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ON A POWER OF OPTIMAL TEST FOR
ASYMPTOTIC DISTINCTION OF STATISTICAL
HYPOTHESES FOR DISTRIBUTIONS WITH HEAVY
TAILS*

V.E. Bening1 , V. Yu. Korolev1,2 , and U Da1

In the paper, the asymptotic behavior of the power function of the most powerful test in the problem of testing
a simple hypothesis against a simple alternative from a homogeneous sample of independent observations is
studied under the assumption that the likelihood ratio has a heavy-tailed distribution belonging to the domain
of attraction of a stable law.

1. Introduction

Consider the sequence of series {Xn,j}, n � 1, j � 1, of independent and identically distributed for each n
random variables, defined on the same measurable space (Ω, A). Consider the sequence of pairs of probability

measures {P(0)
n , P

(1)
n }n�1, defined on A. The density of Xn,1 with respect to probability measure P

(i)
n we denote

by p
(i)
n (x), i = 0, 1.
The main subject of study in this paper is an asymptotic behavior of power βn,k of the most powerful test in

the problem of testing a simple hypothesis H
(0)
n = P

(0)
n against a simple alternative H

(1)
n = P

(1)
n by homogeneous

sample Xn,1, . . . , Xn,k of independent real observations (k � 1 is a natural number, in the particular case k = n).
In this problem log-likelihood ratio Λn,k equals

Λn,k = log

k∏

j=1

p
(1)
n (Xn,j)

p
(0)
n (Xn,j)

=

k∑

j=1

[
�(1)n (Xn,j)− �(0)n (Xn,j)

]
,

where �
(i)
n (x) = log p

(i)
n (x), i = 0, 1. It is known that for given significance level a the most powerful test,

constructed with the use of fundamental Neumann–Pearson’s lemma, rejects H
(0)
n if

Λn,k > cn,k,

where cn,k is determined from the condition

P(0)
n (Λn,k > cn,k) = a

(for simplicity we assume that all distributions are continuous). If the random variable Ln = �
(1)
n (Xn,1)−�

(0)
n (Xn,1)

has variance with respect to measures P
(0)
n and P

(1)
n , then with the use of central limit theorem it is easy to conclude,

that the power βn,k of this test,

βn,k = P(1)
n (Λn,k > cn,k) ,

for each n satisfies the relation
lim
k→∞

βn,k = 1

(see, e.g., [8]). Moreover, if {kn} is a sequence of natural numbers, such that kn → ∞ as n → ∞, then a non-

trivial, different from 1, limit of βn,kn (as n → ∞) exists only when alternatives H
(0)
n and H

(1)
n are chosen in such

a way that
μ(1)
n − μ(0)

n ∼ k−1/2
n ,

where
μ(i)
n = E(i)

n

[
�(1)n (Xn,1)− �(0)n (Xn,1)

]
, i = 0, 1, (1)
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and symbol E
(i)
n denotes mathematical expectation with respect to the measure P

(i)
n , see, e.g., [8]. In other

words, under condition of existence of log-likelihood ratio variances, non-trivial asymptotic results hold only in
the situation, when one considers contigual hypotheses, which approach each other in the above sense as n → ∞
at the rate O

(
k
−1/2
n

)
.

In recent years we see a significantly increased interest in the problems connected with so-called heavy-tailed
distributions, attributing considerable probabilities to the large deviations of corresponding random variables, see,
e.g., [11, 12]. This interest is apparently due to the need in studying large risks associated with catastrophic events.
At the same time above-mentioned case, when there exist variances of log-likelihood ratio, does not exhaust all
the possible cases. Let us consider the possible behavior of log-likelihood ratio distribution tails in more detail.

Let X be a real random variable on the measurable space (Ω, A). Suppose that two measures P0 and P1 are
defined on A. Mathematical expectations with respect to these measures are denoted by E0 and E1 respectively.
Suppose that distributions of random variable X ,

P0
X(B) = P0({ω : X(ω) ∈ B}) and P1

X(B) = P1({ω : X(ω) ∈ B}), B ∈ B,
where B is Borel σ-algebra, are absolutely continuous with respect to Lebesgue measure. Corresponding densities
we denote by p0(x) and p1(x). Let us study the behavior of tails of random variable

L = log
p1(X)

p0(X)

both with respect to measure P0, and measure P1.

