
Journal of Mathematical Sciences, Vol. 204, No. 4, January, 2015

VARIETY OF INTEGRABLE CASES
IN DYNAMICS OF LOW- AND MULTI-DIMENSIONAL RIGID BODIES
IN NONCONSERVATIVE FORCE FIELDS

M. V. Shamolin UDC 517.9; 531.01; 531.552

Abstract. This paper is a survey of integrable cases in dynamics of two-, three-, and four-dimensional

rigid bodies under the action of a nonconservative force field. We review both new results and results

obtained earlier. Problems examined are described by dynamical systems with so-called variable dissi-

pation with zero mean.
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To the bright memory of Professor Vladimir Aleksandrovich Kondratiev

One thing I have learned in a long life: that all our science,
measured against reality, is primitive and childlike—and yet

it is the most precious thing we have.

Albert Einstein,
letter to Hans Muehsam, July 9, 1951.

Einstein Archives 38-408

Introduction

We study nonconservative systems for which the usual methods of the study, e.g., Hamiltonian
systems, are inapplicable. Thus, for such systems, we must “directly” integrate the main equation
of dynamics. We generalize previously known cases and obtain new cases of the complete integra-
bility in transcendental functions of the equation of dynamics of a four-dimensional rigid body in a
nonconservative force field.

Of course, in the general case, the construction of a theory of integration of nonconservative systems
(even of low dimension) is a quite difficult task. In a number of cases, where the systems considered
have additional symmetries, we succeed in finding first integrals through finite combinations of ele-
mentary functions (see [95–97]).

We obtain a series of complete integrable nonconservative dynamical systems with nontrivial sym-
metries. Moreover, in almost all cases, all first integrals are expressed through finite combinations of
elementary functions; these first integrals are transcendental functions of their variables. In this case,
the transcendence is understood in the sense of complex analysis, when the analytic continuation of
a function into the complex plane has essentially singular points. This fact is caused by the existence
of attracting and repelling limit sets in the system (for example, attracting and repelling focuses).

We detect new integrable cases of the motion of a rigid body, including the classical problem of the
motion of a multi-dimensional spherical pendulum in a flowing medium.
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Chapter 1 is devoted to general aspects of the integrability of dynamical systems with variable dissi-
pation. First, we propose a descriptive characteristic of such systems. The term “variable dissipation”
refers to the possibility of alternation of its sign rather than to the value of the dissipation coefficient
(therefore, it is more reasonable to use the term “sign-alternating”).

Later, we define systems with variable dissipation with zero (nonzero) mean based on the divergence
of the vector field of the system, which characterizes the change of the phase volume in the phase space
of the system considered (see [21, 22, 26, 27, 30, 104, 113, 172]).

We introduce a class of autonomous dynamical systems with one periodic phase coordinate possess-
ing certain symmetries that are typical for pendulum-type systems. We show that this class of systems
can be naturally embedded in the class of systems with variable dissipation with zero mean, i.e., on the
average for the period with respect to the periodic coordinate, the dissipation in the system is equal
to zero, although in various domains of the phase space, either energy pumping or dissipation can
occur, but they balance to each other in a certain sense. We present some examples of pendulum-type
systems on lower-dimension manifolds from dynamics of a rigid body in a nonconservative field.

Then we study certain general conditions of the integrability in elementary functions for systems
on the two-dimensional plane and the tangent bundles of a one-dimensional sphere (i.e., the two-
dimensional cylinder) and a two-dimensional sphere (a four-dimensional manifold). Therefore, we
propose an interesting example of a three-dimensional phase portrait of a pendulum-like system which
describes the motion of a spherical pendulum in a flowing medium (see [143–145]).

For multi-parametric third-order systems, we present sufficient conditions of the existence of first
integrals that are expressed through finite combinations of elementary functions.

We deal with three properties that seem, at first glance, to be independent:

(1) a class of systems with symmetries specified above;
(2) the fact that this class consists of systems with variable dissipation with zero mean (with respect

to the existing periodic variable), which allows us to consider them as “almost” conservative
systems;

(3) in certain (although lower-dimensional) cases, these systems have a complete set of first integrals,
which, in general, are transcendental (in the sense of complex analysis).

In Chaps. 2 and 3, we systematize the obtained results on the study of dynamical equations of motion
for symmetrical two-dimensional (2D-) rigid body in a nonconservative force field. The form of these
equations is taken from the dynamics of realistic rigid bodies that interact with a resisting medium by
the laws of jet flow when the motion is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (Chap. 2). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (Chap. 3); see [1, 64, 70,
72, 119–121, 157, 164–167, 180–182, 184, 191, 194, 198, 212, 231, 237, 242, 258, 291, 346, 351–354,
374, 390, 414]).

Moreover, in Chap. 2, for an analytical nonintegrable constraint we find an additional transcendental
first integral expressed through a finite combination of elementary functions, and in Chap. 3, we find
an additional transcendental first integral for an analytical first integral (the square of the velocity of
the center of mass).

New obtained results are systematized and are given in invariant form. Moreover, an additional
dependence of the moment of nonconservative forces on the angular velocity is introduced. The given
dependence can also be generalized to higher-dimensional cases.
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In Chaps. 4 and 5, we systematize results on the study of dynamical equations of motion for
symmetric three-dimensional (3D-) rigid bodies in nonconservative force fields. The form of these
equations is also taken from the dynamics of realistic rigid bodies interacting with resisting media by
laws of jet flow when the motion is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (Chap. 4). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (Chap. 5); see [1, 29,
64, 70, 72, 92–94, 99, 102, 119–122, 146, 147, 157–159, 164–167, 170, 180–182, 184, 191, 194, 198,
212, 231, 237, 242, 252, 258, 259, 277, 343, 346, 351–354, 374, 390, 394, 398–401, 409–411, 414–416,
418–420, 424–426]).

Moreover, in Chap. 4, in addition to analytical invariant relations (a nonintegrable constraint and
an integral expressing the vanishing of one of the components of the angular velocity), we find three
additional transcendental first integrals expressed through finite combination of elementary functions.
Similarly, in Chap. 5, we find three additional transcendental first integrals in addition to analytical
first integrals (the square of the velocity of the center of mass and the integral expressing the vanishing
of one of the components of the angular velocity).

New results are also systematized and are presented given in an invariant form. An additional
dependence of the moment of the nonconservative force on the angular velocity is introduced. This
dependence can also be generalized to higher-dimensional cases.

In Chap. 6, we present general aspects of the dynamics of a free multi-dimensional rigid body, i.e.,
the notion of the tensor of the angular velocity, dynamical equations of motion on the direct product
Rn × so(n), the Euler and Rivals formulas in the multi-dimensional case, etc.

We also consider the tensor of inertia of a four-dimensional (4D) rigid body. In this work, we study
two possible cases in which there exist two relations between the principal moments of inertia:

(i) there are three equal principal moments of inertia (I2 = I3 = I4);
(ii) there are two pairs of equal principal moments of inertia (I1 = I2 and I3 = I4).

In Chaps. 6 and 7, we systematize results on the study of equations of motion of a four-dimensional
(4D) rigid body in a nonconservative force field for the case (i). The form of these equations is taken
from the dynamics of realistic rigid bodies of lesser dimension that interact with a resisting medium
by laws of jet flow when the body is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo
constraint (see Chap. 6). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that there exists a nonconservative couple of forces in the system (see Chap. 7); see also [1,
29, 36–39, 45, 47, 64, 70, 72, 119–121, 157, 164–167, 180–184, 191, 194, 198, 212, 221–223, 229, 231,
233, 237, 242, 247, 248, 251, 257, 258, 278, 280, 291, 346, 351–354, 374, 390, 402, 403, 414].

Moreover, in Chap. 6, in addition to the four existing analytic invariant relations (a nonintegrable
connection and three integrals that show the vanishing of the components of the tensor of angular
velocity), we obtain four additional transcendental first integrals expressed as finite combinations of
elementary functions. In Chap. 7, we find additional transcendental first integrals in addition to the
four known analytic first integrals (the square of the velocity of the center of mass and the three
integrals that show the vanishing of the components of the tensor of angular velocity).

The results relate to the case where all interaction of the medium with the body part is concentrated
on a part of the surface of the body, which has the form of a three-dimensional disk, and the action
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Table 1. Classification of integrable cases presented in this paper

Dimension Constraint Conditions

of a Rigid Body v ≡ const (β2 ≡ const) VC ≡ const

E2 h = 0 ⊕ h = 0 ⊕
h �= 0 ⊕ h �= 0 ⊕

E3 h = 0 ⊕ h = 0 ⊕
(I2 = I3) h �= 0 ⊕ h �= 0 ⊕

E4 h = 0 ⊕ h = 0 ⊕
(I2 = I3 = I4) h �= 0 ⊕ h �= 0 ⊕

E4 h = 0 ⊕ h = 0 �
(I1 = I2, I3 = I4) h �= 0 ⊕ h �= 0 �

of the force is concentrated in a direction perpendicular to this disk. These results are systematized
and are presented in invariant form. Moreover, we introduce an extra dependence of the moment of
the nonconservative force on the angular velocity. This dependence can be further extended to cases
of motion in spaces of higher dimension.

In Chap. 8, we systematize results on the study of the equations of motion of a symmetric four-
dimensional rigid body in a nonconservative force field for the case (ii). The form of these equations
is taken from the lower-dimensional dynamics of realistic rigid bodies that interact with a resisting
medium by laws of jet flow when the body is influenced by a nonconservative tracing force. Under
the action of this force, the magnitude of the velocity of a certain typical point of the rigid body
and a certain phase variable remain constant; this means that the system possesses nonintegrable
servo-constraints (see also [1, 64, 70, 72, 119–121, 139, 157, 164–167, 182, 184, 191, 198, 237, 242, 294,
310, 318, 321, 326, 328, 329, 335, 341, 346, 351, 352, 390]).

Moreover, in Chap. 8, in addition to the four existing analytical invariant relations (two noninte-
grable constraints and two integrals expressing the vanishing of certain components of the tensor of
angular velocity), we find two additional transcendental and three analytical first integrals expressed
through finite combinations of elementary functions.

The results relate to the case where all interaction of the medium with the body part is concentrated
on a part of the surface of the body that has the form of a two-dimensional disk, and the action of
the force is concentrated in a direction perpendicular to this disk. These results are systematized and
are presented in invariant form. Moreover, we introduce an extra dependence of the moment of the
nonconservative force on the angular velocity. This dependence can be further extended to cases of
the motion in spaces of higher dimension.

Thus, in Chap. 2–8, many integrable cases in lower- and higher-dimensional dynamics of a rigid
body in a nonconservative force field are discussed. All these cases are listed in Table 1.

The notation h = 0 (or h �= 0) means that the force field, respectively depends (does not depend)
on the components of the angular velocity tensor.

The sign ⊕means that the corresponding case is discussed in the present survey; the two occurrences
of the sign � in the lower right corner of the table mean that these two cases are not discussed here
(indeed, Chap. 8 is devoted to the case I1 = I2, I3 = I4).

Nevertheless, for a symmetric n-dimensional rigid body with I2 = · · · = In, some results have
already been obtained; they are not included in the present survey.
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Many of the results of this paper were presented earlier in a regular basis at various scientific
seminars, including the seminar “Actual problems of geometry and mechanics” named after Prof.
V. V. Trofimov [78] under the supervision of D. V. Georgievsky and M. V. Shamolin (see also [1, 2,
67, 68, 70–73, 75, 79–84, 86–88, 230, 231, 261–264, 266, 269, 270, 272, 274, 275, 295, 296, 303, 304,
306, 311, 340, 344]).

Chapter 1

INTEGRABILITY IN ELEMENTARY FUNCTIONS

OF CERTAIN CLASSES OF NONCONSERVATIVE SYSTEMS

We study nonconservative systems for which the usual methods of study, e.g., Hamiltonian systems,
are inapplicable. Thus, for such systems, we must “directly” integrate the main equation of dynamics.
We recall known facts in a more universal form and also present some new cases of the complete
integrability in transcendental functions in the dynamics of 2D-, 3D-, and 4D-rigid bodies in a non-
conservative field.

The results of the present paper have been developed from previous studies, including an applied
problem from the dynamics of a rigid body [1, 64, 70, 72, 119–121, 157, 164–167, 182, 184, 191,
198, 237, 242, 346, 351, 352, 390], for which complete lists of transcendental first integrals that can
be expressed through finite combinations of elementary functions were obtained. Later, this allowed
one to perform a complete analysis of all phase trajectories and to specify those properties that are
preserved for systems of a more general form. The complete integrability of such systems is related to
hidden symmetries.

As is known, the notion of integrability is, generally speaking, quite vague. We must always take into
account in what sense this notion is understood (what criterion allows one to judge whether trajectories
of the dynamical system considered are simple in one or another sense), in what functional class first
integrals are sought, etc. (see [23, 24, 31, 90, 103, 105, 109, 110, 123, 131]).

In this paper, we consider first integrals that belong to the functional class consisting of tran-
scendental elementary functions. Here the term “transcendental” is meant in the sense of complex
analysis, i.e., a transcendental function is a function that possesses essential singularities after analytic
continuation in the complex plane (see also [132, 148, 153, 265]).

1. Preliminaries

The construction of a theory of integration of nonconservative systems (even lower-dimensional) is
a difficult problem. However, in some cases where systems studied possess additional symmetries, one
can find first integrals in the form of finite combinations of elementary functions [265, 271, 276, 279,
281, 287–290, 297–302, 314, 332, 334, 336–339].

The present paper is a development of the plane problem on the motion of a rigid body in a resisting
medium in which the domain of the contact between the body and the medium is a planar part of
the exterior surface of the body. The force field in this problem is constructed by accounting for the
action of the medium on the body in the quasi-stationary jet or separated flow. It turns out that the
study of such motions can be reduced to systems either with dissipation of energy [(purely) dissipative
systems or systems in dissipative force fields] or to systems with energy pumping (so-called systems
with antidissipation or systems with accelerating forces). Note that similar problems appeared earlier
in applied aerodynamics (see also [265, 271, 276, 279, 281, 287–290, 297–302, 314, 332, 334, 336–339]).
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Problems considered earlier stimulated the development of qualitative tools that substantially
supplement the qualitative theory of nonconservative systems with dissipation of either sign (see
also [265]).

Nonlinear effects in problems of the plane and spatial dynamics of a rigid body were examined by
qualitative methods. We justify the necessity of the introduction of the notions of relative roughness
and relative nonroughness of different orders (see also [184, 188, 190, 191, 197, 208, 227, 265, 282]).

In the present work, the following results are obtained.

(1) We develop methods of qualitative analysis of dissipative and antidissipative systems, which al-
lows us to obtain bifurcation conditions for the appearance of stable and unstable self-oscillations
and conditions of the absence of singular trajectories. We succeed in the study of plane topo-
graphical Poincaré systems and comparison systems and generalize them to higher dimensions.
We obtain sufficient Poisson-stability conditions (everywhere density near itself) of some classes
of nonclosed trajectories of dynamical systems (see [181, 194, 198, 199, 206, 228, 327, 351, 361,
362, 370, 371, 375, 389, 397];

(2) in 2D- and 3D-dynamics of a rigid body, we obtain complete lists of first integrals of dissipative
and antidissipative systems that are transcendental (in the sense of the classification of their
singularities) functions, which, in some cases, can be expressed through elementary functions.
We introduce the notions of relative roughness and relative nonroughness of different orders for
integrated systems (see [184, 188, 190, 191, 197, 208, 227, 265, 282]);

(3) we obtain multi-parameter families of topologically nonequivalent phase portraits that appear
in purely dissipative systems (i.e., systems with variable dissipation with nonzero (positive)
mean). Almost all portraits of such families are (absolutely) rough (see [265];

(4) we detect new qualitative analogies between the motion of a free body in a resisting medium
and the motion of a fixed body in a flowing medium (see [265]).

2. Dynamical Systems with Variable Dissipation
as a Class of Systems Admitting Complete Integration

2.1. Descriptive characteristics of dynamical systems with variable dissipation. At initial
modeling of the action of a medium on a rigid body, we use experimental information on the properties
of jet flow, and the necessity of the study of the class of dynamical systems that possess the property
of (relative) roughness (relative structural stability) naturally appears. Therefore, it is natural to
introduce these notions for such systems. Herewith, many of the systems considered are rough in the
sense of Andronov and Pontryagin (see [15–19]).

