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VARIETY OF INTEGRABLE CASES
IN DYNAMICS OF LOW- AND MULTI-DIMENSIONAL RIGID BODIES
IN NONCONSERVATIVE FORCE FIELDS

M. V. Shamolin UDC 517.9; 531.01; 531.552

ABSTRACT. This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional
rigid bodies under the action of a nonconservative force field. We review both new results and results
obtained earlier. Problems examined are described by dynamical systems with so-called variable dissi-
pation with zero mean.
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To the bright memory of Professor Vladimir Aleksandrovich Kondratiev

One thing I have learned in a long life: that all our science,
measured against reality, is primitive and childlike—and yet
it is the most precious thing we have.

Albert Einstein,
letter to Hans Muehsam, July 9, 1951.
Einstein Archives 38-408

Introduction

We study nonconservative systems for which the usual methods of the study, e.g., Hamiltonian
systems, are inapplicable. Thus, for such systems, we must “directly” integrate the main equation
of dynamics. We generalize previously known cases and obtain new cases of the complete integra-
bility in transcendental functions of the equation of dynamics of a four-dimensional rigid body in a
nonconservative force field.

Of course, in the general case, the construction of a theory of integration of nonconservative systems
(even of low dimension) is a quite difficult task. In a number of cases, where the systems considered
have additional symmetries, we succeed in finding first integrals through finite combinations of ele-
mentary functions (see [95-97]).

We obtain a series of complete integrable nonconservative dynamical systems with nontrivial sym-
metries. Moreover, in almost all cases, all first integrals are expressed through finite combinations of
elementary functions; these first integrals are transcendental functions of their variables. In this case,
the transcendence is understood in the sense of complex analysis, when the analytic continuation of
a function into the complex plane has essentially singular points. This fact is caused by the existence
of attracting and repelling limit sets in the system (for example, attracting and repelling focuses).

We detect new integrable cases of the motion of a rigid body, including the classical problem of the
motion of a multi-dimensional spherical pendulum in a flowing medium.
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Chapter 1 is devoted to general aspects of the integrability of dynamical systems with variable dissi-
pation. First, we propose a descriptive characteristic of such systems. The term “variable dissipation”
refers to the possibility of alternation of its sign rather than to the value of the dissipation coefficient
(therefore, it is more reasonable to use the term “sign-alternating”).

Later, we define systems with variable dissipation with zero (nonzero) mean based on the divergence
of the vector field of the system, which characterizes the change of the phase volume in the phase space
of the system considered (see [21, 22, 26, 27, 30, 104, 113, 172]).

We introduce a class of autonomous dynamical systems with one periodic phase coordinate possess-
ing certain symmetries that are typical for pendulum-type systems. We show that this class of systems
can be naturally embedded in the class of systems with variable dissipation with zero mean, i.e., on the
average for the period with respect to the periodic coordinate, the dissipation in the system is equal
to zero, although in various domains of the phase space, either energy pumping or dissipation can
occur, but they balance to each other in a certain sense. We present some examples of pendulum-type
systems on lower-dimension manifolds from dynamics of a rigid body in a nonconservative field.

Then we study certain general conditions of the integrability in elementary functions for systems
on the two-dimensional plane and the tangent bundles of a one-dimensional sphere (i.e., the two-
dimensional cylinder) and a two-dimensional sphere (a four-dimensional manifold). Therefore, we
propose an interesting example of a three-dimensional phase portrait of a pendulum-like system which
describes the motion of a spherical pendulum in a flowing medium (see [143-145]).

For multi-parametric third-order systems, we present sufficient conditions of the existence of first
integrals that are expressed through finite combinations of elementary functions.

We deal with three properties that seem, at first glance, to be independent:

(1) a class of systems with symmetries specified above;

(2) the fact that this class consists of systems with variable dissipation with zero mean (with respect
to the existing periodic variable), which allows us to consider them as “almost” conservative
systems;

(3) in certain (although lower-dimensional) cases, these systems have a complete set of first integrals,
which, in general, are transcendental (in the sense of complex analysis).

In Chaps. 2 and 3, we systematize the obtained results on the study of dynamical equations of motion
for symmetrical two-dimensional (2D-) rigid body in a nonconservative force field. The form of these
equations is taken from the dynamics of realistic rigid bodies that interact with a resisting medium by
the laws of jet flow when the motion is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (Chap. 2). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (Chap. 3); see [1, 64, 70,
72, 119-121, 157, 164-167, 180-182, 184, 191, 194, 198, 212, 231, 237, 242, 258, 291, 346, 351-354,
374, 390, 414]).

Moreover, in Chap. 2, for an analytical nonintegrable constraint we find an additional transcendental
first integral expressed through a finite combination of elementary functions, and in Chap. 3, we find
an additional transcendental first integral for an analytical first integral (the square of the velocity of
the center of mass).

New obtained results are systematized and are given in invariant form. Moreover, an additional
dependence of the moment of nonconservative forces on the angular velocity is introduced. The given
dependence can also be generalized to higher-dimensional cases.
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In Chaps. 4 and 5, we systematize results on the study of dynamical equations of motion for
symmetric three-dimensional (3D-) rigid bodies in nonconservative force fields. The form of these
equations is also taken from the dynamics of realistic rigid bodies interacting with resisting media by
laws of jet low when the motion is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (Chap. 4). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (Chap. 5); see [1, 29,
64, 70, 72, 92-94, 99, 102, 119-122, 146, 147, 157-159, 164-167, 170, 180-182, 184, 191, 194, 198,
212, 231, 237, 242, 252, 258, 259, 277, 343, 346, 351-354, 374, 390, 394, 398-401, 409-411, 414-416,
418420, 424-426]).

Moreover, in Chap. 4, in addition to analytical invariant relations (a nonintegrable constraint and
an integral expressing the vanishing of one of the components of the angular velocity), we find three
additional transcendental first integrals expressed through finite combination of elementary functions.
Similarly, in Chap. 5, we find three additional transcendental first integrals in addition to analytical
first integrals (the square of the velocity of the center of mass and the integral expressing the vanishing
of one of the components of the angular velocity).

New results are also systematized and are presented given in an invariant form. An additional
dependence of the moment of the nonconservative force on the angular velocity is introduced. This
dependence can also be generalized to higher-dimensional cases.

In Chap. 6, we present general aspects of the dynamics of a free multi-dimensional rigid body, i.e.,
the notion of the tensor of the angular velocity, dynamical equations of motion on the direct product
R" x so(n), the Euler and Rivals formulas in the multi-dimensional case, etc.

We also consider the tensor of inertia of a four-dimensional (4D) rigid body. In this work, we study
two possible cases in which there exist two relations between the principal moments of inertia:

(i) there are three equal principal moments of inertia (Io = I3 = I4);
(ii) there are two pairs of equal principal moments of inertia (I; = I and I3 = Iy).

In Chaps. 6 and 7, we systematize results on the study of equations of motion of a four-dimensional
(4D) rigid body in a nonconservative force field for the case (i). The form of these equations is taken
from the dynamics of realistic rigid bodies of lesser dimension that interact with a resisting medium
by laws of jet flow when the body is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (see Chap. 6). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (see Chap. 7); see also [1,
29, 36-39, 45, 47, 64, 70, 72, 119-121, 157, 164-167, 180-184, 191, 194, 198, 212, 221-223, 229, 231,
233, 237, 242, 247, 248, 251, 257, 258, 278, 280, 291, 346, 351-354, 374, 390, 402, 403, 414].

Moreover, in Chap. 6, in addition to the four existing analytic invariant relations (a nonintegrable
connection and three integrals that show the vanishing of the components of the tensor of angular
velocity), we obtain four additional transcendental first integrals expressed as finite combinations of
elementary functions. In Chap. 7, we find additional transcendental first integrals in addition to the
four known analytic first integrals (the square of the velocity of the center of mass and the three
integrals that show the vanishing of the components of the tensor of angular velocity).

The results relate to the case where all interaction of the medium with the body part is concentrated
on a part of the surface of the body, which has the form of a three-dimensional disk, and the action
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Table 1. Classification of integrable cases presented in this paper

Dimension Constraint Conditions

of a Rigid Body v = const (B2 = const) | Vo = const

E? h=0® h=0®

h#0 @ h#0®

E? h=0& h=0®

(I3 = I3) h#0® h#0®

E* h=0& h=0®

(Iy = I3 = 14) h#0® h#0 &

E* h=0& h=06o

(I =13, I3 =1y) h#0® h#06

of the force is concentrated in a direction perpendicular to this disk. These results are systematized
and are presented in invariant form. Moreover, we introduce an extra dependence of the moment of
the nonconservative force on the angular velocity. This dependence can be further extended to cases
of motion in spaces of higher dimension.

In Chap. 8, we systematize results on the study of the equations of motion of a symmetric four-
dimensional rigid body in a nonconservative force field for the case (ii). The form of these equations
is taken from the lower-dimensional dynamics of realistic rigid bodies that interact with a resisting
medium by laws of jet flow when the body is influenced by a nonconservative tracing force. Under
the action of this force, the magnitude of the velocity of a certain typical point of the rigid body
and a certain phase variable remain constant; this means that the system possesses nonintegrable
servo-constraints (see also [1, 64, 70, 72, 119-121, 139, 157, 164-167, 182, 184, 191, 198, 237, 242, 294,
310, 318, 321, 326, 328, 329, 335, 341, 346, 351, 352, 390]).

Moreover, in Chap. 8, in addition to the four existing analytical invariant relations (two noninte-
grable constraints and two integrals expressing the vanishing of certain components of the tensor of
angular velocity), we find two additional transcendental and three analytical first integrals expressed
through finite combinations of elementary functions.

The results relate to the case where all interaction of the medium with the body part is concentrated
on a part of the surface of the body that has the form of a two-dimensional disk, and the action of
the force is concentrated in a direction perpendicular to this disk. These results are systematized and
are presented in invariant form. Moreover, we introduce an extra dependence of the moment of the
nonconservative force on the angular velocity. This dependence can be further extended to cases of
the motion in spaces of higher dimension.

Thus, in Chap. 2-8, many integrable cases in lower- and higher-dimensional dynamics of a rigid
body in a nonconservative force field are discussed. All these cases are listed in Table 1.

The notation h = 0 (or h # 0) means that the force field, respectively depends (does not depend)
on the components of the angular velocity tensor.

The sign @ means that the corresponding case is discussed in the present survey; the two occurrences
of the sign © in the lower right corner of the table mean that these two cases are not discussed here
(indeed, Chap. 8 is devoted to the case I} = I, I3 = Iy).

Nevertheless, for a symmetric n-dimensional rigid body with I, = --- = I,, some results have
already been obtained; they are not included in the present survey.
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Many of the results of this paper were presented earlier in a regular basis at various scientific
seminars, including the seminar “Actual problems of geometry and mechanics” named after Prof.
V. V. Trofimov [78] under the supervision of D. V. Georgievsky and M. V. Shamolin (see also [1, 2,
67, 68, 7T0-73, 75, 79-84, 8688, 230, 231, 261-264, 266, 269, 270, 272, 274, 275, 295, 296, 303, 304,
306, 311, 340, 344]).

CHAPTER 1

INTEGRABILITY IN ELEMENTARY FUNCTIONS
OF CERTAIN CLASSES OF NONCONSERVATIVE SYSTEMS

We study nonconservative systems for which the usual methods of study, e.g., Hamiltonian systems,
are inapplicable. Thus, for such systems, we must “directly” integrate the main equation of dynamics.
We recall known facts in a more universal form and also present some new cases of the complete
integrability in transcendental functions in the dynamics of 2D-, 3D-, and 4D-rigid bodies in a non-
conservative field.

The results of the present paper have been developed from previous studies, including an applied
problem from the dynamics of a rigid body [1, 64, 70, 72, 119-121, 157, 164-167, 182, 184, 191,
198, 237, 242, 346, 351, 352, 390], for which complete lists of transcendental first integrals that can
be expressed through finite combinations of elementary functions were obtained. Later, this allowed
one to perform a complete analysis of all phase trajectories and to specify those properties that are
preserved for systems of a more general form. The complete integrability of such systems is related to
hidden symmetries.

As is known, the notion of integrability is, generally speaking, quite vague. We must always take into
account in what sense this notion is understood (what criterion allows one to judge whether trajectories
of the dynamical system considered are simple in one or another sense), in what functional class first
integrals are sought, etc. (see [23, 24, 31, 90, 103, 105, 109, 110, 123, 131]).

In this paper, we consider first integrals that belong to the functional class consisting of tran-
scendental elementary functions. Here the term “transcendental” is meant in the sense of complex
analysis, i.e., a transcendental function is a function that possesses essential singularities after analytic
continuation in the complex plane (see also [132, 148, 153, 265]).

1. Preliminaries

The construction of a theory of integration of nonconservative systems (even lower-dimensional) is
a difficult problem. However, in some cases where systems studied possess additional symmetries, one
can find first integrals in the form of finite combinations of elementary functions [265, 271, 276, 279,
281, 287-290, 297-302, 314, 332, 334, 336—-339).

The present paper is a development of the plane problem on the motion of a rigid body in a resisting
medium in which the domain of the contact between the body and the medium is a planar part of
the exterior surface of the body. The force field in this problem is constructed by accounting for the
action of the medium on the body in the quasi-stationary jet or separated flow. It turns out that the
study of such motions can be reduced to systems either with dissipation of energy [(purely) dissipative
systems or systems in dissipative force fields] or to systems with energy pumping (so-called systems
with antidissipation or systems with accelerating forces). Note that similar problems appeared earlier
in applied aerodynamics (see also [265, 271, 276, 279, 281, 287-290, 297-302, 314, 332, 334, 336-339)]).
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Problems considered earlier stimulated the development of qualitative tools that substantially
supplement the qualitative theory of nonconservative systems with dissipation of either sign (see
also [265]).

Nonlinear effects in problems of the plane and spatial dynamics of a rigid body were examined by
qualitative methods. We justify the necessity of the introduction of the notions of relative roughness
and relative nonroughness of different orders (see also [184, 188, 190, 191, 197, 208, 227, 265, 282]).

In the present work, the following results are obtained.

(1) We develop methods of qualitative analysis of dissipative and antidissipative systems, which al-
lows us to obtain bifurcation conditions for the appearance of stable and unstable self-oscillations
and conditions of the absence of singular trajectories. We succeed in the study of plane topo-
graphical Poincaré systems and comparison systems and generalize them to higher dimensions.
We obtain sufficient Poisson-stability conditions (everywhere density near itself) of some classes
of nonclosed trajectories of dynamical systems (see [181, 194, 198, 199, 206, 228, 327, 351, 361,
362, 370, 371, 375, 389, 397];

(2) in 2D- and 3D-dynamics of a rigid body, we obtain complete lists of first integrals of dissipative
and antidissipative systems that are transcendental (in the sense of the classification of their
singularities) functions, which, in some cases, can be expressed through elementary functions.
We introduce the notions of relative roughness and relative nonroughness of different orders for
integrated systems (see [184, 188, 190, 191, 197, 208, 227, 265, 282|);

(3) we obtain multi-parameter families of topologically nonequivalent phase portraits that appear
in purely dissipative systems (i.e., systems with variable dissipation with nonzero (positive)
mean). Almost all portraits of such families are (absolutely) rough (see [265];

(4) we detect new qualitative analogies between the motion of a free body in a resisting medium
and the motion of a fixed body in a flowing medium (see [265]).

2. Dynamical Systems with Variable Dissipation
as a Class of Systems Admitting Complete Integration

2.1. Descriptive characteristics of dynamical systems with variable dissipation. At initial
modeling of the action of a medium on a rigid body, we use experimental information on the properties
of jet flow, and the necessity of the study of the class of dynamical systems that possess the property
of (relative) roughness (relative structural stability) naturally appears. Therefore, it is natural to
introduce these notions for such systems. Herewith, many of the systems considered are rough in the
sense of Andronov and Pontryagin (see [15-19]).

After some transformations (for example, in the 2D-dynamics), the dynamical part of the general
system of the equations of plane-parallel motion can be reduced to a pendulum system of second order
containing a linear nonconservative (sign-alternating dissipative) force with a coefficient, which can
change sign for different values of the periodic phase coordinate of the system. Thus, in this case,
we speak of systems with so-called variable dissipation, where the term “variable” refers not only to
the value of the dissipation coefficient but to its sign (and so the term “sign-alternating” is more
adequate).

In the average over a period (with respect to the periodic coordinate), dissipation can be positive
(“purely” dissipative systems), negative (systems with accelerating forces), or zero (but it does not
vanish identically). In the last case, we speak of systems with variable dissipation with zero mean
(these systems can be associated with “almost” conservative systems).

As was noted above, we obtain important mechanical analogies appearing in the comparison of
qualitative properties of a free body and the equilibrium of a pendulum in the flow of a medium. Such
analogies have a deep sense since they allow one to transfer properties of the nonlinear dynamical
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system for a pendulum to the dynamical system for a free body. Both systems belong to the class of
so-called pendulum dynamical systems with variable dissipation with zero mean.

Under additional conditions, the equivalence described above can be spread to the case of the spatial
motion, which allows one to speak of a general character of symmetries of systems with variable
dissipation with zero mean in plane-parallel and spatial motions (for planar and spatial versions of a
pendulum in a flow of a medium, see also [265]).

In the sequel, we present some classes of nonlinear systems of the second, third, and higher orders
that are integrable in the class of transcendental (in the sense of the theory of functions of complex
variables) elementary functions, for example, five-parameter dynamical systems including the majority
of systems examined earlier in the dynamics of a low-dimensional (2D and 3D) rigid body interacting
with a medium:

2 3 4

sin? v + Ysw
3

sin® o + Yaw
3

& = asina + bw + 1 sin5a+72wsin4a+73w sin o,

W = esinacos a4 dw cos a + y1wsin? o cos a + yow? sin® o cos a + 3w sin? o cos a+

+ 74(,04 sin o cos o + ys5w° cos a.

In this connection, we have introduced the notions of relative structural stability (relative roughness)
and relative structural instability (relative nonroughness) of various degrees. These properties were
proved for systems that arise, e.g., in [265].

Purely dissipative dynamical systems [and also (purely) antidissipative], which, in our case, can
belong to the class of systems with variable dissipation with nonzero mean, are, as a rule, structurally
stable [(absolutely) rough], whereas systems with variable dissipation with zero mean (which usually
possess additional symmetries) are either structurally unstable (nonrough) or only relatively struc-
turally stable (relatively rough). However, the proof of the last assertion in the general case is a
difficult problem.

For example, the dynamical system of the form

&= Q0+ fBsina,
] . (1.1)
Q) = —fFsinacosa

is relatively structurally stable (relatively rough) and is topologically equivalent to the system describ-
ing a fixed pendulum in a flowing medium (see [265]).

Below we present its first integral, which is a transcendental (in the sense of the theory of functions
of a complex variable, as a function whose analytical continuation in the complex plane has essential
singularities) function of phase variables that can be expressed through a finite combination of elemen-
tary functions (see [265]). The phase cylinder R?{a, Q} of quasi-velocities of the system considered
has an interesting topological structure of the splitting into trajectories (for more detail, see [265]).

Although the dynamical system considered is not conservative, in the rotational domain (and only
in it) of its phase plane R?{a, Q}, it admits the preservation of the invariant measure with variable
density. This property characterizes this system as a system with variable dissipation with zero mean
(see [67, 68, 243, 260, 262, 265, 282-286, 291, 295, 309, 324, 333, 340, 384, 391, 404408, 412, 413,
421, 437, 438]).

2.2. Definition of a system with variable dissipation with zero mean. We study systems of
ordinary differential equations that have a periodic phase coordinate. Such systems possess symmetries
under which their average phase volume with respect to the periodic coordinate is preserved. For
example, the following pendulum system, with a smooth and periodic (of period T') with respect to «
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right-hand side V (o, w) of the form
q=-w+ fla), fla+T)= f(a),
w=g(a), gla+T)=g(a),

preserved its phase area on the phase cylinder within the period T

(1.2)

T

/divV(a,w)da = /T <8(1(—w + f(a) + 8wg(a)> do = /Tf'(a)da =0. (1.3)
0 0 0

This system is equivalent to the equation of a pendulum
i — f(a)a+ g(a) =0, (1.4)

in which the integral of the coefficient f’(«) of the dissipative term & over the period is equal to zero.
We see that this system has symmetries under which it becomes a system with variable dissipation
with zero mean in the sense of the following definition (see [265]).

Definition 1.1. Consider a smooth autonomous system of order (n + 1) in the normal form defined
on the cylinder R*{z} x S'{a. mod 27}, where « is a periodic coordinate of period T > 0. The
divergence of the right-hand side V(z,«) (which, in general, is a function of all phase variables and
does not vanish identically) of this system is denoted by div V(z, ). This system is called a system
with variable dissipation with zero (respectively, nonzero) mean if the function

T
/div V(z,a)da (1.5)
0

vanishes (respectively, does not vanish) identically. In some cases (for example, when at some points
of the circle S'{a mod 27} singularities appear), this integral is meant in the sense of the principal
value.

We note that it is quite difficult to give a general definition to a system with variable dissipation
with zero (nonzero) mean. The definition presented above is based on the notion of the divergence
(as is known, the divergence of the right-hand side of a system in the normal form characterizes the
change of the phase volume in the phase space of the given system).

3. Systems with Symmetries and Variable Dissipation with Zero Mean

Consider a system of the following form (the dot means the derivative with respect to time):

& = fo(w,sina, cos a),

Wi = fr(w,sina,cosa), k=1,...,n, (16)
defined on the set
Sa mod 27} \ K x R*{w}, w= (wi,...,wn), (1.7)
where sufficiently smooth functions fy(ui,u2,u3), A = «a,1,...,n, of three variables uj, ug, usg are
such that
(w1, —ug,uz) = — fa(ur, u, us),
fa(ur,ug, —ug) = fo(ur,uz, uz), (1.8)
Sr(ui, ug, —uz) = — fr(ur, ug, us);
moreover, the functions fx(u1,ug,us) are defined for uz =0 for any k =1,...,n.

The set K is either empty or consists of a finite number of points of the circle S'{a mod 27}.
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The last two variables ug, us in the functions fy(u1,u2,us) depend on the same parameter «, but
we assume that these variables belong to different groups for the following reasons: first, they cannot
be uniquely expressed one through another on their whole domain and, second, us is an odd function
of a, whereas us is even, which affects the symmetries of system (1.6).

To system (1.6), we put in correspondence the following nonautonomous system:

dwr  fr(w,sina, cos )

= k=1,...,n. 1.9
do fo(w,sina,cosa)’ el (1.9)

By the substitution 7 = sin a, it can be reduced to the form

d(,dk _ fk(w77_7 ng(T)) k
dT fa(w77_7 9004(7_)),
ox(=7) =pa(1), A=a,1,...,n.

=1,...,n,
(1.10)

The last system, in particular, can have an algebraic right-hand side (i.e., it can be the ratio of two
polynomials), which simplifies the search for its first integrals in explicit form.

The following theorem states that the class of systems (1.6) is a subclass of the class of dynamical
systems with variable dissipation with zero mean. Note that, in general, the converse is invalid.

Theorem 1.1. Systems of the form (1.6) are dynamical systems with variable dissipation with zero
mean.

Proof. The proof of this theorem is based on some symmetries (1.8) of system (1.6) listed above and
the periodicity of the right-hand side of the system with respect to a.
Indeed, the divergence of the vector field of system (1.6) equals

Ofa(w,sin a, cos ) B Ofo(w,sin a, cos a) sin o + zn: Ofr(w,sin a, cos )

cos &
811,1

Dty s . (1.11)

k=1

The following integral of the first two terms in (1.11) vanishes:

27
/ O fo(w,sin o, cos a)dsina—i— O fa(w,sin o, cos a)dcosa
Ous Ous

2

P .
- / Jalw sinascosa) =0 (1.19)
fole}
0

since the function f,(w,sin «, cos «) is periodic with respect to .
Further, by the third equation in (1.8), for any k = 1,...,n we have
Ofr(w,sina, cos a) gk (w,sin a)

=cosa-

oy oup (1.13)

where the function g (u1,us9) is sufficiently smooth for any k =1,... n.
Then the integral over the period 27 of the right-hand side of Eq. (1.13) equals

21

/ agk(w’Smo{)alsinoz = h(w) =0 (1.14)
8’LL1
0

for any k= 1,...,n. From Egs. (1.12) and (1.14) we obtain Theorem 1.1. ||
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The converse assertion is invalid: there exist dynamical systems on the two-dimensional cylinder
that are systems with variable dissipation with zero mean, but they do not possess symmetries listed
above.

In this paper, we basically consider the case where the functions fy(w,7,¢k(7)) (A = a,1,...,n)
are polynomials of w and 7.

Example 1.1. Below we consider, in particular, pendulum-type systems on the two-dimensional
cylinder S*{a mod 27} x RYw} with parameter b > 0 from the rigid body dynamics (see [265]):

& = —w + bsina,
) . (1.15)
w = sin a cos a,
and
&= —w+ bsinacos? a + bw?sina,
(1.16)

w = sin o cos & — bw sin? acos a + bw? cos a,

with the variables (w, 7). To these systems, we can put in correspondence the following equations with
algebraic right-hand sides:

dw T
= 1.17
dr  —w+br (1.17)
and
dw T+ bwlw? — 72| (1.18)

dr  —w+br +brjw? — 72]’
which have the form (1.10). Moreover, one can easily verify that these systems are dynamical systems
with variable dissipation with zero mean. Indeed, the divergences of their right-hand sides are equal
to

beosa, bceosaldw? 4 cos® a — 3sin?
respectively. It is easy to see that they belong to the class of systems (1.6).
Moreover, each of these systems has a first integral that is a transcendental (in the sense of complex

analysis) function expressed through a finite combination of elementary functions (see Chaps. 2 and 3
below).

