincides with the one-dimensional energy functional, it is bounded from below by

lG(Q̂(t), t). Therefore,

I0[u, t, χ] � |Ω|G(Q̂(t), t) (3.8)

for all u ∈ X, χ ∈ Z
′, t ∈ R1. Thus,

i(t,Ω) = inf
u∈X,χ∈Z′ I0[u, χ, t] � |Ω|G(Q̂(t), t). (3.9)

(3) Computation of i(t,Ω). In fact, we have equality in (3.9). Indeed, let us consider the

pair of functions

ũ(x) = ût(xm)ϕr(x
′)em, χ̃(x) = χ̂t(xm), (3.10)

where em is the unit vector directed along the xm-axis and the cut-off function ϕr(x
′) possesses

the properties

ϕr ∈ C∞
0 (B), 0 � ϕr(x

′) � 1,

ϕr(x
′) = 1, |x′| � r ∈ [1/2, 1), |∇ϕr(x

′)| � C(1− r)−1,

whereas the pair ût(xm), χ̂t(xm) is an arbitrary equilibrium state for the one-dimensional prob-

lem in (3.2). We note that ũ ∈ X, χ̃ ∈ Z
′.
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For the pair (3.10) and a fixed t we have

|J1[ũ, χ̃, t]− |Ω|G(Q̂(t), t)| � L(1− r)(1 + ‖û′t‖2L∞(0,l)),

|J2[ũ, χ̃]| � L

(1− r)
‖ût‖2C[0,l], 0 � L �= L(r, ût, χ̂t).

(3.11)

Consequently,

i(t,Ω) � I0[ũ, χ̃, t] � |Ω|G(Q̂(t), t) + L
(‖ût‖2C[0,l]

(1− r)
+ (1− r)(1 + ‖û′t‖2L∞(0,l))

)
. (3.12)

We set r = rn = 1 − 1/n, n = 2, 3, . . . . In this case, the second factor of the last term on the

right-hand side of (3.12) takes the form

n‖ût‖2 + n−1(1 + ‖û′t‖2L∞(0,l))).

If we can construct the sequence û
(n)
t , χ̂

(n)
t of solutions to the one-dimensional problem such

that

n‖û(n)t ‖2C[0,l] + n−1(1 + ‖(û(n)t )′‖2L∞(0,l)) → 0, n → ∞,

then, passing to the limit in (3.12) and using (3.9), we conclude that

i(t,Ω) = |Ω|G(Q̂(t), t). (3.13)

For any pair ût, χ̂t in (3.2)

‖û′t‖L∞(0,l) � α(Q̂(t)). (3.14)

We divide [0, l] into n equal intervals lk, k = 1, . . . , n. For χ̂
(n)
t we take a measurable character-

istic function on (0, l) such that

1

|lk|
∫

lk

χ̂
(n)
t (y) dy = Q̂(t), k = 1, . . . , n.

This function satisfies the condition (3.2) and the constructed function û
(n)
t vanishes at the

endpoints of every interval lk of length ln−1. Taking into account (3.14), we conclude that

‖û(n)t ‖C[0,l] � α(Q̂(t))
l

n
.

(4) Computation of imin(t,Ω). We set

i±(t,Ω) = inf
u∈X

I0[u, χ
±, t], χ+ ≡ 1, χ− ≡ 0,

imin(t,Ω) = min{i+(t,Ω), i−(t,Ω)}.
(3.15)

Since the infimum in (3.15) is attained only for u = 0, the function imin(t,Ω) can be explicitly

found, which implies that the function imin(t, (0, l)) in the one-dimensional problem and the

function imin(t, B × (0, l)) in the multi-dimensional problem are connected by

|B|imin(t, (0, l)) = imin(t, B × (0, l)). (3.16)
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By (3.1), (3.2), and (3.13), a similar connection holds between i(t, (0, l)) and i(t, B × (0, l)):

|B|i(t, (0, l)) = i(t, B × (0, l)). (3.17)

(5) Proof of Theorem 1 (continued). As was established in [4], the interval (t−, t+) coincides
with the interval, where the difference imin(t,Ω)− i(t,Ω) is positive. From (3.16) and (3.17) it

follows that this interval is the same for the one-dimensional problem on the interval (0, l) and

the multi-dimensional problem in the cylinder B × (0, l). Therefore, the phase transition tem-

peratures also coincide. It remains to recall that for a fixed m the phase transition temperatures

are independent of the domain Ω ⊂ Rm.