After some transformations (for example, in the 2D-dynamics), the dynamical part of the general
system of the equations of plane-parallel motion can be reduced to a pendulum system of second order
containing a linear nonconservative (sign-alternating dissipative) force with a coefficient, which can
change sign for different values of the periodic phase coordinate of the system. Thus, in this case,
we speak of systems with so-called variable dissipation, where the term “variable” refers not only to
the value of the dissipation coefficient but to its sign (and so the term “sign-alternating” is more
adequate).

In the average over a period (with respect to the periodic coordinate), dissipation can be positive
(“purely” dissipative systems), negative (systems with accelerating forces), or zero (but it does not
vanish identically). In the last case, we speak of systems with variable dissipation with zero mean
(these systems can be associated with “almost” conservative systems).

As was noted above, we obtain important mechanical analogies appearing in the comparison of
qualitative properties of a free body and the equilibrium of a pendulum in the flow of a medium. Such
analogies have a deep sense since they allow one to transfer properties of the nonlinear dynamical

385



system for a pendulum to the dynamical system for a free body. Both systems belong to the class of
so-called pendulum dynamical systems with variable dissipation with zero mean.

Under additional conditions, the equivalence described above can be spread to the case of the spatial
motion, which allows one to speak of a general character of symmetries of systems with variable
dissipation with zero mean in plane-parallel and spatial motions (for planar and spatial versions of a
pendulum in a flow of a medium, see also [265]).

In the sequel, we present some classes of nonlinear systems of the second, third, and higher orders
that are integrable in the class of transcendental (in the sense of the theory of functions of complex
variables) elementary functions, for example, five-parameter dynamical systems including the majority
of systems examined earlier in the dynamics of a low-dimensional (2D and 3D) rigid body interacting
with a medium:

α̇ = a sinα+ bω + γ1 sin
5 α+ γ2ω sin4 α+ γ3ω

2 sin3 α+ γ4ω
3 sin2 α+ γ5ω

4 sinα,

ω̇ = c sinα cosα+ dω cosα+ γ1ω sin4 α cosα+ γ2ω
2 sin3 α cosα+ γ3ω

3 sin2 α cosα+

+ γ4ω
4 sinα cosα+ γ5ω

5 cosα.

In this connection, we have introduced the notions of relative structural stability (relative roughness)
and relative structural instability (relative nonroughness) of various degrees. These properties were
proved for systems that arise, e.g., in [265].

Purely dissipative dynamical systems [and also (purely) antidissipative], which, in our case, can
belong to the class of systems with variable dissipation with nonzero mean, are, as a rule, structurally
stable [(absolutely) rough], whereas systems with variable dissipation with zero mean (which usually
possess additional symmetries) are either structurally unstable (nonrough) or only relatively struc-
turally stable (relatively rough). However, the proof of the last assertion in the general case is a
difficult problem.

For example, the dynamical system of the form

α̇ = Ω+ β sinα,

Ω̇ = −β sinα cosα
(1.1)

is relatively structurally stable (relatively rough) and is topologically equivalent to the system describ-
ing a fixed pendulum in a flowing medium (see [265]).

Below we present its first integral, which is a transcendental (in the sense of the theory of functions
of a complex variable, as a function whose analytical continuation in the complex plane has essential
singularities) function of phase variables that can be expressed through a finite combination of elemen-
tary functions (see [265]). The phase cylinder R

2{α,Ω} of quasi-velocities of the system considered
has an interesting topological structure of the splitting into trajectories (for more detail, see [265]).

Although the dynamical system considered is not conservative, in the rotational domain (and only
in it) of its phase plane R

2{α,Ω}, it admits the preservation of the invariant measure with variable
density. This property characterizes this system as a system with variable dissipation with zero mean
(see [67, 68, 243, 260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413,
421, 437, 438]).

2.2. Definition of a system with variable dissipation with zero mean. We study systems of
ordinary differential equations that have a periodic phase coordinate. Such systems possess symmetries
under which their average phase volume with respect to the periodic coordinate is preserved. For
example, the following pendulum system, with a smooth and periodic (of period T ) with respect to α
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right-hand side V(α, ω) of the form

α̇ = −ω + f(α), f(α+ T ) = f(α),

ω̇ = g(α), g(α+ T ) = g(α),
(1.2)

preserved its phase area on the phase cylinder within the period T :

T∫

0

divV(α, ω)dα =

T∫

0

(
∂

∂α
(−ω + f(α)) +

∂

∂ω
g(α)

)
dα =

T∫

0

f ′(α)dα = 0. (1.3)

This system is equivalent to the equation of a pendulum

α̈− f ′(α)α̇ + g(α) = 0, (1.4)

in which the integral of the coefficient f ′(α) of the dissipative term α̇ over the period is equal to zero.
We see that this system has symmetries under which it becomes a system with variable dissipation
with zero mean in the sense of the following definition (see [265]).

Definition 1.1. Consider a smooth autonomous system of order (n + 1) in the normal form defined
on the cylinder R

n{x} × S1{α mod 2π}, where α is a periodic coordinate of period T > 0. The
divergence of the right-hand side V(x, α) (which, in general, is a function of all phase variables and
does not vanish identically) of this system is denoted by divV(x, α). This system is called a system
with variable dissipation with zero (respectively, nonzero) mean if the function

T∫

0

divV(x, α)dα (1.5)

vanishes (respectively, does not vanish) identically. In some cases (for example, when at some points
of the circle S1{α mod 2π} singularities appear), this integral is meant in the sense of the principal
value.

We note that it is quite difficult to give a general definition to a system with variable dissipation
with zero (nonzero) mean. The definition presented above is based on the notion of the divergence
(as is known, the divergence of the right-hand side of a system in the normal form characterizes the
change of the phase volume in the phase space of the given system).

3. Systems with Symmetries and Variable Dissipation with Zero Mean

Consider a system of the following form (the dot means the derivative with respect to time):

α̇ = fα(ω, sinα, cosα),

ω̇k = fk(ω, sinα, cosα), k = 1, . . . , n,
(1.6)

defined on the set

S1{α mod 2π} \K × R
n{ω}, ω = (ω1, . . . , ωn), (1.7)

where sufficiently smooth functions fλ(u1, u2, u3), λ = α, 1, . . . , n, of three variables u1, u2, u3 are
such that

fλ(−u1,−u2, u3) = −fλ(u1, u2, u3),

fα(u1, u2,−u3) = fα(u1, u2, u3),

fk(u1, u2,−u3) = −fk(u1, u2, u3);

(1.8)

moreover, the functions fk(u1, u2, u3) are defined for u3 = 0 for any k = 1, . . . , n.
The set K is either empty or consists of a finite number of points of the circle S1{α mod 2π}.
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The last two variables u2, u3 in the functions fλ(u1, u2, u3) depend on the same parameter α, but
we assume that these variables belong to different groups for the following reasons: first, they cannot
be uniquely expressed one through another on their whole domain and, second, u2 is an odd function
of α, whereas u3 is even, which affects the symmetries of system (1.6).

To system (1.6), we put in correspondence the following nonautonomous system:

dωk

dα
=

fk(ω, sinα, cosα)

fα(ω, sinα, cosα)
, k = 1, . . . , n. (1.9)

By the substitution τ = sinα, it can be reduced to the form

dωk

dτ
=

fk(ω, τ, ϕk(τ))

fα(ω, τ, ϕα(τ))
, k = 1, . . . , n,

ϕλ(−τ) = ϕλ(τ), λ = α, 1, . . . , n.

(1.10)

The last system, in particular, can have an algebraic right-hand side (i.e., it can be the ratio of two
polynomials), which simplifies the search for its first integrals in explicit form.

The following theorem states that the class of systems (1.6) is a subclass of the class of dynamical
systems with variable dissipation with zero mean. Note that, in general, the converse is invalid.

Theorem 1.1. Systems of the form (1.6) are dynamical systems with variable dissipation with zero
mean.

Proof. The proof of this theorem is based on some symmetries (1.8) of system (1.6) listed above and
the periodicity of the right-hand side of the system with respect to α.

Indeed, the divergence of the vector field of system (1.6) equals

∂fα(ω, sinα, cosα)

∂u2
cosα− ∂fα(ω, sinα, cosα)

∂u3
sinα+

n∑
k=1

∂fk(ω, sinα, cosα)

∂u1
. (1.11)

The following integral of the first two terms in (1.11) vanishes:

2π∫

0

{
∂fα(ω, sinα, cosα)

∂u2
d sinα+

∂fα(ω, sinα, cosα)

∂u3
d cosα

}

=

2π∫

0

∂fα(ω, sinα, cosα)

∂α
dα = hα(ω) ≡ 0, (1.12)

since the function fα(ω, sinα, cosα) is periodic with respect to α.
Further, by the third equation in (1.8), for any k = 1, . . . , n we have

∂fk(ω, sinα, cosα)

∂u1
= cosα · ∂gk(ω, sinα)

∂u1
, (1.13)

where the function gk(u1, u2) is sufficiently smooth for any k = 1, . . . , n.
Then the integral over the period 2π of the right-hand side of Eq. (1.13) equals

2π∫

0

∂gk(ω, sinα)

∂u1
d sinα = hk(ω) ≡ 0 (1.14)

for any k = 1, . . . , n. From Eqs. (1.12) and (1.14) we obtain Theorem 1.1.
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The converse assertion is invalid: there exist dynamical systems on the two-dimensional cylinder
that are systems with variable dissipation with zero mean, but they do not possess symmetries listed
above.

In this paper, we basically consider the case where the functions fλ(ω, τ, ϕk(τ)) (λ = α, 1, . . . , n)
are polynomials of ω and τ .

Example 1.1. Below we consider, in particular, pendulum-type systems on the two-dimensional
cylinder S1{α mod 2π} ×R1{ω} with parameter b > 0 from the rigid body dynamics (see [265]):

α̇ = −ω + b sinα,

ω̇ = sinα cosα,
(1.15)

and
α̇ = −ω + b sinα cos2 α+ bω2 sinα,

ω̇ = sinα cosα− bω sin2 α cosα+ bω3 cosα,
(1.16)

with the variables (ω, τ). To these systems, we can put in correspondence the following equations with
algebraic right-hand sides:

dω

dτ
=

τ

−ω + bτ
(1.17)

and
dω

dτ
=

τ + bω[ω2 − τ2]

−ω + bτ + bτ [ω2 − τ2]
, (1.18)

which have the form (1.10). Moreover, one can easily verify that these systems are dynamical systems
with variable dissipation with zero mean. Indeed, the divergences of their right-hand sides are equal
to

b cosα, b cosα[4ω2 + cos2 α− 3 sin2 α],

respectively. It is easy to see that they belong to the class of systems (1.6).
Moreover, each of these systems has a first integral that is a transcendental (in the sense of complex

analysis) function expressed through a finite combination of elementary functions (see Chaps. 2 and 3
below).

We present another important example of a higher-order system that possesses the properties listed
above.

Example 1.2. Consider the following system with a parameter b, which is defined in the three-
dimensional domain

S1{α mod 2π} \ {α = 0, α = π} × R
2{z1, z2} (1.19)

(this system is separated from a system on the tangent bundle T∗S2 of the two-dimensional sphere S2):

α̇ = −z2 + b sinα,

ż2 = sinα cosα− z21
cosα

sinα
,

ż1 = z1z2
cosα

sinα
.

(1.20)

This system describes the motion of a rigid body in a resistive medium (see Chaps. 4 and 5). We put
in correspondence to this system the following nonautonomous system with algebraic right-hand side
(τ = sinα):

dz2
dτ

=
τ − z21/τ

−z2 + bτ
,

dz1
dτ

=
z1z2/τ

−z2 + bτ
.

(1.21)
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We see that system (1.20) is a system with variable dissipation with zero mean. To obtain the full
correspondence with the definition, we introduce the new phase variable

z∗1 = ln |z1|. (1.22)

The divergence of the right-hand side of system (1.20) in the Cartesian coordinates α, z∗1 , z2 is equal
to b cosα. Taking into account (1.19), we have (in the sense of principal value)

lim
ε→0

π−ε∫

ε

b cosα+ lim
ε→0

2π−ε∫

π+ε

b cosα = 0. (1.23)

Moreover, this system possesses two first integrals (i.e., a complete set) that are transcendental func-
tions, which can be expressed through a finite combination of elementary functions (see Chaps. 4
and 5). This becomes possible after putting in correspondence to it a system (nonautonomous, gen-
erally speaking) of equations with an algebraic (polynomial) right-hand side (1.21).

Systems (1.15), (1.16), and (1.20) belong to the class of systems (1.6), possess a variable dissipation
with zero mean, and have a complete set of transcendental first integrals that can be expressed through
a finite combination of elementary functions.

So, to find first integrals of the systems considered, it is convenient to reduce systems of the
form (1.6) to systems with polynomial right-hand sides (1.10), which allows one to perform integration
in elementary functions of the initial system. Thus, we find sufficient conditions for the integrability
in elementary functions of systems with polynomial right-hand sides and examine systems of the most
general form.

4. Systems on the Plane and Two-Dimensional Cylinder

Earlier, the author proved a series of assertions regarding many-parameter systems of ordinary
differential equations with algebraic right-hand side (see, e.g., [265]). We recall some of them.

Proposition 1.1. A seven-parameter family of systems of equations on the plane R
2{x, y}

ẋ = a1x+ b1y + β1x
3 + β2x

2y + β3xy
2,

ẏ = c1x+ d1y + β1x
2y + β2xy

2 + β3y
3,

(1.24)

possesses a first integral (in general, transcendental), which can be expressed through elementary
functions.

Corollary. For any parameters a1, b1, c1, d1, β1, β2, and β3, the system

α̇ = a1 sinα+ b1ω + β1 sin
3 α+ β2ω sin2 α+ β3ω

2 sinα,

ω̇ = c1 sinα cosα+ d1ω cosα+ β1ω sin2 α cosα+ β2ω
2 sinα cosα+ β3ω

3 cosα
(1.25)

on the two-dimensional cylinder {(α, ω) ∈ R
2 : α mod 2π} possesses a first integral (in general,

transcendental), which can be expressed through elementary functions.

In particular, systems (1.15) and (1.16) can be obtained from this system if

a1 = b, b1 = −1, c1 = 1, d1 = β1 = β2 = β3 = 0

and

a1 = b, b1 = −1, c1 = 1, d1 = −b, β1 = −b, β2 = 0, β3 = b,

respectively.
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The above reasons can be easily generalized. We consider the possibility of the complete integration
(in elementary functions) of systems of a more general form: the nonlinearity is characterized by an
arbitrary homogeneous form of odd degree 2n− 1.

In this case, we have the following assertion, which is more general than Proposition 1.1.

Proposition 1.2. The (2n + 3)-parameter family of systems of equations

ẋ = a1x+ b1y + δ1x
2n−1 + δ2x

2n−2y + · · ·+ δ2n−2x
2y2n−3 + δ2n−1xy

2n−2,

ẏ = c1x+ d1y + δ1x
2n−2y + δ2x

2n−3y2 + · · ·+ δ2n−2xy
2n−2 + δ2n−1y

2n−1
(1.26)

on the plane R
2{x, y} possesses a first integral (in general, transcendental), which can be expressed

through elementary functions.

Indeed, the family of Eqs. (1.26) depends on 2n− 1 + 4 independent parameters since the total
nonlinearity of an odd degree is characterized by 4n parameters subject to 2n+ 1 conditions (the
other 4 parameters are contained in the linear part).

Corollary. For any parameters a1, b1, c1, d1, and δ1, . . . , δ2n−1, the systems

α̇ = a sinα+ bω + δ1 sin
2n−1 α+ δ2ω sin2n−2 α+ · · ·+ δ2n−1ω

2n−2 sinα,

ω̇ = c sinα cosα+ dω cosα+ δ1ω sin2n−2 α cosα+ δ2ω
2 sin2n−3 α cosα+ · · ·+ δ2n−1ω

2n−1 cosα

(1.27)
on the two-dimensional cylinder {(α, ω) ∈ R

2 : α mod 2π} possesses a transcendental first integral,
which can be expressed through elementary functions.