We present another important example of a higher-order system that possesses the properties listed
above.

Example 1.2. Consider the following system with a parameter b, which is defined in the three-
dimensional domain

S'Y{a mod 27} \ {a =0,a = 7} x R*{z, 2} (1.19)
(this system is separated from a system on the tangent bundle 7, S? of the two-dimensional sphere S?):
&= —2z9 + bsina,
Zo =sinacosa — zQCosa
2= lSiIlOz’ (1.20)
) cos «
Z1 = 2122 . .
sin «

This system describes the motion of a rigid body in a resistive medium (see Chaps. 4 and 5). We put
in correspondence to this system the following nonautonomous system with algebraic right-hand side
(T =sina):
dzg  T—23)T
dr  —z + b7’
dz1  z129/T
dr  —z+br’

(1.21)
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We see that system (1.20) is a system with variable dissipation with zero mean. To obtain the full
correspondence with the definition, we introduce the new phase variable

2] =1In|z]. (1.22)
The divergence of the right-hand side of system (1.20) in the Cartesian coordinates «, 2, 22 is equal
to bcos a. Taking into account (1.19), we have (in the sense of principal value)
T—€ 2r—e
lim [ bcosa + lim bcosa = 0. (1.23)
e—0 e—0

£ T+€E

Moreover, this system possesses two first integrals (i.e., a complete set) that are transcendental func-
tions, which can be expressed through a finite combination of elementary functions (see Chaps. 4
and 5). This becomes possible after putting in correspondence to it a system (nonautonomous, gen-
erally speaking) of equations with an algebraic (polynomial) right-hand side (1.21).

Systems (1.15), (1.16), and (1.20) belong to the class of systems (1.6), possess a variable dissipation
with zero mean, and have a complete set of transcendental first integrals that can be expressed through
a finite combination of elementary functions.

So, to find first integrals of the systems considered, it is convenient to reduce systems of the
form (1.6) to systems with polynomial right-hand sides (1.10), which allows one to perform integration
in elementary functions of the initial system. Thus, we find sufficient conditions for the integrability
in elementary functions of systems with polynomial right-hand sides and examine systems of the most
general form.

4. Systems on the Plane and Two-Dimensional Cylinder

Earlier, the author proved a series of assertions regarding many-parameter systems of ordinary
differential equations with algebraic right-hand side (see, e.g., [265]). We recall some of them.
Proposition 1.1. A seven-parameter family of systems of equations on the plane R?*{x,y}

@ = a1z + by + 12’ + Box’y + Baay?, (124
§ = c1w + diy + 12’y + Paxy® + Bay’, ’

possesses a first integral (in genmeral, transcendental), which can be expressed through elementary
functions.

Corollary. For any parameters ay, by, c1, di, 51, B2, and B3, the system
& = agsina + bjw + By sin® a + Bowsin? o + Bsw? sin a,

. . o » 5 (1.25)

w = ¢y sinacos a + diw cos a + Frwsin® a cos o + Pow? sin o cos o + P3w? cos o

on the two-dimensional cylinder {(a,w) € R? : a mod 21} possesses a first integral (in general,
transcendental), which can be expressed through elementary functions.

In particular, systems (1.15) and (1.16) can be obtained from this system if
ar=b bhh=-1, a=1 d=p=0=p>5=0
and
a; = b7 bl = _17 C1 = 17 dl = _b7 /81 = _b7 /62 = 07 183 = b7

respectively.
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The above reasons can be easily generalized. We consider the possibility of the complete integration
(in elementary functions) of systems of a more general form: the nonlinearity is characterized by an
arbitrary homogeneous form of odd degree 2n — 1.

In this case, we have the following assertion, which is more general than Proposition 1.1.

Proposition 1.2. The (2n + 3)-parameter family of systems of equations

&= a1z + by + 622" 4 022" 2y + -+ Sop0@y?" 3 + Gopgay? T,

2n—3, 2 2n—2%_52n_1y2n—1

_ (1.26)
y = c1x + dyy + 61272y + Sox y 4+ dop_2zy

on the plane R%*{x,y} possesses a first integral (in general, transcendental), which can be expressed
through elementary functions.

Indeed, the family of Eqgs. (1.26) depends on 2n — 1 + 4 independent parameters since the total
nonlinearity of an odd degree is characterized by 4n parameters subject to 2n + 1 conditions (the
other 4 parameters are contained in the linear part).

Corollary. For any parameters ay, by, ¢1, di, and 61, ...,02,_1, the systems
& =asina + bw + 6 sin?” L a + Gawsin® 2+ -+ - + g1’ 2sina,
2n—2 2n—3 1

acosa+ -+ ap_ 1w Leosa

(1.27)
on the two-dimensional cylinder {(a,w) € R? : @ mod 27} possesses a transcendental first integral,
which can be expressed through elementary functions.

w = csinacos a + dw cos a + 1w sin o cos a + dow? sin

Systems (1.15), (1.16), and (1.20) are sufficiently rough (see [265]), but if we break symmetries (1.8)
introduced for systems of the general form (1.6) (for example, by introducing additional terms in their
right-hand sides), then the number of topologically distinct phase portraits can substantially change.

In [265], we obtained a multi-parametric family of phase portraits of a system with variable dissi-
pation with nonzero mean (whose typical portraits are (absolutely) rough), which is a perturbation
of a dynamical system with variable dissipation with zero mean of the form (1.16). This family (as
families obtained earlier, see [265]) contains an infinite number of topologically nonequivalent phase
portraits on a two-dimensional phase cylinder.

5. Systems on the Tangent Bundle of the Two-Dimensional Sphere

On the tangent bundle T,S? of the two-dimensional sphere S?{,1}, we consider the following

dynamical system: .
0 + b6 cos O + sin  cos ) — ¢2sm9 =0

)

cosf
1+ cos? 6
sin 6 cos 0

(1.28)

iﬁ—kbl/'}cosQ—i-éz/}[

This system describes a spherical pendulum in flowing medium (see [265]). Herewith, the system

possesses the conservative moment
sin 6 cos 6 (1.29)

and the force moment, which linearly depends of the velocity with a variable coefficient:

b <Z> cos 0. (1.30)

The other coefficients in the equations are the connection coefficients, namely,
sin 6 " 14 cos? 6

M - _ — . 1.31
vy cosf’ 0 " sinfcos 6 ( )
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Fig. 1. Relatively rough phase portrait in a three-dimensional domain

In fact, system (1.28) has order 3 since the variable 1 is cyclic and the system contains only the
variable ).

Proposition 1.3. The equation

=0 (1.32)
defines a family of integral planes for system (1.28).
Moreover, Eq. (1.32) reduces system (1.28) to the equation that describes a cylindrical pendulum
in a flowing medium (see [265]).
Proposition 1.4. System (1.28) is equivalent to the following system:
0 = —2z9 + bsin 6,

. . cos 6
Zy = sm@cos@—z% o
sin @

. cos 6 (1.33)
Z] = R172 . 5
sin @
. cos 0
V=12
sin 0

on the tangent bundle T,S?{z1,22,0,v} of the two-dimensional sphere S2{0,1)}.

Moreover, the first three equations of system (1.33) form a closed system of the third order and
coincide with system (1.20) (if we set aw = ). The fourth equation of system (1.33) has been separated
due to the cyclicity of the variable 1.

The construction of the phase portrait of system (1.28) is shown in Fig. 1 (see [265]).

Example 1.3. We examine a system of the form (1.20), which can be reduced to (1.21), and the
following system, which appears in the spatial (3D) dynamics of a rigid body interacting with a
medium (see Chaps. 4 and 5):

a=—2+b (z% + z%) sin o + bsin v cos? a,
. . . Cos &
Z9 = sinaccos o + bzy (z% —l—z%) cos v — bzy 51n2acosa—z% . (1.34)
sin « :
. . cos «
Z1 = bz (z% + z%) cosa — bz sin? acosa + 2129 . ,
sin «
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which corresponds to the following system with algebraic right-hand side:
dzy T+ bz (21 4 23) — bzp7? — 2} /7
dr — —z+br (23 +23) +br (1 —72)°
dzy bz, (z% + z%) — b7+ 2129/T

dr  —zp+br (27 +23) +br(1—72)°

(1.35)

So, we consider two systems: the initial system (1.34) and the corresponding algebraic system (1.35).
Similarly, we can pass to the homogeneous coordinates ug, k = 1,2, by the formulas

2k = ULT. (1.36)
By this change of variables, system (1.21) (see above) can be transformed to the form
7_dug Vg — T —ulT ’
dr —usT + bt (1.37)
duy n ULUQT ’
T up =
dr L
which, in turn, corresponds to the equation
duy _ 1 —buz +uj — u% (1.38)
duq 2uiug — buq
Since the identity
1— 2
d< 5“2+“2>+du1=o (1.39)
U1

is integrable, this equation can be integrated in elementary functions and in the coordinates (7, 21, 22)
it has the first integral of the form (cf. [265])

zf +z§ — BzoT + T2

= const .
21T
System (1.34) after reduction corresponds to the system
dug N T+ bupt? (uf + ud) — bupt® — uirT
T Uy = ,
dr 2T T+ br3 (uf 4+ u3) + b7 (1 —72) (1.40)
duy bur ™ (uf 4 u3) — bus T + wyusT '
T +uy = 9 9 9\’
dr —ugT + b73 (uf + ud) 4+ b (1 —72)
which can also be reduced to (1.38).
6. Some Generalizations
The following question arises: Can the system
dz  ar+by+cz+ 12 /z + cozy/z + c3y?/w
dr d ’
y e (1.41)
dy  gx+hy+iz+i12°/z +iszy/x + i3y /x
dr diz+ey+ fz ’

possessing a singularity of the type 1/z, be integrated in elementary functions? This system is a
generalization of systems (1.21) and (1.35) in three-dimensional phase domains.

A series of results concerning this question has already been obtained (see [265]); we here present
a brief review of these results.
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As above, we introduce the substitutions

Yy =ux, 2= (1.42)
and reduce system (1.41) to the following form:
xdv el @ + buz + cvz + c1v’z + cpvux + 03u2x’ (1.43)
dx dix + eux + fox
du gx + huz + vz + 10’z + isvux + isu’s
x u = , (1.44)
dx dix + eux + fox
which is equivalent to
dv  ar +buz + (c — di)vz + (c1 — f)vie + (c2 — e)vux + czu’x (1.45)
x, = .
dx dix + eux + fux ’
du  gr+ (h—dy)uz +ive + i1v’z + (iz — f)vuz + (i3 — e)u’x (1.46)
x, = ) .
dx dix + eux + fox

To this system, we put in correspondence the following nonautonomous equation with algebraic right-
hand side:

dv  a+bu+cv + c1v? + covu + c3u® — vldy + eu + fv] (1.47)
du g+ hu+iv + 3102 + dgvu + izu? — u[dy + eu + fv]’ '

Integration of this equation is reduced to integration of the equation in complete differentials
[g + hu + v + 1102 + igvu + isu® — diu — eu® — fuv] dv
= [a + bu + cv + ¢1v? + cpvu + csu? — dv — euv — fv2] du. (1.48)

Generally speaking, we have a 15-parameter family of equations of the form (1.48). To integrate the
last identity in elementary functions as a homogeneous equation, it suffices to impose the following
six restrictions:
g=0, i=0, i1=0, e=cy, h=c, i9=2c—f. (1.49)
We introduce nine parameters 31, ..., B9 and consider them as independent:
Br=a, P2=b, Pz=c, Ba=c1, Bs=c2, Po=c3 Pr=di, Ps=Ff, Bo=1i3 (1.50)
Thus, Eq. (1.48) under the conditions (1.49) and (1.50) is reduced to the form

dv  B1+ Pau+ (B3 — Br)v + (Ba — Be)v? + Beu®

du " (By— Bryut 2B — Bwu + (B — Bo)u? S
whereas system (1.45), (1.46) is reduced to the form
dv  Bi+ Bau+ (B3 — Br)v + (B — Bs)v? + Beu?
Tda T fr + Bsu + Pgv ’ (1.52)
du (B3 — Br)u+2(Bs — Bs)vu + (By — Bs)u?
xd:L‘ = B + Bau + Bav . (1.53)

After this, Eq. (1.51) can be integrated by a finite combination of elementary functions.
Indeed, integrating identity (1.48), we obtain

a| P e ‘fg)ﬂ (B — ool +a || dlgatnul - dgad =0, 50

which implies the following invariant relation:

(B3 — Br)v n (Ba —uﬁs

)’02 b1
w + (By — Bs)v + u B2 1n ju| — Bgu = C1 = const, (1.55)
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and then in the coordinates (z,y, z) the first integral
(Bs — B8)2* — Bey® + (B3 — Br)zx + (By — )2y + Pra?
yx
Therefore, we can confirm the integrability in elementary functions of the following, generally speak-
ing nonconservative, system of third order depending on 9 parameters:

dz _ Prx+ Bay + B3z + Baz? |z + Bszy/x + Bey? /@

— P2 1n ‘ z‘ = const . (1.56)

dz Brx + Bsy + Psz ’ (1.57)
dy B3y + (284 — Bs)zy/x + Boy?/x
dr Br + Bsy + Psz '
Corollary. On the set
S'{a mod 27} \{a=0, a=7}xR*{z, 2}, (1.58)
the third-order system
& = Brsina + Psz1 + Pgza,
Zy = B sinacos a + PBazy cos a4 B3y cos a + fyza C,OS @ + Bsz129 C,OS @ + Bs2? C_OS a’ (1.59)
sin « sin « sin «

i cos « cos

i = fPszcosa+ (284 — Bs)zize .+ Pzt .,

sin « sin «

depending on 9 parameters, possesses, generally speaking, a transcendental first integral, which can be

expressed through elementary functions:
(Ba — Bs)75 — Bs23 + (B3 — Br)zzsina+ (By — fB5) 2221 + Bisin®
21 sin «

In particular, system (1.59) for f1 =1, fo =3 =1 =05 =Py =0, Bs = Bs = —1, and B7 = b
coincides with system (1.20).

2
— [ ln‘ A ‘ = const. (1.60)
sin «

To find an additional first integral of the nonautonomous system (1.41), we can use the first inte-
gral (1.56), which is expressed through a finite combination of elementary functions.
First, we transform relation (1.55) as follows:

(B1 — Bs)v* + [(Bo — Bs)u+ (Bs — Br)] v + fr(u) =0, (1.61)
where
fi(u) = By — Beu® — Bouln |u| — Chu.
Formally, v can be found from the relation

va) = g L {(Bs— Aoyt (8 ) £ V) } (1.62)

where
fa(u) = Ay + Agu + Asu® + Aguln |ul,
Ay = (B3 — B1)* —4B1(Bs — Bs), Az =2(By — B5)(Bs — B7) + 4C1(Bs — Bs),
Ag = (By — B5)° + 4Bs(Bs — Bs), As=4B2(Bs — Bs).-

Then the required quadrature for the additional (in general, transcendental) first integral (for example,
of system (1.52), (1.53) or (1.45), (1.46)), where Eq. (1.53) is used) becomes

/ dr _ / [B7 + Bsu + Bsvi 2 (u)|du B / [Bl + Bau + Bg\/fz(u)] du
T (ﬁ3 - ﬁ?)u + (ﬁ9 - 55)“2 + 2(54 — ﬁg)uvl,g (u) B4u\/f2(u)

where By, = const, k=1,...,4.

, (1.63)
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The required quadrature for the search for an additional (in general, transcendental) first integral
(for system (1.52), (1.53) or (1.45), (1.46), where Eq. (1.52) is used) becomes

dz [B7 + Bsu(v) + Bsv]dv .
/ / B1 + Pau(v) + (B3 — Br)v + (B4 — /88)'02 + /Bﬁuz(’l))’ (1.64)

in this case, the function u(v) must be obtained by solving the implicit equation (1.55) with respect
to w (which, in the general case, is not obvious).

Sufficient conditions of the expressability of integrals in (1.64) through finite combinations of ele-
mentary functions are stated by the following lemma.

Lemma 1.1. For Ay =0, i.e., for

f2=0 (1.65)
or for

Ba = Bs, (1.66)

the indefinite integral in (1.64) can be expressed through a finite combinations of elementary functions.

Theorem 1.2. Under sufficient conditions of Lemma 1.1 (in this case, property (1.65) holds), sys-
tem (1.59) possesses a complete set of first integrals that can be expressed through a finite combination
of elementary functions.

Dynamical systems considered in the present paper are systems with variable dissipation with zero
mean with respect to the periodic coordinate. In many cases, such systems possess a complete set of
first integrals that can be expressed through elementary functions.

We have presented several cases of the complete integrability in the dynamics of the spatial (3D)
motion of a body in a nonconservative field. Herewith, we deal with three properties that, at first
glance, seem to be independent:

(1) the class of systems (1.6) with marked symmetries specified above;

(2) this class of systems possesses variable dissipation with zero mean (with respect to the vari-
able «); this allows one to consider them as “almost” conservative systems;

(3) in some (sufficiently low-dimensional) cases, these systems possess a complete set of (generally
speaking, transcendental from the standpoint of complex analysis) first integrals.

The method of reduction of initial systems whose right-hand sides contain polynomials of trigono-
metric functions to systems with polynomial right-hand sides allows one to find (or to prove the
absence) of first integrals for systems of a more general form that perhaps do not possess the symme-
tries mentioned above (see [265]).

CHAPTER 2

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
ON THE TWO-DIMENSIONAL PLANE, I

In this chapter, we systematize some earlier and new results on the study of the equations of motion
of dynamically symmetric two-dimensional (2D) rigid bodies in nonconservative force fields. The form
of these equations is taken from the dynamics of real rigid bodies interacting with a resisting medium
by laws of jet flows where a body is influenced by a nonconservative tracing force; under action of this
force, the magnitude of the velocity of some characteristic point of the body remains constant, which
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means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119-121, 157,
164-167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164-167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under a Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (one-
dimensional plate) in the field of a resisting force under the assumption of quasi-stationarity [28, 50,
51, 62-66, 98, 112, 119-121, 160-169, 171, 431, 432]. If (v, ) are the polar coordinates of the velocity
vector of a certain typical point D of a rigid body (D is the center of the plate), €2 is its angular
velocity, and I and m are the characteristics of inertia and mass, then the dynamical part of the
equations of motion (including also Chaplygin analytical functions [50, 51|, see below) in which the
tangent forces of the interaction of the body with the medium are absent, has the form

. o . . xr
veosa — avsina — Qusina + 0% = 7,
m

‘ (2.1)
vsina + v cos a + Qucosa — o) = 0,
. Q
=y (o) st
where
E,=-S, S=s(a)? o>0 v>0. (2.2)

The first two equations in (2.1) describe the motion of the center of mass in the two-dimensional
Euclidean plane E? in the coordinate system Dxjxy attached to the body. Here Dz is the perpen-
dicular to the plate passing through the center of mass C of the symmetric body and Dxs is an axis
along the plate. The third equation of (2.1) is obtained from the theorem on the change of the angular
moment of a rigid body.

Thus, the direct product

R! x S! x 50(2) (2.3)
of the two-dimensional cylinder and the Lie algebra so(2) is the phase space of system (2.1).

If we consider a more general problem on the motion of a body under the action of a certain tracing

force T passing through the center of mass and providing the fulfillment of the equality

v = const (2.4)

during the motion (see also [164-167]), then F, in system (2.1) must be replaced by
T — s(a)v®, o= DC. (2.5)
As a result of an appropriate choice of the magnitude T of the tracing force, we can achieve the

fulfillment of Eq. (2.4) during the motion. Indeed, if we formally express the value T by virtue of
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system (2.1), we obtain (for cos a # 0):

B B 9 2|, mo ) sina
T=T,(a,Q2) =moQ* + s(a)v [1 7N <a, v> cosa] . (2.6)

Note that we have used condition (2.4).

This procedure can be viewed from two standpoints. First, a transformation of the system has
occurred at the presence of the tracing (control) force in the system which provides the corresponding
class of motions (2.4). Second, we can consider this procedure as a procedure that allows one to reduce
the order of the system. Indeed, system (2.1) generates an independent second-order system of the
following form:

avcosa+ Qucosa — o) =0,
. Q
1=y (a8 ) st

where the parameter v is supplemented by the constant parameters specified above.
We can see from (2.7) that the system cannot be solved uniquely with respect to & on the manifold

(2.7)

oz{(a,Q)eR2; a:72T+7rk,kGZ}. (2.8)

Thus, formally speaking, the uniqueness theorem is violated on manifold (2.8).
This implies that system (2.7) outside of the manifold (2.8) (and only outside it) is equivalent to

the following system:
Q
(e )st@)
ov v
I cos a ’ (2.9)
| Q
0= YN <a, v) s(a)v?.

The uniqueness theorem is violated for system (2.7) on the manifold (2.8) in the following sense:
regular phase trajectories of system (2.7) pass through almost all points of the manifold (2.8) and
intersect the manifold (2.8) at a right angle, and also there exists a phase trajectory that completely
coincides with the specified point at all time instants. However, these trajectories are different since
they correspond to different values of the tracing force. Let us prove this.

As was shown above, to fulfill constraint (2.4), one must choose the value of T for cosa # 0 in the
form (2.6).

Let

d=-0+

lim
a—m/2 Cos

2 (o)) < 52 amn

For a = 7/2, the necessary magnitude of the tracing force can be found from the equality

v

Q
YN <a7 v > S(Q) 0
~L < > . (2.10)
Note that |L| < 400 if and only if

lim
a—m/2

mo Lv?

7 (2.12)

T=1,(3.Q) =mo? -
where € is arbitrary.
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On the other hand, if we support the rotation around a certain point W by means of the tracing
force, then the tracing force has the form

mv2

™
r=1,(5.0)=""", 2.13
5 Ry (2.13)
where Ry is the distance CW.

Generally speaking, Eqs. (2.6) and (2.13) define different values of the tracing force T' for almost

all points of manifold (2.8), and the proof is complete.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of Chaplygin analytical functions (see [50, 51]), we
take the dynamical functions s and yy of the following form:

Q
s(a) = Beosa, yn (a, v) =yo(a) = Asina, A,B>0, v#0, (2.14)

which shows that for the considered system, the moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angle «).

Then, owing to the nonintegrable constraint (2.4), outside the manifold (2.8) (and only outside it)
the dynamical part of the equations of motion (system (2.9)) has the form of the following analytical
System:

& = —Q + onvsina,
. AB (2.15)
Q =ndv’sinacosa, ni= 7
Introducing the dimensionless variable, the parameter, and the differentiation as follows:
Q=novw, b=ong, (-)=mnev{’), (2.16)
we reduce system (2.15) to the form
o = —w+bsina,
o (2.17)
w' = sin a cos a.

2.2. Complete list of invariant relations. We put in correspondence to system (2.17) the fol-
lowing nonautonomous first-order equation:

dw sin v cos v
= ) 2.18
doo —w+bsina (2.18)
Using the substitution 7 = sin «, we rewrite Eq. (2.18) in the algebraic form
dw T
= . 2.19
dr —w+br (2.19)

Further, introducing the homogeneous variable by the formula w = ur, we reduce Eq. (2.19) to the
following quadrature:
(b—u)du  dr
1—butu? 7
Integration of quadrature (2.20) leads to the following three cases. Simple calculations yield the
following first integrals.
L b2 —4<0:

(2.20)

2b 2u —
In(1 — bu + u?) — arctan , +In 7% = const; (2.21)

V4 — b2 V4a—b
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I1. v —4 > 0:

b 2u—b+ Vb2 —4
In|1— bu+ u?| + In +In72 = const; 2.22
| | Vo2 -4 |2u—b— Vb2 —4 (2.22)

II1. b2 — 4 = 0:

1
In|u—1|+ + In|7| = const. (2.23)
u—

1

In other words, in the variables (o, w) the found first integrals have the following forms:
I.v2—4<0:

2b 2w — bsin«
.9 . 2
sin® a — bw sin a + w?] ex — arctan = const; 2.24
[ ] p{ V4 — b2 \/4—b2sinoz} ( )
IL. b — 4 > 0
% — bsi b2 — 4sin |2/ V0 4
[sin? @ — bw sin a + w?] v STna v ) STna = const; (2.25)
2w — bsina — Vb2 — 4sina
IIL. b? — 4 = 0
(w — sin «r) exp { sma } = const . (2.26)
w—sina

Therefore, in the considered case the system of dynamical equations (2.1) has two invariant relations:
there exist the analytical nonintegrable constraint (2.4) and the first integral expressed by relations
(2.24)—(2.26) (or (2.21)—(2.23)), which is a transcendental function of its phase variables (in the sense
of complex analysis) and is expressed as a finite combination of elementary functions.

Theorem 2.1. Under conditions (2.4) and (2.14), system (2.1) possesses two invariant relations (the
complete set), one of which is a transcendental function (in the sense of complex analysis). Moreover,
both these relations are expressed as a finite combination of elementary functions.