Proposition 1. For any x > 0
P0(L > x) � e−x.

Proof. By the Tchebyshev inequality

P0(L > x) = P0

(
p1(X)

p0(X)
> ex

)
� e−xE0

p1(X)

p0(X)
= e−x

∞∫

−∞

p1(y)

p0(y)
p0(y)dy = e−x.

Remark 1. Proposition 1 means that log-likelihood ratio distribution under null hypothesis always has light
tails, guarantying the existence of its variance under null hypothesis.

Proposition 2. For any arbitrarily small ε > 0 there exists a random variable X, C > 0 and densities p0(x)
and p1(x) such that as x → ∞

P1(L > x) ∼ C

xε
.

Proof. For simplicity let us assume that

P0(X � 1) = P1(X � 1) = 1,

and put

p1(x) ≡ C0

x2
, p0(x) ≡ C1(ε) exp {−x1/ε}

(here C0 and C1(ε) are positive normalization constants). Then denoting C′ = C′(ε) = C1(ε)/C0, for x � 1 we
have

P1(L > x) = P1

(
log

eX
1/ε

C′X2
> x

)
= P1

(
eX

1/ε

C′X2
> ex

)
= P1

(
eX

1/ε

> exC′X2
)
=

= P1

(
X1/ε > x+ 2 logX + logC′

)
= P1

(
X1/ε − 2 logX − logC′ > x

)
.

Since for any α > 0
x−α log x −→ 0

as x → ∞, then for any ε > 0 and any arbitrarily small δ > 0 there exists x′ = x′(ε, δ), such that for all ω,
satisfying X(ω) � x′, the following inequalities hold:

(1− δ)X1/ε � X1/ε − 2 logX − logC′ = X1/ε
(
1− 2X−1/ε logX − logC′X−1/ε

)
� (1 + δ)X1/ε.
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Thus for large enough x ( for x � (x′ + 2 logx′ + logC′)ε) the following inequalities hold:

P1

(
(1− δ)X1/ε > x

)
� P1

(
X1/ε > x+ 2 logX + logC′

)
�

� P1

(
(1 + δ)X1/ε > x

)
.

Hence, for those large enough x

P1(L > x) � P1

(
(1 + δ)X1/ε > x

)
= C0

∞∫

(1+δ)−εxε

dz

z2
=

C0(1 + δ)ε

xε
,

P1(L > x) � P1

(
(1 − δ)X1/ε > x

)
= C0

∞∫

(1−δ)−εxε

dz

z2
=

C0(1 − δ)ε

xε
.

Now it is clear that for large enough x

(1− δ)ε � xε

C0
P1(L > x) � (1 + δ)ε.

The possibility to choose δ arbitrarily small as x → ∞ concludes the proof.

Remark 2. Proposition 2 means that log-likelihood ratio distribution under alternative hypothesis may have
a tail that is at least not lighter than the tail of the stable law with arbitrarily small positive characteristic index.

Remark 3. In the proof of Proposition 2 it is established that log-likelihood ratio distribution under alternative
hypothesis may have a tail that decays as a power law. This means that log-likelihood ratio distribution under
alternative hypothesis may belongs to the domain of attraction of a stable law with arbitrarily small positive
characteristic index.

Remark 4. Condition P0(X � 1) = P1(X � 1) = 1 is used only to simplify computations. It is neither
restrictive nor fundamental.

Example 1. Consider the problem of testing hypothesis

H0 : the density of random variable X is equal to p0(x) =
1√
2π

e−x2/2

(random variable X has a normal distribution) against the alternative

H1 : the density of random variable X is equal to p1(x) =
1

π(1 + x2)

(random variable X has Cauchy distribution). Using the proof scheme of Proposition 2, it can be shown that as
x → ∞

P1(L > x) ∼ Cx−1/2,

and it follows (see [8]), that in this problem log-likelihood ratio distribution under alternative hypothesis belongs
to the domain of attraction of a stable law with characteristic index α = 1/2 (Levy distribution), which does not
have moments of order � 1/2, including mathematical expectation.