Systems (1.15), (1.16), and (1.20) are sufficiently rough (see [265]), but if we break symmetries (1.8)
introduced for systems of the general form (1.6) (for example, by introducing additional terms in their
right-hand sides), then the number of topologically distinct phase portraits can substantially change.

In [265], we obtained a multi-parametric family of phase portraits of a system with variable dissi-
pation with nonzero mean (whose typical portraits are (absolutely) rough), which is a perturbation
of a dynamical system with variable dissipation with zero mean of the form (1.16). This family (as
families obtained earlier, see [265]) contains an infinite number of topologically nonequivalent phase
portraits on a two-dimensional phase cylinder.

5. Systems on the Tangent Bundle of the Two-Dimensional Sphere

On the tangent bundle T∗S2 of the two-dimensional sphere S2{θ, ψ}, we consider the following
dynamical system:

θ̈ + bθ̇ cos θ + sin θ cos θ − ψ̇2 sin θ

cos θ
= 0,

ψ̈ + bψ̇ cos θ + θ̇ψ̇

[
1 + cos2 θ

sin θ cos θ

]
= 0.

(1.28)

This system describes a spherical pendulum in flowing medium (see [265]). Herewith, the system
possesses the conservative moment

sin θ cos θ (1.29)

and the force moment, which linearly depends of the velocity with a variable coefficient:

b

(
θ̇

ψ̇

)
cos θ. (1.30)

The other coefficients in the equations are the connection coefficients, namely,

Γθ
ψψ = − sin θ

cos θ
, Γψ

θψ =
1 + cos2 θ

sin θ cos θ
. (1.31)
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Fig. 1. Relatively rough phase portrait in a three-dimensional domain

In fact, system (1.28) has order 3 since the variable ψ is cyclic and the system contains only the

variable ψ̇.

Proposition 1.3. The equation

ψ̇ = 0 (1.32)

defines a family of integral planes for system (1.28).

Moreover, Eq. (1.32) reduces system (1.28) to the equation that describes a cylindrical pendulum
in a flowing medium (see [265]).

Proposition 1.4. System (1.28) is equivalent to the following system:

θ̇ = −z2 + b sin θ,

ż2 = sin θ cos θ − z21
cos θ

sin θ
,

ż1 = z1z2
cos θ

sin θ
,

ψ̇ = z1
cos θ

sin θ

(1.33)

on the tangent bundle T∗S2{z1, z2, θ, ψ} of the two-dimensional sphere S2{θ, ψ}.
Moreover, the first three equations of system (1.33) form a closed system of the third order and

coincide with system (1.20) (if we set α = θ). The fourth equation of system (1.33) has been separated
due to the cyclicity of the variable ψ.

The construction of the phase portrait of system (1.28) is shown in Fig. 1 (see [265]).

Example 1.3. We examine a system of the form (1.20), which can be reduced to (1.21), and the
following system, which appears in the spatial (3D) dynamics of a rigid body interacting with a
medium (see Chaps. 4 and 5):

α̇ = −z2 + b
(
z21 + z22

)
sinα+ b sinα cos2 α,

ż2 = sinα cosα+ bz2
(
z21 + z22

)
cosα− bz2 sin

2 α cosα− z21
cosα

sinα
,

ż1 = bz1
(
z21 + z22

)
cosα− bz1 sin

2 α cosα+ z1z2
cosα

sinα
,

(1.34)
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which corresponds to the following system with algebraic right-hand side:

dz2
dτ

=
τ + bz2

(
z21 + z22

)− bz2τ
2 − z21/τ

−z2 + bτ
(
z21 + z22

)
+ bτ (1− τ2)

,

dz1
dτ

=
bz1

(
z21 + z22

)− bz1τ
2 + z1z2/τ

−z2 + bτ
(
z21 + z22) + bτ(1− τ2

) .
(1.35)

So, we consider two systems: the initial system (1.34) and the corresponding algebraic system (1.35).
Similarly, we can pass to the homogeneous coordinates uk, k = 1, 2, by the formulas

zk = ukτ. (1.36)

By this change of variables, system (1.21) (see above) can be transformed to the form

τ
du2
dτ

+ u2 =
τ − u21τ

−u2τ + bτ
,

τ
du1
dτ

+ u1 =
u1u2τ

−u2τ + bτ
,

(1.37)

which, in turn, corresponds to the equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
. (1.38)

Since the identity

d

(
1− βu2 + u22

u1

)
+ du1 = 0 (1.39)

is integrable, this equation can be integrated in elementary functions and in the coordinates (τ, z1, z2)
it has the first integral of the form (cf. [265])

z21 + z22 − βz2τ + τ2

z1τ
= const .

System (1.34) after reduction corresponds to the system

τ
du2
dτ

+ u2 =
τ + bu2τ

3
(
u21 + u22

)− bu2τ
3 − u21τ

−u2τ + bτ3
(
u21 + u22

)
+ bτ (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1τ

3
(
u21 + u22

)− bu1τ
3 + u1u2τ

−u2τ + bτ3
(
u21 + u22

)
+ bτ (1− τ2)

,

(1.40)

which can also be reduced to (1.38).

6. Some Generalizations

The following question arises: Can the system

dz

dx
=

ax+ by + cz + c1z
2/x+ c2zy/x+ c3y

2/x

d1x+ ey + fz
,

dy

dx
=

gx+ hy + iz + i1z
2/x+ i2zy/x+ i3y

2/x

d1x+ ey + fz
,

(1.41)

possessing a singularity of the type 1/x, be integrated in elementary functions? This system is a
generalization of systems (1.21) and (1.35) in three-dimensional phase domains.

A series of results concerning this question has already been obtained (see [265]); we here present
a brief review of these results.
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As above, we introduce the substitutions

y = ux, z = vx (1.42)

and reduce system (1.41) to the following form:

x
dv

dx
+ v =

ax+ bux+ cvx+ c1v
2x+ c2vux+ c3u

2x

d1x+ eux+ fvx
, (1.43)

x
du

dx
+ u =

gx+ hux+ ivx+ i1v
2x+ i2vux+ i3u

2x

d1x+ eux+ fvx
, (1.44)

which is equivalent to

x
dv

dx
=

ax+ bux+ (c− d1)vx+ (c1 − f)v2x+ (c2 − e)vux+ c3u
2x

d1x+ eux+ fvx
, (1.45)

x
du

dx
=

gx+ (h− d1)ux+ ivx+ i1v
2x+ (i2 − f)vux+ (i3 − e)u2x

d1x+ eux+ fvx
. (1.46)

To this system, we put in correspondence the following nonautonomous equation with algebraic right-
hand side:

dv

du
=

a+ bu+ cv + c1v
2 + c2vu+ c3u

2 − v[d1 + eu+ fv]

g + hu+ iv + i1v2 + i2vu+ i3u2 − u[d1 + eu+ fv]
. (1.47)

Integration of this equation is reduced to integration of the equation in complete differentials

[
g + hu+ iv + i1v

2 + i2vu+ i3u
2 − d1u− eu2 − fuv

]
dv

=
[
a+ bu+ cv + c1v

2 + c2vu+ c3u
2 − d1v − euv − fv2

]
du. (1.48)

Generally speaking, we have a 15-parameter family of equations of the form (1.48). To integrate the
last identity in elementary functions as a homogeneous equation, it suffices to impose the following
six restrictions:

g = 0, i = 0, i1 = 0, e = c2, h = c, i2 = 2c1 − f. (1.49)

We introduce nine parameters β1, . . . , β9 and consider them as independent:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2, β6 = c3, β7 = d1, β8 = f, β9 = i3. (1.50)

Thus, Eq. (1.48) under the conditions (1.49) and (1.50) is reduced to the form

dv

du
=

β1 + β2u+ (β3 − β7)v + (β4 − β8)v
2 + β6u

2

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2
, (1.51)

whereas system (1.45), (1.46) is reduced to the form

x
dv

dx
=

β1 + β2u+ (β3 − β7)v + (β4 − β8)v
2 + β6u

2

β7 + β5u+ β8v
, (1.52)

x
du

dx
=

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u
2

β7 + β5u+ β8v
. (1.53)

After this, Eq. (1.51) can be integrated by a finite combination of elementary functions.
Indeed, integrating identity (1.48), we obtain

d

[
(β3 − β7)v

u

]
+ d

[
(β4 − β8)v

2

u

]
+ d[(β9 − β5)v] + d

[
β1
u

]
− d[β2 ln |u|]− d[β6u] = 0, (1.54)

which implies the following invariant relation:

(β3 − β7)v

u
+

(β4 − β8)v
2

u
+ (β9 − β5)v +

β1
u

− β2 ln |u| − β6u = C1 = const, (1.55)
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and then in the coordinates (x, y, z) the first integral

(β4 − β8)z
2 − β6y

2 + (β3 − β7)zx+ (β9 − β5)zy + β1x
2

yx
− β2 ln

∣∣∣y
x

∣∣∣ = const . (1.56)

Therefore, we can confirm the integrability in elementary functions of the following, generally speak-
ing nonconservative, system of third order depending on 9 parameters:

dz

dx
=

β1x+ β2y + β3z + β4z
2/x+ β5zy/x+ β6y

2/x

β7x+ β5y + β8z
,

dy

dx
=

β3y + (2β4 − β8)zy/x+ β9y
2/x

β7x+ β5y + β8z
.

(1.57)

Corollary. On the set

S1{α mod 2π} \ {α = 0, α = π} × R
2{z1, z2}, (1.58)

the third-order system

α̇ = β7 sinα+ β5z1 + β8z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 = β3z1 cosα+ (2β4 − β8)z1z2
cosα

sinα
+ β9z

2
1

cosα

sinα
,

(1.59)

depending on 9 parameters, possesses, generally speaking, a transcendental first integral, which can be
expressed through elementary functions:

(β4 − β8)z
2
2 − β6z

2
1 + (β3 − β7)z2 sinα+ (β9 − β5)z2z1 + β1 sin

2 α2

z1 sinα
− β2 ln

∣∣∣ z1
sinα

∣∣∣ = const . (1.60)

In particular, system (1.59) for β1 = 1, β2 = β3 = β4 = β5 = β9 = 0, β6 = β8 = −1, and β7 = b
coincides with system (1.20).

To find an additional first integral of the nonautonomous system (1.41), we can use the first inte-
gral (1.56), which is expressed through a finite combination of elementary functions.

First, we transform relation (1.55) as follows:

(β4 − β8)v
2 + [(β9 − β5)u+ (β3 − β7)] v + f1(u) = 0, (1.61)

where
f1(u) = β1 − β6u

2 − β2u ln |u| − C1u.

Formally, v can be found from the relation

v1,2(u) =
1

2(β4 − β8)

{
(β5 − β9)u+ (β7 − β3)±

√
f2(u)

}
, (1.62)

where

f2(u) = A1 +A2u+A3u
2 +A4u ln |u|,

A1 = (β3 − β7)
2 − 4β1(β4 − β8), A2 = 2(β9 − β5)(β3 − β7) + 4C1(β4 − β8),

A3 = (β9 − β5)
2 + 4β6(β4 − β8), A4 = 4β2(β4 − β8).

Then the required quadrature for the additional (in general, transcendental) first integral (for example,
of system (1.52), (1.53) or (1.45), (1.46)), where Eq. (1.53) is used) becomes

∫
dx

x
=

∫
[β7 + β5u+ β8v1,2(u)]du

(β3 − β7)u+ (β9 − β5)u2 + 2(β4 − β8)uv1,2(u)
=

∫ [
B1 +B2u+B3

√
f2(u)

]
du

B4u
√

f2(u)
, (1.63)

where Bk = const, k = 1, . . . , 4.
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The required quadrature for the search for an additional (in general, transcendental) first integral
(for system (1.52), (1.53) or (1.45), (1.46), where Eq. (1.52) is used) becomes∫

dx

x
=

∫
[β7 + β5u(v) + β8v]dv

β1 + β2u(v) + (β3 − β7)v + (β4 − β8)v2 + β6u2(v)
; (1.64)

in this case, the function u(v) must be obtained by solving the implicit equation (1.55) with respect
to u (which, in the general case, is not obvious).

Sufficient conditions of the expressability of integrals in (1.64) through finite combinations of ele-
mentary functions are stated by the following lemma.

Lemma 1.1. For A4 = 0, i.e., for

β2 = 0 (1.65)

or for

β4 = β8, (1.66)

the indefinite integral in (1.64) can be expressed through a finite combinations of elementary functions.

Theorem 1.2. Under sufficient conditions of Lemma 1.1 (in this case, property (1.65) holds), sys-
tem (1.59) possesses a complete set of first integrals that can be expressed through a finite combination
of elementary functions.

Dynamical systems considered in the present paper are systems with variable dissipation with zero
mean with respect to the periodic coordinate. In many cases, such systems possess a complete set of
first integrals that can be expressed through elementary functions.

We have presented several cases of the complete integrability in the dynamics of the spatial (3D)
motion of a body in a nonconservative field. Herewith, we deal with three properties that, at first
glance, seem to be independent:

(1) the class of systems (1.6) with marked symmetries specified above;
(2) this class of systems possesses variable dissipation with zero mean (with respect to the vari-

able α); this allows one to consider them as “almost” conservative systems;
(3) in some (sufficiently low-dimensional) cases, these systems possess a complete set of (generally

speaking, transcendental from the standpoint of complex analysis) first integrals.

The method of reduction of initial systems whose right-hand sides contain polynomials of trigono-
metric functions to systems with polynomial right-hand sides allows one to find (or to prove the
absence) of first integrals for systems of a more general form that perhaps do not possess the symme-
tries mentioned above (see [265]).

Chapter 2

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

ON THE TWO-DIMENSIONAL PLANE, I

In this chapter, we systematize some earlier and new results on the study of the equations of motion
of dynamically symmetric two-dimensional (2D) rigid bodies in nonconservative force fields. The form
of these equations is taken from the dynamics of real rigid bodies interacting with a resisting medium
by laws of jet flows where a body is influenced by a nonconservative tracing force; under action of this
force, the magnitude of the velocity of some characteristic point of the body remains constant, which
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means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119–121, 157,
164–167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164–167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under a Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (one-
dimensional plate) in the field of a resisting force under the assumption of quasi-stationarity [28, 50,
51, 62–66, 98, 112, 119–121, 160–169, 171, 431, 432]. If (v, α) are the polar coordinates of the velocity
vector of a certain typical point D of a rigid body (D is the center of the plate), Ω is its angular
velocity, and I and m are the characteristics of inertia and mass, then the dynamical part of the
equations of motion (including also Chaplygin analytical functions [50, 51], see below) in which the
tangent forces of the interaction of the body with the medium are absent, has the form

v̇ cosα− α̇v sinα− Ωv sinα+ σΩ2 =
Fx

m
,

v̇ sinα+ α̇v cosα+Ωv cosα− σΩ̇ = 0,
(2.1)

IΩ̇ = yN

(
α,

Ω

v

)
s(α)v2,

where

Fx = −S, S = s(α)v2, σ > 0, v > 0. (2.2)

The first two equations in (2.1) describe the motion of the center of mass in the two-dimensional
Euclidean plane E2 in the coordinate system Dx1x2 attached to the body. Here Dx1 is the perpen-
dicular to the plate passing through the center of mass C of the symmetric body and Dx2 is an axis
along the plate. The third equation of (2.1) is obtained from the theorem on the change of the angular
moment of a rigid body.