2.3. Topological analogies. Let us consider the following second-order equation:
0+ b.0cosh+sinfcosd =0, b, >0, (2.27)

describing a fixed pendulum in a flowing medium in the case where the moment of forces is independent
of the angular velocity, i.e., a mechanical system in a nonconservative force field (see [120, 162]).
Its phase space is the two-dimensional cylinder

S' xR (2.28)

It is easy to verify that the given equation is equivalent to a dynamical system with variable
dissipation with zero mean on the tangent bundle T'S* (or (2.28)) of a one-dimensional sphere (circle).
Moreover, the following theorem holds.

Theorem 2.2. Under conditions (2.4) and (2.14), system (2.1) is equivalent to Eq. (2.27).

Indeed, it suffices to take o = 0 and b = —b,.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity. Chap-
ter 2 is devoted to the dynamics of a two-dimensional rigid body on the plane. In the present section,
we examine the case of motion where the moment of forces depends on the angular velocity. We
introduce this dependence in more general terms. In addition, this point of view will also allow us to
introduce this dependence for three-dimensional and higher-dimensional bodies.

Let © = (x1n, x2n) be the coordinates of the point N of application of a nonconservative force (inter-
action with a medium) to a one-dimensional plate and @ = (@1, (Q2) be the components independent
on the angular velocity. We consider only the linear dependence of the functions (z1x, zon) = (zN,yN)
on the angular velocity since the introduction of this dependence itself is not a priori obvious (see [33,
34, 48, 49, 57-66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274-276, 440].

Thus, we accept the following dependence:

z=Q+R, (2.29)

where R = (Ry, Ry) is a vector-valued function containing the angular velocity. Here, the dependence
of the function R on the angular velocity is gyroscopic:

(R 1/(0 —=Q\ [l
R= <R2> T <Q 0 > <h2> ’ (2.30)
where (hq, he) are positive parameters (cf. [322, 330, 331, 345, 393]).
Since 1y = zny = 0, we have for our problem

Q
ToN =yn = Q2 — M Y (2.31)
3.2. Reduced system. Similarly to the choice of Chaplygin analytical functions [50, 51]
Qo= Asina, A >0, (2.32)

we take the dynamical functions s and yy as follows:
Q Q
s(a) = Beosa, yn <a, v> = Asina — hv’ A, B,h=h1 >0, v#0 (2.33)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity).

Then, owing to the nonintegrable constraint (2.4), outside the manifold (2.8) (and only outside it),
the dynamical part of the equations of motion (system (2.9)) has the following form:

&= —<1 + UBh)Q + o ABv sin o,

I g (2.34)
. ABv? . Bhv
Q= sin avcos o — 7 Q cos a.
Introducing the dimensionless variable, the parameters, and the differentiation as follows:
AB Bh
Q=novw, nd= , b=onyg, Hi= , (Y =nov{’), (2.35)
I ITLO
we reduce system (2.34) to the form
o = —(1+4bHp)w + bsina,
. (2.36)
w' = sinacosa — Hiw cos a.
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3.3. Complete list of invariant relations. We put in correspondence to system (2.36) the fol-
lowing nonautonomous first-order equation:

dw sinacosa — Hiwcos o

= . 2.
doe —(14bHj)w+bsina (2:37)
Using the substitution 7 = sin «, we rewrite Eq. (2.37) in the algebraic form:
d - H
“ T (2.38)

dr — —(14bHy)w + br’

Introducing the homogeneous variable by the formula w = ur, we reduce Eq. (2.38) to the following
quadrature:

(b— (1+bH)u)du  dr
1_(b+H1)U+(1+bH1)u2 o T (239)

Integration of quadrature (2.39) leads to the following three cases. Simple calculations yield the
following first integrals:
L. |b— Hi| <2:

In(1 — (b+ Hy)u + (1 + bH;)u?)

— arctan

2_COIlS . .
S (b H)? Vi (b H)? +1In7? = const. (2.40)

1I. |b— H1| > 2:

1

|+ bH, In|l — (b+ Hy)u+ (1 +bH)u?| +In7?

3/2, _ _ 2 _
by/1 + bH, ‘2(1+le) u—(b+ H)V1+bH + /(b — Hi)? —4] _ (2.41)

+ n
V(b= H)?2 =4 [2(1+bH)32u— (b+ Hi)v/1+bHy — /(b — Hy)? — 4
IIL. |b — Hy| = 2:

B b+ Hy
2(1+bH,)

b— H

1
. 21 + bHy)u — (b + Hy)

u

+In|7| = const. (2.42)

The obtained first integrals have a rather cumbersome form in the variables (a,w). However, for
the case III, we present it in the explicit form:

w— b+ M sina | ex (b= Hy)sina = const (2.43)
2(1 + bHy) P20 + bH)w — (b + Hy)sina | ' ‘

Therefore, in the considered case, the system of dynamical equations (2.1) has two invariant re-
lations: the analytical nonintegrable constraint (2.4) and the first integral expressed by relations
(2.40)-2.42 (or, in particular, (2.43) in the case III), which is a transcendental function of its phase
variables (in the sense of complex analysis) and is expressed as a finite combination of elementary
functions.

Theorem 2.3. Under conditions (2.4) and (2.33), system (2.1) possesses two invariant relations (a
complete set), one of which is a transcendental function (in the sense of complex analysis). Both
relations are expressed as finite combinations of elementary functions.
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3.4. Topological analogies. We consider the following second-order equation:
é+(b* —Hl*)90050+sin90050:0, by, Hi, > 0. (2.44)

It describes a fixed pendulum in a flowing medium in the case where the moment of forces depends
on the angular velocity, i.e., the mechanical system in a nonconservative force field (see [265]).
Its phase space is the two-dimensional cylinder

S' xR (2.45)

It is easy to verify that the given equation is equivalent to a dynamical system with variable
dissipation with zero mean on the tangent bundle T'S! (or (2.45)) to the one-dimensional sphere
(circle). Moreover, the following theorem holds.

Theorem 2.4. Under conditions (2.4) and (2.14), system (2.1) is equivalent to Eq. (2.44).

Indeed, it suffices to set « = 6, b = —b,, and Hy = —H;,.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

CHAPTER 3

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
ON THE TWO-DIMENSIONAL PLANE, II

In this chapter, we systematize some earlier and new results on the study of the equations of motion
of dynamically symmetric two-dimensional (2D) rigid bodies in nonconservative force fields. The form
of these equations is taken from the dynamics of real rigid bodies interacting with a resisting medium
by laws of jet flows where a body is influenced by a nonconservative tracing force. Under the action
of this force, the center of mass of the body moves rectilinearly and uniformly; this means that there
exists a nonconservative couple of forces in the system (see also [1, 64, 70, 72, 119-121, 157, 164-167,
180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier (see [164-167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities having essential singularities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under a Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (one-
dimensional plate) in the field of a resisting force under the assumption of quasi-stationarity [28, 50,
51, 62-66, 98, 112, 119-121, 160-169, 171, 431, 432]. If (v, ) are the polar coordinates of the velocity
vector of a certain typical point D of a rigid body (D is the center of the plate), €2 is its angular
velocity, and I and m are the characteristics of inertia and mass, then the dynamical part of the
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equations of motion (including also Chaplygin analytical functions [50, 51|, see below) in which the
tangent forces of the interaction of the body with the medium are absent, has the form

veosa — avsina — Qusina + 0Q? = J;w,
izsina+dvcosoz—|—chosoz—aQ:0, (3.1)
IN = yy <a, 2) s(a)v?,
where
F, =-S5 S=s(av?’ ¢>0 v>0. (3.2)

The first two equations in (3.1) describe the motion of the center of mass on the two-dimensional
Euclidean plane E? in the coordinate system Dxzjxy attached to the body. Here Dz is the perpen-
dicular to the plate passing through the center of mass C of the symmetric body and Dx4 is an axis
along the plate. The third equation of (3.1) is obtained from the theorem on the change of the angular
moment of a rigid body.

Thus, the direct product

R! x 8! x s0(2) (3.3)
of the two-dimensional cylinder and the Lie algebra so(2) is the phase space of system (3.1).

If we consider a more general problem on the motion of a body under the action of a certain tracing

force T passing through the center of mass and providing the fulfillment of the equality

V¢ = const, (3.4)

during the motion (V¢ is the velocity of the center of mass, see also [164-167]), then Fj in system
(3.1) must be replaced by zero since the nonconservative couple of the forces acts on the body:

T —s(a)w?=0, o=DC. (3.5)
Obviously, we must choose the value of the tracing force T as follows:
T =Ty(a, Q) = s(a)v?, =-S. (3.6)

The choice (3.6) of the magnitude of the tracing force T is a particular case of the possibility of
separation of an independent second-order subsystem after a certain transformation of the third-order
system (3.1).

Indeed, let the following condition hold for T':

T=T,(a,Q) =1 <a, Q>vz + 7 <a, Q>Qv + 73 <a, Q>§22 =T <a, Q>v2. (3.7)
v v v v

We can rewrite system (3.1) as follows:

T <a, ?)212 — s(a)v?

2 Q
0+ 0Q%cosa — osina [v YN (a, > s(a)] = cos a,
1 v m

. v? Q 9 .
av 4+ Qu — o cos a un{e s(a)| —oQsina =

.v? Q
Q= .
Fo (e )st@)

If we introduce the new dimensionless phase variable and the differentiation by the formulas

s(a)v? — Ty (« Q) v? (3.8)

’ v
m

Q=npvw, {)=nw{), n3 >0, n;=const, (3.9)
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then system (3.8) is reduced to the following form:

v =0¥(a,w), (3.10)
T _
o = —w+ onw?sina + [ 7 yn (a, nqw) s(oz)} cosa— ! (o, mw) = s() sin a, (3.11)
Inq mnq
W ! (a,nw) s(a) —w 7 (a,nw) s(@) | sina
p—y w —
In%yN » 11 InlyN 11
T _
+onwlcosa—w (a;mw) = 5(a) cos a,
mni
T _
¥U(a,w) = —onjw? cos a + [ ’ yn (o, nw) s(a)] sina+ ' (a maw) = s(a) Cos Q.
Ing mni

We see that the independent second-order subsystem (3.11) can be substituted into the third-order
system (3.10) and can be considered separately on its own two-dimensional phase cylinder.

In particular, if condition (3.6) holds, then the method of separation of an independent second-order
subsystem is also applicable.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51]),
we take the dynamical functions s and yy as follows:

Q
s(a) = Beosa, yn (a, v) =yo(a) = Asinay, A,B>0, v#0, (3.12)

which shows that for the considered system, the moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angle «).

Then, owing to the of conditions (3.4) and (3.12), the transformed dynamical part of the equations
of motion (system (3.10), (3.11)) has the following form:

v =00 (a,w), (3.13)

= —w+ bsinacos? a + bw?sina,
(3.14)

O/
/A ) 3

w' = sin a cos @ — bw sin” v cos o + bw” cos a,
(o, w) = —bw? cos a + bsin? o cos av.

Here we choose the dimensionless variable, the parameter b, and the constant n; as follows:

AB
b=ong, ng= ;o m=no. (3.15)

Therefore, system (3.13), (3.14) can be considered on its own three-dimensional phase cylinder

Wi =R {v} x S'{a mod 27} x RN {w}. (3.16)
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2.2. Complete list of first integrals. The independent second-order system (3.14) was extracted
from system (3.13), (3.14).

Note that the magnitude of the velocity of the center of mass is a first integral of system (3.1) by
virtue of (3.4), since the function of the phase variables

To(v, a, Q) = v% 4 0%Q% — 20Qusina = V2 (3.17)

is constant on its phase trajectories.
By virtue of the nondegenerate change of the independent variable (for v # 0), system (3.13), (3.14)
also has an analytical integral since the function of the phase variables

Uy (v, 0, w) = v2(1 4 b*w? — 2bwsina) = V2 (3.18)

is constant on its phase trajectories.

Equality (3.18) allows one to find the dependence of the velocity of a certain point of a rigid body

(namely, the center of the plate) on other phase variables without the solution of system (3.13), (3.14),
since the equality

V2

2 C

= 3.19
1+ 02w? — 20wsin ( )

v

holds for Vg # 0.

Since the phase space (3.16) of system (3.13), (3.14) is three-dimensional and there exist asymptotic
limit sets in the phase space, Eq. (3.18) defines a unique analytical (even continuous) first integral of
system (3.13), (3.14) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152-154, 156, 213,
427, 438)).

We consider in detail the problem of the existence of the second (additional) first integral of system
(3.13), (3.14). Its phase space is stratified into surfaces

{(v,a,w) € Wy : Vo = const}, (3.20)

on which the dynamics is defined by means of the first integral of system (3.14).
We associate the separated second-order system (3.14) with the following nonautonomous differen-
tial equation:

dw T+ bwlw? — 72 )
dr  —w+br +br[w? -7’ T she (3.21)
Introduce the following notation (cf. [181]):
Ci=2-b, Cy=0>0, C3=-2-b<0. (3.22)
After the change of variables
U =w-—71, U] =w-+T, (3.23)
Eq. (3.21) is transformed to the form
b b 9 b b 9
duid — [1+ 5 uy + 2211 +buvy p =dvi (1 — 5 v1 + 2u1 + bujvy p. (3.24)
Then, using two substitutions
Uy = Ultl, ’U% = D1, (3.25)
we reduce Eq. (3.24) to the Bernoulli equation
d
201 {Cota +C +20stm} = 1 {C1 = Gt} (3.26)

which can be easily transformed to a linear nonhomogeneous equation by the substitution p; = 1/¢;:

¢, = ai(t1)q1 + as(t1), (3.27)
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where

Q(Ogtl + 02) 405t

t1) = t . 3.28
alt) =" 2= o (3.28)
The solution of the uniform part of Eq. (3.27) is found from the equality
(Cgtl + Cg)dtl
om(t1) = kexpW(t), W(t;) =2 . 3.29
unon(tn) = kespW(t), W) =2 [ 7 (3.29)
Consider the following three cases for calculation of integral (3.29).
I.C,>0(b<2):
Cy Cs
W(t1) = In(—C5t + C) — 2 t \/ ®t1 + const . 3.30
(t1) = In(—Cst] 1) J-C1Cs arctan o b cons (3.30)
II. C; <0 (b>2):
Cy V=C1+V—Cst,
W(t1) =In| — Cst] + Cq| + 1 ‘ + const . 3.31
(t1) =In| 311 1 VC1Cs n J—Cy — /—Cst, cons ( )
III. ¢, =0 (b= 2):
1
W(tl) =2In ‘tl‘ + " . (332)
1
Now we have the general solution of the homogeneous equation:
I.b<2:
2b 2+b
q1hom(t1) = k(—Cst? 4+ C1) exp { T i arctan \/2 —_F btl} + const . (3.33)
I1. b > 2: J
V=C1 + v/~ Csty |2V
om(t1) = k(—=C5t8 + C + const . 3.34
@1 hom (t1) = k(=Csti + C1) J-Cy - /- Caty cons (3.34)
II1. b = 2:
1
@1nom(t1) = kt? exp {t } + const . (3.35)
1

To find a solution of the nonhomogeneous equations (3.27), (3.28), we must express the value of &k
as a function of t;. We obtain:

I.b<2:
k(t) = b g© { 2 [ 2 , Sin2¢ — 2cos 2(} } + const (3.36)
X — , .
' Plva—p2|va-
where
2 — b
tan( = \/2 n b (3.37)
II. b > 2: )
k(ty) = +|c|/ VP4 b/V/b?—4+2 + const, 3.38
AL NS (339
where
b—2(1-¢
t] = . .
! \/b+2<1+§> (3.39)
IIL. b = 2: ) .
t
k() = —21 " exp{ - } (3.40)
t1 t1

Thus, Egs. (3.33)—(3.40) allow one to obtain the required first integral of system (3.14) (and an
additional first integral of system (3.13), (3.14)), which is a transcendental function of its own phase
variables and is expressed as a finite combination of elementary functions.
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We present the obtained first integral only in the case ITI because of the complexity of other cases:

{sina+w}1—4wsina—|—4w2
ex

(w — sina)? = ('] = const. (3.41)

sina —w

Therefore, the system of dynamical equations (3.13), (3.14) has two invariant relations (first inte-

grals) in the considered case: there exists an analytical first integral of the form (3.18) and also a
transcendental first integral, which can be obtained by means of Egs. (3.33)—(3.40).

Theorem 3.1. System (3.13), (3.14) possesses a complete list of first integrals, one of which is an
analytical function and the second is a transcendental function of the phase variables expressed as a
finite combination of elementary functions.

It is necessary to repeat an important remark. In fact, the obtained integral is transcendental
from the point of view of the theory of elementary functions (i.e., not algebraic). In this case, the
transcendence is understood in the sense of the theory of functions of complex variables, when the
formal continuation of the function to the complex domain has essential singular points that correspond
to attractive and repelling limit sets of the considered dynamical system.

2.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 3.2. The first integral of system (2.1) under conditions (2.4) and (2.14) is constant on the
phase trajectories of system (3.13), (3.14).

Proof. We prove the theorem for the case b = 2. Rewrite the first integral (3.41) in the following form:

ex {nov S%n o } i 2rovsine U = const . (3.42)
novsina —

(Q — novsin «)?
We see that the numerator of the second multiplier is proportional to the square of the velocity of the
center of mass V¢ of a rigid body with the constant coefficient n%. But, by virtue of (3.17), the given

value is constant on trajectories of system (3.13), (3.14). This means that the function

novsin o + V02
= t 3.43
P { novsina — } (Q — novsin a)? cons (3:43)

is also constant on its trajectories.

Now we raise the left-hand side of Eq. (3.43) to the power (—1/2) and conclude that the following
function is also constant on phase trajectories of system (3.13), (3.14):

{ Q + ngvsin o
exp 1,

@t =~ novsina) = : 44
(Q — nou sin a) }( v S Oé) const (3 )

Dividing Eq. (3.44) by /e, we obtain the function

exp { ~ oS }(Q — nousin o) = const, (3.45)

— nousin a

which is constant on phase trajectories of system (3.13), (3.14). But the first integral (3.45) is com-
pletely similar to the first integral (2.26), as is required. [

Thus, we have the following topological and mechanical analogies in the sense explained above.

(1) Free motion of a rigid body in a nonconservative force field under a tracing force (in the presence
of a nonintegrable constraint).

(2) A motion of a fixed physical pendulum in a flowing medium (nonconservative force fields).

(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves
rectilinearly and uniformly.
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On more general topological analogues, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence on the moment of the angular velocity and the reduced system. We
continue to study the dynamics of a two-dimensional rigid body on the plane. This section (similarly
to the corresponding section of Chap. 2) is devoted to the study of the case of the motion where the
moment of forces depends on the angular velocity. We introduce this dependence in the same way as
was done in the previous chapter. We also recall that this point of view will also allow us to introduce
this dependence for three-dimensional and higher-dimensional bodies.

Let © = (x1n,22n) be the coordinates of the point N of application of a nonconservative force
(interaction with a medium) to a one-dimensional plate, and let Q@ = (Q1,Q2) be the components
that are independent of the angular velocity. We consider only the linear dependence of the functions
(1N, 22n) = (zn,yn) on the angular velocity since the introduction of this dependence itself is not
a priori obvious (see [33, 34, 48, 49, 57-66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274-276, 440]).

Thus, we accept the following dependence:

r=Q+R, (3.46)

where R = (Ry, Ry) is a vector-valued function containing the angular velocity. Here, the dependence
of the function R on the angular velocity is gyroscopic (see also the previous chapter):

()-8 )

where (hq, he) are certain positive parameters (cf. [322, 330, 331, 345, 393]).

Since x1y = zny = 0, we have
Q

ToN :yN:QQ—hlv. (3.48)
Similarly to the choice of the Chaplygin analytical functions (see [50, 51])
Q2 = Asina, A >0, (3.49)
we take the dynamical functions s and yy as follows:
Q Q
s(a) = Beosa, yn (a, v) = Asina — hv’ A B,h=h; >0, v#0, (3.50)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity).

Then, owing to the conditions (3.4) and (3.50), the transformed dynamical part of the equations of
motion (system (3.10), (3.11)) has the following form:

v =00 (a,w), (3.51)
o = —w+ bsinacos? o + bw? sin v — bHyw cos? a,

w' = sina cos a — bwsin® o cos a + bw cos o + bHyw? sin a cos o« — Hyw cos a, (3.52)
TU(a,w) = —bw? cos a + bsin? a cos o« — bHyw sin a cos .

Just as was done earlier, we choose a dimensionless variable, the parameters b and H;, and the constant
n1 as follows:

ny = ng. (3.53)
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Therefore, system (3.53), (3.52) can be considered on its three-dimensional phase cylinder
Wi =Rl {v} x S'{a mod 27} x R'{w}. (3.54)

3.2. Complete list of first integrals. The independent second-order system (3.52) was extracted
from system (3.51), (3.52).
We note that the magnitude of the velocity of the center mass is a first integral of system (3.1) by
virtue of (3.4) and, therefore, the function of phase variables (3.17) is constant on its phase trajectories.
By virtue of a nondegenerate change of the independent variable (for v # 0), system (3.51), (3.52)
has also an analytical integral and, therefore, the function of the phase variables

Uy (v, 0, w) = v2(1 4 b*w? — 2bwsina) = V2 (3.55)

is constant on its phase trajectories.

Equality (3.55) allows one to find the dependence of the velocity of a certain point of a rigid body
(namely, of the center of the plate) on the other phase variables without solution of the system (3.51),
(3.52); therefore, Eq. (3.19) holds for Vi # 0.

Since the phase space (3.54) of system (3.51), (3.52) is three-dimensional and there exist asymptotic
limit sets in the phase space, we see that Eq. (3.55) defines a unique analytical (even continuous) first
integral of system (3.51), (3.52) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152-154,
156, 213, 427, 438)).

We consider in detail the problem of the existence of the second (additional) first integral of system
(3.51), (3.52). Its phase space is stratified into surfaces (3.20) on which the dynamics is defined by
means of the first integral of system (3.52).

We associate the separated second-order system (3.52) with the following nonautonomous differen-
tial equation:

do = T4 bww? — 7%+ Hiwlbwr — 1]
dr  —w+br +br[w? — 72 — bHjw(l — 72)’
Then, after the change of variables

T =sina. (3.56)

Uy =w-—71, v =w+T, (3.57)

Eq. (3.56) takes the form
b bH1 H1 b bH1 H1 le
dul{—u1<1+2+ 5 + 2>—|—vl<2— 5 2>}+du1{bulv%+ 4 vl(v%—u%)}

B b bHy H b bHy M o, OH1 oo o
—dvl{u1<2—|— 5 2)—1—211(1—2— 5 2>}—|—dv1{bu1v1—|— 4 up(vy —uy) p. (3.58)

Later, using two substitutions

uy = 'Ultl, 1)% = P1, (359)
we reduce Eq. (3.58) to the Bernoulli equation
d
2p1{—Aat1 + Ay + bpi(ty + Hi(1 - 17)/4)} = d];l {As + bHyt1 + Asti}, (3.60)
where
b bHy Hy b bHy,  H b bH,
A1—2 5 o A2—1+2+ 5 +2>O, A3 =1 5T o 5 - (3.61)

By the substitution p; = 1/¢1, Eq. (3.60) can be easily transformed to the linear nonuniform
equation

¢; = a1(ti)q1 + az(t1), (3.62)
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where

(Agtl Al) 2b(—t1 + Hl(t% — 1)/4))

t t1) = 3.63
alt) = 4 2t2 + bHyt) + As’ as(t) Aot? + bHyty + As (3.63)
The solution of the homogeneous part of Eq. (3.62) is found from the equality
Aoty — Aq)dt
Griom(t1) = kexpW(t1), W(t;) = (Asts — Ay )dty (3.64)

Aot? + bH ity + As’
We consider the following three cases of calculation of integral (3.64).
I.|b— Hi| < 2:
W (t1) = In(Agt? + bHyty + A3)
2(b—bHy — Hy) 2+b+bH1+H1 bH;
A= (b— Hy)? Ct{\/4 (b— Hy)? \/4 (b— Hy)2
IL. |b— Hy| > 2:

} + const. (3.65)

W (t1) = In|Agt? + bH it + As|
b—bH, — H; V=44 (b— Hi)2+ (2+ b+ bHy + Hy)ty +bH;
=4+ (b— Hyp)? n'\/—4+(b—H1)2 —(2+b+bHy + Hy)ty — bH,
IIL. |b— Hy| = 2:

+ const. (3.66)

bH1 bH; + 24 24,
W(t1) =2In|t t. .
(t1) n |t + 94y + A, 9 Ayt 1 bH, + cons (3.67)
Now we write the general solution of the homogeneous equation:
I |b— Hy| < 2:
Gihom (t1) = k(Ast] + bH1ty + A3)
2(b—bH, — H 2+b+bH1+H bH
xexp{— ( ! l)ar tan{ TOtOHL 1t ! }} (3.68)
NZ VA - (b— Hy)? \/4 (b— Hyp)?
1I. |b— H1| > 2:

Q1hom (t1) = k(Agt? + bH t) + A3)

\/ 4+ ) —(2+b+bH; + Hy)t; — bH, )
0. [~ | = 2.
bH 2 2(b—H1)
Q1hom(t1) = k‘(tl + 2A2> exp { (2 b+ bH; + Hl)tl 4 bH, } (370)

To find a solution of the nonhomogeneous equation (3.62), (3.63), we find k as a function of ¢y,
which is expressed as a finite combination of elementary functions. The obtained first integrals have
a rather cumbersome form. However, for the case 111, we present it in the explicit form.