4 Proof of Theorem 2

(1) Computation of F (0, t). Since |Ω|F (0, t) = i(t,Ω), from (3.13) with a± = 1, c+ �= c− we

find
F (0, t) = tQ̂(t) + c2+Q̂(t) + c2−(1− Q̂(t))− [c]2Q̂(t)(1− Q̂(t)),

Q̂(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, t � t−.
t+ − t

t+ − t−
, t ∈ (t−, t+),

0, t � t+,

t± = t∗ ± [c]2, t∗ = −[c2].
(4.1)

(2) Formula for F (M, t). Using the obvious relations

tr(e(∇u)− c±λ⊗ λ+ e(M))2

= tr(e(∇u)− c±λ⊗ λ)2 + 2 tr e(∇u)e(M) + tr e2(M)− 2c±z,

z = z(M) = tr e(M)λ⊗ λ = (e(M)λ, λ)

(4.2)

(the last parentheses denote the inner product in Rm), we find

∫

Ω

{χ(tr(e(∇u)− c+λ⊗ λ+ e(M))2 + t) + (1− χ) tr(e(∇u)− c−λ⊗ λ+ e(M))2} dx

= I0[u, χ, t(z)] + |Ω|(tr e2(M)− 2c−z), t(z) = t− 2[c]z. (4.3)

Consequently,

F (M, t) = F (0, t(z)) + tr e2(M)− 2c−z = tr e2(M)− z2 +H(z, t),

H(z, t) = z2 + t(z)Q̂(t(z)) + c2+Q̂(t(z))

+ c2−(1− Q̂(t(z))− [c]2Q̂(t(z))(1− Q̂(t(z)))− 2c−z.

(4.4)

(3) Function H(z, t). We set

z−(t) =
t− t−
2[c]

, z+(t) =
t− t+
2[c]

. (4.5)

It is obvious that z+(t) − z−(t) = −[c]. A direct analysis of (4.4) leads to the conclusion that

H(., t) is continuously differentiable with respect to z ∈ R1,
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H(z, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H+(z, t), z � z−(t),

H−(z), z � z+(t), [c] > 0,

H+(z, t), z � z−(t),

H−(z), z � z+(t), [c] < 0,

H(·, t) is linear on the remaining part.

(4.6)

Since H(., t) is continuously differentiable and H+(., t), H−(.) are convex, from (4.6) we see

that the derivative Hz(., t) is monotone increasing, which implies the convexity of H(., t). It is

obvious that we cannot place between the graphs of Hmin(., t) and H(., t) the graph of some

other convex function. Hence H(., t) = Hmin
c (., t).

5 Proof of Theorem 3

As was established in Section 3, for a cylindrical domain Ω = B × (0, l)

|Ω|−1 inf
u∈X,χ∈Z′ I0[u, χ, t] = G(Q̂(t), t). (5.1)

Since ((1.7), (1.8), (1.10)) the left-hand side of (5.1) coincides with the function F (M, t), M = 0,

independent of Ω, the equality (5.1) holds for all Ω ⊂ Rm.

We choose coordinates with the xm-axis directed along the vector λ and denote by x′ the
remaining coordinates. The intersection of the line {x′ ∈ Rm−1 is fixed, xm ∈ R1 is arbitrary}
with Ω is open in this line and, consequently, it either is empty or consists of at most countably

many open intervals lj (depending on x′), j = 1, 2, . . . . For each pair u ∈ X, χ ∈ Z
′ and almost

all x′ the restriction of u on lj belongs to
◦
W 1

2(lj) and χ is a measurable characteristic function

of xm on these intervals. By (3.1),

for a.e. x′ and all lj∫

lj

{χ((umxm
− c+)

2 + t) + (1− χ)(umxm
− c−)2} dxm � |lj |G(Q̂(t), t),

χ = χ(x′, xm), u = u(x′, xm).