Example 2. Similar result is obtained in the problem of testing the above hypothesis H0 from Example 1
about normality of random variable X against the alternative H1,θ: the density of random variable X is equal to

p1,θ(x) =
1− θ√
2π

e−x2/2 +
θ

π(1 + x2)
,

where θ ∈ (0, 1) is a small parameter (the problem of possibility of observations, contaminating normal sample).

Example 3. Consider the problem of testing hypothesis

H0 : the density of random variable X is equal to p0(x) =
2

3
x−1/3e−x2/3

, x > 0,
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(random variable X has Weibull distribution with form parameter equal to 2/3) against the alternative

H1 : the density of random variable X is equal to p1(x) =
2

π(1 + x2)
, x > 0,

(random variable X has Pareto distribution with form parameter equal to 2). Then as x → ∞

P1(L > x) ∼ Cx−3/2,

and it follows (see [8]), that in this problem log-likelihood ratio distribution under alternative hypothesis belongs
to the domain of attraction of a stable law with characteristic index α = 3/2, which has mathematical expectation,
but does not have moments of order � 3/2, including variance.

Example 4. Similar result is obtained in the problem of testing the above hypothesis H0 from Example 3,
that random variable X has Weibull distribution with parameter 2/3, against the alternative H1,q: the density of
random variable X is equal to

p1,q(x) =
2(1− q)

3
x−1/3e−x2/3

+
2q

π(1 + x2)
, x > 0,

where q ∈ (0, 1) is a small parameter (the problem of possibility of “long-lived” observations, contaminating
sample, with lifetime, having the above Weibull distribution).

Let us now return to the above problem of asymptotic distinction of two simple hypotheses. As we saw,

distribution of random variable Ln = �
(1)
n (Xn,1)− �

(0)
n (Xn,1) under hypothesis H

(0)
n always has variance, and it

follows, that it belongs to the domain of attraction of a normal law, i.e. there exist numbers a
(0)
n,k ∈ R and b

(0)
n,k > 0

such that for each n

L(0)
n

(
Λn,k − a

(0)
n,k

b
(0)
n,k

)
=⇒ Φ, k → ∞, (2)

where Φ is a standard normal distribution function, and symbols =⇒ and L(i)
n (·) here and below denote respectively

weak convergence and distribution of random variable in brackets with respect to measure P
(i)
n , i = 0, 1.

Below we will focus on the situation when distribution of random variable Ln = �
(1)
n (Xn,1)− �

(0)
n (Xn,1) under

alternative H
(1)
n has heavy tails. By “heavy-tailedness” of distribution we mean the following. We consider the

special case of series scheme and assume that under hypothesis H
(1)
n this distribution belongs to the domain of

attraction of a stable law Gα with characteristic index α ∈ (0, 2) (the same for all n). It means that there exist

numbers a
(1)
n,k ∈ R and b

(1)
n,k > 0 such that for each n

L(1)
n

(
Λn,k − a

(1)
n,k

b
(1)
n,k

)
=⇒ Gα, k → ∞. (3)

Our goal is to study conditions of nontrivial limits existence for power βn,kn in situation, when log-likelihood ratio
distribution under alternative hypothesis has heavy tails (in the above sense).

2. The case α > 1

Assumption α ∈ (1, 2) in the section title allows us without loss of generality to assume that mathematical

expectations μ
(1)
n exist, see (1). Existence of mathematical expectation μ

(0)
n follows from proposition 1, which

allows us to take

a
(0)
n,k = kμ(0)

n and b
(0)
n,k = σ(0)

n

√
k,

where

(σ(0)
n )2 = D(0)

n

[
�(1)n (Xn,1)− �(0)n (Xn,1)

]
.