Thus, the corresponding equations allow one to obtain the required first integral of system (3.52)
(and the additional first integral of system (3.51), (3.52)), which is a transcendental function of its
phase variables and is expressed as a finite combination of elementary functions.

In the case ITI, the required first integral has the form

. p{ —2(b— Hy)sina 1 — dwsin a + 4w?
( (

=(C] = t. 3.71
2(14+bHy)w — (b+ Hy)sina | (w—2sina/(b+ Hy))? L= com (3:71)
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Therefore, the system of dynamical equations (3.51), (3.52) has two invariant relations (first inte-
grals) in the considered case: an analytical first integral of the form (3.55) and also a transcendental
first integral which can be obtained by using Egs. (3.65)—(3.71).

Theorem 3.3. System (3.51), (3.52) possesses a complete set of first integrals, one of which is an
analytical function and the other is a transcendental function of the phase variables expressed as a
finite combination of elementary functions.

It is necessary to repeat an important remark. In fact, the obtained integral is transcendental
from the point of view of the theory of elementary functions (i.e., not algebraic). In this case, the
transcendence is understood in the sense of the theory of functions of complex variables, when the
formal continuation of the function to the complex domain has essential singular points that correspond
to attractive and repelling limit sets of the considered dynamical system.

3.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 3.4. Under conditions (2.4) and (2.33), the first integral of system (2.1) is constant on
phase trajectories of system (3.51), (3.52).

Proof. We prove the theorem for the case |b — Hi| = 2. Indeed, we rewrite the first integral (3.71) as
follows:

—2n02)(b — Hl) sin o } ngvz - 47101)9 sina + 492 — const . (372)

P { 2(1 4+ bH1)Q — nov(b+ Hy)sina | (Q — 2novsina/(b+ Hy))?
We see that the numerator of the second multiplier is proportional to the square of the velocity of the
center of mass V¢ of a rigid body with a constant coefficient. But, by virtue of (3.17), this value is
constant on trajectories of system (3.51), (3.52). This means that the function

. —2ngv(b — Hp)sina %
P 2(14+bH1)Q — nov(b+ Hy)sina | (Q — 2novsina/(b+ Hy))?
is also constant on its trajectories.

Now we raise the left-hand side of Eq. (3.73) to the power (—1/2) and conclude that the following
function is also constant on phase trajectories of system (3.51), (3.52):

= const (3.73)

nov(b — Hy)sina .
2-2 Hy)) = const. 74
exp{2(1+bH1)Q —nov(b+ Hp)sina ( novsina/(b+ Hy)) = const (3.74)

Now it is clear that function (3.74) is equivalent to function (2.43) since, in the case III, the equality
(b+ Hy)? = 4(1 4+ bH,) (3.75)
holds. Thus, the required analogy is proved. [ ]

Similarly to the previous chapters, we have the following topological and mechanical analogies in
the cases (2.33), (3.50).

(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the
presence of a nonintegrable constraint).

(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).

(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves
rectilinearly and uniformly.

On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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CHAPTER 4

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
IN THE THREE-DIMENSIONAL SPACE, I

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of dynamically symmetric three-dimensional (3D) rigid bodies in nonconservative force fields.
The form of these equations is taken from the dynamics of real rigid bodies interacting with a resisting
medium by laws of jet flows where a body is influenced by a nonconservative tracing force; under action
of this force, the magnitude of the velocity of some characteristic point of the body remains constant,
which means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119-121,
157, 164-167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164-167]), the author has already proved the complete integrability of the equations of
a plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In [193, 196, 202, 204, 208, 209, 218, 232, 241], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete set of transcendental
first integrals. It was assumed that the interaction of the medium with the body is concentrated on a
part of the body surface that has the form of a planar (two-dimensional) disk.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under the Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (two-
dimensional disk) in the field of a resisting force under the assumption of quasi-stationarity (see [28,
50, 51, 62-66, 98, 112, 119-121, 160-169, 171, 431, 432]). If (v,a, B1) are the spherical coordinates
of the velocity vector of a certain typical point D of a rigid body (D is the center of the disk lying
on the symmetry axis of the body), {Q1,2,Q3} are the projections of its angular velocity € to the
coordinate axes of the coordinate system Dxjxox3 attached to the body, where the symmetry axis
CD coincides with the axis Dx; (C is the center of mass), and the axes Dzo and Dzxj lie in the
hyperplane containing the disk, I1, Is, Is = Is, and m are the characteristics of inertia and mass, then
the dynamical part of the equations of motion (including the case of Chaplygin analytical functions
[50, 51], see below), where the tangent forces of the interaction of a medium with the body are absent,
has the following form:

F,
¥ cos o — Gusin o + Qovsin asin B — Qzvsinacos By + (25 +Q3) = 7, (4.1a)
m

¥ sin «v cos B1 + v cos a cos B — Blv sin asin 31 + Q3v cos « (4.1b)
—Musinasin B; — o Qs — 03 = 0, .
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vsinasin 81 + &v cos asin B + Blv sin aecos 81 + Qv sin « cos Bq

i (4.1c)
—Qovcosa — a21Q3 + o€l =0,
LO =0, (4.1d)
) Q

L + (11 — L) Q3 = —2n (04”317 y >3(0¢)027 (4.1e)

. (@) 9
IgQg —+ (Ig — 11)9192 = YN Oé,,Bl, v s(a)v , (4.1f)

where

F,=-5 S=s(av? ¢>0 v>0. (4.2)

The first two equations of (4.1) describe the motion of the center of mass in the three-dimensional
Euclidean space E? in the projections on the system of coordinates Dzixsx3. The second three
equations of (4.1) are obtained from the theorem on the angular momentum of rigid body in the
Konig axes.

Thus, the direct product of the three-dimensional manifold by the Lie algebra so(3)

R! x 8% x s0(3) (4.3)

is the phase space of the sixth-order system (4.1).
We note that system (4.1), by virtue of its dynamical symmetry

I, = I3, (4.4)
possesses the cyclic first integral
Q1 = QY = const . (4.5)
Therefore, we consider the dynamics of the system on the zero level:
QY =o. (4.6)

If we consider a more general problem on the motion of a rigid body under the action of a tracing
force T passing through the center of mass and providing the fulfillment of the condition

v = const (4.7)
during the motion (see also [164-167]), then F, in system (4.1) must be replaced by
T — s(a)v®, o= DC. (4.8)

As a result of an appropriate choice of the magnitude T of the tracing force, we can achieve the
fulfillment of Eq. (4.7) during the motion. Indeed, if we formally express the value T by virtue of
system (4.1), we obtain (for cos a # 0):

T = Tv(avﬁlv Q) = ma(Q% + Q?’))
T s(a)? [1 _ mo sina |:ZN <a, B, 2) sin 81 + yn <a, B, 2) cos ,81”. (4.9)

I cosw

Note that we have used conditions (4.5)—(4.7) to obtain Eq. (4.9).

This procedure can be viewed from two standpoints. First, a transformation of the system has
occurred for the presence of a tracing (control) force in the system which provides the corresponding
class of motions (4.7). Second, we can consider this procedure as a procedure that allows one to reduce
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the order of the system. Indeed, system (4.1) generates an independent fourth-order system of the
following form:

& cos acos B1 — Brusinasin f1 + Q3vcosa — of2g = 0,

Qo cos asin B1 4+ Prvsinacos B1 — Q9v cos a + 29 = 0,

J <a, b, if)s(a)v?, (4.10)

. Q
Qs =yn <Oé7 B, v>8(04)’027

where the parameter v is added to the constant parameters specified above.
System (4.10) is equivalent to

v cos a + v cos a [z cos B — Qosin fi] + o {—Qg cos B1 4 )y sin 51] =0,

Byvsina — v cos o [Qgcos B + Qssin 1] + o [Qg cos B1 + 3 sin 51] =0,

. 2 Q 4.11

Q2 = _U ZN <Oé, 617 >S(Oé), ( )
IQ v

. v? Q
Q3_ I2yN<04, ﬁl) U>8(a).

We introduce new quasi-velocities in the system:

z1 = Q29 cos B1 + Q3 sin Fq,

4.12
29 = —§98in By + Q3 cos [. ( )

As is seen from (4.11), on the manifold
O:{(a,ﬁl,Qg,Qg)ER4: o= ;rk:, kEZ}, (4.13)

it is impossible to solve the system uniquely with respect to & and ,5’1. Thus, the formal violation
of the uniqueness theorem occurs on manifold (4.13). Moreover, the indefiniteness occurs for even
k because of the degeneration of the spherical coordinates (v, «, 51), and an obvious violation of the
uniqueness theorem for odd k occurs since the first equation of (4.11) is degenerate for this case.

It follows that system (4.11) outside the manifold (4.13) (and only outside it) is equivalent to the
System

Iy cosa

o= —2z2 + ov S(Oé) |:ZN <Oé,61, S) Sinﬁl + YN <Oé,ﬁ1, 2) COSﬁ1:| )
2

2.;2 = z; S(Oé) |:ZN <Oé,61, Q> Sinﬁl + YN <O‘7617 Q) COSﬁ1:|
2 v v

Ccos v s(a Q AN
_Z% - ? ( )Zl |:ZN <a7517 'U> COSIB]. — YN <O[,,81, 'U> Slnﬂl:| ’

sina Iy sino

) (4.14)

) cos v ov s(a)

2 = 2129 . + — s(a) + 29
2

sin av I sina

X |:ZN <Oé, ﬁl) 2) COSﬁl — YN <Oé,ﬁ1, 2) Sinﬁ1:| )

Bl = Zlcosa + 7Y S(Oé) |:ZN <Oé,ﬁ1, 2) COSﬁl — YN <Oé,ﬁ1, 2) SiH61:| .

sina Iy sina

415



In the sequel, the dependence on the variables («, 51,€2/v) must be treated as the composite de-
pendence on («, 81, 21 /v, 22 /v) by virtue of (4.12).

The uniqueness theorem is violated for system (4.11) for odd k on manifold (4.13) in the following
sense: for almost every point of manifold (4.13), there exists a regular phase trajectory of system (4.14)
passing through this point and intersecting manifold (4.13) at a right angle, and also there exists a
phase trajectory that completely coincides with the specified point at all time instants. However, these
trajectories are distinct since different values of the tracing force correspond to them.

Indeed, as was shown above, to satisfy constraint (4.7), it is necessary to choose a value T for
cosa # 0 in the form (4.9).

Let

on () st o 1, ) ) st
lim

a—w/2 CoS &

= L(,Bl, 2) (4.15)

Note that |L| < 400 if and only if

lim
a—m/2

88 <|:ZN <a, 51, Q> sin 81 + ynN <a, 51, Q) cos 61} s(a)> ‘ < +00. (4.16)
Je! v v

The required value of the tracing force for o« = 7/2 can be found from the equality

mo Lv?

4.1
L (417

71,561, = mo(} + 03) -

where the values of {29 and )3 are arbitrary.
On the other hand, if we support the rotation about a certain point W by means of the tracing
force, we must choose the tracing force in the form
0 mu?
T:Tv 27ﬁ17Q = RO ) (418)

where Ry is the distance CW.
Equations (4.9) and (4.18) define, generally speaking, different values of the tracing force T' for
almost all points of manifold (4.13), which completes the proof.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51}),
we take the dynamical functions s, yn, and zy as follows:

s(a) = Bcos a,
51" ) = ol Br) = Asimarcos B
Yn | &, P1, v = Yol\&, P1) = ASM xCOS Oy, (419)
ZN <a7517i)2> :zo(a7ﬁl):ASinaSin/Bl7 A7B>07 21750,

which shows that in the considered system, the moment of nonconservative forces is independent of
the angular velocity (and depends only on the angles « and /).
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Then, owing to the nonintegrable constraint (4.7), outside manifold (4.13) (and only outside it),
the dynamical part of the equations of motion (system (4.14)) has the following form:

. cABv .
o= —2z9+ sin «,
I
. ABv? 9 COS (v
Z9 = sinacosae — 27 .,
I, sin « (4.20)
. cos
21 = 2122 . s
sin v
. cos
=2 . .
sin v
If we introduce dimensionless variables, the parameters, and differentiation as follows:
AB
Zp e novze, k=1,2, nd= L0 b=ong, (-)=mnev(), (4.21)
2
we reduce system (4.20) to the form
o = —z +bsina,
) cos «
2y =sinacosa — 27 |, (4.22)
sin o
, cos
21 = 2122 . )
sin «
cos
Br=2_. . (4.23)
sin «

We see that in the fourth-order system (4.22), (4.23), an independent third-order system (4.22) with
its own three-dimensional manifold is contained. In the sequel, we show that system (4.22), (4.23) can
be considered as a system on the tangent bundle T'S? to the two-dimensional sphere S2.

2.2. Complete list of invariant relations. First, we compare the third-order system (4.22) with

the nonautonomous second-order system
dzz  sinacosa — 2?2 cosa/sina
da —2z9 + bsin« ’ (4.24)
dz;  z129cosa/ sin «

do  —2z9+bsina
Using the substitution 7 = sin «, we rewrite system (4.24) in the algebraic form:

dzg  T—23)T
dr  —z + b7’

4.25
dz1 2127 ( )
dr  —z9 4+ br’

Further, if we introduce the uniform variables by the formulas
zr = upT, k=1,2, (4.26)
we reduce system (4.25) to the following form:
d 1—u?
T dU2 +ug = ulb,
duq o ULUY
T _=
dr T —ug b
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which is equivalent to
dup  1—u?+u3—buy

T )
du;  2uiug — bug
T =
dr —ug + b
We compare the second-order system (4.28) with the nonautonomous first-order equation
dug 1 —u? +u3 —buy (4.29)
du1 N 2’LL1’LL2 — b’LLl ’ '
which can be easily reduced to the exact differential equation
5+ ui—bug+1
d <“2 U o > = 0. (4.30)
Ui
Therefore, Eq. (4.29) has the first integral
2 2 _ b 1
uptup—bup C1 = const, (4.31)
u1
which in the old variables has the form
z%—l—z%—bz2sina+sin2a:Clzconst' (4.32)

21 sin o

Remark 4.1. We consider system (4.22) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282-286, 291, 295, 309, 324, 333, 340, 384, 301, 404-408, 412, 413, 421, 437, 438)),
which becomes conservative for b = 0:

O/ = —Z9,
zh = sinacosa — chosoz
2= Lana’ (4.33)
, Cos &
zy =2122 . -
sin «
It has two analytical first integrals of the form
22 + 22 +sin® a = C} = const, (4.34)
z1sina = C5 = const . (4.35)

It is obvious that the ratio of the first integrals (4.34) and (4.35) is also a first integral of system
(4.33). However, for b # 0, both functions

22 + 22 —bzysina + sin® a (4.36)

and (4.35) are not first integrals of system (4.22), but their ratio is a first integral of system (4.22) for
any b.

Later on, we find the obvious form of the additional first integral of the third-order system (4.22).
For this, we transform the invariant relation (4.31) for u; # 0 as follows:

b\ c\? B+
_ — = —1. 4.
<u2 2> + <U1 9 > 4 ( 37)
We see that the parameters of the given invariant relation must satisfy the condition
b2+ C?—4>0, (4.38)

and the phase space of system (4.22) is stratified into a family of surfaces defined by Eq. (4.37).
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Thus, by virtue of relation (4.31), the first equation of system (4.28) has the form

2(1 — 2) —
Tdu2 _ ( bUQ + U2) ClUl(Ol,UQ)’ (439)
dr —ug +b
where

1
Ur(Cy,us) = 2{Cli\/012—4(u§ —buQ+1)}, (4.40)

and the integration constant C is chosen from condition (4.38).
Therefore, the quadrature for the search of an additional first integral of system (4.22) has the form

/ dr / (b — ug)dus ' (4.41)
2(1 — bug +u3) — C1{C1 £ \/C} — 4(u3 — bus + 1)} /2
Obviously, the left-hand side up to an additive constant is equal to
In |sin . (4.42)
If
Uy — g =wy, b =b"4+C%—4, (4.43)

then the right-hand side of Eq. (4.41) has the form

1 / d(b? — 4w?) L / dun
4] (13 - 4w}) £ C1/13 — 4w} (0 — 4w}) £ C1/b3 — 4w}

1 — 4w? b
=—_1 eS| 4.44
2 C 2°h (444)
where
b? — dw? 4.45
/ \/b2 w3 ws + 01 \/ U ( )
In the calculation of integral (4.45), the following three cases are possible.
Lb>2:
1 b2 — 4+ /b3 — w?
n=- N R A S Y
2v/b? — wy £+ Cy N
1 Vb2 — 4 — /b3 — w? Cy
+ In 1 3 + const. (4.46
2Vb2 — ‘ w3 + C4 $\/b2—4 (4.46)
II. b < 2:
1 . +Ciws + b3
I = arcsin + const . 4.47
YT A b1 (w3 = C1) (4.47)
III. b = 2:
I A + const . (4.48)
b 01(w3 + 01) '
When we return to the variable
Z9 b
= — 4.4
Y1 Gina 2 (4.49)

we obtain the final form for the value I:
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I.b > 2:

[ . Vb2 — 4+ 2uy C
P oo | w0y VB — 4
1 \/b2 —4 F 2wq Cl
+ In + const. (4.50
262 — 4 \/b%—4w%i(3’1$\/b2—4 (4.50)
I1. b < 2:
1 +C1\/b? — dw? + b?
I = arcsin 1/~ dui 4 b + const . (4.51)
V4 — b2 by (/b3 — 4w} £ Cy)
I b = 2: )
I . + const . (4.52)

=F

Cl(\/b% - 4'LU% + Cl)

Thus, we have found an additional first integral for the third-order system (4.22), i.e., we have a
complete set of first integrals that are transcendental functions of the phase variables.

Remark 4.2. In the expression of the found first integral, we must formally substitute the left-hand
side of the first integral (4.31) instead of C;. Then the obtained additional first integral has the
following structure similar to the transcendental first integral from the planar dynamics):

z z

ln|sina|+G2<sina, =2 > = Cy = const . (4.53)
sina’ sin &

Thus, we have already found two independent first integrals for the integration of the fourth-order

system (4.22), (4.23). For its complete integrability, it suffices to find one additional first integral,
which attaches Eq. (4.23).

Since
d’LLl _ ul (2U2 — b) dﬂl _ Ul (4 54)
dr (b—u)t = dr (b— )T’ ’
we have p
U
= 2u9 — b. 4.55
ag = " (459)
Obviously, for uy # 0, the following equality holds:
1 2
w =, bi\/b§—4<ul—(“;l> , b =0+ CF 4 (4.56)
then integration of the quadrature
d
B1 + const = ﬂ:/ “ ) (4.57)
C
Ja (o)
yields the invariant relation
. 2up -Gy
2(p1 + C3) = *+ arcsin , (5 = const. 4.58
(81 +Cs) Jpicrog (4.58)
In other words, the equality
. 2U1 — Cl
sin[2(81 + C3)] = £ 4.59
2(81 + C3)] SR C? -4 (4.59)
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holds and, returning to the old variables, we obtain

. 221 — Cysina
sin [2(81 +C3)| =+ . 4.60
2081 ) Vb2 +C? — 4sina (4.60)
Thus, we have obtained an additional invariant relation that “attaches” Eq. (4.23). However, we
must formally substitute the left-hand side of (4.31) into the last expression instead of Cf.
We perform certain transformations which lead us to the following form of the additional first
integral:

2 .9 02
tan2(6 + ) = w2t e

; 4.61
u? (4u2 — 4bus + b?) (4.61)
here Eq. (4.31) is used.
Returning to the old coordinates, we obtain an additional invariant relation of the form
(22 — 22 + bzgsina — sin? a)?
tan? [2(81 + C3)| = , 4.62
(2081 + C)] 22(422 — 4bzy sin o + b2 sin’ a) (4.62)
or, finally,
1 22 — 22 + by sina — sin® «
—B1 tan "' 2 = C3 = const . 4.63
& o ATCHAN 21(2z9 — bsin «) 3 = o ( )

Therefore, in the considered case, the system of dynamical equations (4.1) under condition (4.19) has
five invariant relations: an analytical nonintegrable constraint (4.7), the cyclic first integral (4.5), (4.6),
the first integral (4.32), the first integral expressed by relations (4.46)—(4.53), which is a transcendental
function of its phase variables (in the sense of the complex analysis) and is expressed as a finite
combination of elementary functions, and, finally, the transcendental first integral (4.63).

Theorem 4.1. System (4.1) under the conditions (4.7), (4.5), (4.6), and (4.19) possesses five in-
variant relations (the complete set), three of which are transcendental functions (in the sense of the
complex analysis). All these relations are expressed as finite combinations of elementary functions.

2.3. Topological analogies. We consider the following third-order system:

. . Sln
€+ byEcos€ +siné cos& — 1} g:0,
cos &
9 (4.64)
. . .. 14 cos“¢
m + b*771 cos§ + 5771 . =0, b.>0,
cos&siné

which describes a fixed spherical pendulum in a flowing medium in the case where the moment of
forces is independent of the angular velocity, i.e., a mechanical system is in a nonconservative field of
the forces (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386,
392, 429, 442]). In general, the order of this system seems to be equal to 4, but the phase variable n;
is cyclic, which leads to the stratification of the phase space and reduction of order.

The phase space is the tangent bundle

TS2{£77.717£7771} (465)
of the two-dimensional sphere S2{¢, 7}, where the equation of large circles
m=0 (4.66)

defines the family of integral manifolds.

It is easy to verify that system (4.64) is equivalent to the dynamical system with variable dissipation
with zero mean on the tangent bundle (4.65) of the two-dimensional sphere. Moreover, the following
theorem holds.
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Theorem 4.2. System (4.1) under the conditions (4.7), (4.5), (4.6), and (4.19) is equivalent to dy-
namical system (4.64).

Indeed, it suffices to accept a =&, 51 = m1, and b = —b,.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity. We
continue to study the dynamics of a three-dimensional rigid body in the three-dimensional space. This
section is devoted to the study of the case of the motion where the moment of forces depends on the
angular velocity. We introduce this dependence in the general case; this will allow us to generalize
this dependence to higher-dimensional bodies.

Let © = (x1n, 22N, 23n) be the coordinates of the point N of application of a nonconservative
force (interaction with a medium) on a two-dimensional disk and @ = (Q1,Q2,Q3) be the compo-
nents independent of the angular velocity. We introduce only the linear dependence of the functions
(1N, Tan, 3Nn) = (TN, YN, 2n) on the angular velocity since the introduction of this dependence itself
is not a priori obvious (see [33, 34, 48, 49, 57-66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274-276,
4401]).

Thus, we accept the following dependence:

r=Q+R, (4.67)

where R = (R1, Rs, R3) is a vector-valued function containing the angular velocity. Here, the depen-
dence of the function R on the angular velocity is gyroscopic:

Rl 1 0 —QS QQ hl
R = R2 = — Qg 0 —Ql h2 s (4.68)
R Y\, 9 0 hs

where (hi, he, hg) are certain positive parameters (cf. [322, 330, 331, 345, 393]).
Now, for our problem, since 1y = xny = 0, we have
Q Q
BN =yv=Qx—h " my=av=Qsth . (4.69)

3.2. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51])
Qo = Asinacos 1, Q3= Asinasinf;, A >0, (4.70)

we take the dynamical functions s, yn, and zy of the following form:
s(a) = Bcecosa, B >0,
Q3

Q .
yN<a,,81,v>:Asmacos,Bl—hv, h=hy >0, v#0, (4.71)

Q Q
zN<a,,81, >:Asinasin,81+h 2, h=hy >0, v#0,
v v

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity). Moreover, by virtue of the dynamical symmetry of the
body, we have ho = hg.
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Then, owing to the nonintegrable constraint (4.7), outside the manifold (4.13) (and only outside
it), the dynamical part of the equations of motion (system (4.14)) has the following form:

) < UBh> cABv |
a=—|1+ zo + I sin a,
2

. ABv? | oBh\ 5cosa  Bhv
Zo = sinacosa — [ 1+ 2] . — 29 COS @,
I I sin o I
(4.72)
) ( th) cosa Bhv
z1=(1+ 2129 . — 21 COS @,
I sin «v I
oBh cos «
pr = <1 + >Z .
I sin «
If we introduce the dimensionless variable, parameters, and differentiation as follows:
AB Bh
2 = novz, k=1,2, nd= , b=ong, H;= . () =nov(’), (4.73)
I Iyng
we reduce system (4.72) to the form
o = —(1+0bHy) 2+ bsina,
, i 5 COS Qv
2o =sinacosa — (1 + bHy) 2] sin o — Hyzo cos v, (4.74)
21 = (14 bHy) 2129 C,OS e _ Hz cos a,
sin v
= (14 bH) 7 475
Ar=>0+bH)z (4.75)

We see that in the fourth-order system (4.74), (4.75), an independent third-order system (4.74) with
its own three-dimensional manifold is contained. In the sequel, we show that system (4.74), (4.75) can
be considered as a system on the tangent bundle T'S? to the two-dimensional sphere S2.