(5.2)

Using (3.6) and (5.2), we find

J1[u, χ, t] � |Ω|G(Q̂(t), t), J2[u, χ] � 0, ∀ u ∈ X, χ ∈ Z
′. (5.3)

Let ǔt be a solution to the problem (1.11) for the energy densities (1.19). Then there exists

a minimizing sequence un of the functional Imin
0 [u, t] such that un ⇁ ǔt in the space X. Using

the rule (1.9), we restore for un a function χn such that the pair un, χn is minimizing for the

functional I0[u, χ, t]. From (5.1) and (5.3) it follows that

J2[un, χn] → 0, n → ∞. (5.4)

By (5.4), eij(∇ǔt) = 0, i, j = 1, . . . ,m−1, and emi(∇ǔt) = 0, i = 1, . . . ,m−1. Hence ǔit(x) = 0,

i = 1, . . . ,m−1, and ǔmt (x) = v(xm) with some scalar function v. Consequently, ǔt(x) = λv(xm).

Such a function can belong to the space X only if v = 0.
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6 Proof of Theorem 4

As was mentioned in Section 1, for one-phase equilibrium states ût, χ̂t the equilibrium

displacement field vanishes. Let us prove the converse assertion for the strain energy densities

(1.3). Suppose that t− < t+ and ût ≡ 0, χ̂t is a solution to the problem (1.6). Then this

equilibrium state is one-phase. Since for ût ≡ 0

I0[ût, χ̂t, t] = (t− t∗)
∫

Ω

χ̂t dx+ |Ω|a−ijklζ−ij ζ−kl, t �= t∗,

only one-phase equilibrium states are possible. We note that for ût ≡ 0 (cf. (3.9) and (3.15))

i(t,Ω) = I0[ût, χ̂t, t] = inf
χ∈Z′ I0[ût, χ, t] = imin(t,Ω).

Since t∗ ∈ (t−, t+) for t− < t+, we have i(t∗,Ω) < imin(t
∗,Ω). Consequently, t �= t∗ for the

equilibrium state ût, χ̂t with ût ≡ 0, which means that the state is one-phase.

Let for t ∈ (t−, t+) �= ∅ the problem (1.6) have a solution ût, χ̂t. By properties of the

phase transition temperatures, this equilibrium state is two-phase. Since ût is a solution to

the problem (1.8) and, consequently, the problem (1.11), from Theorem 3 it follows that for

the densities (1.19) this function vanishes. It remains to note that for t− < t+ there are no

two-phase equilibrium states with zero equilibrium displacement field.

Here, we used the observation from [17] that the uniqueness of a solution to the relaxed

problem can imply that the initial problem has no solutions.

7 Proof of Theorem 5

We assume that for fixed t and some sequence σn > 0, σn → 0, there are solutions ût,σn ,

χ̂t,σn to the problem (1.15) such that |l(ût,σn)| � ε for some linear bounded functional l in X

and a positive number ε. Passing to ût,σn′ , we can reach the weak convergence in X to some

function u ∈ X. Since u is a solution to the relaxed problem, from Theorem 3 it follows that

u = 0 contradicts the assumption.

Remark. For details of results in the above-cited works of the author we refer to [18].

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant No. 14-01-

00534) and the program Scientific Schools (grant No. NSh-1771.2014.1).

References

1. L. D. Landau and E. M. Lifshits, Elasticity Theory [in Russian], Nauka, Moscow (1965).

2. M. A. Grinfel’d, Methods of Continuum Mechanics in the Theory of Phase Transitions [in
Russian], Nauka, Moscow (1990).

265



3. V. G. Osmolovskii, “A variational problem of phase transitions for a two-phase elastic
medium with zero coefficient of surface tension” [in Russian], Algebra Anal. 22, No. 6,
214–234 (2010); English transl.: St. Petersbg. Math. J. 22, No. 6, 1007–1022 (2011).

4. V. G. Osmolovskii, “On the phase transition temperature in a variational problem of elas-
ticity theory for two-phase media” [in Russian], Probl. Mat. Anal. 41, 37–47 (2009); English
transl.: J. Math. Sci., New York 159, No. 2, 168–179 (2009).

5. V. G. Osmolovskii, “Independence of temperatures of phase transitions on the domain oc-
cupied by a two-phase elastic medium” [in Russian], Probl. Mat. Anal. 66, 147–151 (2012);
English transl.: J. Math. Sci., New York 186, No. 2, 302–306 (2012).

6. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin (2008).

7. E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, Singapore (2003).

8. L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Am.
Math. Soc., Providence RI (1990).

9. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC
Press, New York etc. (1992).

10. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston
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