Condition α ∈ (1, 2) allows us in turn to take

a
(1)
n,k = kμ(1)

n and b
(1)
n,k = Bn(k)k

1/α,
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where Bn(k) is slowly changing function as k → ∞, see, e.g., [13]. And from (2) we have

L(0)
n

(
Λn,k − kμ

(0)
n

σ
(0)
n

√
k

)
=⇒ Φ, k → ∞,

and hence,
cn,k = u(1− a)σ(0)

n

√
k + kμ(0)

n + o(1), k → ∞, (4)

where u(1− a) is (1 − a)-order quantile of standard normal distribution. From (3) we also obtain

L(1)
n

(
Λn,k − kμ

(1)
n

Bn(k)k1/α

)
=⇒ Gα, k → ∞,

and hence, with the use of (4) we have

βn,k = P(1)
n (Λn,k > cn,k) = 1−Gα

(
cn,k − kμ

(1)
n

Bn(k)k1/α

)
+ o(1) =

= 1−Gα

(
u(1− a)

σ
(0)
n

Bn(k)
k1/2−1/α +

k1−1/α

Bn(k)
(μ(0)

n − μ(1)
n )

)
+o(1), k → ∞. (5)

Using Jensen inequality, we conclude that

μ(0)
n < 0, μ(1)

n > 0.

Let k = kn → ∞ and σ
(0)
n be a slowly changing function as n → ∞. Since α < 2,

σ
(0)
n

Bn(kn)
k1/2−1/α
n −→ 0, n → ∞,

and the asymptotics of distribution function Gα’s argument in the right-hand side of (5) is determined by the

behavior of the expression k
1−1/α
n (μ

(0)
n − μ

(1)
n )/Bn(kn). This expression has a finite limit only if

μ(1)
n − μ(0)

n = O

(
Bn(kn)k

1/α−1
n

)
, n → ∞.

In summary we conclude that with regard to analyzed model of “heavy-tailedness” in order to obtain non-trivial
results on asymptotic behavior of the power of asymptotically optimal tests for distinction simple hypotheses, one

should consider contigual alternatives, which approach each other (in the sense of approaching μ
(1)
n to μ

(0)
n ) at the

rate O
(
Bn(kn)k

1/α−1
n

)
, i.e. the choice of contiguity parameter, ensuring non-triviality of the problem, depends

on parameter α, defining the asymptotics of a more “heavy-tailed” alternative. In particular, if μ
(0)
n ≡ μ(0),

σ
(0)
n ≡ σ(0) and kn = n, then non-trivial power limit is guaranteed only by the alternatives, for which

μ(1)
n = μ(0) +O

(
B(n)n1/α−1

)
,

where B(n) is some slowly changing function.

3. The case α � 1

In the view of the above-formulated idea about what heavy-tailed distribution is, let us assume that α � 1,
and

P(1)
n (�(1)n (Xn,1)− �(0)n (X1) � x) =

δ + o(1)

xα
h(x),

as x → ∞, where δ ∈ (0,∞) and h(x) are slowly changing functions (see, e.g., [6]). Since α � 1, the value of

μ
(1)
n is not defined, but there is a convergence of normalized log-likelihood ratio without centering (which is not

needed in this situation):

L(1)
n

(
Λn,k

Bn(k)k1/α

)
=⇒ Gα, k → ∞,
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see, e.g., [7]. But for hypothesis H
(0)
n we still have

L(0)
n

(
Λn,k − kμ

(0)
n

σ
(0)
n

√
k

)
=⇒ Φ, k → ∞,

and hence,

cn,k = u(1− a)σ(0)
n

√
k + kμ(0)

n + o(1)m, k → ∞.