Thus, the direct product

R1 × S1 × so(2) (2.3)

of the two-dimensional cylinder and the Lie algebra so(2) is the phase space of system (2.1).
If we consider a more general problem on the motion of a body under the action of a certain tracing

force T passing through the center of mass and providing the fulfillment of the equality

v ≡ const (2.4)

during the motion (see also [164–167]), then Fx in system (2.1) must be replaced by

T − s(α)v2, σ = DC. (2.5)

As a result of an appropriate choice of the magnitude T of the tracing force, we can achieve the
fulfillment of Eq. (2.4) during the motion. Indeed, if we formally express the value T by virtue of
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system (2.1), we obtain (for cosα �= 0):

T = Tv(α,Ω) = mσΩ2 + s(α)v2
[
1− mσ

I
yN

(
α,

Ω

v

)
sinα

cosα

]
. (2.6)

Note that we have used condition (2.4).
This procedure can be viewed from two standpoints. First, a transformation of the system has

occurred at the presence of the tracing (control) force in the system which provides the corresponding
class of motions (2.4). Second, we can consider this procedure as a procedure that allows one to reduce
the order of the system. Indeed, system (2.1) generates an independent second-order system of the
following form:

α̇v cosα+Ωv cosα− σΩ̇ = 0,

IΩ̇ = yN

(
α,

Ω

v

)
s(α)v2,

(2.7)

where the parameter v is supplemented by the constant parameters specified above.
We can see from (2.7) that the system cannot be solved uniquely with respect to α̇ on the manifold

O =
{
(α,Ω) ∈ R2 : α =

π

2
+ πk, k ∈ Z

}
. (2.8)

Thus, formally speaking, the uniqueness theorem is violated on manifold (2.8).
This implies that system (2.7) outside of the manifold (2.8) (and only outside it) is equivalent to

the following system:

α̇ = −Ω+
σv

I

yN

(
α,

Ω

v

)
s(α)

cosα
,

Ω̇ =
1

I
yN

(
α,

Ω

v

)
s(α)v2.

(2.9)

The uniqueness theorem is violated for system (2.7) on the manifold (2.8) in the following sense:
regular phase trajectories of system (2.7) pass through almost all points of the manifold (2.8) and
intersect the manifold (2.8) at a right angle, and also there exists a phase trajectory that completely
coincides with the specified point at all time instants. However, these trajectories are different since
they correspond to different values of the tracing force. Let us prove this.

As was shown above, to fulfill constraint (2.4), one must choose the value of T for cosα �= 0 in the
form (2.6).

Let

lim
α→π/2

yN

(
α,

Ω

v

)
s(α)

cosα
= L

(
Ω

v

)
. (2.10)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣ ∂∂α
(
yN

(
α,

Ω

v

)
s(α)

)∣∣∣∣ < +∞. (2.11)

For α = π/2, the necessary magnitude of the tracing force can be found from the equality

T = Tv

(π
2
,Ω

)
= mσΩ2 − mσLv2

I
, (2.12)

where Ω is arbitrary.
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On the other hand, if we support the rotation around a certain point W by means of the tracing
force, then the tracing force has the form

T = Tv

(π
2
,Ω

)
=

mv2

R0
, (2.13)

where R0 is the distance CW .
Generally speaking, Eqs. (2.6) and (2.13) define different values of the tracing force T for almost

all points of manifold (2.8), and the proof is complete.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of Chaplygin analytical functions (see [50, 51]), we
take the dynamical functions s and yN of the following form:

s(α) = B cosα, yN

(
α,

Ω

v

)
= y0(α) = A sinα, A,B > 0, v �= 0, (2.14)

which shows that for the considered system, the moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angle α).

Then, owing to the nonintegrable constraint (2.4), outside the manifold (2.8) (and only outside it)
the dynamical part of the equations of motion (system (2.9)) has the form of the following analytical
system:

α̇ = −Ω+ σn2
0v sinα,

Ω̇ = n2
0v

2 sinα cosα, n2
0 =

AB

I
.

(2.15)

Introducing the dimensionless variable, the parameter, and the differentiation as follows:

Ω = n0vω, b = σn0, 〈·〉 = n0v〈′〉, (2.16)

we reduce system (2.15) to the form

α′ = −ω + b sinα,

ω′ = sinα cosα.
(2.17)

2.2. Complete list of invariant relations. We put in correspondence to system (2.17) the fol-
lowing nonautonomous first-order equation:

dω

dα
=

sinα cosα

−ω + b sinα
. (2.18)

Using the substitution τ = sinα, we rewrite Eq. (2.18) in the algebraic form

dω

dτ
=

τ

−ω + bτ
. (2.19)

Further, introducing the homogeneous variable by the formula ω = uτ , we reduce Eq. (2.19) to the
following quadrature:

(b− u)du

1− bu+ u2
=

dτ

τ
. (2.20)

Integration of quadrature (2.20) leads to the following three cases. Simple calculations yield the
following first integrals.

I. b2 − 4 < 0:

ln(1− bu+ u2)− 2b√
4− b2

arctan
2u− b√
4− b2

+ ln τ2 = const; (2.21)
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II. b2 − 4 > 0:

ln |1− bu+ u2|+ b√
b2 − 4

ln

∣∣∣∣2u− b+
√
b2 − 4

2u− b−√
b2 − 4

∣∣∣∣+ ln τ2 = const; (2.22)

III. b2 − 4 = 0:

ln |u− 1|+ 1

u− 1
+ ln |τ | = const . (2.23)

In other words, in the variables (α, ω) the found first integrals have the following forms:
I. b2 − 4 < 0:

[sin2 α− bω sinα+ ω2] exp

{
− 2b√

4− b2
arctan

2ω − b sinα√
4− b2 sinα

}
= const; (2.24)

II. b2 − 4 > 0:

[sin2 α− bω sinα+ ω2]

∣∣∣∣2ω − b sinα+
√
b2 − 4 sinα

2ω − b sinα−√
b2 − 4 sinα

∣∣∣∣
b/
√
b2−4

= const; (2.25)

III. b2 − 4 = 0:

(ω − sinα) exp

{
sinα

ω − sinα

}
= const . (2.26)

Therefore, in the considered case the system of dynamical equations (2.1) has two invariant relations:
there exist the analytical nonintegrable constraint (2.4) and the first integral expressed by relations
(2.24)–(2.26) (or (2.21)–(2.23)), which is a transcendental function of its phase variables (in the sense
of complex analysis) and is expressed as a finite combination of elementary functions.

Theorem 2.1. Under conditions (2.4) and (2.14), system (2.1) possesses two invariant relations (the
complete set), one of which is a transcendental function (in the sense of complex analysis). Moreover,
both these relations are expressed as a finite combination of elementary functions.

2.3. Topological analogies. Let us consider the following second-order equation:

θ̈ + b∗θ̇ cos θ + sin θ cos θ = 0, b∗ > 0, (2.27)

describing a fixed pendulum in a flowing medium in the case where the moment of forces is independent
of the angular velocity, i.e., a mechanical system in a nonconservative force field (see [120, 162]).

Its phase space is the two-dimensional cylinder

S1 ×R1. (2.28)

It is easy to verify that the given equation is equivalent to a dynamical system with variable
dissipation with zero mean on the tangent bundle TS1 (or (2.28)) of a one-dimensional sphere (circle).
Moreover, the following theorem holds.

Theorem 2.2. Under conditions (2.4) and (2.14), system (2.1) is equivalent to Eq. (2.27).

Indeed, it suffices to take α = θ and b = −b∗.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity. Chap-
ter 2 is devoted to the dynamics of a two-dimensional rigid body on the plane. In the present section,
we examine the case of motion where the moment of forces depends on the angular velocity. We
introduce this dependence in more general terms. In addition, this point of view will also allow us to
introduce this dependence for three-dimensional and higher-dimensional bodies.

Let x = (x1N , x2N ) be the coordinates of the pointN of application of a nonconservative force (inter-
action with a medium) to a one-dimensional plate and Q = (Q1, Q2) be the components independent
on the angular velocity. We consider only the linear dependence of the functions (x1N , x2N ) = (xN , yN )
on the angular velocity since the introduction of this dependence itself is not a priori obvious (see [33,
34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274–276, 440].

Thus, we accept the following dependence:

x = Q+R, (2.29)

where R = (R1, R2) is a vector-valued function containing the angular velocity. Here, the dependence
of the function R on the angular velocity is gyroscopic:

R =

(
R1

R2

)
= −1

v

(
0 −Ω
Ω 0

)(
h1
h2

)
, (2.30)

where (h1, h2) are positive parameters (cf. [322, 330, 331, 345, 393]).
Since x1N = xN ≡ 0, we have for our problem

x2N = yN = Q2 − h1
Ω

v
. (2.31)

3.2. Reduced system. Similarly to the choice of Chaplygin analytical functions [50, 51]

Q2 = A sinα, A > 0, (2.32)

we take the dynamical functions s and yN as follows:

s(α) = B cosα, yN

(
α,

Ω

v

)
= A sinα− h

Ω

v
, A,B, h = h1 > 0, v �= 0 (2.33)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity).

Then, owing to the nonintegrable constraint (2.4), outside the manifold (2.8) (and only outside it),
the dynamical part of the equations of motion (system (2.9)) has the following form:

α̇ = −
(
1 +

σBh

I

)
Ω+

σABv

I
sinα,

Ω̇ =
ABv2

I
sinα cosα− Bhv

I
Ωcosα.

(2.34)

Introducing the dimensionless variable, the parameters, and the differentiation as follows:

Ω = n0vω, n2
0 =

AB

I
, b = σn0, H1 =

Bh

In0
, 〈·〉 = n0v〈′〉, (2.35)

we reduce system (2.34) to the form

α′ = −(1 + bH1)ω + b sinα,

ω′ = sinα cosα−H1ω cosα.
(2.36)
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3.3. Complete list of invariant relations. We put in correspondence to system (2.36) the fol-
lowing nonautonomous first-order equation:

dω

dα
=

sinα cosα−H1ω cosα

−(1 + bH1)ω + b sinα
. (2.37)

Using the substitution τ = sinα, we rewrite Eq. (2.37) in the algebraic form:

dω

dτ
=

τ −H1ω

−(1 + bH1)ω + bτ
. (2.38)

Introducing the homogeneous variable by the formula ω = uτ , we reduce Eq. (2.38) to the following
quadrature:

(b− (1 + bH1)u)du

1− (b+H1)u+ (1 + bH1)u2
=

dτ

τ
. (2.39)

Integration of quadrature (2.39) leads to the following three cases. Simple calculations yield the
following first integrals:

I. |b−H1| < 2:

ln(1− (b+H1)u+ (1 + bH1)u
2)

− 2b√
4− (b−H1)2

arctan
2(1 + bH1)u− (b+H1)√

4− (b−H1)2
+ ln τ2 = const . (2.40)

II. |b−H1| > 2:

1

1 + bH1
ln |1− (b+H1)u+ (1 + bH1)u

2|+ ln τ2

+
b
√
1 + bH1√

(b−H1)2 − 4
ln

∣∣∣∣2(1 + bH1)
3/2u− (b+H1)

√
1 + bH1 +

√
(b−H1)2 − 4

2(1 + bH1)3/2u− (b+H1)
√
1 + bH1 −

√
(b−H1)2 − 4

∣∣∣∣ = const . (2.41)

III. |b−H1| = 2:

ln

∣∣∣∣u− b+H1

2(1 + bH1)

∣∣∣∣+ b−H1

2(1 + bH1)u− (b+H1)
+ ln |τ | = const . (2.42)

The obtained first integrals have a rather cumbersome form in the variables (α, ω). However, for
the case III, we present it in the explicit form:

(
ω − b+H1

2(1 + bH1)
sinα

)
exp

{
(b−H1) sinα

2(1 + bH1)ω − (b+H1) sinα

}
= const . (2.43)

Therefore, in the considered case, the system of dynamical equations (2.1) has two invariant re-
lations: the analytical nonintegrable constraint (2.4) and the first integral expressed by relations
(2.40)–2.42 (or, in particular, (2.43) in the case III), which is a transcendental function of its phase
variables (in the sense of complex analysis) and is expressed as a finite combination of elementary
functions.

Theorem 2.3. Under conditions (2.4) and (2.33), system (2.1) possesses two invariant relations (a
complete set), one of which is a transcendental function (in the sense of complex analysis). Both
relations are expressed as finite combinations of elementary functions.

402



3.4. Topological analogies. We consider the following second-order equation:

θ̈ + (b∗ −H1∗)θ̇ cos θ + sin θ cos θ = 0, b∗, H1∗ > 0. (2.44)

It describes a fixed pendulum in a flowing medium in the case where the moment of forces depends
on the angular velocity, i.e., the mechanical system in a nonconservative force field (see [265]).

Its phase space is the two-dimensional cylinder

S1 ×R1. (2.45)

It is easy to verify that the given equation is equivalent to a dynamical system with variable
dissipation with zero mean on the tangent bundle TS1 (or (2.45)) to the one-dimensional sphere
(circle). Moreover, the following theorem holds.

Theorem 2.4. Under conditions (2.4) and (2.14), system (2.1) is equivalent to Eq. (2.44).

Indeed, it suffices to set α = θ, b = −b∗, and H1 = −H1∗.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

Chapter 3

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

ON THE TWO-DIMENSIONAL PLANE, II

In this chapter, we systematize some earlier and new results on the study of the equations of motion
of dynamically symmetric two-dimensional (2D) rigid bodies in nonconservative force fields. The form
of these equations is taken from the dynamics of real rigid bodies interacting with a resisting medium
by laws of jet flows where a body is influenced by a nonconservative tracing force. Under the action
of this force, the center of mass of the body moves rectilinearly and uniformly; this means that there
exists a nonconservative couple of forces in the system (see also [1, 64, 70, 72, 119–121, 157, 164–167,
180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier (see [164–167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities having essential singularities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under a Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (one-
dimensional plate) in the field of a resisting force under the assumption of quasi-stationarity [28, 50,
51, 62–66, 98, 112, 119–121, 160–169, 171, 431, 432]. If (v, α) are the polar coordinates of the velocity
vector of a certain typical point D of a rigid body (D is the center of the plate), Ω is its angular
velocity, and I and m are the characteristics of inertia and mass, then the dynamical part of the
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equations of motion (including also Chaplygin analytical functions [50, 51], see below) in which the
tangent forces of the interaction of the body with the medium are absent, has the form

v̇ cosα− α̇v sinα− Ωv sinα+ σΩ2 =
Fx

m
,

v̇ sinα+ α̇v cosα+Ωv cosα− σΩ̇ = 0,

IΩ̇ = yN

(
α,

Ω

v

)
s(α)v2,

(3.1)

where

Fx = −S, S = s(α)v2, σ > 0, v > 0. (3.2)

The first two equations in (3.1) describe the motion of the center of mass on the two-dimensional
Euclidean plane E2 in the coordinate system Dx1x2 attached to the body. Here Dx1 is the perpen-
dicular to the plate passing through the center of mass C of the symmetric body and Dx2 is an axis
along the plate. The third equation of (3.1) is obtained from the theorem on the change of the angular
moment of a rigid body.

Thus, the direct product

R1 × S1 × so(2) (3.3)

of the two-dimensional cylinder and the Lie algebra so(2) is the phase space of system (3.1).
If we consider a more general problem on the motion of a body under the action of a certain tracing

force T passing through the center of mass and providing the fulfillment of the equality

VC ≡ const, (3.4)

during the motion (VC is the velocity of the center of mass, see also [164–167]), then Fx in system
(3.1) must be replaced by zero since the nonconservative couple of the forces acts on the body:

T − s(α)v2 ≡ 0, σ = DC. (3.5)

Obviously, we must choose the value of the tracing force T as follows:

T = Tv(α,Ω) = s(α)v2, T ≡ −S. (3.6)

The choice (3.6) of the magnitude of the tracing force T is a particular case of the possibility of
separation of an independent second-order subsystem after a certain transformation of the third-order
system (3.1).

Indeed, let the following condition hold for T :

T = Tv(α,Ω) = τ1

(
α,

Ω

v

)
v2 + τ2

(
α,

Ω

v

)
Ωv + τ3

(
α,

Ω

v

)
Ω2 = T1

(
α,

Ω

v

)
v2. (3.7)

We can rewrite system (3.1) as follows:

v̇ + σΩ2 cosα− σ sinα

[
v2

I
yN

(
α,

Ω

v

)
s(α)

]
=

T1

(
α, Ωv

)
v2 − s(α)v2

m
cosα,

α̇v +Ωv − σ cosα

[
v2

I
yN

(
α,

Ω

v

)
s(α)

]
− σΩ2 sinα =

s(α)v2 − T1

(
α, Ωv

)
v2

m
sinα,

Ω̇ =
v2

I
yN

(
α,

Ω

v

)
s(α).