3.3. Complete list of invariant relations. First, we compare the third-order system (4.74) with
the nonautonomous second-order system

dzp  sinacosa — (1 +bHp)z? cos o/ sina — Hyzp cos

do —(14+bHy)zo + bsina ’ (4.76)
dz1 (14 bHy)z122cosa/sina — Hyzi cosa '
do —(1+bHp)z9 + bsina ’
We rewrite system (4.76) in the algebraic form using the substitution 7 = sin a:
dza  7—(1+ bH1)22 /7 — Hyzo
dr —(14+bHy)zy + b7 (477)
le . (1 + le)leg/T — lel
dr  —(1+bHy)z + b1
Further, if we introduce the uniform variables by the formulas
Zk — WET, k= 1, 2, (478)
we reduce system (4.77) to the following form:
7_dug tug = 1— (14 bHp)u? — H1u2’
dr —(1+bHy)uz +0b (4.79)
Tdul Yy = (1—|—bH1)’LL1’LL2—H1U1 .
dr 1= —(1—|—bH1)U2—|—b
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which is equivalent to
7_dug (14 bHy)(u3 —u?) — (b+ Hy)ug + 1

dr —(1+bHy)uy + b ’

4.80
Tdul . 2(1+bH1)U1U2—(b—|—H1)U1 ( )
dr —(1—|—bH1)U2—|—b
We compare the second-order system (4.80) with the nonautonomous first-order system
d'LL2 . 1—(1+bH1)(U%—U%)-(b+H1)U2 (4 81)
du1 N 2(1 + le)u1u2 — (b + Hl)ul ’ '
which can be easily reduced to the exact differential equation
1+ bHy)(u3 +u?) — H 1
d<( ToH)(w; +ui) = (b HiJuz + >=0. (4.82)
U1
Thus, Eq. (4.81) has the following first integral:
14+ bHy)(u3 +u}) — b+ H 1
(14 bH) (s +up) = (b+ Hjus + = (4 = const, (4.83)
U1
which in the old variables has the form
(14 bH1)(23 + 22) — (b+ Hy)zesina + sin? a _ ¢, = const. (4.84)

z1 sin o

Remark 4.3. We consider system (4.74) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282-286, 291, 295, 309, 324, 333, 340, 384, 391, 404-408, 412, 413, 421, 437, 438]),
which becomes conservative for b = Hj:

o = —(14b*)z + bsina,

g — (1402
z5 =sinacosa — (1 + b%)z] sina 22 COS O, (4.85)

CoS o
2=01+ b2)2122 . — bz cos a..
sin o

It has two analytical first integrals of the form
(1+b%)(232 + 22) — 2bzg sina + sin? a = C} = const, (4.86)
z1sina = C5 = const . (4.87)

It is obvious that the ratio of the two first integrals (4.86) and (4.87) is also a first integral of system
(4.85). However, for b # Hy, both functions

(1+bHy)(25 4 23) — (b + Hp)zo sina + sin® o (4.88)

and (4.87) are not first integrals of system (4.74), but their ratio is a first integral of the system (4.74)
for any b and H;.

Now we find an explicit form of an additional first integral of the third-order system (4.74). First,
we transform the invariant relation (4.83) for u; # 0 as follows:

b+ Hy \° C 2 (b H)?+C} -4
Uy — + 11y + (g — 1 _ ( 1) + l2 ) (4.89)
2(1 +bH,) 2(1+bH,) 4(1 + bH,)
We see that the parameters of the given invariant relation must satisfy the condition
(b—H|)?*+C}—4>0, (4.90)

and the phase space of system (4.74) is stratified into a family of surfaces described by Eq. (4.89).
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Thus, by virtue of relation (4.83), the first equation of system (4.80) has the form
dus 2(1—|—bH1)’LL% —Z(b—l-Hl)’LLQ—I—Z—OlUl(Cl,UQ)

= 4.91
TdT b—(1+bH1)U2 ’ ( )

where )
Ul(Cl,ug) = 2(1 i le) {01 + UQ(Cl,UQ)}, (4.92)

Un(Chuz) = \/C2 — 4(1 + BHL) (1 — (b -+ Hy)us + (1 + bHy)ud),

and the integration constant C is chosen from condition (4.90).
Therefore, the quadrature for the search for an additional first integral of system (4.74) has the
form

/ dr _ / (b— (14 bHi)uz)dus ' (4.93)
T 2(1 — (b+ Hy)ua + (1 + bHy)u3) — C1{Cy £ U2(C1,u2)}/(2(1 + bHy))
Obviously, the left-hand side (up to an additive constant) is equal to
In|sin . (4.94)
If
U — 2&15;) —wi, B=(b— H)?+C?—4 (4.95)

then the right-hand side of Eq. (4.93) has the form

1 / d(b? — 4(1 + bHy)w?)
(b2 — 4(1 +bHy)w?) + C1/b3 — 4(1 + bH) )w?
dw1

—(b— Hy)(1+bH /
O H)UADI | 2 41 1 b yud) + 182 — 401 + b

1|63 —4(1 + bHy)w? b— H
= I 4.
5 In o +1|+ 5 1, (4.96)
where
= /0% — 4(1 + bHy)wi. 4.97
/\/b2 w3 w3:|201 s \/ 1) ! ( )
In the calculation of integral (4.97), the following three cases are possible.
I. |b — H1| > 2:
1 V(b= H1)? =4+ /b7 —w? Ch
Il = — In +
24/(b— Hy)? — w3 + Oy \/(b_H1)2_
H)2 —4—\/b?
L In Vb~ H) VO - $ 1 + const; (4.98)
2y/(b— H1)? — 4 ws = Cy V(b — Hy)? —
IT. |b— Hy| < 2:
1 . +Crws + b2
L = arcsin + const; 4.99
' V4 — (b— Hy)? bi(ws £ Ch) (4.99)
IIL. |b— Hy| = 2:
Vbt~
L = + const . (4.100)

Ol(wg + Cl)
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When we return to the variable
z9 b+ H 1

= — 4.101
17 sina 2(1+bHy)’ ( )

we obtain the final form for the value I7:

L. |b— Hy| > 2
\/ b— Hl 4i2(1+bH1)w1 Cl
h= 2 2,2 + 2
\/(b—Hl N 1+le) w?+C V(b= Hp)? —
b—Hp)? —4F2(1+bH
\/ ) D 2 t Dy F % + const; (4.102)
24/(b— H1 V0?2 —4(1 + bHyp)2w? + C, V(b — Hp)? —
IL. |b— Hy| <2
+ 2 _ 4(1 + bHY)2w? + b2
I = ! arcsin Crv/b —4(1+ bH:)?uf + bf + const; (4.103)
V4 — (b— Hp)? by (\/b3 — 1+bH1)2w§icl)

III. |b— Hy| = 2:
2(1 + le)wl
h=x 2 2
C1(y/b? — 4(1 +bH; )2w? + Cy)
Thus, we have found an additional first integral for the third-order system (4.74), i.e., we have a
complete set of first integrals that are transcendental functions of their phase variables.

+ const . (4.104)

Remark 4.4. We must formally substitute the left-hand side of the first integral (4.83) into the
expression of the found first integral instead of C;. Then the additional first integral obtained has the
following structure (which is similar to a transcendental first integral from plane dynamics):

In|sina| + G <sin a, ,Zz , ,Zl > = (9 = const . (4.105)
sina’ sin «
We have already found two independent first integrals for integration of the fourth-order system
(4.74), (4.75). For the complete integrability of the system, it suffices to find one additional first
integral that “attaches” Eq. (4.75).

Since
duq B ’LL1(2(1 + le)UQ — (b + Hl))
dr b— (1+bH ’
T (b= (1+bHjuz)7 (4.106)
dﬁl . (1 + le)ul
dr — (b— (1+bHy)ug)T’
we have p -
Ul +
= 2ug — . 4.1
dB 2Ty bH; (4.107)
Obviously, for u; # 0, the following equality holds:
wy— (b+ Hy) + /82 — (21 + bHy)uy — C1)? (4.108)
2 2(1 + bH) 1 1 1)U1 1 ) .
where
bi = (b— Hy)*> + CF —
Then integration of the quadrature
B1 + const = (1 + bH;) (4.109)

/ NCEE 1+bH1)u1 C1)?
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leads to the invariant relation
2(1 + le)ul — Cl

2 + (3) = Farcsin
i+ ) V(b= Hy)? +C? — 4

, (O3 =const. (4.110)

In other words, the equality
2(1 + le)ul -]

sin|2 + C3)] = &+ 4.111
2(81 + C3)] - )2+ C2— 4 (4.111)
is fulfilled and, returning to the old variables, we have
2(1 H — i
2 + Cy) = = 2L HPHD)z — Crsina (4.112)

V(b= Hp)2 4+ C? —4sina’

Thus, we have obtained an additional invariant relation that “attaches” Eq. (4.75). However, we
must formally substitute the left-hand side of (4.83) into the last expression instead of Cf.

We make certain transformations that lead us to the following explicit form of the additional first
integral:
(1 + bHy)u? — (1 +bHy)u2 + (b+ Hy)ug — 1)2

tan? [2(81 + C3)] = 4.113
261+ o) u?(2(1 + bHy)uy — (b + Hy))2 (4.113)

(here Eq. (4.83) is used).

Returning to the old coordinates, we obtain the additional invariant relation of the form
(14 bHy)22 — (14 bHy)23 + (b+ Hy)zgsin o — sin® )2
tan? [2 Cs)] = 4.114
an [ (B + 3)] z%(Z(l + bHy)zo — (b+ Hj)sin )2 ’ ( )
or, finally,
1 (1+bH1)2? — (1 +bH1)22 + (b+ Hy)zsina — sin® a

== t =(C5 = t . 4.115
fi o CHAR 21(2(1 4+ bHy)zo — (b+ Hy)sina) 8= Coms ( )

Therefore, in the considered case, the system of dynamical equations (4.1) under condition (4.71)
has five invariant relations: the analytical nonintegrable constraint (4.7), the cyclic first integral
(4.5), (4.6), the first integral (4.84), the first integral expressed by relations (4.98)—(4.105), which is a
transcendental function of its phase variables (in the sense of complex analysis) and is expressed as a
finite combination of elementary functions, and, finally, the transcendental first integral (4.115).

Theorem 4.3. System (4.1) under conditions (4.7), (4.5), (4.6), and (4.71) possesses five invariant
relations (a complete set), three of which are transcendental functions (in the sense of the complex
analysis). All these relations are expressed as finite combinations of elementary functions.

3.4. Topological analogies. We consider the following third-order system:

é+(b*—Hf)fcos&+sim£cos£—1'7fsmg =0,
cos ¢ (4.116)
1+4cos?¢ ’

it + (b — Hi ) cos € + & 0, b.>0, Hf>0,

cosésiné
which describes a fixed spherical pendulum in a flowing medium in the case where the moment of
forces depends on the angular velocity, i.e., the mechanical system is in a nonconservative field of
forces (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386,
392, 429, 442]). In general, the order of this system seems to be equal to 4, but the phase variable 7,
is cyclic, which leads to the stratification of the phase space and reduction of order.

The phase space of the system is the tangent bundle

TS2{£77.717£7771} (4117)
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of the two-dimensional sphere S2{¢, 7}, where the equation of large circles
m =0 (4.118)

defines a family of integral manifolds.

It is easy to verify that system (4.116) is equivalent to the dynamical system with variable dissipation
with zero mean on the tangent bundle (4.117) of the two-dimensional sphere. Moreover, the following
theorem holds.

Theorem 4.4. System (4.1) under conditions (4.7), (4.5), (4.6), and (4.71) is equivalent to the dy-
namical system (4.116).

Indeed, it suffices to take a = ¢, 81 = m, b = —bs, and H; = —H7.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

CHAPTER 5

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
IN THE THREE-DIMENSIONAL SPACE, II

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of dynamically symmetric three-dimensional (3D) rigid bodies in nonconservative force fields.
The form of these equations is taken from the dynamics of real rigid bodies interacting with a resisting
medium by laws of jet flows where a body is influenced by a nonconservative tracing force. Under
action of this force, the center of mass of the body moves rectilinearly and uniformly; this means that
there exists a nonconservative couple of forces in the system (see [1, 64, 70, 72, 119-121, 157, 164-167,
180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier (see [164-167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In [193, 196, 202, 204, 208, 209, 218, 232, 241], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete set of transcendental
first integrals. It was assumed that the interaction of the medium with the body is concentrated on a
part of the body surface that has the form of a planar (two-dimensional) disk.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under the Tracing Force

Let us consider the spatial motion of a homogeneous axis-symmetrical rigid body with flat front end
face (two-dimensional disk) in the field of a resisting force under the assumption of quasi-stationarity
(see [28, 50, 51, 62-66, 98, 112, 119-121, 160-169, 171, 431, 432]). If (v,«a, (1) are the spherical
coordinates of the velocity vector of a certain typical point D of a rigid body (D is the center of the
disk lying on the symmetry axis of the body), {21, Q9, Q3} are the projections of its angular velocity
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onto the coordinate axes of the coordinate system Dxixzoxs attached to the body, where the symmetry
axis C'D coincides with the axis Dxy (C' is the center of mass), and the axes Dxo and Dzj lie in the
hyperplane containing the disk, Iy, I2, I3 = I3, and m are the characteristics of inertia and mass, then
the dynamical part of the equations of motion (including the case of Chaplygin analytical functions
[50, 51], see below), where the tangent forces of the interaction of a medium with the body are absent,
has the following form:

v cos o — Gusina + Qpusinasin f; — Qzvsinacos By + o (5 +Q3) = 7,
m

¥ sin « cos B1 + & cos a cos 81 — Brusin asin By + Q30 cos a
—Qqwsinasin B — o1y — 0Q3 = 0,
vsin asin B + dw cos asin By + B sin acos B + Qv sin « cos [

—Qyvcosa — o Qs+ 0Oy =0, (5.1)

) Q
Lo + (11 — L)1Q3 = —2pn (04”317 ” >5(a)2)27

. Q
I2Q3 + (I2 - II)QIQ2 = YN <O‘7617 v >8(O&)U2,

where
F,=-S, S=s(an? o¢>0 v>0. (5.2)
The first two equations of (5.1) describe the motion of the center of mass in the three-dimensional
Euclidean space E? in the projections on the system of coordinates Dzjzoxs. The second three
equations of (5.1) are obtained from the theorem on the angular momentum of a rigid body in the
Konig axes.
Thus, the direct product of the three-dimensional manifold by the Lie algebra so(3)

R! x S? x s0(3) (5.3)

is the phase space of sixth-order system (5.1).
We note that system (5.1), by virtue of its dynamical symmetry

Iy, = I, (5.4)
possesses the cyclic first integral
Q= QY = const . (5.5)
Therefore, we consider the dynamics of the system on the zero level:
QY =o. (5.6)

If we consider a more general problem on the motion of a rigid body under the action of a tracing
force T passing through the center of mass and providing the fulfillment of the condition

V¢ = const (5.7)

during the motion (V¢ is the velocity of the center of mass, see also [164-167]), then F, in system
(5.1) must be replaced by zero since a nonconservative couple of forces acts on the body:

T —s(a)v* =0, o=DC. (5.8)
Obviously, we need to choose the magnitude of the tracing force T" as follows:

T =Ty, Q) = s(a)? T=-S8. (5.9)
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The choice (5.9) of the magnitude of the tracing force 7' is a particular case in which an inde-
pendent second-order subsystem can be extracted from the sixth-order system (5.1) after a certain
transformation.

Indeed, let the following condition hold for the value T':

’ Q Q
T = TU(Oé, ,81, Q) = Z 7'7;7]' <a, ,81, >QZQ] = Tl <Oé, ,81, >1)2, QQ =". (510)
et v v
i<j
First, we introduce the new quasi-velocities:
21 = Qocos Py + Qgsin By, 29 = —Clgsin fB1 + Q3 cos fy. (5.11)

We can rewrite system (5.1) in the cases (5.5) and (5.6) as follows:

2
s(a) sin o [yN (04,51, 2) cos B1 + zn <04,51, 2) SinﬁJ

v

i)+0(z%+z§)cosa—al
2

Tl <O[,,81, 2) '1)2 - S(O[)'Uz

= Cos a,
m

1)2

a4 290 — 0 (23 + 23)sina — o

S(Oé) cos & |:yN <a7517 2) COs /61 + 2N <a7517 2) sin 51:|

I
Q
s(a)v® =Ty (04”31, > v?
= v sin a,
m
. 2 0 ) 2 )
Q3: 21}2yN <Oé,51, ’U>8(a)’ 92:_,})22"1\7 <a7/817 U>S(a)7
. Q Q
Bisina — z1 cosa — (;vs(oz) [zN <a,ﬁ1, v> cos B — YN (a,ﬁl, v> sinﬁl] =0.
2
(5.12)
Introducing the new dimensionless phase variables and differentiation by the formulas
2 =mvZy, k=12, ()=n({), n; >0, n;=const, (5.13)
we rewrite system (5.12) in the following form:
v = v¥(a, 1, Z1, Za), (5.14)
o = —Zy+on (22 + Z3)sina
+ I(; s(@) COSO&{QN(O&,ﬁl,mZ) cos 1 + 2n(a, B1,mZ) Sinﬁd
211
T Z)—
_nilafrymZ) = sla) sine, (5.15)
mni
Zh = S(ag [1 — ony1 2o sina} [yN(a,,Bl,an) cos 1 + zn(a, f1,n12) sinﬁl} - 72 C?Sa
Iong sin o
2 2 4 s(a) .
+ on1Za(Zi + Z5) cos a — Z1 . zn (o, B1,n17Z) cos B —yN(a,ﬁl,an)smﬁl]
Irny “sina
T Z) —
_ Z2 1(a7/817n1 ) S(Of) CcOS a’ (516)

mni

430



1
Zy=_, s.(oz) onyZasin o — 1} [zN(a,ﬁl,an) cos 81 — yn(a, B1,m1Z) sinﬁl] + Z1Z cos e
Iang sina sin «
+ aanl(Zl2 + Z22) cos o — IJ Z1s(a) sina [ZN(a, B1,n1Z)sin 1 + yn (e, f1,n17Z) cos 51]
21
T Z) —
-7 1, mZ) = s(a) cosa, (5.17)
mni
COoS Qv o s(a .
B=2 4 7 oo BrmZ) cos B -y (o Br.m Z)sin . (5.18)
sinae  I9ng sin«

(o, Br, Z1, Z5) = —oni (2} + Z3) cos
+ 7 s(a) Sina[yzv(oé,ﬂl,nlz) cos 81 + zn(a, B1,m1Z) Sinﬁ1]

Irny
N Ty (a, p1,n17) — s(a)
mni
We see that the independent fourth-order subsystem (5.15)—(5.18) can be extracted from the fifth-
order system (5.14)—(5.18); we can consider this subsystem on its own four-dimensional phase space.
In particular, under the condition (5.9), the extraction of an independent fourth-order subsystem
is also possible.

COS .

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51]),
we take the dynamical functions s, yn, and zy as follows:

s(a) = Beosa, yn (04,51, S) = yo(a, B1) = Asin acos fi,
(5.19)

ZN <Oé,51, 2) = Zo(a7ﬁl) = ASinaSinﬁh A7B > 07 v 7& 07

which shows that in the considered system, the moment of nonconservative forces is independent of
the angular velocity (and depends only on the angles o and ().

Then, owing to the conditions (5.7) and (5.19), the transformed dynamical part of the equations of
motion (system (5.14)—(5.18)) has the following form:

v =v¥(a, b1, Z1, Z2), (5.20)
o = —Zy +b(Z% 4+ Z2)sina + bsin a cos® a,

Zh =sinacos o — 7} s bZo(Z3 4 Z32) cos oo — bZy sin” o cos a, (5.21)

sin «
Zy = 217 c?sa +0Z1(Z} + Z3) cosa — bZy sin accos a,
sin «
B=201, (5.22)
sin «

U(a, B1, 21, Z9) = —b(Z? 4+ Z2) cos a + bsin® a cos a,
where, as above, we choose the dimensionless variable, the parameter b, and the constant n; as follows:
AB

b=ong, nj= , M1 =ng. (5.23)
I
Therefore, system (5.20)—(5.22) can be considered on its own five-dimensional phase manifold
W1 =R {v} x TS*{Z1, Z», 0<a<m, 0< By < 27}, (5.24)
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i.e., on the direct product of the real line on the tangent bundle of the two-dimensional sphere
S2{0<a<m 0< By <27}

2.2. Complete list of first integrals. The independent fourth-order system (5.21), (5.22) was
extracted from system (5.20)—(5.22).

We note that the magnitude of the velocity of the center of mass is the first integral of system (5.1)
by virtue of (5.7) and, therefore, the function of the phase variables

Wo(v, a, B1, 21, 22) = V2 + 02(22 + 22) — 20zpvsina = V2 (5.25)

is constant on its phase trajectories (where the values z; and 2z are chosen as in (5.11)).
Performing a nondegenerate change of the independent variable (for v # 0), we see that system
(5.20)—(5.22) also has an analytical integral and, therefore, the function of the phase variables

Uy (v, a, B1, Z1, Zo) = v2(1 + V(22 4+ Z3) — 2bZysina) = V2 (5.26)

is constant on its phase trajectories.

Equality (5.26) allows one to find the dependence of the velocity of a certain point of the rigid
body (namely, the center D of the disk) on other phase variables without solution of the system
(5.20)—(5.22); namely, for Vo # 0, the equality

2
2 VC

_ 5.27
YTy V2(Z2 + Z2) — 2bZysina (5:27)

holds.

Since the phase space (5.24) of system (5.20)—(5.22) is five-dimensional and there exist asymptotic
limit sets in it, we see that Eq. (5.26) defines a unique analytical (even continuous) first integral of
system (5.20)—(5.22) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152-154, 156, 213,
427, 438)).

We consider in detail the problem of the existence of other additional first integrals of system
(5.20)—(5.22). Its phase space is stratified into surfaces

{(v,a, p1,21,Z5) € Wy : Vo = const}, (5.28)

on which the dynamics is defined by the first integral of system (5.21), (5.22).
First, we compare the third-order system (5.21) with the nonautonomous second-order system

dZy  sinacosa+bZy(Z3 + Z3) cos o — bZysin® avcos v — Z3 cos o/ sin

do —Zy+b(Z% + Z3)sina + bsina cos? a ’ (5.29)
dzy bZ1(Z} + Z2) cos a — bZy sin? acos a + Z1 Z3 cos o/ sin '
doa —Zy +b(Z% + Z3)sina + bsin acos? a '
We rewrite system (5.29) in the algebraic form using the substitution 7 = sin a:
dZy  THbZo(Z + Z3) —bZaT? — ZE /T
dr — —Zy+br(1—72) +br(Z} + 23) (5.30)
dZy  bZ\(ZE+ Z3) — bZi T + Z1Zs) T ’
dr — —Zo+br(1 —12) +br(Z2 + Z3)
Further, if we introduce the homogeneous variables by the formulas
Zp =u,T, k=12, (5.31)
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we reduce system (5.30) to the following form:
dug 1 — buat? + bug (u? + ud)7? — u?
T +ug = 9 9
—ug + br2(ui +u3z) + b(1 — 72)

)

dr
duq buy (u? + u3)7? — buym? + ugug

T tur= 212 4 2 2y
—ug + br?(uf +uz) + b(1 —72)

(5.32)

which is equivalent to

dug 1—bug +ud —u?
Tdr T —up+ br2(u? + ud) + b(1 — 72)’
duy 2uiug — buq
Tdr T —us+ br2(u? +ul) +b(1 — 72)°
We compare the second-order system (5.33) with the nonautonomous first-order equation

dug 1 —bug+u3 —ul

(5.33)

.34
duq 2uiug — bug (5.34)

which can be easily reduced to the exact differential equation
2 2 _ b 1
d<u2+“1 s )::0. (5.35)
Ui
Therefore, Eq. (5.34) has the following first integral:
2 2 b 1
up U e L C = const, (5.36)
u1
which in the old variables has the form
Z3 + Z7 — bZysi in?
2 2 et Cy = const . (5.37)
Z7 sin «

Remark 5.1. We consider system (5.21) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282-286, 291, 295, 309, 324, 333, 340, 384, 301, 404-408, 412, 413, 421, 437, 438)),
which becomes conservative for b = 0:

O/ = _227
;. _pcosa
Zy =sinacosa — 7 sina’ (5.38)
70 = 72,2,
sin «
It has two analytical first integrals of the form
73 + 7% 4 sin® a = CF = const, (5.39)
Zysina = C5 = const . (5.40)

Obviously, the ratio of the two first integrals (5.39) and (5.40) is also a first integral of system (5.38).
However, for b # 0, both functions
Z2 + 7% —bZysina + sin® a (5.41)
and (5.40) are not first integrals of system (5.21), but their ratio is a first integral of system (5.21) for
any b.
Further, we find an explicit form of an additional first integral of the third-order system (5.21). For
this, first, we transform the invariant relation (5.36) for u; # 0 as follows:

b\ 2 C1\? B2+ C2
<u2—2> —|—<u1— 21> = 4 -1 (5.42)
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We see that the parameters of the given invariant relation must satisfy the condition
b+ CE—4>0, (5.43)

and the phase space of system (5.21) is stratified into a family of surfaces defined by Eq. (5.42).
Thus, by virtue of relation (5.36), the first equation of system (5.33) takes either the form
1— 2 _ 172
Tdu2 _ bug + 15 U12(01,’LL2) . (5‘44)
dr  —ug +b(1 — 72) + br2(UZ(C1,u2) + u3)
where

1
1(Crou) =, {Cr + VO — 403 — bus + n} (5.45)

and the integration constant C is chosen according to the condition (5.43), or the form of a Bernoulli
equation:
dr (b —wug)T — br3(1 — UZ(Ch,ua) — u3)

= . 5.46
duy 1 —bug +u3 — UE(C1, us) ( )
Using (5.45), we can easily reduce Eq. (5.46) to the linear nonhomogeneous equation
d 2(ug — b)p + 2b(1 — UZ(C — u} 1
P _ (u2 )p+ ( ) 12( 1,U2) u2)’ p= . (547)
d’LLQ 1- b’LL2 + Uy — U1 (01,U2) T

This fact means that we can find another transcendental first integral in the explicit form (i.e., as
a finite combination of quadratures). Here, the general solution of Eq. (5.47) depends on an arbitrary
constant C. We omit the calculation, but note that the general solution of the linear homogeneous
equation obtained from (5.47) even in the particular case b = C7 = 2 has the following solution:

\/1:|:\/1—(u2—1)2

14 /1~ (ug —1)2

Remark 5.2. We must substitute formally the left-hand side of the first integral (5.36) into the
expression of the found first integral instead of C';. Then the obtained additional first integral has the
following structural form (which is similar to the transcendental first integral from the plane-parallel
dynamics):

p =po(uz) = O[\/l —(ug —1)2 £ 1} exp , C =const. (5.48)

Zy I

sin o’ sin «

K <sin o, Zy, 21, > = (9 = const. (5.49)

Thus, we have already found two independent first integrals for integration of the forth-order system
(5.21), (5.22). For the complete integrability, it suffices find one additional first integral that “connects”

Eq. (5.22).
Since
dp u1
= 5.50
dr —usT + br3(u? + ud) + br(1 — 72)’ ( )
du1 _ ’LL1(2U2 — b) (5 51)
dr —usT + b3 (uf + u) + br(1 — 72)’ '
we have p
U1
= 2ug — b. .52
d,Bl u9 (5 5 )
Obviously, for uy # 0, the following equality holds:
1 C1\?
u =, bi\/b§—4<u1— 21> , b =02+ O — 4 (5.53)
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therefore, integration of the quadrature

d
B1 + const = ﬂ:/ " ) (5.54)
C
leads to the invariant relation
. 2u =Gy
2(p1 + C3) = *+ arcsin , (5 = const. 5.55
(81 +Cs) Jpicrog (5.55)
In other words, the equality
) 2u; — Cy
sin [2(61 +C3)| =+ 5.56
2+ == 0 (5.50
holds; in the old variables, it has the form
27, — Cysi
sin[2(81 + Cy)] =+ ot~ AoRe (5.57)

Vb2 4 C2 — 4sina’
Thus, we have obtained an additional invariant relation that “attaches” Eq. (5.22). However, we
must formally substitute the left-hand side of (5.37) into the last expression instead of Cf.
We perform certain transformations that lead us to the following explicit form of the additional

first integral:
(uf — ud + buy — 1)*

tan? [2 Cs)] = ; 5.58
an® [2(1 + C)] u? (4u? — 4bus + b?) (5.58)

here Eq. (5.36) is used.