Thus

βn,k = P(1)
n (Λn,k > cn,k) = 1−Gα1

(
cn,k − kμ

(1)
n

Bn(k)k1/α

)
+ o(1) =

= 1−Gα

(
u(1− a)

σ
(0)
n

Bn(k)
k1/2−1/α +

k1−1/α

Bn(k)
μ(0)
n

)
+ o(1), k → ∞. (6)

Let k = kn → ∞ as n → ∞. Since α < 1,

σ
(0)
n

Bn(kn)
k1/2−1/α
n −→ 0, n → ∞,

and the asymptotics of distribution function Gα’s argument in the right-hand side of (6) is determined by the

behavior of the expression k
1−1/α
n μ

(0)
n /Bn(kn). This expression has a finite limit, only if

|μ(0)
n | = O

(
Bn(kn)k

1/α−1
n

)
, n → ∞,

i.e. if |μ(0)
n | grows not faster than O

(
Bn(kn)k

1/α−1
n

)
. Thus, when α � 1 :

1) if

lim
n→∞

|μ(0)
n |

Bn(kn)k
1/α−1
n

= ∞,

then βn,kn → 1, as n → ∞;

2) if

lim
n→∞

μ
(0)
n

Bn(kn)k
1/α−1
n

= A ∈ (−∞, 0],

then βn,kn → 1 −Gα(A) as n → ∞; particularly, if kn = n and μ
(0)
n = μ(0), then βn,kn → 1 − Gα(0) as

n → ∞.

In summary we conclude that with regard to analyzed model of “heavy-tailedness” in order to obtain non-trivial
results on asymptotic behavior of the power of asymptotically optimal tests for distinction simple hypotheses, when
kn = n and Gα(0) = 0, one should consider such alternatives, for which the presence of heavy tail is compensated

by unlimited growth of mathematical expectation |μ(0)
n | of log-likelihood ratio at the rate no less than B(n)n1/α−1,

where B(n) is a slowly changing function. This rate depends on parameter α, defining the “heaviness” of log-
likelihood ratio’s tail under alternative.

In particular, it follows, that since stable distributions with index α < 1 are single-sided (concentrated on

nonnegative or nonpositive semiaxis, i.e. either Gα(0) = 0 or Gα(0) = 1), condition μ
(0)
n = μ(0) = const

necessitates the presence of trivial power limits only (unity or zero) no matter how heavy are the tails of alternative
with α < 1.

4. On the rate of convergence of optimal test power

In this section we give estimates of convergence rate of optimal test power to its limit values as n → ∞.
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4.1. Asymptotically normal case

Suppose that random variables {�(1)n (Xn,j)−�
(0)
n (Xn,j)}j�1 are such that their growing sums are asymptotically

normal. Denote

(σ(i)
n )2 = E(i)

n

[
(�(1)n (Xn,1)− �(0)n (Xn,1))− (μ(1)

n − μ(0)
n )

]2
,

(
m(i)

n

)3

= E(i)
n

∣∣∣∣

(
�(1)n (Xn,1)− �(0)n (Xn,1)

)
−(μ(1)

n − μ(0)
n )

∣∣∣∣
3

, i = 0, 1,

and assume that (m
(i)
n )3 < ∞. Then by Berry–Esseen inequality, when

k �

(
σ
(0)
n

)2

u2(1− a)
(
σ
(1)
n

)2 (
μ
(1)
n − μ

(0)
n

)2 ,

where u(γ) is, as before, γ-quantile of standard normal distribution, we have

∣∣∣∣∣βn,k − Φ

(√
k(μ(1)

n − μ(0)
n )− u(1− a)

σ
(0)
n

σ
(1)
n

)∣∣∣∣∣ � A0

(
m

(1)
n

)3

(
σ
(1)
n

)3 √
k
.

Hence,

√
k(1− βn,k) � A0

(
m

(1)
n

)3

(
σ
(1)
n

)3 +

exp

{
− 1

2

[
u(1− a)σ

(0)
n /σ

(1)
n −√

k(μ
(1)
n − μ

(0)
n )

]2}

√
2π

[
μ
(1)
n − μ

(0)
n − 1√

k
u(1− a)σ

(0)
n /σ

(1)
n

] ,

where A0 is an absolute constant, A0 � 0.7655.

Particularly, if k = n, μ
(i)
n ≡ μi and

(
m

(i)
n

)3

/
(
σ
(i)
n

)3

< M < ∞, i = 0, 1, then

1− βn,n = O
(
n−1/2

)
.