(3.8)

If we introduce the new dimensionless phase variable and the differentiation by the formulas

Ω = n1vω, 〈·〉 = n1v〈′〉, n1 > 0, n1 = const, (3.9)
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then system (3.8) is reduced to the following form:

v′ = vΨ(α, ω), (3.10)

α′ = −ω + σn1ω
2 sinα+

[
σ

In1
yN (α, n1ω) s(α)

]
cosα− T1 (α, n1ω)− s(α)

mn1
sinα, (3.11)

ω′ =
1

In2
1

yN (α, n1ω) s(α)− ω

[
σ

In1
yN (α, n1ω) s(α)

]
sinα

+ σn1ω
3 cosα− ω

T1 (α, n1ω)− s(α)

mn1
cosα,

Ψ(α, ω) = −σn1ω
2 cosα+

[
σ

In1
yN (α, n1ω) s(α)

]
sinα+

T1 (α, n1ω)− s(α)

mn1
cosα.

We see that the independent second-order subsystem (3.11) can be substituted into the third-order
system (3.10) and can be considered separately on its own two-dimensional phase cylinder.

In particular, if condition (3.6) holds, then the method of separation of an independent second-order
subsystem is also applicable.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51]),
we take the dynamical functions s and yN as follows:

s(α) = B cosα, yN

(
α,

Ω

v

)
= y0(α) = A sinα, A,B > 0, v �= 0, (3.12)

which shows that for the considered system, the moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angle α).

Then, owing to the of conditions (3.4) and (3.12), the transformed dynamical part of the equations
of motion (system (3.10), (3.11)) has the following form:

v′ = vΨ(α, ω), (3.13)

α′ = −ω + b sinα cos2 α+ bω2 sinα,

ω′ = sinα cosα− bω sin2 α cosα+ bω3 cosα,
(3.14)

Ψ(α, ω) = −bω2 cosα+ b sin2 α cosα.

Here we choose the dimensionless variable, the parameter b, and the constant n1 as follows:

b = σn0, n2
0 =

AB

I
, n1 = n0. (3.15)

Therefore, system (3.13), (3.14) can be considered on its own three-dimensional phase cylinder

W1 = R1
+{v} × S1{α mod 2π} ×R1{ω}. (3.16)
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2.2. Complete list of first integrals. The independent second-order system (3.14) was extracted
from system (3.13), (3.14).

Note that the magnitude of the velocity of the center of mass is a first integral of system (3.1) by
virtue of (3.4), since the function of the phase variables

Ψ0(v, α,Ω) = v2 + σ2Ω2 − 2σΩv sinα = V 2
C (3.17)

is constant on its phase trajectories.
By virtue of the nondegenerate change of the independent variable (for v �= 0), system (3.13), (3.14)

also has an analytical integral since the function of the phase variables

Ψ1(v, α, ω) = v2(1 + b2ω2 − 2bω sinα) = V 2
C (3.18)

is constant on its phase trajectories.
Equality (3.18) allows one to find the dependence of the velocity of a certain point of a rigid body

(namely, the center of the plate) on other phase variables without the solution of system (3.13), (3.14),
since the equality

v2 =
V 2
C

1 + σ2ω2 − 2σω sinα
(3.19)

holds for VC �= 0.
Since the phase space (3.16) of system (3.13), (3.14) is three-dimensional and there exist asymptotic

limit sets in the phase space, Eq. (3.18) defines a unique analytical (even continuous) first integral of
system (3.13), (3.14) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152–154, 156, 213,
427, 438]).

We consider in detail the problem of the existence of the second (additional) first integral of system
(3.13), (3.14). Its phase space is stratified into surfaces

{(v, α, ω) ∈ W1 : VC = const}, (3.20)

on which the dynamics is defined by means of the first integral of system (3.14).
We associate the separated second-order system (3.14) with the following nonautonomous differen-

tial equation:
dω

dτ
=

τ + bω[ω2 − τ2]

−ω + bτ + bτ [ω2 − τ2]
, τ = sinα. (3.21)

Introduce the following notation (cf. [181]):

C1 = 2− b, C2 = b > 0, C3 = −2− b < 0. (3.22)

After the change of variables

u1 = ω − τ, v1 = ω + τ, (3.23)

Eq. (3.21) is transformed to the form

du1

{
−
(
1 +

b

2

)
u1 +

b

2
v1 + bu1v

2
1

}
= dv1

{(
1− b

2

)
v1 +

b

2
u1 + bu21v1

}
. (3.24)

Then, using two substitutions

u1 = v1t1, v21 = p1, (3.25)

we reduce Eq. (3.24) to the Bernoulli equation

2p1{C3t1 + C2 + 2C2t1p1} =
dp1
t1

{C1 − C3t
2
1}, (3.26)

which can be easily transformed to a linear nonhomogeneous equation by the substitution p1 = 1/q1:

q′1 = a1(t1)q1 + a2(t1), (3.27)
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where

a1(t1) =
2(C3t1 + C2)

C3t21 − C1
, a2(t1) =

4C2t1
C3t21 − C1

. (3.28)

The solution of the uniform part of Eq. (3.27) is found from the equality

q1hom(t1) = k expW (t1), W (t1) = 2

∫
(C3t1 + C2)dt1

C3t21 −C1
. (3.29)

Consider the following three cases for calculation of integral (3.29).
I. C1 > 0 (b < 2):

W (t1) = ln(−C3t
2
1 + C1)− 2

C2√−C1C3
arctan

√
−C3

C1
t1 + const . (3.30)

II. C1 < 0 (b > 2):

W (t1) = ln | − C3t
2
1 + C1|+ C2√

C1C3
ln

∣∣∣∣
√−C1 +

√−C3t1√−C1 −
√−C3t1

∣∣∣∣+ const . (3.31)

III. C1 = 0 (b = 2):

W (t1) = 2 ln |t1|+ 1

t1
. (3.32)

Now we have the general solution of the homogeneous equation:
I. b < 2:

q1 hom(t1) = k(−C3t
2
1 + C1) exp

{
− 2b√

4− b2
arctan

√
2 + b

2− b
t1

}
+ const . (3.33)

II. b > 2:

q1hom(t1) = k(−C3t
2
1 + C1)

∣∣∣∣
√−C1 +

√−C3t1√−C1 −
√−C3t1

∣∣∣∣
C2/

√
C1C3

+ const . (3.34)

III. b = 2:

q1hom(t1) = kt21 exp

{
1

t1

}
+ const . (3.35)

To find a solution of the nonhomogeneous equations (3.27), (3.28), we must express the value of k
as a function of t1. We obtain:

I. b < 2:

k(t1) = − b

8
exp

{
2b√
4− b2

[
2b√
4− b2

sin 2ζ − 2 cos 2ζ

]}
+ const, (3.36)

where

tan ζ =

√
2− b

2 + b
t1. (3.37)

II. b > 2:

k(t1) = ±|ζ|b/
√
b2−4 ∓ b

b+ 2
√
b2 − 4

|ζ|b/
√
b2−4+2 + const, (3.38)

where

t1 =

√
b− 2

b+ 2

(
1− ζ

1 + ζ

)
. (3.39)

III. b = 2:

k(t1) = −2
t1 + 1

t1
exp

{
− 1

t1

}
. (3.40)

Thus, Eqs. (3.33)–(3.40) allow one to obtain the required first integral of system (3.14) (and an
additional first integral of system (3.13), (3.14)), which is a transcendental function of its own phase
variables and is expressed as a finite combination of elementary functions.
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We present the obtained first integral only in the case III because of the complexity of other cases:

exp

{
sinα+ ω

sinα− ω

}
1− 4ω sinα+ 4ω2

(ω − sinα)2
= C1 = const . (3.41)

Therefore, the system of dynamical equations (3.13), (3.14) has two invariant relations (first inte-
grals) in the considered case: there exists an analytical first integral of the form (3.18) and also a
transcendental first integral, which can be obtained by means of Eqs. (3.33)–(3.40).

Theorem 3.1. System (3.13), (3.14) possesses a complete list of first integrals, one of which is an
analytical function and the second is a transcendental function of the phase variables expressed as a
finite combination of elementary functions.

It is necessary to repeat an important remark. In fact, the obtained integral is transcendental
from the point of view of the theory of elementary functions (i.e., not algebraic). In this case, the
transcendence is understood in the sense of the theory of functions of complex variables, when the
formal continuation of the function to the complex domain has essential singular points that correspond
to attractive and repelling limit sets of the considered dynamical system.

2.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 3.2. The first integral of system (2.1) under conditions (2.4) and (2.14) is constant on the
phase trajectories of system (3.13), (3.14).

Proof. We prove the theorem for the case b = 2. Rewrite the first integral (3.41) in the following form:

exp

{
n0v sinα+Ω

n0v sinα− Ω

}
n2
0v

2 − 2bn0vΩ sinα+ b2Ω2

(Ω − n0v sinα)2
= const . (3.42)

We see that the numerator of the second multiplier is proportional to the square of the velocity of the
center of mass VC of a rigid body with the constant coefficient n2

0. But, by virtue of (3.17), the given
value is constant on trajectories of system (3.13), (3.14). This means that the function

exp

{
n0v sinα+Ω

n0v sinα− Ω

}
V 2
C

(Ω− n0v sinα)2
= const (3.43)

is also constant on its trajectories.
Now we raise the left-hand side of Eq. (3.43) to the power (−1/2) and conclude that the following

function is also constant on phase trajectories of system (3.13), (3.14):

exp

{
Ω+ n0v sinα

2(Ω − n0v sinα)

}
(Ω − n0v sinα) = const . (3.44)

Dividing Eq. (3.44) by
√
e, we obtain the function

exp

{
n0v sinα

Ω− n0v sinα

}
(Ω− n0v sinα) = const, (3.45)

which is constant on phase trajectories of system (3.13), (3.14). But the first integral (3.45) is com-
pletely similar to the first integral (2.26), as is required.

Thus, we have the following topological and mechanical analogies in the sense explained above.
(1) Free motion of a rigid body in a nonconservative force field under a tracing force (in the presence

of a nonintegrable constraint).
(2) A motion of a fixed physical pendulum in a flowing medium (nonconservative force fields).
(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves

rectilinearly and uniformly.
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On more general topological analogues, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence on the moment of the angular velocity and the reduced system. We
continue to study the dynamics of a two-dimensional rigid body on the plane. This section (similarly
to the corresponding section of Chap. 2) is devoted to the study of the case of the motion where the
moment of forces depends on the angular velocity. We introduce this dependence in the same way as
was done in the previous chapter. We also recall that this point of view will also allow us to introduce
this dependence for three-dimensional and higher-dimensional bodies.

Let x = (x1N , x2N ) be the coordinates of the point N of application of a nonconservative force
(interaction with a medium) to a one-dimensional plate, and let Q = (Q1, Q2) be the components
that are independent of the angular velocity. We consider only the linear dependence of the functions
(x1N , x2N ) = (xN , yN ) on the angular velocity since the introduction of this dependence itself is not
a priori obvious (see [33, 34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274–276, 440]).

Thus, we accept the following dependence:

x = Q+R, (3.46)

where R = (R1, R2) is a vector-valued function containing the angular velocity. Here, the dependence
of the function R on the angular velocity is gyroscopic (see also the previous chapter):

R =

(
R1

R2

)
= −1

v

(
0 −Ω
Ω 0

)(
h1
h2

)
, (3.47)

where (h1, h2) are certain positive parameters (cf. [322, 330, 331, 345, 393]).
Since x1N = xN ≡ 0, we have

x2N = yN = Q2 − h1
Ω

v
. (3.48)

Similarly to the choice of the Chaplygin analytical functions (see [50, 51])

Q2 = A sinα, A > 0, (3.49)

we take the dynamical functions s and yN as follows:

s(α) = B cosα, yN

(
α,

Ω

v

)
= A sinα− h

Ω

v
, A,B, h = h1 > 0, v �= 0, (3.50)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity).

Then, owing to the conditions (3.4) and (3.50), the transformed dynamical part of the equations of
motion (system (3.10), (3.11)) has the following form:

v′ = vΨ(α, ω), (3.51)

α′ = −ω + b sinα cos2 α+ bω2 sinα− bH1ω cos2 α,

ω′ = sinα cosα− bω sin2 α cosα+ bω3 cosα+ bH1ω
2 sinα cosα−H1ω cosα,

Ψ(α, ω) = −bω2 cosα+ b sin2 α cosα− bH1ω sinα cosα.

(3.52)

Just as was done earlier, we choose a dimensionless variable, the parameters b andH1, and the constant
n1 as follows:

b = σn0, n2
0 =

AB

I
, H1 =

Bh

In0
, n1 = n0. (3.53)
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Therefore, system (3.53), (3.52) can be considered on its three-dimensional phase cylinder

W1 = R1
+{v} × S1{α mod 2π} ×R1{ω}. (3.54)

3.2. Complete list of first integrals. The independent second-order system (3.52) was extracted
from system (3.51), (3.52).

We note that the magnitude of the velocity of the center mass is a first integral of system (3.1) by
virtue of (3.4) and, therefore, the function of phase variables (3.17) is constant on its phase trajectories.

By virtue of a nondegenerate change of the independent variable (for v �= 0), system (3.51), (3.52)
has also an analytical integral and, therefore, the function of the phase variables

Ψ1(v, α, ω) = v2(1 + b2ω2 − 2bω sinα) = V 2
C (3.55)

is constant on its phase trajectories.
Equality (3.55) allows one to find the dependence of the velocity of a certain point of a rigid body

(namely, of the center of the plate) on the other phase variables without solution of the system (3.51),
(3.52); therefore, Eq. (3.19) holds for VC �= 0.

Since the phase space (3.54) of system (3.51), (3.52) is three-dimensional and there exist asymptotic
limit sets in the phase space, we see that Eq. (3.55) defines a unique analytical (even continuous) first
integral of system (3.51), (3.52) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152–154,
156, 213, 427, 438]).

We consider in detail the problem of the existence of the second (additional) first integral of system
(3.51), (3.52). Its phase space is stratified into surfaces (3.20) on which the dynamics is defined by
means of the first integral of system (3.52).

We associate the separated second-order system (3.52) with the following nonautonomous differen-
tial equation:

dω

dτ
=

τ + bω[ω2 − τ2] +H1ω[bωτ − 1]

−ω + bτ + bτ [ω2 − τ2]− bH1ω(1− τ2)
, τ = sinα. (3.56)

Then, after the change of variables

u1 = ω − τ, v1 = ω + τ, (3.57)

Eq. (3.56) takes the form

du1

{
− u1

(
1 +

b

2
+

bH1

2
+

H1

2

)
+ v1

(
b

2
− bH1

2
− H1

2

)}
+ du1

{
bu1v

2
1 +

bH1

4
v1(v

2
1 − u21)

}

= dv1

{
u1

(
b

2
+

bH1

2
− H1

2

)
+ v1

(
1− b

2
− bH1

2
− H1

2

)}
+ dv1

{
bu21v1 +

bH1

4
u1(v

2
1 − u21)

}
. (3.58)

Later, using two substitutions

u1 = v1t1, v21 = p1, (3.59)

we reduce Eq. (3.58) to the Bernoulli equation

2p1{−A2t1 +A1 + bp1(t1 +H1(1− t21)/4)} =
dp1
dt1

{A3 + bH1t1 +A2t
2
1}, (3.60)

where

A1 =
b

2
− bH1

2
− H1

2
, A2 = 1 +

b

2
+

bH1

2
+

H1

2
> 0, A3 = 1− b

2
+

bH1

2
− H1

2
. (3.61)

By the substitution p1 = 1/q1, Eq. (3.60) can be easily transformed to the linear nonuniform
equation

q′1 = a1(t1)q1 + a2(t1), (3.62)
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where

a1(t1) =
2(A2t1 −A1)

A2t21 + bH1t1 +A3
, a2(t1) =

2b(−t1 +H1(t
2
1 − 1)/4))

A2t21 + bH1t1 +A3
. (3.63)

The solution of the homogeneous part of Eq. (3.62) is found from the equality

q1 hom(t1) = k expW (t1), W (t1) = 2

∫
(A2t1 −A1)dt1

A2t21 + bH1t1 +A3
. (3.64)

We consider the following three cases of calculation of integral (3.64).
I. |b−H1| < 2:

W (t1) = ln(A2t
2
1 + bH1t1 +A3)

− 2(b− bH1 −H1)√
4− (b−H1)2

arctan

{
2 + b+ bH1 +H1√

4− (b−H1)2
t1 +

bH1√
4− (b−H1)2

}
+ const . (3.65)

II. |b−H1| > 2:

W (t1) = ln |A2t
2
1 + bH1t1 +A3|

+
b− bH1 −H1√−4 + (b−H1)2

ln

∣∣∣∣
√−4 + (b−H1)2 + (2 + b+ bH1 +H1)t1 + bH1√−4 + (b−H1)2 − (2 + b+ bH1 +H1)t1 − bH1

∣∣∣∣+ const . (3.66)

III. |b−H1| = 2:

W (t1) = 2 ln

∣∣∣∣t1 + bH1

2A2

∣∣∣∣+ bH1 + 2A1

A2

2A2

2A2t1 + bH1
+ const . (3.67)

Now we write the general solution of the homogeneous equation:
I. |b−H1| < 2:

q1 hom(t1) = k(A2t
2
1 + bH1t1 +A3)

× exp

{
− 2(b− bH1 −H1)√

4− (b−H1)2
arctan

{
2 + b+ bH1 +H1√

4− (b−H1)2
t1 +

bH1√
4− (b−H1)2

}}
. (3.68)

II. |b−H1| > 2:

q1 hom(t1) = k(A2t
2
1 + bH1t1 +A3)

×
∣∣∣∣
√−4 + (b−H1)2 + (2 + b+ bH1 +H1)t1 + bH1√−4 + (b−H1)2 − (2 + b+ bH1 +H1)t1 − bH1

∣∣∣∣
(b−bH1−H1)/

√
−4+(b−H1)2

. (3.69)

III. |b−H1| = 2:

q1 hom(t1) = k

(
t1 +

bH1

2A2

)2

exp

{
2(b−H1)

(2 + b+ bH1 +H1)t1 + bH1

}
. (3.70)

To find a solution of the nonhomogeneous equation (3.62), (3.63), we find k as a function of t1,
which is expressed as a finite combination of elementary functions. The obtained first integrals have
a rather cumbersome form. However, for the case III, we present it in the explicit form.