Returning to the old coordinates, we obtain the additional invariant relation of the form
(Z2 — Z3 + bZysina — sin? a)?
tan? [2(81 + C3)] = , 5.59
an” (261 + ) Z3(4Z3 — 4bZy sina + b2 sin? a) (5.59)
or, finally,
1 7?2 — 72 + bZysina — sin a

—B £ tan 1 2 =(C5 = t. 5.60
A 2 arctatl Z1(2Z5 — bsin «) 3 = Ccons ( )

Therefore, in the considered case, under condition (5.19), the system of dynamical equations (5.1)
has five invariant relations: the analytical nonintegrable constraint (5.7), the cyclic first integral (5.5),
(5.6), the first integral (5.37), the first integral expressed by relation (5.47) (see also (5.49)), which is
a transcendental function of its phase variables (in the sense of the complex analysis), and, finally, the
transcendental first integral (5.60).

Theorem 5.1. Under the conditions (5.7), (5.5), (5.6), and (5.19), system (5.1) possesses five in-
variant relations (a complete set), three of which are transcendental functions (in the sense of the
complex analysis). Moreover, at least four of them are expressed as finite combinations of elementary
functions.

2.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 5.2. Under the conditions (5.7), (5.5), (5.6), and (5.19), the first integral (5.37) of system
(5.1) is constant on phase trajectories of system (4.22), (4.23).

Proof. . Indeed, the first integral (5.37) can be obtained by a change of coordinates from (5.36), and
the first integral (4.32) can be obtained by a change of coordinates from (4.31). However, relations
(5.36) and (4.31) coincide. The theorem is proved. ||
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Thus, we have the following topological and mechanical analogies in the sense explained above.

(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the
presence of a nonintegrable constraint).

(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).

(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves
rectilinearly and uniformly.

On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity and
the reduced system. We continue to study the dynamics of a two-dimensional rigid body on the
plane. This section (similarly to the corresponding section of Chap. 2) is devoted to the study of the
case of the motion where the moment of forces depends on the angular velocity. We introduce this
dependence just as was done in the previous chapter. We also recall that this point of view will also
allow us to introduce this dependence for three-dimensional and higher-dimensional bodies.

Let x = (x1n,x2n) be the coordinates of the point NV of application of a nonconservative force (in-
teraction with a medium) to a two-dimensional disk and @ = (Q1, Q2) be the components independent
on the angular velocity. We consider only the linear dependence of the functions (z1xy, zon) = (zN,yN)
on the angular velocity since the introduction of this dependence itself is not a priori obvious (see [33,
34, 48, 49, 57-66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274276, 440]).

Thus, we accept the following dependence:

r=Q+ R, (5.61)
where R = (Rj, Ra, R3) is the vector-valued function containing the angular velocity. Here, the
dependence of the function R on the angular velocity is gyroscopic (see also the previous chapter):

R1 1 0 —Q3 Q2 hl
R=|Ry| =— Q3 0 - ho |, (5.62)
Ry Y\ o 0 hs

where (hi, he, hs) are certain positive parameters (cf. [322, 330, 331, 345, 393]).
Now, for our problem, since 1y = xny = 0, we have

Q Q
$2N:yN:Q2—h1 1)37 {1}3N:ZN:Q3+h1 2)2. (563)

Similarly to the choice of the Chaplygin analytical functions (see [50, 51])
Qo = Asinacos 1, Q3= Asinasinf;, A >0, (5.64)
we take the dynamical functions s, yn, and zy as follows:
s(a) = Bcosa, B >0,
Q3

Q
yN<a,,81,v>:Asinacos,Bl—hv, h=hy >0, v#0, (5.65)

Q Q
zN<0z,61, v> = Asinasinfy + h v2’ h=hi >0, v#Q0,

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity). Moreover, by virtue of the dynamical symmetry of the
body, we have ho = hg.
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Then, owing to the conditions (5.7) and (5.65), the transformed dynamical part of the equations of
motion (system (5.14)—(5.18)) has the following form:
v =v¥(a, B1, 21, Z2), (5.66)
o = —Zy + b(Z} + Z3)sin o + bsin acos® o — bHy Z cos? a,

Zh = sinacos o — (1 +bH, ) Z3} s bZy(Z3 + Z3) cos o
sin «

— bZysin® avcos o 4+ bH Z5 sina cos a — Hy Zo cos a, (5.67)

Z1 = (1 +bH1)Z12Z> R bZ1(Z} + Z3) cos a
sina

—bZy sin? acosa + bH, Zy Zs sin accos oo — Hy Zy cos a,
I (14 bz, S5 .
pr=~1+0H)Z) . (5.68)
(e, B, Z1, Zo) = —b(ZE + Z3) cos o + bsin® a cos o — bH [ Zo sin v cos a.
We introduce the dimensionless parameters b and H; and the constant n; as follows:
AB Bh
) Hl = )
I Iryng
We see that in the fifth-order system (5.66)—(5.68), the independent fourth-order system (5.67),
(5.68) was isolated; this system can be considered on the tangent bundle T'S? of the two-dimensional

sphere S2. Moreover, the independent third-order system (5.67) can be considered on its own three-
dimensional manifold.

b=ong, nj= ny = ng. (5.69)

3.2. Complete list of first integrals. The independent fourth-order system (5.67), (5.68) was
extracted from system (5.66)—(5.68).

Note that, by virtue of (5.7), the magnitude of the velocity of the center of mass is a first integral of
system (5.1) and, therefore, the function of phase variables (5.25) is constant on its phase trajectories
(here the values z1, 29 are chosen from (5.11)).

Using a nondegenerate change of the independent variable (for v # 0), we see that system (5.66)—
(5.68) also has an analytical integral, namely, the function of the phase variables

Uy (v, a, B1, Z1, Zo) = v2(1 + b (22 + Z3) — 2bZysina) = V3 (5.70)

is constant on its phase trajectories.

Equality (5.70) allows one to find the dependence of the velocity of a certain point of a rigid body
(namely, the center D of the disk) on the other phase variables without solution of system (5.66)—(5.68);
therefore, for Vo # 0, Eq. (5.27) is fulfilled.

Since the phase space of system (5.66)—(5.68) is five-dimensional and there exist asymptotic limit
sets in it, we see that Eq. (5.70) defines a unique analytical (even continuous) first integral of system
(5.66)—(5.68) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152-154, 156, 213, 427, 438)).

We consider in detail the problem on the existence of other (additional) first integrals of system
(5.66)—(5.68). Its phase space is stratified into surfaces (5.28) on which the dynamics is defined by the
first integral of system (5.67), (5.68).

First, we compare the third-order system (5.67) with the nonautonomous second-order system

dzy Ry(a, Zy, Zo)
doe  —Zo+ b(Z2 + Z2)sina + bsina cos? o — bH Z cos? o (5.71)
dzy Ry (o, Z1, Z) .

do —Zoy+b(Z% + Z2)sina + bsinacos? o — bHy Z5 cos? o
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Ro(a, Z1, Zo) = sinacos o 4 bZo(ZE + Z3) cos oo — bZy sin? o cos o

—(1+ le)Z%:iosz + bH Z2 sina cos o« — H1 Zs cos a,

Ri(o, Zh, 7o) = bZl(le + Z22) cos a — bZy sin® avcos a

+ (1+bHy)Z1 Zo c.osoz +bH1Z1Zysina cos v — H1Zq cos a.
sin «

Using the substitution 7 = sin a, we rewrite system (5.71) in the algebraic form:

dZy _ Tt bZ?(Z% + 222) - bZ2T2 - (1 + le)Z%/T + bH1222’7' — HZ,

dr ~Zo+br(1 —72) + b7 (Z2 + Z2) — bH1Z5(1 — 72) ’ (5.72)
dZy  bZy\(Z}+ Z3) — bZim* + (1 + bH1) Z1 Zo /T + bH\ Z1 ZaT — H1Z4 ’
dr ~Zo+br(1 —72) + b7 (Z% + Z2) — bH1Z5(1 — 72)
Further, introducing the homogeneous variables by the formulas
Zk = ULT, k= 1, 2, (573)
we reduce system (5.72) to the following form:
TdUQ b = 1 — buot? + bug(u? + u)7? — (1 + bHy)u? — Hyug + bHiu3r?
dr 7 —ug + br2(u? + u2) 4 b(1 — 72) — bH ug(1 — 72) ’ (574
Tdul P buy (u? +u2)1? — buyrr? + (1 4+ bHy)ugus — Hyug + bHyuqus '
dr —ug + br2(u2 4+ u2) + b(1 — 72) — bHyus(1 — 72) ’
which is equivalent to
7_dug 1= (b+ Hyug + (14 bHy)u3 — (1 + bHy)u}
dr — —us +br2(ul 4+ ud) + b(1 — 72) — bHyug(1 — 72)’ (5.75)
Tdul . 2(1+bH1)U1U2—(b—|—H1)U1 '
dr — —up +br2(u? +ul) + b(1 — 72) — bHyup(1 — 72)
We compare the second-order system (5.75) with the nonautonomous first-order equation
dus . 1—(b—l—Hl)UQ—I-(l—I-le)’LL%—(1—|—bH1)’LL% (5 76)
duq 2(1 + le)ulug — (b + Hl)ul ’ '
which can be easily reduced to the exact differential equation
2 2 _
U1
Therefore, Eq. (5.76) has the following first integral:
14 bHy)uj + (1 +bHy)ui — (b+ H 1
( + 1)U2 + ( + ul)ul ( + 1)'LL2 + — Ol = const, (578)
1
which in the old variables has the form
1+ bH1)Z3 + (1 +bH ) Z} — Hy)Zssi in?
(14+0H1)Z5 + (1 +bHy)Z; — (b+ Hi)Zzsina + sin” o _ € = const. (5.79)

Z7 sin «

Remark 5.3. Consider system (5.67) with variable dissipation with zero mean (see [67, 68, 243, 260,
262, 265, 282-286, 291, 295, 309, 324, 333, 340, 384, 391, 404408, 412, 413, 421, 437, 438] which
becomes conservative for b = Hy:

o = —Zy+ b(Z} + Z3)sin o + bsin o cos® o — b2 Zy cos?
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Zh =sinacosa — (1 + bz)Z%C_Osa +0Z(Z% + Z3) cos a — bZy sin® acos
sin «

+b?Z2sinacosa — bZycosa,  (5.80)

Zy =01+ b2)Z122 C_OS @ + bZl(Zl2 + Z22) cosa — bZy sin? avcos a + b2 Z1 Zo sin v cos a — b7y cos au.
sin o

It has two analytical first integrals of the form
(14 b*)(Z3 + Z?) — 2bZ; sin o + sin® a = C} = const, (5.81)
Zysina = C5 = const . (5.82)

Obbviously, the ratio of two first integrals (5.81) and (5.82) is also a first integral of system (5.80).
However, for b # H;, both functions

(14 bH,)(Z2 + Z%) — (b+ Hy)Zysina + sin® o (5.83)

and (5.82) are not first integrals of system (5.67), but their ratio is a first integral of system (5.67) for
any b and Hi.

Further, we find the explicit form of the additional first integral of the third-order system (5.67).
For this, we transform the invariant relation (5.78) for u; # 0 as follows:

b+H, \° Ch > (b-H)?+C} -4
<“2_ 2(1+bH1)> + (“1_ 2(1+bH1)> = 4(L4bH)? (5.84)

We see that the parameters of this invariant relation must satisfy the condition
(b—Hy)>+C —4>0, (5.85)

and the phase space of system (5.67) is stratified into a family of surfaces defined by Eq. (5.84).
Thus, by virtue of relation (5.78), the first equation of system (5.75) has either the form

duy 11— (b4 Hy)ug + (14 bHy)u3 — (1 + bH1)UZ(C1,u2)

= 5.86
T dr —ug 4+ b(1 — 72) + br2(UE(C1, u2) + u3) — bHyua(1 — 72)° (5.86)

where

UL (Chyuz) = ; {cl + \/012 — A(1 + bH) (1 (bt Hy)us + (1 + le)ug) } , (5.87)

and the integration constant C is chosen from condition (5.85), or the form of the Bernoulli equation

dr (b= (14 bHy)uz)T — br3(1 — U3(Cy,ug) — u3 — Hyuz)

= . 5.88
dus 1—(b+ Hi)ug + (1 +bHy)ud — (1 4+ bH,)UZ(Ch, uz) (5.88)
Using (5.87), we can reduce Eq. (5.88) to the linear nonhomogeneous equation
dp  2((1+bHi)ug — b)p + 2b(1 — Hyug — uj — UE(Ch, uz)) 1 (5.89)
duy — 1— (b+ Hy)ug + (1+bH)ud — (1 +bH)U2(Cy,u) P~ 72 ‘

This fact means that we can find another transcendental first integral in the explicit form (i.e.,
as a finite combination of quadratures). Moreover, the general solution of Eq. (5.89) depends on
an arbitrary constant Cs. We omit calculations but note that the general solution of the linear
homogeneous equation obtained from (5.89)) even in the particular case where

1— Af

b—H{| =2, (7=
| =2 G 14 A

1
A= 2(b+H1),
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has the following solution:

+A%/(1+A%
V2 —4A2(1 - Apug)2 £ ¢y [

VCF —4A3(1 — Ajus)? ¥ Oy
2(A1 —b)

(1 + A%)Al (Al’u,g — 1)7

Remark 5.4. We must formally substitute the left-hand side of the first integral (5.78) into the

expression of the found first integral instead of C;. Then the additional first integral obtained has the
following structure (which is similar to a transcendental first integral from the planar dynamics):

Zy Iy

sin o’ sin «

4
p= po(u2) _ C[l . Al'LLQ] 2/(14+A7)

X exp C = const. (5.90)

K <sin o, Zy, 21, > = (9 = const. (5.91)

We have already found two independent first integrals for integration of the fourth-order system
(5.67), (5.68). For the complete integrability, it suffices to find another additional first integral that
attaches Eq. (5.68).

Since
dpy _ (1+0bH1)u (5.92)
dr  —upT + b3 (uf +ul) + b7 (1 — 72) — bHyTus(l — 72)° ’
duy _ 2(1+bH1)U1U2—(b—|—H1)U1 (5 93)
dr —usT + b3 (ud + ud) + br(1 — 72) — bHiTug(l — 72)’ ’
we have p _
uy +
= 2ug — . .94
ag T 1 4eH, (5-94)
Obviously, for u; # 0, the following equality holds:
1
= b+ Hy) £ /b3 — (2(1 + bHy)up — Cy)? :
Y2 2(1+bH1)<( + Hi) \/1 (2(1 4+ bHy)uy — Ch) >, (5.95)
where
b= (b—H)?+C}—4.
Then integration of the quadrature
du1
b1+ const = (1 + bH- / 5.96
' ( 2 Vb2 = (2(1 + bHy)uy — C1)?2 (596)
leads to the invariant relation
2(1+bH —
2(p1 + C3) = L arcsin (14 bH1)ur = G , (5 = const. (5.97)
Vb= H)2+C?—4
In other words, the equality
. 2(1+bH1)U1 —Cl
sin [2(81 + Cs)| =+ 5.98
26+ e = T T (5.99)
is fulfilled; in the old variables, it has the form
2(14bH1)Zy — Cy si
sin [2(51 4 03)} -4 (1+bH1)Zy 1sina (5.99)

V(b= Hp)2 4+ C? —4sina’

Thus, we have obtained an additional invariant relation that “attaches” Eq. (5.68). However, we
must formally substitute the left-hand side of (5.78) into the last expression instead of Cf.
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However, we perform certain transformations that allow one to obtain the following explicit form
of the additional first integral (here Eq. (5.78) is used):

(1 +bH)u? — (1 4+ bHy)u2 + (b + Hy)ug — 1)?

tan® [2(81 + C5)] = 5.100
2051+ C) W21+ b)Yy — (b+ Hy)? (5-100)
Returning to the old coordinates, we obtain the additional invariant relation of the form
1+bH\)Z? — (14+bH)Z2 4 (b+ Hy)Zysina — sin? a)?
tan? [2(8, + Cy)] = (14+0bH1)Z7 — (1 +bH )Z5 + (b+ Hy)Zysina — sin® ) (5.101)

Z2(2(1 +bH1)Zy — (b+ Hy)sina)? ’
or, finally,
(1+bH)Z? — (1 +bH1)Z3 + (b+ Hy)Zysina — sin® o
Z1(2(1 4+ bHy)Zy — (b+ Hy)sina)
Therefore, in the considered case, the system of dynamical equations (5.1) under condition (5.65)
has five invariant relations: the analytical nonintegrable constraint (5.7), the cyclic first integral (5.5),
(5.6), the first integral (5.79), the first integral expressed by relation (5.89) (see also (5.91)), which

is a transcendental function of its phase variables (in the sense of complex analysis), and, finally, the
transcendental first integral (5.102).

1
S 5 arctan =(C3=const. (5.102)

Theorem 5.3. System (5.1) under conditions (5.7), (5.5), (5.6), and (5.65) possesses five invariant
relations (a complete set), three of which are transcendental functions (in the sense of the complex
analysis). Moreover, at least four of these five relations are expressed as finite combinations of ele-
mentary functions.

3.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 5.4. The first integral (5.79) of system (5.1) under conditions (5.7), (5.5), (5.6), and (5.65)
is constant on phase trajectories of system (4.74), (4.75).

Proof. Indeed, the first integral (5.79) can be obtained by a change of coordinates from relation (5.78)
and the first integral (4.84) can be obtained by a change of coordinates from relation (4.83). But
relations (5.78) and (4.83) coincide. The theorem is proved. ||

Thus, we have the following topological and mechanical analogies in the sense explained above.

(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the
presence of a nonintegrable constraint).

(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).

(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves
rectilinearly and uniformly.

On more general topological analogies, see [253, 265, 267, 309, 340, 342].
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CHAPTER 6

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
IN THE FOUR-DIMENSIONAL SPACE, I

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of axially symmetric four-dimensional (4D) rigid bodies in nonconservative force fields. The
form of these equations is taken from the dynamics of real lower-dimensional rigid bodies interacting
with resisting medium by laws of jet flows where a body is influenced by a nonconservative tracing
force; under action of this force, the velocity of some characteristic point of the body remains constant,
which means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119-121,
157, 164-167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164-167]), the author proved the complete integrability of the equations of a plane-
parallel motion of a body in a resisting medium under the jet flow conditions when the system of
dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities having essential singularities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In the sequel (see [193, 196, 202, 204, 208, 209, 218, 232, 241]), the planar problem was generalized
to the spatial (three-dimensional) case, where the system of dynamical equations possesses a complete
set of transcendental first integrals. In this case, it was assumed that the interaction of the medium
with the body is concentrated on the part of the surface of the body that has the form of a planar
(two-dimensional) disk.

In this chapter, we discuss results, both new and obtained earlier, concerning the case where the
interaction of the medium with the body is concentrated on the part of the surface of the body that has
the form of a three-dimensional disk and the force acts in the direction perpendicular to the disk. We
systematize these results and formulate them in the invariant form. We also introduce the additional
dependence of the moment of a nonconservative force on the angular velocity; this dependence can be
generalized to the motion in higher-dimensional spaces.

1. General Discourse

1.1. Two cases of dynamical symmetry of a four-dimensional body. Let a four-dimensional
rigid body © of mass m with smooth three-dimensional boundary 90 be under the influence of a
nonconservative force field; this can be interpreted as a motion of the body in a resisting medium that
fills up the four-dimensional domain of Euclidean space E*. We assume that the body is dynamically
symmetric. If the body has two independent principal moments of inertia, then in some coordinate
system Dxixoxszy attached to the body, the operator of inertia has the form

diag{ll,IQ,IQ,IQ} (61)
or the form

diag{117[17[37[3}' (62)
In the first case, the body is dynamically symmetric in the hyperplane Dzsx3x4 and in the second

case, the two-dimensional planes Dxjx9 and Dxsx4 are planes of dynamical symmetry of the body.

1.2. Dynamics on so(4) and R*. The configuration space of a free, n-dimensional rigid body is
the direct product
R"™ x SO(n) (6.3)
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of the space R™, which defines the coordinates of the center of mass of the body, and the rotation
group SO(n), which defined rotations of the body about its center of mass and has dimension
nn—1) n(n+1)
n+ 9 = 9 .
Therefore, the dynamical part of the equations of motion has the same dimension, whereas the di-
mension of the phase space is equal to n(n + 1).

In particular, if € is the tensor of angular velocity of a four-dimensional rigid body (it is a second-
rank tensor, see [44, 52, 53, 74-77, 79-81, 85, 86, 89, 133, 433-439]), 2 € so(4), then the part of the
dynamical equations of motion corresponding to the Lie algebra so(4) has the following form (see [69,
436, 438)):

QA + AQ +[Q, QA + AQ] = M, (6.4)
where
A= diag{)‘l7)‘27)‘37)‘4}7 (65)
—Li+DL+ I3+ 1 I =L+ 13+ 14
)\l = 2 ) )‘2 = 2 )
L+ — 13+ 14 L+L+13—14
A3 = 9 y o A= 9 ;

M = MfF is the natural projection of the moment of external forces F acting on the body in R* on the
natural coordinates of the Lie algebra so(4) and [ ] is the commutator in so(4). The skew-symmetric
matrix corresponding to this second-rank tensor 2 € so(4) we represent in the form

0 —We ws —Wws3
Wwe 0 —W4 w2
; (6.6)
—Ws W4y 0 —W1
w3 —Wws Wi 0

where w1, wo, w3, wy, ws, and wg are the components of the tensor of angular velocity corresponding
to the projections on the coordinates of the Lie algebra so(4).
Obviously, the following relations hold:
N—N=L—-1;, 4,j=1,...,4 (6.7)
For the calculation of the moment of an external force acting on the body, we need to construct the
mapping

R* x R* — so(4) (6.8)
than maps a pair of vectors
(DN, F) € R* x R* (6.9)
to an element of the Lie algebra so(4), where
DN:{07$2N7$3N7$4N}7 F:{F17F27F37F4}7 (6]—0)

and F is an external force acting on the body. For this end, we construct the following auxiliary

matrix
0 w@on x3N T4n
<F1 JEA ) > . (6.11)

Then the right-hand side of system (6.4) takes the form
M= {$3NF4 —xan 3, TanFo — zon Fy, —xan By, 2o F3 — 23N B, 23N F, —$2NF1}- (6.12)

Dynamical systems studied in the following chapters, generally speaking, are not conservative; they
are dynamical systems with variable dissipation with zero mean (see [265]). We need to examine by
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direct methods a part of the main system of dynamical equations, namely, the Newton equation, which
plays the role of the equation of motion of the center of mass, i.e., the part of the dynamical equations
corresponding to the space R*:

mwce = F, (6.13)
where w¢ is the acceleration of the center of mass C of the body and m is its mass. Moreover, due
to the higher-dimensional Rivals formula (it can be obtained by the operator method) we have the
following relations:

wo =wp 4+ Q?°DC + EDC, wp=vp+Qvp, E=Q, (6.14)

where wp is the acceleration of the point D, F is the external force acting on the body (in our case,
F = S), and E is the tensor of angular acceleration (second-rank tensor).