4.2. The case of heavy tails

Now suppose that the alternative is such that (2) holds with Bn(k) ≡ bn (in this case we say that general

distribution function Fn(x) (under alternative H
(1)
n ) of random variables {�(1)n (Xn,j) − �

(0)
n (Xn,j)}j�1 belongs to

the domain of normal attraction of stable law Gα).
We need the estimate for the value

Δn,k = sup
x

∣∣∣∣∣P
(1)
n

(
Λn,k − kμ

(1)
n

bnk1/α
< x

)
−Gα(x)

∣∣∣∣∣ .

Let us use the estimates from [10]. To do so, denote characteristic functions, corresponding to distributions Fn(x)
and Gα(x), by fn(s) and gα(s) respectively, s ∈ R. Let r > 0 and νn,r = νn,r(Fn − Gα) is such a functional of
difference between distribution functions Fn(x) and Gα(x), that for some Mn > 0, εn > 0 and all s ∈ (−εn, εn)
the following inequality holds:

|fn(s)− gα(s)| � Mn|s|rνn,r. (7)

Let us note without additional notations, that in different papers (se, e.g., [1–5,9] and others) νn,r was chosen
as various difference pseudomoments.

In [10] there is a statement (Theorem 3.11), from which the following proposition is derived.

Theorem 1. Let (7) hold, and α < r � 1 + α. There exists a constant Q0(r, α), depending only on α1 and r,
such that

Δn,k � Q0(r, α)
max

{
νn,r ν

1/(r+1)
n,r

}

k(r−α)/α

for all n, k � 1.

Let us consider different possible options for the location of parameter α.
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4.2.1. The case α > 1

From (4), using Theorem 1, we derive the following proposition.

Theorem 2. Let α > 1 and (7) hold. Besides, let α < r � 1+α. There exists a constant Q0(r, α), depending
only on α and r, such that

∣∣∣∣∣βn,k −
[
1−Gα

(
u(1− a)

σ
(0)
n

bn
k1/2−1/α − k1−1/α

bn
(μ(1)

n − μ(0)
n )

)]∣∣∣∣∣ �

� Q0(r, α)
max

{
νn,r ν

1/(r+1)
n,r

}

k(r−α)/α1

for all n, k � 1.

Particularly, consider the case when k = n, p
(i)
n (x) ≡ p(i)(x), i = 0, 1. Then μ

(i)
n ≡ μ(i), σ

(0)
n ≡ σ(0), bn = b,

νn,r = νr. Using the well-known property of stable law tails:

Gα(−x) + 1−Gα(x) ∼ C(α)

xα

as x → ∞, where C(α) > 0, we derive from Theorem 2

1− βn,n � Gα

(
u(1− a)

σ(0)

b
n1/2−1/α − n1−1/α

b
(μ(1) − μ(0))

)
+

+Q0(r, α)
max

{
νr ν

1/(r+1)
r

}

n(r−α)/α
= O

(
n1−α

)
+O

(
n(α−r)/α

)
.

Therefore:

1) if 1 < α < r � min{α2, α+ 1}, then 1− βn,n = O
(
n(α−r)/α

)
;

2) if α2 < r < α+ 1, then 1− βn,n = O
(
n1−α

)
.

4.2.2. The case α � 1

In this case

1− βn,k � Gα

(
u(1− a)

σ
(0)
n

Bn(k)
k1/2−1/α +

k1−1/α

Bn(k)
μ(0)
n

)
+Q0(r, α)

max
{
νn,r ν

1/(r+1)
n,r

}

k(r−α)/α
.

Particularly, if Gα(0) = 0, and k = n, σ
(0)
n = σ(0), and μ

(0)
n = μ(0), then

1− βn,n = O
(
n(α−r)/α

)
,

since for α � 1 we have 1/2− 1/α < 1 − 1/α, and hence, starting from some n, the argument of function Gα in
the expression for 1− βn,n becomes negative, because, as is established above, μ(0) < 0.
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