Thus, the corresponding equations allow one to obtain the required first integral of system (3.52)
(and the additional first integral of system (3.51), (3.52)), which is a transcendental function of its
phase variables and is expressed as a finite combination of elementary functions.

In the case III, the required first integral has the form

exp

{ −2(b−H1) sinα

2(1 + bH1)ω − (b+H1) sinα

}
1− 4ω sinα+ 4ω2

(ω − 2 sinα/(b +H1))2
= C1 = const . (3.71)
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Therefore, the system of dynamical equations (3.51), (3.52) has two invariant relations (first inte-
grals) in the considered case: an analytical first integral of the form (3.55) and also a transcendental
first integral which can be obtained by using Eqs. (3.65)–(3.71).

Theorem 3.3. System (3.51), (3.52) possesses a complete set of first integrals, one of which is an
analytical function and the other is a transcendental function of the phase variables expressed as a
finite combination of elementary functions.

It is necessary to repeat an important remark. In fact, the obtained integral is transcendental
from the point of view of the theory of elementary functions (i.e., not algebraic). In this case, the
transcendence is understood in the sense of the theory of functions of complex variables, when the
formal continuation of the function to the complex domain has essential singular points that correspond
to attractive and repelling limit sets of the considered dynamical system.

3.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 3.4. Under conditions (2.4) and (2.33), the first integral of system (2.1) is constant on
phase trajectories of system (3.51), (3.52).

Proof. We prove the theorem for the case |b−H1| = 2. Indeed, we rewrite the first integral (3.71) as
follows:

exp

{ −2n0v(b−H1) sinα

2(1 + bH1)Ω− n0v(b+H1) sinα

}
n2
0v

2 − 4n0vΩ sinα+ 4Ω2

(Ω − 2n0v sinα/(b +H1))2
= const . (3.72)

We see that the numerator of the second multiplier is proportional to the square of the velocity of the
center of mass VC of a rigid body with a constant coefficient. But, by virtue of (3.17), this value is
constant on trajectories of system (3.51), (3.52). This means that the function

exp

{ −2n0v(b−H1) sinα

2(1 + bH1)Ω− n0v(b+H1) sinα

}
V 2
C

(Ω− 2n0v sinα/(b +H1))2
= const (3.73)

is also constant on its trajectories.
Now we raise the left-hand side of Eq. (3.73) to the power (−1/2) and conclude that the following

function is also constant on phase trajectories of system (3.51), (3.52):

exp

{
n0v(b−H1) sinα

2(1 + bH1)Ω − n0v(b+H1) sinα

}
(Ω− 2n0v sinα/(b+H1)) = const . (3.74)

Now it is clear that function (3.74) is equivalent to function (2.43) since, in the case III, the equality

(b+H1)
2 = 4(1 + bH1) (3.75)

holds. Thus, the required analogy is proved.

Similarly to the previous chapters, we have the following topological and mechanical analogies in
the cases (2.33), (3.50).

(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the
presence of a nonintegrable constraint).

(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).
(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves

rectilinearly and uniformly.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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Chapter 4

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN THE THREE-DIMENSIONAL SPACE, I

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of dynamically symmetric three-dimensional (3D) rigid bodies in nonconservative force fields.
The form of these equations is taken from the dynamics of real rigid bodies interacting with a resisting
medium by laws of jet flows where a body is influenced by a nonconservative tracing force; under action
of this force, the magnitude of the velocity of some characteristic point of the body remains constant,
which means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119–121,
157, 164–167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164–167]), the author has already proved the complete integrability of the equations of
a plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In [193, 196, 202, 204, 208, 209, 218, 232, 241], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete set of transcendental
first integrals. It was assumed that the interaction of the medium with the body is concentrated on a
part of the body surface that has the form of a planar (two-dimensional) disk.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under the Tracing Force

Let us consider the plane-parallel motion of a symmetric rigid body with flat front end face (two-
dimensional disk) in the field of a resisting force under the assumption of quasi-stationarity (see [28,
50, 51, 62–66, 98, 112, 119–121, 160–169, 171, 431, 432]). If (v, α, β1) are the spherical coordinates
of the velocity vector of a certain typical point D of a rigid body (D is the center of the disk lying
on the symmetry axis of the body), {Ω1,Ω2,Ω3} are the projections of its angular velocity Ω to the
coordinate axes of the coordinate system Dx1x2x3 attached to the body, where the symmetry axis
CD coincides with the axis Dx1 (C is the center of mass), and the axes Dx2 and Dx3 lie in the
hyperplane containing the disk, I1, I2, I3 = I2, and m are the characteristics of inertia and mass, then
the dynamical part of the equations of motion (including the case of Chaplygin analytical functions
[50, 51], see below), where the tangent forces of the interaction of a medium with the body are absent,
has the following form:

v̇ cosα− α̇v sinα+Ω2v sinα sin β1 − Ω3v sinα cos β1 + σ(Ω2
2 +Ω2

3) =
Fx

m
, (4.1a)

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 +Ω3v cosα

−Ω1v sinα sin β1 − σΩ1Ω2 − σΩ̇3 = 0,
(4.1b)
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v̇ sinα sin β1 + α̇v cosα sin β1 + β̇1v sinα cos β1 +Ω1v sinα cosβ1

−Ω2v cosα− σΩ1Ω3 + σΩ̇2 = 0,
(4.1c)

I1Ω̇1 = 0, (4.1d)

I2Ω̇2 + (I1 − I2)Ω1Ω3 = −zN

(
α, β1,

Ω

v

)
s(α)v2, (4.1e)

I2Ω̇3 + (I2 − I1)Ω1Ω2 = yN

(
α, β1,

Ω

v

)
s(α)v2, (4.1f)

where

Fx = −S, S = s(α)v2, σ > 0, v > 0. (4.2)

The first two equations of (4.1) describe the motion of the center of mass in the three-dimensional
Euclidean space E3 in the projections on the system of coordinates Dx1x2x3. The second three
equations of (4.1) are obtained from the theorem on the angular momentum of rigid body in the
König axes.

Thus, the direct product of the three-dimensional manifold by the Lie algebra so(3)

R1 × S2 × so(3) (4.3)

is the phase space of the sixth-order system (4.1).
We note that system (4.1), by virtue of its dynamical symmetry

I2 = I3, (4.4)

possesses the cyclic first integral

Ω1 ≡ Ω0
1 = const . (4.5)

Therefore, we consider the dynamics of the system on the zero level:

Ω0
1 = 0. (4.6)

If we consider a more general problem on the motion of a rigid body under the action of a tracing
force T passing through the center of mass and providing the fulfillment of the condition

v ≡ const (4.7)

during the motion (see also [164–167]), then Fx in system (4.1) must be replaced by

T − s(α)v2, σ = DC. (4.8)

As a result of an appropriate choice of the magnitude T of the tracing force, we can achieve the
fulfillment of Eq. (4.7) during the motion. Indeed, if we formally express the value T by virtue of
system (4.1), we obtain (for cosα �= 0):

T = Tv(α, β1,Ω) = mσ(Ω2
2 +Ω2

3)

+ s(α)v2
[
1− mσ

I2

sinα

cosα

[
zN

(
α, β1,

Ω

v

)
sin β1 + yN

(
α, β1,

Ω

v

)
cos β1

]]
. (4.9)

Note that we have used conditions (4.5)–(4.7) to obtain Eq. (4.9).
This procedure can be viewed from two standpoints. First, a transformation of the system has

occurred for the presence of a tracing (control) force in the system which provides the corresponding
class of motions (4.7). Second, we can consider this procedure as a procedure that allows one to reduce
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the order of the system. Indeed, system (4.1) generates an independent fourth-order system of the
following form:

α̇v cosα cosβ1 − β̇1v sinα sin β1 +Ω3v cosα− σΩ̇3 = 0,

α̇v cosα sinβ1 + β̇1v sinα cos β1 − Ω2v cosα+ σΩ̇2 = 0,

I2Ω̇2 = −zN

(
α, β1,

Ω

v

)
s(α)v2,

I2Ω̇3 = yN

(
α, β1,

Ω

v

)
s(α)v2,

(4.10)

where the parameter v is added to the constant parameters specified above.
System (4.10) is equivalent to

α̇v cosα+ v cosα [Ω3 cos β1 − Ω2 sin β1] + σ
[
−Ω̇3 cos β1 + Ω̇2 sin β1

]
= 0,

β̇1v sinα− v cosα [Ω2 cos β1 +Ω3 sin β1] + σ
[
Ω̇2 cos β1 + Ω̇3 sin β1

]
= 0,

Ω̇2 = −v2

I2
zN

(
α, β1,

Ω

v

)
s(α),

Ω̇3 =
v2

I2
yN

(
α, β1,

Ω

v

)
s(α).

(4.11)

We introduce new quasi-velocities in the system:

z1 = Ω2 cos β1 +Ω3 sin β1,

z2 = −Ω2 sinβ1 +Ω3 cosβ1.
(4.12)

As is seen from (4.11), on the manifold

O =

{
(α, β1,Ω2,Ω3) ∈ R4 : α =

π

2
k, k ∈ Z

}
, (4.13)

it is impossible to solve the system uniquely with respect to α̇ and β̇1. Thus, the formal violation
of the uniqueness theorem occurs on manifold (4.13). Moreover, the indefiniteness occurs for even
k because of the degeneration of the spherical coordinates (v, α, β1), and an obvious violation of the
uniqueness theorem for odd k occurs since the first equation of (4.11) is degenerate for this case.

It follows that system (4.11) outside the manifold (4.13) (and only outside it) is equivalent to the
system

α̇ = −z2 +
σv

I2

s(α)

cosα

[
zN

(
α, β1,

Ω

v

)
sin β1 + yN

(
α, β1,

Ω

v

)
cosβ1

]
,

ż2 =
v2

I2
s(α)

[
zN

(
α, β1,

Ω

v

)
sin β1 + yN

(
α, β1,

Ω

v

)
cos β1

]

− z21
cosα

sinα
− σv

I2

s(α)

sinα
z1

[
zN

(
α, β1,

Ω

v

)
cos β1 − yN

(
α, β1,

Ω

v

)
sinβ1

]
,

ż1 = z1z2
cosα

sinα
+

[
−v2

I2
s(α) +

σv

I2

s(α)

sinα
z2

]

×
[
zN

(
α, β1,

Ω

v

)
cos β1 − yN

(
α, β1,

Ω

v

)
sinβ1

]
,

β̇1 = z1
cosα

sinα
+

σv

I2

s(α)

sinα

[
zN

(
α, β1,

Ω

v

)
cosβ1 − yN

(
α, β1,

Ω

v

)
sin β1

]
.

(4.14)
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In the sequel, the dependence on the variables (α, β1,Ω/v) must be treated as the composite de-
pendence on (α, β1, z1/v, z2/v) by virtue of (4.12).

The uniqueness theorem is violated for system (4.11) for odd k on manifold (4.13) in the following
sense: for almost every point of manifold (4.13), there exists a regular phase trajectory of system (4.14)
passing through this point and intersecting manifold (4.13) at a right angle, and also there exists a
phase trajectory that completely coincides with the specified point at all time instants. However, these
trajectories are distinct since different values of the tracing force correspond to them.

Indeed, as was shown above, to satisfy constraint (4.7), it is necessary to choose a value T for
cosα �= 0 in the form (4.9).

Let

lim
α→π/2

[
zN

(
α, β1,

Ω

v

)
sin β1 + yN

(
α, β1,

Ω

v

)
cos β1

]
s(α)

cosα
= L

(
β1,

Ω

v

)
. (4.15)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣ ∂∂α
([

zN

(
α, β1,

Ω

v

)
sin β1 + yN

(
α, β1,

Ω

v

)
cos β1

]
s(α)

)∣∣∣∣ < +∞. (4.16)

The required value of the tracing force for α = π/2 can be found from the equality

T = Tv

(
π

2
, β1,Ω

)
= mσ(Ω2

2 +Ω2
3)−

mσLv2

I2
, (4.17)

where the values of Ω2 and Ω3 are arbitrary.
On the other hand, if we support the rotation about a certain point W by means of the tracing

force, we must choose the tracing force in the form

T = Tv

(
π

2
, β1,Ω

)
=

mv2

R0
, (4.18)

where R0 is the distance CW .
Equations (4.9) and (4.18) define, generally speaking, different values of the tracing force T for

almost all points of manifold (4.13), which completes the proof.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51]),
we take the dynamical functions s, yN , and zN as follows:

s(α) = B cosα,

yN

(
α, β1,

Ω

v

)
= y0(α, β1) = A sinα cos β1,

zN

(
α, β1,

Ω

v

)
= z0(α, β1) = A sinα sin β1, A,B > 0, v �= 0,

(4.19)

which shows that in the considered system, the moment of nonconservative forces is independent of
the angular velocity (and depends only on the angles α and β1).
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Then, owing to the nonintegrable constraint (4.7), outside manifold (4.13) (and only outside it),
the dynamical part of the equations of motion (system (4.14)) has the following form:

α̇ = −z2 +
σABv

I2
sinα,

ż2 =
ABv2

I2
sinα cosα− z21

cosα

sinα
,

ż1 = z1z2
cosα

sinα
,

β̇1 = z1
cosα

sinα
.

(4.20)

If we introduce dimensionless variables, the parameters, and differentiation as follows:

zk → n0vzk, k = 1, 2, n2
0 =

AB

I2
, b = σn0, 〈·〉 = n0v〈′〉, (4.21)

we reduce system (4.20) to the form

α′ = −z2 + b sinα,

z′2 = sinα cosα− z21
cosα

sinα
, (4.22)

z′1 = z1z2
cosα

sinα
,

β′
1 = z1

cosα

sinα
. (4.23)

We see that in the fourth-order system (4.22), (4.23), an independent third-order system (4.22) with
its own three-dimensional manifold is contained. In the sequel, we show that system (4.22), (4.23) can
be considered as a system on the tangent bundle TS2 to the two-dimensional sphere S2.

2.2. Complete list of invariant relations. First, we compare the third-order system (4.22) with
the nonautonomous second-order system

dz2
dα

=
sinα cosα− z21 cosα/ sinα

−z2 + b sinα
,

dz1
dα

=
z1z2 cosα/ sinα

−z2 + b sinα
.