So, the system of equations (6.4) and (6.13) of tenth order on the manifold R* x so(4) is a closed
system of dynamical equations of the motion of a free four-dimensional rigid body under the action
of an external force F. This system has been separated from the kinematic part of the equations of
motion on the manifold (6.3) and can be examined independently.

2. General Problem on the Motion Under a Tracing Force

Consider a motion of a homogeneous, dynamically symmetric (case (6.1)), rigid body with front
end face (a three-dimensional disk interacting with a medium that fills the four-dimensional space) in
the field of a resistance force S under the quasi-stationarity conditions (see [28, 50, 51, 62-66, 98, 112,
119-121, 160-169, 171, 431, 432]).

Let (v, a, 81, B2) be the (generalized) spherical coordinates of the velocity vector of the center of
the three-dimensional disk lying on the axis of symmetry of the body,

0 —wg ws —wsg
w 0 —w w
0= 6 4 2
—Ws W4 0 —Ww1
w3 —W2 w1 0

be the tensor of angular velocity of the body, Dxixox3x4 be the coordinate system attached to the
body such that the axis of symmetry C'D coincides with the axis Dz (recall that C is the center of
mass), and the axes Dxy, Dxs, and Dzy lie in the hyperplane of the disk, and I3, Iz, I3 = I, Iy = I,
and m are characteristics of inertia and mass.
We adopt the following expansions in the projections on the axes of the coordinate system Dxixox3ry:
DC = {—0,0,0,0},

6.15
vp = {vcosa, vsin a cos 81, vsinasin By cos By, vsinasin by sinﬁ2}. ( )

In the case (6.1) we additionally have the expansion for the function of the influence of the medium
on the four-dimensional body:
S ={-5,0,0,0}, (6.16)

i.e., in this case F = S.

Then the part of the dynamical equations of motion (including the analytic Chaplygin functions [50,
51]; see below) that describes the motion of the center of mass and corresponds to the space R%, in
which tangential forces of the influence of the medium on the three-dimensional disk vanish, takes the
form

VoS — G sin a — wg sin a cos 1 + wsv sin acsin B cos B — w3v sin asin B sin By

s (6.17)
+o (wg + w? —I—wg) ==
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¥ sin « cos 81 + Qv cos a cos 31 — /531’0 sin arsin 81 + wgv cos ¢ — w4 sin asin B1 cos By

6.18
+wayv sin acsin By sin B — o (wyws + wows) — owg = 0, ( )
U sin asin B cos B + v cos acsin By cos B + Bivsin acos By cos By — Bov sin asin By sin Bo (6.19)
—ws5v oS & + wyv sin a cos B1 — wiv sin acsin By sin By — 0(—wiws + wyws) + ows = 0, '
¥ sin asin By sin By + v cos acsin By sin By + B1v sin acos By sin By + Bov sin asin By cos Bo (6.20)
+w3v €os @ — W sin v cos B + wyvsin asin By cos By + o(wows + wiws) — 0wz =0,
where
S =s(a)w?, o=CD, v>0. (6.21)
Further, the auxiliary matrix (6.11) for the calculation of the moment of the resistance force has
the form
0  zon 23N TaN
; .22
<—S 0 0 0 /)’ (6.22)

then the part of the dynamical equations of motion that describes the motion of the body about the
center of mass and corresponds to the Lie algebra so(4), becomes

(M + A3)in + (A3 — Ag)(wsws + woawy) = 0, (6.23)
(A2 + M) + (A2 — Ag)(waws — wiws) = 0, (6.24)
(A1 + M)z + (Mg — A1) (waws + wiws) = T4y <a, 51, Ba, 2) s(a)v?, (6.25)
(A3 + A2)ig + (A2 — A3)(wswe + wiws) = 0, (6.26)
(M + A3)ds + (A3 — A1) (waws — wiws) = —x3N <a, 1, Ba, 2) s(a)v?, (6.27)
(AL + Xo)ws + (A1 — A2) (waws + waws) = xopn (a, B1, Ba, 2) s(a)v?. (6.28)

Thus, the phase space of system (6.17)—(6.20), (6.23)—(6.28) of tenth order is the direct product of
the four-dimensional manifold and the Lie algebra so(4):

R! x 83 x so(4). (6.29)
We note that system (6.17)—(6.20), (6.23)—(6.28), due to the existing dynamical symmetry
L=1I =1, (6.30)
possesses cyclic first integrals
wy = w) = const, wy =w) = const, ws=w] = const. (6.31)

In the sequel, we consider the dynamics of the system on zero levels:
W) =wd =wl=0. (6.32)

If one considers a more general problem on the motion of a body under a tracing force T that lies on
the straight line CD = Dz and provides the fulfillment of the relation

v = const (6.33)
throughout the motion (see [164-167])), then instead of F} system (6.17)—(6.20), (6.23)—(6.28) contains
T — s(a)v®, o= DC. (6.34)
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Choosing the value T of the tracing force appropriately, one can achieve the equality (6.33) through-
out the motion. Indeed, expressing 7" due to system (6.17)—(6.20), (6.23)—(6.28), we obtain for
cos a # 0 the relation

mo sin o

T =Ty(a, b1, B2,2) = mo (wg —i—wg —i—w%) + s(a)v2 [1 T, <a,ﬁl,ﬁg, 2)] , (6.35)

- 215 cos

where
FU a7/817/827 v = T4N a7/817527 v Sln/Bl Sln/B2 + T3n 04751”82, v Sln/Bl COSBQ

+ Ton <Oé,/31”32, 2) cos f1; (6.36)

here we used conditions (6.31)—(6.33).

This procedure can be interpreted in two ways. First, we have transformed the system using the
tracing force (control) that provides the consideration of the class (6.33) of motions interesting for us.
Second, we can treat this as an order-reduction procedure. Indeed, system (6.17)—(6.20), (6.23)—(6.28)
generates the following independent system of sixth order:

Qv cosacos B — Brusinasin By + wev cos a — o = 0, (6.37)

v cos asin By cos Bz + Brvsin a cos By cos By — Bov sin asin By sin By — wyv cos a + 0w = 0, (6.38)

& cos acsin (1 sin By + Blv sin « cos 31 sin By + Bgv sin asin By cos By + wsvcosa — ows =0,  (6.39)

Q
2lhws = z4N <a,51,527 v> s(a)?, (6.40)
. Q 2
212(")5 = —T3N a)ﬁl)ﬁ% v 8(04)2} ’ (641)
. Q 2
2I2w6 = I2N | &, ﬁlvﬁ?) v S(Oé)’U ) (642)

which, in addition to the permanent parameters specified above, contains the parameter v.
System (6.37)—(6.42) is equivalent to the system

A cos o + v cos a [wg cos B — ws sin By cos By + ws sin By sin P

6.43
+0 [—Wg cos B1 + Ws sin 31 cos By — Wz sin By sin fa] = 0, ( )
By sina — v cos a [ws cos B cos By + we sin B — ws cos Py sin o] (6.44)
+0 [Ws cos B cos Bawg sin B1 — Ws cos By sin Bo] = 0, '
Bavsin asin B1 + v cos a [ws cos Ba 4 ws sin Ba] + o [—ws cos By — ws sin Ba] = 0, (6.45)
. 02 Q
Wy = o g TN (04,/31,/32, v> s(a), (6.46)
v? Q
s = — 4
Wy 2I2$3N <a7617ﬁ27 U> s(a), (6 7)
. v? Q
o = o, 2N (04,/31”32, U> s(a). (6.48)
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Introduce the new quasi-velocities. For this, we transform ws, ws, and wg by two rotations:

21 w3
2o | =T1(=B1) o T3(=P2) | ws |,
z3 w6
where
1 0 0 cos B —sin By
Ti(f1) =10 cospy —sinBy |, T5(B2)=|sinfy cosfs
0 sinf; cos 0 0

Therefore, the following relations hold:
21 = w3 cos B2 + ws sin Pa,
29 = —ws3 €os (1 sin By + ws cos B cos By + wg sin B,

z3 = ws sin B sin By — ws sin 81 cos o + wg cos [1.

(6.49)
0
0]. (6.50)
1

(6.51)

As we see from (6.43)—(6.48), we cannot solve the system with respect to ¢, By, and By on the

manifold

Ol = {(a7ﬁ17ﬁ27w37w57w6) S R6 o= gka 61 = 7Tl, k7l S Z} . (652)

Therefore, on the manifold (6.52) the uniqueness theorem formally is violated. Moreover, for even
k and any [, an indeterminate form appears due to the degeneration of the spherical coordinates
(v, e, B1, B2). For odd k, the uniqueness theorem is obviously violated since the first equation (6.43)

degenerates.

This implies that system (6.43)—(6.48) outside (and only outside) the manifold (6.52) is equivalent

to the system

. v s(a Q
a=—z+ " S (a5 8., (6.53)
215 cos « v
. v? Q 9 oy cosa  ov s(a) Q
23 = S(Q)FU 04751”82, - (Zl + 22) . - . z2AU a7/817527
215 v sinaw 2l sina v (6.54)
ov s(« Q '
+ ( )2161) avﬁlvﬁ% )
215 sin « v
2
. v Q CcoS Qv COS (¢ COS
Zo = —_ s(a)A, | o, B, Po, + 2023 2 . “
21 v sin « sin « sin 5q (6.55)
ov s(o Q ov s(a) cos Q '
( ) Z3AU avﬁl)ﬁ% - - ( ) . ﬁl 2161) avﬁlvﬁ% )
215 sin « v 215 sin « sin 5q v
2
. v Q CoS Qv COS (¢ COS
Z1=_ s(0)0, | a, B, B, +223 . — 212 . bi_
21 v sin « sin «v sin 51 (6.56)
ov s(a Q ov s(a) cos Q '
- ( )2361) avﬁlvﬁ% + ( ) . ﬁl 2261) avﬁlvﬁ% )
215 sin « v 215 sin « sin 5q v
. cosa ov s(a Q
ﬁl =Zz2 . + ( )Av <a7617627 > 5 (657)
sina 2l sina v
; COS (v ov  s(a) Q
S C) 6.58
B2 A sin asin 51 + 2@ sinasin 81 <a’ﬂl’ﬂ2’ U> ’ ( )
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where

A, (aup ) = (., ) cos sin
+ 3N (04,/31”32, 2) cos 31 cos B (6.59)

Q\ .
— 2N <a7617627 U> Slnﬁlv

0, (i) ) =an (@) ) cos o way (fnfo ) Jsinga (600

and the function Iy, (o, 81, B2, 2 /v) can be represented in the form (6.36).

Here and in the sequel, the dependence on the group of variables («, 51, 52,€2/v) is meant as the
composite dependence on («, f1, B2, 21 /v, 22 /v, z3/v) due to (6.51).

The uniqueness theorem for system (6.43)—(6.48) on the manifold (6.52) for odd k is violated in the
following sense: for odd k, through almost all points of the manifold (6.52), passes a nonsingular phase
trajectory of system (6.43)—(6.48) intersecting the manifold (6.52) at right angle and there exists a
phase trajectory that at any time instants completely coincides with the point specified. However,
physically these trajectories are different since they correspond to different values of the tracing force.
Prove this.

As was shown above, to maintain the constraint of the form (6.33), we must take a value of T" for
cos o # 0 according to (6.35).

Let Q Q

im *@p, <a,51,,32, > =L (,81,,82, > . (6.61)
a—mw/2 COS & v v
Note that |L| < 400 if and only if
lim
a—m/2

6(1 <F” <O"ﬁ1’ﬁ2’ 2) 8(0‘)>‘ < too. (6.62)

For a = 7/2, the required value of the tracing force is defined by the equation

mo Lv?

™
T:Tv<27517/8279):ma(w§+wg+wg)_ 2]’2

(6.63)

where ws, ws, and wg are arbitrary.
On the other hand, maintaining the rotation about some point W by the tracing force, we must
choose this force according to the relation

T=1,(3.61.6.2) =

where Ry is the distance between C' and W.
Relations (6.35) and (6.64) define, in general, different values of the tracing force 7" for almost all
points of the manifold (6.52), which proves our assertion.

muv

6.64
i (6:64)
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3. Case Where the Moment of a Nonconservative Force
Is Independent of the Angular Velocity

3.1. Reduced system. Similarly to the choice of Chaplygin analytic functions (see [50, 51]), we
take the dynamical functions s, xon, 23y, and x4 in the following form:

s(a) = Bcosa,

Q .
Ta2N <Oé,51,52, 'U> :xQNO(Oé,ﬁl,52) :ASIHQCOS/BL

Q L (6.65)
3N | o, B1, P, o) = x3no(a, 1, B2) = Asinasin 5 cos [,

T4N (04,/31,/32, v> = z4no(a, B1, f2) = Asinasin By sin fa,

where A, B > 0 and v # 0. We see that in the system considered, the moment of nonconservative
forces is independent of the angular velocity (but depends on the angles «, f1, and f2). Herewith, the
functions T'y, (o, B1, B2, Q/v), Ay (o, f1, P2, 2/v), and O, (a, f1, B2, /v) in system (6.53)—(6.58) take
the following form:

r, <a,ﬁl,ﬁ2, f) ~ Asina, A, <a,ﬁ1,ﬁ2, f) o, <a,ﬁl,ﬁz, f) —0. (6.66)

Then, due to the nonintegrable constraint (6.33), outside the manifold (6.52), the dynamical part of
the equations of motion (system (6.53)—(6.58)) has the form of the following analytic system:

AB
&= —z3+ 7220 Gin «, (6.67)
21
ABv?
Zg = 21;) sinacos o — (2F + 23) :?;z, (6.68)
Zo = 2923 c.osoz 22 C,Osa C,OS ﬁl, (6.69)
sin « sin « sin 51
Z1 = 2123 C?Sa — 2129 C?Sa C?S Bl, (6.70)
sin sin «v sin 5q
: COS &
Pr=z . (6.71)
sin
: Cos &
=— . 6.72
& “l sin asin 1 ( )
Further, introducing the dimensionless variables, parameters, and the differentiation as follows:
AB
2 novzk, k=1,23, mg=" ", b=ony, () =mnov(’), (6.73)
2
we reduce system (6.67)-(6.72) to the form
o = —23 + bsina, (6.74)
, ) 9 9\ COSQ
= — , 6.75
73 =sinacosa — (27 + 23) sino (6.75)
, COSQ  5COSxCos 3y
= , 6.76
72T 22 sin « A sin ¢ sin 5y ( )
2= 2123 C_OS @ _ 2122 C_OS @ C,OS P , (6.77)
sin « sin « sin 5y
Bl=2 (6.78)
sin «



COS «x

By =—2 (6.79)

sinasin B
We see that the sixth-order system (6.74)-(6.79) (which can be considered as a system on the
tangent bundle T'S? of the three-dimensional sphere S?, see below) contains the independent fifth-
order system (6.74)—(6.78) on its own five-dimensional manifold.
For the complete integration of system (6.74)-(6.79), in general, we need five independent first
integrals. However, after the change of variables

z z
<z;> — <z*> , zZ= \/Z% + 23,z = 22/21, (6.80)

system (6.74)—(6.79) splits as follows:

o = —23+bsina, (6.81)

25 = sinacos a — 22 C_OS a’ (6.82)
sin o

2 = 223 C?Sa, (6.83)

sin o

(4 1 , COS @ €08 [ 6.84

4= @)L+ 2 o, (6.59)

gy FAe cosa 6.85

/81 ( )\/14—2'38111047 ( )
z COos «v

By = (F) (6.86)

\/1 + z2sinasin

We see that the sixth-order system splits into independent subsystems of lower order: system (6.81)—
(6.83) has order three and system (6.84), (6.85) (after the change of the independent variable) has order
two. Thus, for the complete integration of system (6.81)—(6.86) it suffices to specify two independent
first integrals of system (6.81)—(6.83), one first integral of system (6.84), (6.85), and an additional first
integral that “attaches” Eq. (6.86).

Note that system (6.81)—(6.83) can be considered on the tangent bundle T'S? of the two-dimensional
sphere S2.

3.2. Complete list of invariant relations. System (6.81)—(6.83) has the form of a system that
appears in the dynamics of a three-dimensional (3D) rigid body in a field of nonconservative forces.

First, to the third-order system (6.81)—(6.83), we put in correspondence the nonautonomous second-
order system

dz3  sinacosa — 22 cos ar/ sin «
do —23 .—I— bsin o (6.87)
dz  zzzcosa/sina
da  —z3+bsina
Applying the substitution 7 = sin «, we rewrite system (6.87) in the algebraic form
deg  T—2%)T
dr  —z3+0b71 (6.88)
dz  zz3/T
dr  —z3+br
Introducing the homogeneous variables by the formulas
Z=uiT, 23 = UaT, (6.89)
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we reduce system (6.88) to the following form:

dus 1—u?

T +ug = )
dr —ug +b (6.90)
duq . ULU

T Uy =
dr LR &

which is equivalent to the system
dus 1 —u? +ud — buy
T = ,
du;  2uiug — buy
T =
dr —ug + b

To the second-order system (6.91), we put in correspondence the nonautonomous first-order equation

dZLQ i 1—u%+u§—bu2

6.92
duq 2uiug — bug ( )
which can be easily reduced to the exact differential equation
5+uf —bug +1
d <“2 U bua > —0. (6.93)
Cal
Thus, Eq. (6.92) has the following first integral:
2 2 b 1
up U —bup C1 = const, (6.94)
Cal
which in the previous variables has the form
22 + 2% — bzgsina + sin a _ 0, = const. (6.95)

zsino
Remark 6.1. Consider system (6.81)—(6.83) with variable dissipation with zero mean (see [67, 68,
9243, 260, 262, 265, 282, 283, 285, 286, 291, 295, 309, 324, 333, 340, 384, 391, 404 408, 412, 413, 421,
437, 438]) that becomes conservative for b = 0:

/

O = —2z3,
25 = sinacosa — chosoz
3= sina’ (6.96)
, CoS (v
Z =zz3
sin v
It possesses two analytic first integrals of the form
22 + 22 +sin® a = C} = const, (6.97)
zsina = C5 = const . (6.98)

Obviously, the ratio of the first two integrals (6.97) and (6.98) is also a first integral of system (6.96).
However, for b # 0, each of the functions

22 + 2% — bzzsina + sin® a (6.99)
and (6.98) is not a first integral of system (6.81)—(6.83) but their ratio is a first integral for any b.

Further, we find the explicit form of the additional first integral of the third-order system (6.81)—
(6.83). For this, we transform the invariant relation (6.94) for u; # 0 as follows:

b\ 1\ B2+
<u2—2> —|—<u1— 2) =, L (6.100)
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We see that the parameters of this invariant relation satisfy the condition
b2+ CF —4>0, (6.101)
and the phase space of system (6.81)—(6.83) is stratified into the family of surfaces defined by Eq. (6.100).
Thus, by relation (6.94), the first equation of system (6.91) has the form

2(1-10 2) — C UL (Ch,
7_duQ _ ( U2+u2) 1U1(Ch U2)’ (6.102)
dr —ug +b

where
Ur(Cy,uz) = ; {Cli\/cf—4(u§—bU2+1)}; (6.103)

the integration constant Cj is defined by condition (6.101).
Therefore, the quadrature for the search for the additional first integral of system (6.81)—(6.83)
becomes

/ dr _ / (b — ug2)dus ' (6.104)
TS a(imbnrad) — o {C kST -4 (B b+ 1) } 2
Obviously, the left-hand side (up to an additive constant) equals
In |sin . (6.105)
If
Uy — g =w, b =0b>4CF -4, (6.106)

then the right-hand side of Eq. (6.104) has the form

B 1/ d (b2 — 4w?) —b/ dwn
4 (3 — dw?) £ C1\/b? — dw? (02 — dw?) + C1/b? — dw?

1. [0 — 4w}
+1
n o,

+ gfl, (6.107)

where

b? — dw? 6.108
/ \/b2 w3 ws + 01 \/ U ( )

In the calculation of integral (6.108), the following three cases are possible.
L b>2:

L= \/52 4+\/b%—w§i Cro |
2\/b2 w3 + Cy Vb2 —4
1 Vb2 — 4 — /b3 — w? Cy
+ In 1 3 + const; (6.109
202 — ' w3 + C4 $\/b2—4 ( )
II. b < 2:
1 . +Ciws + b3
L = arcsin + const; 6.110
VS a2 O g o) (6.110)
II1. b= 2:
I YA + const . (6.111)
LT T O (w £ cl) ‘
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Returning to the variable

z3 b
= — 112
T gina ~ 2 (6.112)
we obtain the final expression for Iy:
I b> 2
[ T, Vb2 — 4+ 2w, Ch
S /Y R N/ SO S MY/ - R
1 \/b2 —4 F 2wq 01
+ In + const; (6.113
202 — 4 \/b%—4w%i(3’1$\/b2—4 ( )
IL. b < 2:
+C01/b? — 4w? + b?
I = , arcsin 1V~ dw 4 b} + const; (6.114)
\/4_b bl (\/b%—élw%iCl)
III. b= 2: )
I = b + const . (6.115)

o <\/b% — dw? £ 01)

Thus, we have found an additional first integral for the third-order system (6.81)-(6.83) and we
have the complete set of first integrals that are transcendental functions of their phase variables.

Remark 6.2. We must substitute the left-hand side of the first integral (6.94) in the expression of
this first integral instead of C7. Then the additional first integral obtained has the following structure
(similar to the transcendental first integral in planar dynamics):

z3 z

In|sinal + G (sin a, > = Cy = const. (6.116)

sina’ sina
Thus, for the integration of the sixth-order system (6.81)—(6.86), we have found two independent first
integrals. For the complete integration, as was mentioned above, it suffices to find one first integral for
(potentially separated) system (6.84), (6.85), and an additional first integral that “attaches” Eq. (6.86).
To find a first integral for (potentially separated) system (6.84), (6.85), we put in correspondence
the following nonautonomous first-order equation:

dzy 1+ zf cos 31

. 6.117
dp ze sin g ( )
After integration, this leads to the invariant relation
V122
= Oy = t 6.118
sin ,81 3 CONSt, ( )
which in the variables z; and z9 has the form
2,2
Va3 = C3 = const. (6.119)

z1sin B
Further, for the search for an additional first integral that “attaches” Eq. (6.86), to Egs. (6.86)
and (6.84) we put in correspondence the following nonautonomous equation:

dz
= (1422 . 12
by ( + z*) cos B1 (6.120)
Since, by (6.118),
Cj5 cos 31 ::t\/Cg—l—zf, (6.121)
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we have

dzy 1 9
=F 1+ 2 \/02—1—z§. 6.122
df32 Cs ( )V G ( )
Integrating the last relation, we arrive at the following quadrature:
C3dz,
F(B2+C :/ , Cy = const. 6.123
GBre=] a1 @ (6:123)
Integrating this relation we obtain
Cs24
Ftan(fe + Cy) = 8% ,  Cy = const. (6.124)
VO3 122
In the variables z; and zy the last invariant relation has the form
C
Ftan(fe + Cy) = 872 ,  C4=const. (6.125)

V(€3 -1)2 -2

Finally, we have the following form of the additional first integral that “attaches” Eq. (6.86):

arctan Gz + 6y, =C4, C4= const (6.126)
V03 -1 -2
or o
arctan 372 + By =C4, C4=const. (6.127)

V(@3 =1)22 23

Thus, in the case considered, the system of dynamical equations (6.17)-(6.20) and (6.23)—(6.28)
under condition (6.65) has eight invariant relations: the nonintegrable analytic constraint of the
form (6.33); the cyclic first integrals of the form (6.31), (6.32); the first integral of the form (6.95); the
first integral expressed by relations (6.109)-(6.116), which is a transcendental function of the phase
variables (in the sense of complex analysis) expressed through a finite combination of elementary
functions; and, finally, the transcendental first integrals of the form (6.118) (or (6.119)) and (6.126)
(or (6.127)).

Theorem 6.1. System (6.17)—(6.20), (6.23)—(6.28) under conditions (6.33), (6.65), (6.32) possesses
eight invariant relations (complete set), four of which are transcendental functions from the point of
view of complex analysis. Herewith, all relations are expressed through finite combinations of elemen-
tary functions.