(4.24)

Using the substitution τ = sinα, we rewrite system (4.24) in the algebraic form:

dz2
dτ

=
τ − z21/τ

−z2 + bτ
,

dz1
dτ

=
z1z2/τ

−z2 + bτ
.

(4.25)

Further, if we introduce the uniform variables by the formulas

zk = ukτ, k = 1, 2, (4.26)

we reduce system (4.25) to the following form:

τ
du2
dτ

+ u2 =
1− u21
−u2 + b

,

τ
du1
dτ

+ u1 =
u1u2

−u2 + b
,

(4.27)
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which is equivalent to

τ
du2
dτ

=
1− u21 + u22 − bu2

−u2 + b
,

τ
du1
dτ

=
2u1u2 − bu1
−u2 + b

.

(4.28)

We compare the second-order system (4.28) with the nonautonomous first-order equation

du2
du1

=
1− u21 + u22 − bu2

2u1u2 − bu1
, (4.29)

which can be easily reduced to the exact differential equation

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (4.30)

Therefore, Eq. (4.29) has the first integral

u22 + u21 − bu2 + 1

u1
= C1 = const, (4.31)

which in the old variables has the form

z22 + z21 − bz2 sinα+ sin2 α

z1 sinα
= C1 = const . (4.32)

Remark 4.1. We consider system (4.22) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438]),
which becomes conservative for b = 0:

α′ = −z2,

z′2 = sinα cosα− z21
cosα

sinα
,

z′1 = z1z2
cosα

sinα
.

(4.33)

It has two analytical first integrals of the form

z22 + z21 + sin2 α = C∗
1 = const, (4.34)

z1 sinα = C∗
2 = const . (4.35)

It is obvious that the ratio of the first integrals (4.34) and (4.35) is also a first integral of system
(4.33). However, for b �= 0, both functions

z22 + z21 − bz2 sinα+ sin2 α (4.36)

and (4.35) are not first integrals of system (4.22), but their ratio is a first integral of system (4.22) for
any b.

Later on, we find the obvious form of the additional first integral of the third-order system (4.22).
For this, we transform the invariant relation (4.31) for u1 �= 0 as follows:

(
u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (4.37)

We see that the parameters of the given invariant relation must satisfy the condition

b2 + C2
1 − 4 ≥ 0, (4.38)

and the phase space of system (4.22) is stratified into a family of surfaces defined by Eq. (4.37).
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Thus, by virtue of relation (4.31), the first equation of system (4.28) has the form

τ
du2
dτ

=
2(1 − bu2 + u22)− C1U1(C1, u2)

−u2 + b
, (4.39)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(u22 − bu2 + 1)

}
, (4.40)

and the integration constant C1 is chosen from condition (4.38).
Therefore, the quadrature for the search of an additional first integral of system (4.22) has the form

∫
dτ

τ
=

∫
(b− u2)du2

2(1 − bu2 + u22)− C1

{
C1 ±

√
C2
1 − 4(u22 − bu2 + 1)

}
/2

. (4.41)

Obviously, the left-hand side up to an additive constant is equal to

ln | sinα|. (4.42)

If

u2 − b

2
= w1, b21 = b2 + C2

1 − 4, (4.43)

then the right-hand side of Eq. (4.41) has the form

− 1

4

∫
d(b21 − 4w2

1)

(b21 − 4w2
1)±C1

√
b21 − 4w2

1

− b

∫
dw1

(b21 − 4w2
1)± C1

√
b21 − 4w2

1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4w2
1

C1
± 1

∣∣∣∣∣±
b

2
I1, (4.44)

where

I1 =

∫
dw3√

b21 − w2
3(w3 ± C1)

, w3 =
√

b21 − 4w2
1 . (4.45)

In the calculation of integral (4.45), the following three cases are possible.
I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4 +

√
b21 − w2

3

w3 ± C1
± C1√

b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4−

√
b21 − w2

3

w3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣+ const . (4.46)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const . (4.47)

III. b = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (4.48)

When we return to the variable

w1 =
z2

sinα
− b

2
, (4.49)

we obtain the final form for the value I1:

419



I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4± 2w1√
b21 − 4w2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4∓ 2w1√
b21 − 4w2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣+ const . (4.50)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1

√
b21 − 4w2

1 + b21

b1
(√

b21 − 4w2
1 ± C1

) + const . (4.51)

III. b = 2:

I1 = ∓ 2w1

C1

(√
b21 − 4w2

1 ± C1

) + const . (4.52)

Thus, we have found an additional first integral for the third-order system (4.22), i.e., we have a
complete set of first integrals that are transcendental functions of the phase variables.

Remark 4.2. In the expression of the found first integral, we must formally substitute the left-hand
side of the first integral (4.31) instead of C1. Then the obtained additional first integral has the
following structure similar to the transcendental first integral from the planar dynamics):

ln | sinα|+G2

(
sinα,

z2
sinα

,
z1

sinα

)
= C2 = const . (4.53)

Thus, we have already found two independent first integrals for the integration of the fourth-order
system (4.22), (4.23). For its complete integrability, it suffices to find one additional first integral,
which attaches Eq. (4.23).

Since
du1
dτ

=
u1(2u2 − b)

(b− u2)τ
,

dβ1
dτ

=
u1

(b− u2)τ
, (4.54)

we have
du1
dβ1

= 2u2 − b. (4.55)

Obviously, for u1 �= 0, the following equality holds:

u2 =
1

2

⎛
⎝b±

√
b21 − 4

(
u1 − C1

2

)2
⎞
⎠ , b21 = b2 + C2

1 − 4; (4.56)

then integration of the quadrature

β1 + const = ±
∫

du1√
b21 − 4

(
u1 − C1

2

)2
(4.57)

yields the invariant relation

2(β1 +C3) = ± arcsin
2u1 − C1√
b2 + C2

1 − 4
, C3 = const . (4.58)

In other words, the equality

sin[2(β1 +C3)] = ± 2u1 − C1√
b2 + C2

1 − 4
(4.59)

420



holds and, returning to the old variables, we obtain

sin
[
2(β1 + C3)

]
= ± 2z1 − C1 sinα√

b2 + C2
1 − 4 sinα

. (4.60)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (4.23). However, we
must formally substitute the left-hand side of (4.31) into the last expression instead of C1.

We perform certain transformations which lead us to the following form of the additional first
integral:

tan2[2(β1 +C3)] =
(u21 − u22 + bu2 − 1)2

u21(4u
2
2 − 4bu2 + b2)

; (4.61)

here Eq. (4.31) is used.
Returning to the old coordinates, we obtain an additional invariant relation of the form

tan2
[
2(β1 + C3)

]
=

(z21 − z22 + bz2 sinα− sin2 α)2

z21(4z
2
2 − 4bz2 sinα+ b2 sin2 α)

, (4.62)

or, finally,

−β1 ± 1

2
arctan

z21 − z22 + bz2 sinα− sin2 α

z1(2z2 − b sinα)
= C3 = const . (4.63)

Therefore, in the considered case, the system of dynamical equations (4.1) under condition (4.19) has
five invariant relations: an analytical nonintegrable constraint (4.7), the cyclic first integral (4.5), (4.6),
the first integral (4.32), the first integral expressed by relations (4.46)–(4.53), which is a transcendental
function of its phase variables (in the sense of the complex analysis) and is expressed as a finite
combination of elementary functions, and, finally, the transcendental first integral (4.63).

Theorem 4.1. System (4.1) under the conditions (4.7), (4.5), (4.6), and (4.19) possesses five in-
variant relations (the complete set), three of which are transcendental functions (in the sense of the
complex analysis). All these relations are expressed as finite combinations of elementary functions.

2.3. Topological analogies. We consider the following third-order system:

ξ̈ + b∗ξ̇ cos ξ + sin ξ cos ξ − η̇21
sin ξ

cos ξ
= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
= 0, b∗ > 0,

(4.64)

which describes a fixed spherical pendulum in a flowing medium in the case where the moment of
forces is independent of the angular velocity, i.e., a mechanical system is in a nonconservative field of
the forces (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386,
392, 429, 442]). In general, the order of this system seems to be equal to 4, but the phase variable η1
is cyclic, which leads to the stratification of the phase space and reduction of order.

The phase space is the tangent bundle

TS2{ξ̇, η̇1, ξ, η1} (4.65)

of the two-dimensional sphere S2{ξ, η1}, where the equation of large circles

η̇1 ≡ 0 (4.66)

defines the family of integral manifolds.
It is easy to verify that system (4.64) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (4.65) of the two-dimensional sphere. Moreover, the following
theorem holds.
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Theorem 4.2. System (4.1) under the conditions (4.7), (4.5), (4.6), and (4.19) is equivalent to dy-
namical system (4.64).

Indeed, it suffices to accept α = ξ, β1 = η1, and b = −b∗.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity. We
continue to study the dynamics of a three-dimensional rigid body in the three-dimensional space. This
section is devoted to the study of the case of the motion where the moment of forces depends on the
angular velocity. We introduce this dependence in the general case; this will allow us to generalize
this dependence to higher-dimensional bodies.

Let x = (x1N , x2N , x3N ) be the coordinates of the point N of application of a nonconservative
force (interaction with a medium) on a two-dimensional disk and Q = (Q1, Q2, Q3) be the compo-
nents independent of the angular velocity. We introduce only the linear dependence of the functions
(x1N , x2N , x3N ) = (xN , yN , zN ) on the angular velocity since the introduction of this dependence itself
is not a priori obvious (see [33, 34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274–276,
440]).

Thus, we accept the following dependence:

x = Q+R, (4.67)

where R = (R1, R2, R3) is a vector-valued function containing the angular velocity. Here, the depen-
dence of the function R on the angular velocity is gyroscopic:

R =

⎛
⎝R1

R2

R3

⎞
⎠ = −1

v

⎛
⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠
⎛
⎝h1
h2
h3

⎞
⎠ , (4.68)

where (h1, h2, h3) are certain positive parameters (cf. [322, 330, 331, 345, 393]).
Now, for our problem, since x1N = xN ≡ 0, we have

x2N = yN = Q2 − h1
Ω3

v
, x3N = zN = Q3 + h1

Ω2

v
. (4.69)

3.2. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51])

Q2 = A sinα cos β1, Q3 = A sinα sin β1, A > 0, (4.70)

we take the dynamical functions s, yN , and zN of the following form:

s(α) = B cosα, B > 0,

yN

(
α, β1,

Ω

v

)
= A sinα cos β1 − h

Ω3

v
, h = h1 > 0, v �= 0,

zN

(
α, β1,

Ω

v

)
= A sinα sin β1 + h

Ω2

v
, h = h1 > 0, v �= 0,

(4.71)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity). Moreover, by virtue of the dynamical symmetry of the
body, we have h2 = h3.
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Then, owing to the nonintegrable constraint (4.7), outside the manifold (4.13) (and only outside
it), the dynamical part of the equations of motion (system (4.14)) has the following form:

α̇ = −
(
1 +

σBh

I2

)
z2 +

σABv

I2
sinα,

ż2 =
ABv2

I2
sinα cosα−

(
1 +

σBh

I2

)
z21

cosα

sinα
− Bhv

I2
z2 cosα,

ż1 =

(
1 +

σBh

I2

)
z1z2

cosα

sinα
− Bhv

I2
z1 cosα,

β̇1 =

(
1 +

σBh

I2

)
z1

cosα

sinα
.

(4.72)

If we introduce the dimensionless variable, parameters, and differentiation as follows:

zk → n0vzk, k = 1, 2, n2
0 =

AB

I2
, b = σn0, H1 =

Bh

I2n0
, 〈·〉 = n0v〈′〉, (4.73)

we reduce system (4.72) to the form

α′ = − (1 + bH1) z2 + b sinα,

z′2 = sinα cosα− (1 + bH1) z
2
1

cosα

sinα
−H1z2 cosα, (4.74)

z′1 = (1 + bH1) z1z2
cosα

sinα
−H1z1 cosα,

β′
1 = (1 + bH1) z1

cosα

sinα
. (4.75)

We see that in the fourth-order system (4.74), (4.75), an independent third-order system (4.74) with
its own three-dimensional manifold is contained. In the sequel, we show that system (4.74), (4.75) can
be considered as a system on the tangent bundle TS2 to the two-dimensional sphere S2.

3.3. Complete list of invariant relations. First, we compare the third-order system (4.74) with
the nonautonomous second-order system

dz2
dα

=
sinα cosα− (1 + bH1)z

2
1 cosα/ sinα−H1z2 cosα

−(1 + bH1)z2 + b sinα
,

dz1
dα

=
(1 + bH1)z1z2 cosα/ sinα−H1z1 cosα

−(1 + bH1)z2 + b sinα
.

(4.76)

We rewrite system (4.76) in the algebraic form using the substitution τ = sinα:

dz2
dτ

=
τ − (1 + bH1)z

2
1/τ −H1z2

−(1 + bH1)z2 + bτ
,

dz1
dτ

=
(1 + bH1)z1z2/τ −H1z1

−(1 + bH1)z2 + bτ
.

(4.77)

Further, if we introduce the uniform variables by the formulas

zk = ukτ, k = 1, 2, (4.78)

we reduce system (4.77) to the following form:

τ
du2
dτ

+ u2 =
1− (1 + bH1)u

2
1 −H1u2

−(1 + bH1)u2 + b
,

τ
du1
dτ

+ u1 =
(1 + bH1)u1u2 −H1u1

−(1 + bH1)u2 + b
,

(4.79)
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which is equivalent to

τ
du2
dτ

=
(1 + bH1)(u

2
2 − u21)− (b+H1)u2 + 1

−(1 + bH1)u2 + b
,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−(1 + bH1)u2 + b
.

(4.80)

We compare the second-order system (4.80) with the nonautonomous first-order system

du2
du1

=
1− (1 + bH1)(u

2
1 − u22)− (b+H1)u2

2(1 + bH1)u1u2 − (b+H1)u1
, (4.81)

which can be easily reduced to the exact differential equation

d

(
(1 + bH1)(u

2
2 + u21)− (b+H1)u2 + 1

u1

)
= 0. (4.82)

Thus, Eq. (4.81) has the following first integral:

(1 + bH1)(u
2
2 + u21)− (b+H1)u2 + 1

u1
= C1 = const, (4.83)

which in the old variables has the form

(1 + bH1)(z
2
2 + z21)− (b+H1)z2 sinα+ sin2 α

z1 sinα
= C1 = const . (4.84)

Remark 4.3. We consider system (4.74) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438]),
which becomes conservative for b = H1:

α′ = −(1 + b2)z2 + b sinα,

z′2 = sinα cosα− (1 + b2)z21
cosα

sinα
− bz2 cosα,

z′1 = (1 + b2)z1z2
cosα

sinα
− bz1 cosα.

(4.85)

It has two analytical first integrals of the form

(1 + b2)(z22 + z21)− 2bz2 sinα+ sin2 α = C∗
1 = const, (4.86)

z1 sinα = C∗
2 = const . (4.87)

It is obvious that the ratio of the two first integrals (4.86) and (4.87) is also a first integral of system
(4.85). However, for b �= H1, both functions

(1 + bH1)(z
2
2 + z21)− (b+H1)z2 sinα+ sin2 α (4.88)

and (4.87) are not first integrals of system (4.74), but their ratio is a first integral of the system (4.74)
for any b and H1.