3.3. Topological analogies. Consider the following fifth-order system:

: : . . .9 . sin
£+ bifcos{ +sinfcos — [7712 + 7% sin® 7] ¢ =0,
cos &
. . . 1+ cos? L9 .
11 + byrjy cos € + &y ) £ 122 sinmy cosmy = 0, (6.128)
cos&siné
.. . .. 1+ cos? . . COS
79 + by7jo cos € + &7y . ¢ —+ 21172 mo_ 0, b.>0,
cos&siné cosm

which describes a fixed four-dimensional pendulum in a flowing medium for which the moment of forces

is independent of the angular velocity, i.e., a mechanical system in a nonconservative field (see [48,

49, 439]). In general the order of such a system is equal to 6, but the phase variable 7, is a cyclic

variable, which leads to the stratification of the phase space and reduces the order of the system.
The phase space of this system is the tangent bundle

TS3 {5777.1777.27&.77717772} (6129)
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of the three-dimensional sphere S3{¢,71,72}. The equation that transforms system (6.128) into the
system on the tangent bundle of the two-dimensional sphere

12 = 0, (6.130)

and the equations of great circles
m=0, 72=0 (6.131)

define families of integral manifolds.

It is easy to verify that system (6.128) is equivalent to the dynamical system with variable dissipation
with zero mean on the tangent bundle (6.129) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 6.2. System (6.17)-(6.20), (6.23)(6.28) under conditions (6.33), (6.65), and (6.32) is
equivalent to the dynamical system (6.128).

Proof. Indeed, it suffices to set a =&, 1 = n1, B2 = 12, and b = —b,. | ]

On more general topological analogies, see [253, 265, 267, 309, 340, 342].

4. Case Where the Moment of a Nonconservative Force
Depends on the Angular Velocity

4.1. Introduction of the dependence on the angular velocity. This chapter is devoted to the
dynamics of a four-dimensional rigid body in the four-dimensional space. Since the present section
is devoted to the study of the motion in the case where the moment of forces depends on the tensor
of angular velocity, we introduce this dependence in a more general situation. This also allows us to
introduce this dependence for multi-dimensional bodies.

Let x = (x1n, Ta2N, T3N, 4N ) be the coordinates of the point N of application of a nonconservative
force (influence of the medium) acting on the three-dimensional disk and @ = (Q1, Q2, @3, Q4) be the
components of the force S of the influence of the medium independent of the tensor of the angular
velocity. We consider only linear dependence of the functions (x1n,Zon,Z3n,Z4n) On the tensor of
angular velocity since this introduction itself is not obvious (see [33, 34, 48, 49, 57-66, 120, 121, 169,
182, 203, 205, 249, 250, 261, 274-276, 440]).

We adopt the following dependence:

r=Q+ R, (6.132)
where R = (Ry, Ra, R3, Ry4) is a vector-valued function containing the components of the tensor of

angular velocity. The dependence of the function R on the components of the tensor of angular
velocity is gyroscopic:

Ry 0 —ws ws —w3\ [

| R | 1 we 0 —W4 W2 ho

R= Ry| v | —-ws wy 0 —ws hs |’ (6.133)
R4 w3 ) w1 0 h4

where (hi, ha, hs, hy) are some positive parameters (cf. [322, 330, 331, 345, 393)).
Since z1ny = 0, we have

w w w
Ton = Q2 — by U6, T3y = Q3 + v5’ TaN = Qs — hy 113' (6.134)
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4.2. Reduced system. Similarly to the choice of the Chaplygin analytic functions (see [50, 51])
Q2 = Asin « cos (3,

Qs = Asinasin 8, cos B, (6.135)
Q4 = Asinasin fysin 8y, A >0,

we take the dynamical functions s, xon, x3n, and x4y in the following form:

s(a) = Beosa, B > 0,

Q
ToN (a,ﬁl,ﬂg, v> = Asin « cos 51 —hw6, h=hy >0, v#0,

v

Q o ws (6.136)
T3N a,,@l,,ﬁg,v :As1na81nﬂlcos,82+hv, h=hy >0, v#0,

Q
T4N <a,,61,,82, > :Asinasinﬂlsinﬁg—hwg, h=hy >0, v#0.
v v

This shows that in the problem considered, there is an additional damping (but accelerating in certain
domains of the phase space) moment of a nonconservative force (i.e., there is a dependence of the
moment on the components of the tensor of angular velocity). Moreover, hy = hy = hy due to the
dynamical symmetry of the body.

In this case, the functions T, (o, 51, 82, Q/v), A, («, 51, B2,Q2/v), and O, (c, b1, B2, Q2/v) in sys-
tem (6.53)—(6.58) have the following form:

Q
Asina — zg,

Fv <Oé, 617 627

<

2

A’U <a7517/827 (6137)

20

)-
)=
)=~

Then, due to the nonintegrable constraint (6.33), outside the manifold (6.52) the dynamical part of
the equations of motion (system (6.53)—(6.58)) takes the form of the analytic system

91) <Oé, /817 /827

v

&= — <1 + U;:) 2+ ”’;5” sina, (6.138)
23 = Af};;? sin a cos o — <1 + 2?:) ( 2 4 z%) (s:iorjz - B;Z)z?, cos a, (6.139)
= (145 e + (14 5 ) A e ot - D cosa (6.140)
a= (145 Jante - (14 0 Jan e i D s (6.141)
pr = <1 + U;:) 2 :ijz (6.142)
o= — <1 n Uﬁ:) o’ Sin‘ifzii 5 (6.143)
Introducing the dimensionless variables, parameters, and the differentiation as follows:
zZE — vz, k=1,2,3, n% = gli, b=ong, H;= 2IBQ}7110’ () = ngv{’), (6.144)
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we reduce system (6.138)-(6.143) to the form

&=—(1+bH;)z+bsina, (6.145)
Zy =sinacosa — (1 +bH) (27 + 23) o Hjz3cos a, (6.146)
sin «
Zo = (1+bH;) Z2Z3C.Osa + (14 bH,) 22 C.Osa C.OS b — Hyz cos a, (6.147)
sin a sin « sin 51

Z1 = (1+bHy) zlzgc,osa — (14 bHy) 2129 c?sa C_OS b _ Hiz cosa, (6.148)
sin « sin «r sin 51
. CoS
fr=1+bH1)z . (6.149)
sin
. cos
=—(1+bH . 6.150
B2 (1+bH) 21 sin asin 5q ( )

We see that the sixth-order system (6.145)—(6.150) (which can be considered on the tangent bundle
TS? of the three-dimensional sphere S3), contains an independent fifth-order system (6.145)—(6.149)
on its own five-dimensional manifold.

For the complete integration of system (6.145)—(6.150), we need, in general, five independent first
integrals. However, after the change of variables

Z1 z
<z2> — <z*> , 2= \/z% + 23, 2z = 22/21, (6.151)

system (6.145)—(6.150) splits as follows:

o =—(1+bH;)z3 + bsina, (6.152)

25 =sinacosa — (14 bHy)z? COSS — Hjzzcos a, (6.153)
2 = (1+bHp)z23 (sjiojz — Hyzcos a, (6.154)
(V1 4 b 1 5 COS a cos By 1

= B +bH)I+2 (6.155)
;- 2z, COSQ

fr=(£)(1+bH) 1+ 22 sina’ (6.156)

By= (A +bH) ° 8 (6.157)

V1 22 sinasin 31

We see that the sixth-order system splits into independent subsystems of lower orders: system (6.152)—
(6.154) of order 3 and system (6.155), (6.156) (certainly, after a choice of the independent variables)
of order 2. Thus, for the complete integration of system (6.152)—(6.157), it suffices to find two inde-
pendent first integrals of system (6.152)—(6.154), one first integral of system (6.155), (6.156), and an
additional first integral that “attaches” Eq. (6.157).

Note that system (6.152)—(6.154) can be considered on the tangent bundle T'S? of the two-dimensional
sphere S2.

4.3. Complete list of invariant relations. System (6.152)—(6.154) has the form of a system of
equations that appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative
field. First, to the third-order system (6.152)—(6.154), we put in correspondence the nonautonomous
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second-order system

dz3  sinacosa — (1 + bH1)z2 cos a/ sin o — Hyz3 cos o

do —(1 4+ bHy)z3 + bsina

dz (1 +0bHy)zz3cosa/sina — Hizcosa

doo —(1+bHq)23 + bsina ’

Using the substitution 7 = sin «, we rewrite system (6.158) in the algebraic form:

dzz 7—(1+ bH1)22 /7 — Hyz3
dr —(14+bHy)2s+br
dz  (1+bHi)zz3/T7 — Hi2

dr — —(1+bHy)z3 +br

Further, introducing the homogeneous variables by the formulas

9

(6.158)

(6.159)

Z=uiT, 23 = UaT, (6.160)
we reduce system (6.159) to the following form:

dus 1 — (14 bHy)u? — Hyusg
T + ug = ,

dr (1 4+ bHy)up + b

duy (1 + le)ulug — Hiug

TdT Tt = —(1—|—bH1)U2—|—b

(6.161)

which is equivalent to
dus (14 0bHy) (uj —ui) — (b+ Hi)ug + 1
Tar T —(1+ bHy)up + b ’
duq B 2(1 + le)UlUQ — (b + Hl)ul
dr —(1+bHy)us + 0 '
To the second-order system (6.162), we put in correspondence the nonautonomous first-order equa-
tion

(6.162)

duy 1= (1+40bH) (uf —u3) — (b+ Hy)us

= 6.163
du1 2(1 + le)u1u2 — (b + Hl)ul ( )
which can be easily reduce to the exact differential equation
1+bHy) (U3 +u}) — (b+ H 1
d<( o) (o) = (b Huz + > — 0. (6.164)
Uy
Thus, Eq. (6.163) has the following first integral:
1+ bHy) (u3 +uf) — (b+ Hi)ug + 1
( D (2 u;) ( 1)uz = C} = const, (6.165)
1
which in the original variables has the form
1+ bHy) (23 + 2%) — (b+ Hi)z3si in?
(1+bHy) (25 + 2%) = (b+ Hi)zgsina +sin*a_ C, — const. (6.166)

zZsin o

Remark 6.3. Consider system (6.152)—(6.154) with variable dissipation with zero mean (see [265]),
which becomes conservative for b = Hj:

o =— (1 +b2) z3 + bsin a,

I = s (14 ?) 2
23 =sinacosa — (1+ %) 2 sing  BCosa, (6.167)
2 = (1 + b2) 223 c?sa — bz cos a.

sin o
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It possesses the following two analytic first integrals:
(1+6%) (23 + 2%) — 2bzz sina + sin @ = C} = const, (6.168)
zsina = C5 = const . (6.169)
Obviously, the ratio of the two first integrals (6.168) and (6.169) is also a first integral of system (6.167).
However, for b # H;, none of the functions
(1+bH;y) (z§+z2) — (b+ Hy)z3sina + sin® o (6.170)
and (6.169) is a first integral of system (6.152)-(6.154), but their ratio is a first integral of sys-
tem (6.152)—(6.154) for any b and Hj.

We find the explicit form of the additional first integral of the third-order system (6.152)—(6.154).
First, we transform the invariant relation (6.165) for u; # 0 as follows:

b+ Hy \? Ch 2 (b—H|)24+C2—4
- - = . 6.171
<“2 2(1 + bH1)> * (ul 2(1+bH,) 4(1 + bH,)? ( )
We see that the parameters of this invariant relation must satisfy the condition
(b—H)*+C?—4>0, (6.172)

and the phase space of system (6.152)—(6.154) is stratified into the family of surfaces defined by
Eq. (6.171).
Thus, due to relation (6.165), the first equation of system (6.162) has the form

dZLQ (1—|—bH1)’u,2—Q(b—i-Hl)UQ—I-Q—ClUl(Cl,Ug)
1
T dr b— (1 + le)UQ (6 73)

where
1

2(1+bH))

U2 Cl,UQ \/02 1—|—bH1) (1—(b—|—H1)u2—|—(1—|—bH1)u%),

and the integration constant C is defined by condition (6.172).
Therefore, the quadrature for the search for an additional first integral of system (6.152)—(6.154)
becomes

Ui(Cr,u2) = {C1 £ Us(Cy,u2)},

(6.174)

/ dr _ / (b— (14 bHy)uz)dus . (6.175)
T 2(1 — (b+ Hy)ug + (1 + bHy)u2) — C1{Cy + Ua(Cy,u2)}/(2(1 + bHy))
Obviously, the left-hand side(up to an additive constant) is equal to
In |sin . (6.176)
! b+ H 2 2 2
ug — 21+ bHy) =wy, bj=(0b-H)"+C7—4, (6.177)

then the right-hand side of Eq. (6.175) becomes

1 / d (b3 — 4(1 + bHy)w?)
(b3 — 4(1 + bH)w?) £ C1/b2 — 4(1 + bH, )w?

dwl
—(b—H)(1+bH /
( 1)( 1) (b%—ﬁl(l—l—le)w%) iCl\/b2_4 1+ bHy)w?
! 4(1 + bHy)w? b—H
— ‘. 1+ L, (6178)
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where

dw3
I :/ . w3 = 4/b? —4(1 + bHy)w?. 6.179
=] e sy B VA A (6.179)

In the calculation of integral (6.179), the following three cases are possible:
I. |b—Hi| >2:

1 V(b= H1)? — 4+ /b — w? Ch
Il = — In +
2y/(b— Hy)? — w3 + C \/(b_Hl)z_
1 b—Hi)? —4— /b3 —
In VI ) Vb q: 1 + const; (6.180)
2y/(b— Hy)? — 4 ws £ Cy V(b —Hp)? -
II. |b— H1| < 2
1 . Ciws + b%
L = arcsin + const; 6.181
Ve (- )2 T by £ 1) (6.181)
II1. |b— Hy| = 2:
I A + const . (6.182)
1= Ol(wg + Cl) '
Returning to the variable
z9 b—l-Hl
= - 6.183
17 dina 2(1+bH,)’ ( )
we have the following final form of I;:
I. b— Hy| > 2:
\/ b— Hl 4i2(1+bH1)w1 Cl
L =- +
\/(b—Hl V2 —4(1 +bH1)2w% +Cy V(b — Hp)? — 4
b—Hy)? —4F2(1+bH
o | VO~ H)? = 4F 21+ bHuy % + const; (6.184)
2\/b Hl \/b2 (1+bHy)?w} £ Cy \/(b—Hl)Q—
II. |b— H1| < 2
1 +C1/0? — 4(1 + bHy)?w? + b}
L = , arcsin V0] = (L bH Pt + b + const; (6.185)
VA= (b— Hy) by (V5 = 41+ bHy 2u? £ C )
III1. |b— Hy| = 2:
2(1+bH
I = (L+bH, + const. (6.186)

Cy (V8 = 401+ bH w3 £ G )

Thus, we have found an additional first integral for the third-order system (6.152)(6.154) and we
have the complete set of first integrals that are transcendental functions of their phase variables.

Remark 6.4. Formally, in the expression of the found first integral, we must substitute instead of Cy
the left-hand side of the first integral (6.165).

Then the obtained additional first integral has the following structure (similar to the transcendental
first integral from planar dynamics):

In|sin af + G (sin a, : ) = (Cy = const. (6.187)

sina’ sin «
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Thus, to integrate the sixth-order system (6.152)—(6.157), we have already found two independent
first integrals. For the complete integration, as was mentioed above, it suffices to find one first integral
for the (potentially separated) system (6.155), (6.156) and an additional first integral that “attaches”
Eq. (6.157).

To find a first integral of the (potentially separated) system (6.155), (6.156), we put in correspon-
dence the following nonautonomous first-order equation:

dzy 1+ zf cos 31

. 6.188
dp ze sin g ( )
After integration we obtain the required invariant relation
V14 22
= Oy = t, 6.189
sin B, '3 = cons ( )
which in the variables z; and z9 has the form
2,2
VA + 2 = (3 = const . (6.190)

z1sin B
Further, to obtain an additional first integral that “attaches” Eq. (6.157), to Egs. (6.157) and (6.155)
we put in correspondence the following nonautonomous equation:
dzy

a6, =" (1 +22) cos B1. (6.191)
Since
Cscosff1 = :l:\/C’g —1-22 (6.192)
by (6.189), we have
dzy 1 9
=7 (1422 \/02—1—z3. 6.193
dBa Cs ( ) VG ( )
Integrating this relation, we arrive at the following quadrature:
ngz*
F(B2+C :/ , Cy = const. 6.194
B2+ Co) (1422)/C2—1-22" (6.154)
Integration leads to the relation
ng* _
Ftan(fe + Cy) = e B C4 = const . (6.195)
In the variables z; and z this invariant relation has the form
C.
Ftan(fe + Cy) = 872 ,  C4=const. (6.196)

J(©3-1)2 -2

Finally, we have the following additional first integral that “attaches” Eq. (6.157):

Csz,
arctan 3% + B8y =0C4, C4 = const (6.197)
V03 —1- 22
or o
arctan 372 + By =C4, C4=const. (6.198)

V(@ -1)22 -2
Thus, in the case considered, the system of dynamical equations (6.17)—(6.20), (6.23)—(6.28) under
condition (6.136) has eight invariant relations: the analytic nonintegrable constraint of the form (6.33),
the cyclic first integrals of the form (6.31) and (6.32), the first integral of the form (6.166), the
first integral expressed by relations (6.180)—(6.187), which is a transcendental function of the phase

461



variables (in the sense of complex analysis) expressed through a finite combination of functions, and
the transcendental first integrals of the form (6.189) (or (6.190)) and (6.197) (or (6.198)).

Theorem 6.3. System (6.17)(6.20), (6.23)(6.28) under conditions (6.33), (6.136), and (6.32) pos-
sesses eight invariant relations (complete set); four of them are transcendental functions from the
point of view of complex analysis. All relations are expressed through finite combinations of elemen-
tary functions.

4.4. Topological analogies. Consider the following fifth-order system:
sin&

€+ (b — Hy)E cos € +sin€ cos € — [1j12 + 1jp? sin® ] cost = 0,
. . . 1+ cos? 2 .
1+ (bx — Hui)rji cos € + &y . S 1i2” sinmy cosmy = 0, (6.199)
cos€siné
. . .. 14 cos? . COS
12 + (bx — H1x)1j2 cos § + Enja . ; + 2n17j2 n =0,
cos&siné cos 1M1

where b, > 0 and Hy, > 0. This system describes a fixed four-dimensional pendulum in a flowing
medium for which the moment of forces depends on the angular velocity, i.e., a mechanical system in
a nonconservative field (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360,
376, 377, 386, 392, 429, 442]). Generally speaking, the order of this system must be equal to 6, but
the phase variable 7 is a cyclic variable, which leads to stratification of the phase space and reduction
of the order of the system.

The phase space of this system is the tangent bundle

T83 {5777.1777.27&.77717772} (6200)

of the three-dimensional sphere S3{¢,71,72}. The equation that transforms system (6.128) into the
system on the tangent bundle of the two-dimensional sphere
1y = 0 (6.201)
and the equations of great circles
m=0, 72=0 (6.202)
define families of integral manifolds.
It is easy to verify that system (6.199) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (6.200) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 6.4. System (6.17)-(6.20), (6.23)(6.28) under conditions (6.33), (6.136), and (6.32) is
equivalent to the dynamical system (6.199).

Proof. Indeed, it suffices to set a« =&, B1 =11, B2 =19, b = —by, and Hy = —Hj,. | ]
On more general topological analogies, see [253, 265, 267, 309, 340, 342].
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CHAPTER 7

CASES OF INTEGRABILITY
CORRESPONDING TO THE MOTION OF A RIGID BODY
IN THE FOUR-DIMENSIONAL SPACE, II

In this chapter, we systematize results, both new and obtained earlier, concerning the study of equa-
tions of motion of an axis-symmetric four-dimensional (4D) rigid body in a field of nonconservative
forces. These equations are taken from the dynamics of realistic rigid bodies of lesser dimension that
interact with a resisting medium by laws of jet flow when the body is subjected to a nonconservative
tracing force such that throughout the motion, the center of mass of the body moves rectilinearly and
uniformly; this means that in the system there exists a nonconservative couple of forces (see [1, 64,
70, 72, 119-121, 157, 164-167, 180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier, in [164-167] the author proved the complete integrability of the equations of a plane-parallel
motion of a body in a resisting medium under the conditions of jet flow in the case where the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities. It was assumed that the interaction of
the body with the medium is concentrated on a part of the surface of the body that has the form of
a (one-dimensional) plate.

In the sequel (see [193, 196, 202, 204, 208, 209, 218, 232, 241]), the planar problem was generalized
to the spatial (three-dimensional) case, where the system of dynamical equations possesses a complete
set of transcendental first integrals. In this case, it was assumed that the interaction of the medium
with the body is concentrated on the part of the surface of the body that has the form of a planar
(two-dimensional) disk.

In this chapter, we discuss results, both new and obtained earlier, concerning the case where the
interaction of the medium with the body is concentrated on the part of the surface of the body that
has the form of a three-dimensional disk and the force acts in a direction perpendicular to the disk. We
systematize these results and formulate them in the invariant form. We also introduce the additional
dependence of the moment of a nonconservative force on the angular velocity; this dependence can be
generalized to the motion in higher-dimensional spaces.

1. General Problem on the Motion Under a Tracing Force

Consider the motion of a homogeneous, dynamically symmetric (case (6.1)), rigid body with front
end face (a three-dimensional disk interacting with a medium that fills the four-dimensional space) in
the field of a resistance force S under the quasi-stationarity conditions (see [28, 50, 51, 6266, 98, 112,
119-121, 160-169, 171, 431, 432]).

Let (v, o, 81, B2) be the (generalized) spherical coordinates of the velocity vector of the center D of
the three-dimensional disk lying on the axis of symmetry of the body,

0 —wg ws —wsg
w 0 —w w
0= 6 4 2
—Ws W4 0 —Ww1
w3 —W2 w1 0

be the tensor of angular velocity of the body, Dxixsx3x4 be the coordinate system attached to the
body such that the axis of symmetry C'D coincides with the axis Dz (recall that C is the center of
mass), the axes Dxy, Dxj3, and Dxy lie in the hyperplane of the disk, and Iy, Iy, I3 = Is, Iy = Iy,
and m are characteristics of inertia and mass.
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We adopt the following expansions in the projections to the axes of the coordinate system Dxqxox3xy4:

DC = {_0-7 07 07 0}7

7.1
vp = {vcosa, vsin « cos 31, vsin asin B cos fa, vsinasin,@lsinﬁg}. (7.1)

In the case (6.1) we additionally have the expansion for the function of the influence of the medium
on the four-dimensional body:

S = {-5,0,0,0} (7.2)

i.e., in this case F = S.

Then the part of dynamical equations of motion of the body (including the Chaplygin analytic
functions, [50, 51], see below) that describes the motion of the center of mass and corresponds to the
space R*, in which tangent forces of the influence of the medium on the three-dimensional disk vanish,
takes the form

U Cos & — G sin & — wg sin « cos B1 + wsv sin asin B cos B — w3v sin asin (1 sin By

s (7.3
+o (wg +w§ +w§) = .

v sin o cos 31 + & cos acos 31 — Blv sin arsin 81 + wgv cos ¢ — w4 sin « sin B cos [ (7.4)
+wov sin asin By sin B — o(waws + waws) — owg = 0, '

D sin asin By cos By + cw cos asin By cos By + B1v sin a cos By cos By — Bov sin asin By sin By

(7.5)
—ws5v €os & + wyv sin a cos B1 — wiv sin asin By sin By — 0 (—wiws + waws) + ows = 0,
vsinasin By sin By 4 dw cos asin By sin Bz + S1v sin a cos By sin Bz + Bov sin asin By cos o (7.6)
+w3v cos a — wav sin accos By + wyv sin asin fy cos fo + o(waws + wiws) — owsz = 0, '
where
S =s(a)v?, o=CD, v>0. (7.7)

Further, the auxiliary matrix (6.11) for the calculation of the moment of the resistance force takes
the form

-5 0 0 0

then the part of dynamical equations that describes the motion of the body about the center of mass
and corresponds to the Lie algebra so(4) takes the form

(0 TaN T3N 5L'4N>_ (7.8)

(A + Ag)n + (A3 — Ap)(wsws + wawy) = 0, (7.9)
(A2 + Aa)wg + (A2 — Ag) (wawp — wiws) = 0, (7.10)
(Mg + A1)z + (Mg — M) (wowe + wiws) = T4y <a,,81,,82, 2) s(a)v?, (7.11)
(A3 + A2)ws + (A2 — A3) (wswe + wiwa) = 0, (7.12)
(AL + A3)ws 4+ (A3 — A (wawg — wiws) = —x3N <a, B, Ba, 2) s(a)v?, (7.13)
(A1 + X2)e + (M1 — A2) (waws + waws) = xan <a, 1, B2, 2) s(a)v?. (7.14)
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Thus, the phase space of tenth-order system (7.3)—(7.6), (7.9)-(7.14) is the direct product of the
four-dimensional manifold and the Lie algebra so(4):

R! x 83 x so(4). (7.15)
Note that system (7.3)—(7.6), (7.9)—(7.14), due to the existing dynamical symmetry

Iy =I5 = 14, (7.16)
possesses the cyclic first integrals
w1 = w = const, wo=w) =const, wy=w] = const. (7.17)

In the sequel, we will consider the dynamics of the system on zero levels:

W) =wd =wl=0. (7.18)

If we consider a more general problem on the motion of a body under a tracing force T lying on
the straight line CD = Dz that provides throughout the motion the fulfillment of the condition

V¢ = const (7.19)

(here V¢ is the velocity of the center of mass, see also