Now we find an explicit form of an additional first integral of the third-order system (4.74). First,
we transform the invariant relation (4.83) for u1 �= 0 as follows:

(
u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (4.89)

We see that the parameters of the given invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (4.90)

and the phase space of system (4.74) is stratified into a family of surfaces described by Eq. (4.89).
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Thus, by virtue of relation (4.83), the first equation of system (4.80) has the form

τ
du2
dτ

=
2(1 + bH1)u

2
2 − 2(b+H1)u2 + 2− C1U1(C1, u2)

b− (1 + bH1)u2
, (4.91)

where

U1(C1, u2) =
1

2(1 + bH1)
{C1 ± U2(C1, u2)}, (4.92)

U2(C1, u2) =
√

C2
1 − 4(1 + bH1)(1 − (b+H1)u2 + (1 + bH1)u

2
2),

and the integration constant C1 is chosen from condition (4.90).
Therefore, the quadrature for the search for an additional first integral of system (4.74) has the

form ∫
dτ

τ
=

∫
(b− (1 + bH1)u2)du2

2(1− (b+H1)u2 + (1 + bH1)u22)− C1{C1 ± U2(C1, u2)}/(2(1 + bH1))
. (4.93)

Obviously, the left-hand side (up to an additive constant) is equal to

ln | sinα|. (4.94)

If

u2 − b+H1

2(1 + bH1)
= w1, b21 = (b−H1)

2 + C2
1 − 4, (4.95)

then the right-hand side of Eq. (4.93) has the form

− 1

4

∫
d(b21 − 4(1 + bH1)w

2
1)

(b21 − 4(1 + bH1)w2
1)± C1

√
b21 − 4(1 + bH1)w2

1

− (b−H1)(1 + bH1)

∫
dw1

(b21 − 4(1 + bH1)w
2
1)± C1

√
b21 − 4(1 + bH1)w

2
1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4(1 + bH1)w2
1

C1
± 1

∣∣∣∣∣±
b−H1

2
I1, (4.96)

where

I1 =

∫
dw3√

b21 −w2
3(w3 ±C1)

, w3 =
√

b21 − 4(1 + bH1)w2
1. (4.97)

In the calculation of integral (4.97), the following three cases are possible.
I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4 +
√

b21 − w2
3

w3 ± C1
± C1√

(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4−
√

b21 − w2
3

w3 ± C1
∓ C1√

(b−H1)2 − 4

∣∣∣∣∣+ const; (4.98)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const; (4.99)

III. |b−H1| = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (4.100)
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When we return to the variable

w1 =
z2

sinα
− b+H1

2(1 + bH1)
, (4.101)

we obtain the final form for the value I1:
I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4± 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w2

1 ± C1

± C1√
(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4∓ 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w2

1 ± C1

∓ C1√
(b−H1)2 − 4

∣∣∣∣∣+ const; (4.102)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1

√
b21 − 4(1 + bH1)2w2

1 + b21

b1(
√

b21 − 4(1 + bH1)2w
2
1 ± C1)

+ const; (4.103)

III. |b−H1| = 2:

I1 = ∓ 2(1 + bH1)w1

C1(
√

b21 − 4(1 + bH1)2w2
1 ±C1)

+ const . (4.104)

Thus, we have found an additional first integral for the third-order system (4.74), i.e., we have a
complete set of first integrals that are transcendental functions of their phase variables.

Remark 4.4. We must formally substitute the left-hand side of the first integral (4.83) into the
expression of the found first integral instead of C1. Then the additional first integral obtained has the
following structure (which is similar to a transcendental first integral from plane dynamics):

ln | sinα|+G2

(
sinα,

z2
sinα

,
z1

sinα

)
= C2 = const . (4.105)

We have already found two independent first integrals for integration of the fourth-order system
(4.74), (4.75). For the complete integrability of the system, it suffices to find one additional first
integral that “attaches” Eq. (4.75).

Since
du1
dτ

=
u1(2(1 + bH1)u2 − (b+H1))

(b− (1 + bH1)u2)τ
,

dβ1
dτ

=
(1 + bH1)u1

(b− (1 + bH1)u2)τ
,

(4.106)

we have
du1
dβ1

= 2u2 − b+H1

1 + bH1
. (4.107)

Obviously, for u1 �= 0, the following equality holds:

u2 =
1

2(1 + bH1)

(
(b+H1)±

√
b21 − (2(1 + bH1)u1 − C1)

2

)
, (4.108)

where

b21 = (b−H1)
2 + C2

1 − 4.

Then integration of the quadrature

β1 + const = ±(1 + bH1)

∫
du1√

b21 − (2(1 + bH1)u1 − C1)
2

(4.109)
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leads to the invariant relation

2(β1 + C3) = ± arcsin
2(1 + bH1)u1 − C1√
(b−H1)2 + C2

1 − 4
, C3 = const . (4.110)

In other words, the equality

sin[2(β1 + C3)] = ± 2(1 + bH1)u1 − C1√
(b−H1)2 + C2

1 − 4
(4.111)

is fulfilled and, returning to the old variables, we have

sin[2(β1 + C3)] = ± 2(1 + bH1)z1 − C1 sinα√
(b−H1)2 + C2

1 − 4 sinα
. (4.112)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (4.75). However, we
must formally substitute the left-hand side of (4.83) into the last expression instead of C1.

We make certain transformations that lead us to the following explicit form of the additional first
integral:

tan2
[
2(β1 + C3)

]
=

((1 + bH1)u
2
1 − (1 + bH1)u

2
2 + (b+H1)u2 − 1)2

u21(2(1 + bH1)u2 − (b+H1))2
(4.113)

(here Eq. (4.83) is used).
Returning to the old coordinates, we obtain the additional invariant relation of the form

tan2
[
2(β1 + C3)

]
=

((1 + bH1)z
2
1 − (1 + bH1)z

2
2 + (b+H1)z2 sinα− sin2 α)2

z21(2(1 + bH1)z2 − (b+H1) sinα)2
, (4.114)

or, finally,

−β1 ± 1

2
arctan

(1 + bH1)z
2
1 − (1 + bH1)z

2
2 + (b+H1)z2 sinα− sin2 α

z1(2(1 + bH1)z2 − (b+H1) sinα)
= C3 = const . (4.115)

Therefore, in the considered case, the system of dynamical equations (4.1) under condition (4.71)
has five invariant relations: the analytical nonintegrable constraint (4.7), the cyclic first integral
(4.5), (4.6), the first integral (4.84), the first integral expressed by relations (4.98)–(4.105), which is a
transcendental function of its phase variables (in the sense of complex analysis) and is expressed as a
finite combination of elementary functions, and, finally, the transcendental first integral (4.115).

Theorem 4.3. System (4.1) under conditions (4.7), (4.5), (4.6), and (4.71) possesses five invariant
relations (a complete set), three of which are transcendental functions (in the sense of the complex
analysis). All these relations are expressed as finite combinations of elementary functions.

3.4. Topological analogies. We consider the following third-order system:

ξ̈ + (b∗ −H∗
1 )ξ̇ cos ξ + sin ξ cos ξ − η̇21

sin ξ

cos ξ
= 0,

η̈1 + (b∗ −H∗
1 )η̇1 cos ξ + ξ̇η̇1

1 + cos2 ξ

cos ξ sin ξ
= 0, b∗ > 0, H∗

1 > 0,

(4.116)

which describes a fixed spherical pendulum in a flowing medium in the case where the moment of
forces depends on the angular velocity, i.e., the mechanical system is in a nonconservative field of
forces (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386,
392, 429, 442]). In general, the order of this system seems to be equal to 4, but the phase variable η1
is cyclic, which leads to the stratification of the phase space and reduction of order.

The phase space of the system is the tangent bundle

TS2{ξ̇, η̇1, ξ, η1} (4.117)
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of the two-dimensional sphere S2{ξ, η1}, where the equation of large circles

η̇1 ≡ 0 (4.118)

defines a family of integral manifolds.
It is easy to verify that system (4.116) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (4.117) of the two-dimensional sphere. Moreover, the following
theorem holds.

Theorem 4.4. System (4.1) under conditions (4.7), (4.5), (4.6), and (4.71) is equivalent to the dy-
namical system (4.116).

Indeed, it suffices to take α = ξ, β1 = η1, b = −b∗, and H1 = −H∗
1 .

On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

Chapter 5

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN THE THREE-DIMENSIONAL SPACE, II

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of dynamically symmetric three-dimensional (3D) rigid bodies in nonconservative force fields.
The form of these equations is taken from the dynamics of real rigid bodies interacting with a resisting
medium by laws of jet flows where a body is influenced by a nonconservative tracing force. Under
action of this force, the center of mass of the body moves rectilinearly and uniformly; this means that
there exists a nonconservative couple of forces in the system (see [1, 64, 70, 72, 119–121, 157, 164–167,
180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier (see [164–167]), the author already proved the complete integrability of the equations of a
plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of quasi-velocities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In [193, 196, 202, 204, 208, 209, 218, 232, 241], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete set of transcendental
first integrals. It was assumed that the interaction of the medium with the body is concentrated on a
part of the body surface that has the form of a planar (two-dimensional) disk.

In this chapter, we review both new results and results obtained earlier. We systematize these
results and present them in the invariant form. Moreover, we introduce an extra dependence of the
moment of the nonconservative force on the angular velocity. This dependence can be further extended
to cases of the motion in spaces of higher dimension.

1. General Problem on the Motion under the Tracing Force

Let us consider the spatial motion of a homogeneous axis-symmetrical rigid body with flat front end
face (two-dimensional disk) in the field of a resisting force under the assumption of quasi-stationarity
(see [28, 50, 51, 62–66, 98, 112, 119–121, 160–169, 171, 431, 432]). If (v, α, β1) are the spherical
coordinates of the velocity vector of a certain typical point D of a rigid body (D is the center of the
disk lying on the symmetry axis of the body), {Ω1,Ω2,Ω3} are the projections of its angular velocity Ω

428



onto the coordinate axes of the coordinate system Dx1x2x3 attached to the body, where the symmetry
axis CD coincides with the axis Dx1 (C is the center of mass), and the axes Dx2 and Dx3 lie in the
hyperplane containing the disk, I1, I2, I3 = I2, and m are the characteristics of inertia and mass, then
the dynamical part of the equations of motion (including the case of Chaplygin analytical functions
[50, 51], see below), where the tangent forces of the interaction of a medium with the body are absent,
has the following form:

v̇ cosα− α̇v sinα+Ω2v sinα sinβ1 − Ω3v sinα cos β1 + σ(Ω2
2 +Ω2

3) =
Fx

m
,

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 +Ω3v cosα

−Ω1v sinα sinβ1 − σΩ1Ω2 − σΩ̇3 = 0,

v̇ sinα sin β1 + α̇v cosα sin β1 + β̇1v sinα cosβ1 +Ω1v sinα cos β1

−Ω2v cosα− σΩ1Ω3 + σΩ̇2 = 0,

Ω̇1 = 0,

I2Ω̇2 + (I1 − I2)Ω1Ω3 = −zN

(
α, β1,

Ω

v

)
s(α)v2,

I2Ω̇3 + (I2 − I1)Ω1Ω2 = yN

(
α, β1,

Ω

v

)
s(α)v2,

(5.1)

where

Fx = −S, S = s(α)v2, σ > 0, v > 0. (5.2)

The first two equations of (5.1) describe the motion of the center of mass in the three-dimensional
Euclidean space E3 in the projections on the system of coordinates Dx1x2x3. The second three
equations of (5.1) are obtained from the theorem on the angular momentum of a rigid body in the
König axes.

Thus, the direct product of the three-dimensional manifold by the Lie algebra so(3)

R1 × S2 × so(3) (5.3)

is the phase space of sixth-order system (5.1).
We note that system (5.1), by virtue of its dynamical symmetry

I2 = I3, (5.4)

possesses the cyclic first integral

Ω1 ≡ Ω0
1 = const . (5.5)

Therefore, we consider the dynamics of the system on the zero level:

Ω0
1 = 0. (5.6)

If we consider a more general problem on the motion of a rigid body under the action of a tracing
force T passing through the center of mass and providing the fulfillment of the condition

VC ≡ const (5.7)

during the motion (VC is the velocity of the center of mass, see also [164–167]), then Fx in system
(5.1) must be replaced by zero since a nonconservative couple of forces acts on the body:

T − s(α)v2 ≡ 0, σ = DC. (5.8)

Obviously, we need to choose the magnitude of the tracing force T as follows:

T = Tv(α,Ω) = s(α)v2, T ≡ −S. (5.9)
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The choice (5.9) of the magnitude of the tracing force T is a particular case in which an inde-
pendent second-order subsystem can be extracted from the sixth-order system (5.1) after a certain
transformation.

Indeed, let the following condition hold for the value T :

T = Tv(α, β1,Ω) =

3∑
i,j=0
i≤j

τi,j

(
α, β1,

Ω

v

)
ΩiΩj = T1

(
α, β1,

Ω

v

)
v2, Ω0 = v. (5.10)

First, we introduce the new quasi-velocities:

z1 = Ω2 cos β1 +Ω3 sin β1, z2 = −Ω2 sinβ1 +Ω3 cosβ1. (5.11)

We can rewrite system (5.1) in the cases (5.5) and (5.6) as follows:

v̇ + σ(z21 + z22) cosα− σ
v2

I2
s(α) sinα

[
yN

(
α, β1,

Ω

v

)
cos β1 + zN

(
α, β1,

Ω

v

)
sin β1

]

=

T1

(
α, β1,

Ω

v

)
v2 − s(α)v2

m
cosα,

α̇v + z2v − σ(z21 + z22) sinα− σ
v2

I2
s(α) cosα

[
yN

(
α, β1,

Ω

v

)
cos β1 + zN

(
α, β1,

Ω

v

)
sinβ1

]

=

s(α)v2 − T1

(
α, β1,

Ω

v

)
v2

m
sinα,

Ω̇3 =
v2

I2
yN

(
α, β1,

Ω

v

)
s(α), Ω̇2 = −v2

I2
zN

(
α, β1,

Ω

v

)
s(α),

β̇1 sinα− z1 cosα− σv

I2
s(α)

[
zN

(
α, β1,

Ω

v

)
cos β1 − yN

(
α, β1,

Ω

v

)
sinβ1

]
= 0.

(5.12)
Introducing the new dimensionless phase variables and differentiation by the formulas

zk = n1vZk, k = 1, 2, 〈·〉 = n1v〈′〉, n1 > 0, n1 = const, (5.13)

we rewrite system (5.12) in the following form:

v′ = vΨ(α, β1, Z1, Z2), (5.14)

α′ = −Z2 + σn1(Z
2
1 + Z2

2 ) sinα

+
σ

I2n1
s(α) cosα

[
yN (α, β1, n1Z) cos β1 + zN (α, β1, n1Z) sin β1

]

− T1 (α, β1, n1Z)− s(α)

mn1
sinα, (5.15)

Z ′
2 =

s(α)

I2n2
1

[
1− σn1Z2 sinα

][
yN(α, β1, n1Z) cos β1 + zN (α, β1, n1Z) sin β1

]
− Z2

1

cosα

sinα

+ σn1Z2(Z
2
1 + Z2

2 ) cosα− σ

I2n1
Z1

s(α)

sinα

[
zN (α, β1, n1Z) cos β1 − yN (α, β1, n1Z) sin β1

]

− Z2
T1(α, β1, n1Z)− s(α)

mn1
cosα, (5.16)
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Z ′
1 =

1

I2n2
1

s(α)

sinα

[
σn1Z2 sinα− 1

][
zN (α, β1, n1Z) cos β1 − yN (α, β1, n1Z) sin β1

]
+ Z1Z2

cosα

sinα

+ σn1Z1(Z
2
1 + Z2

2 ) cosα− σ

I2n1
Z1s(α) sinα

[
zN (α, β1, n1Z) sin β1 + yN(α, β1, n1Z) cos β1

]

− Z1
T1(α, β1, n1Z)− s(α)

mn1
cosα, (5.17)

β′
1 = Z1

cosα

sinα
+

σ

I2n1

s(α)

sinα

[
zN (α, β1, n1Z) cos β1 − yN (α, β1, n1Z) sin β1

]
, (5.18)

Ψ(α, β1, Z1, Z2) = −σn1(Z
2
1 + Z2

2 ) cosα

+
σ

I2n1
s(α) sinα

[
yN (α, β1, n1Z) cos β1 + zN (α, β1, n1Z) sin β1

]

+
T1(α, β1, n1Z)− s(α)

mn1
cosα.

We see that the independent fourth-order subsystem (5.15)–(5.18) can be extracted from the fifth-
order system (5.14)–(5.18); we can consider this subsystem on its own four-dimensional phase space.

In particular, under the condition (5.9), the extraction of an independent fourth-order subsystem
is also possible.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of the Chaplygin analytical functions (see [50, 51]),
we take the dynamical functions s, yN , and zN as follows:

s(α) = B cosα, yN

(
α, β1,

Ω

v

)
= y0(α, β1) = A sinα cos β1,

zN

(
α, β1,

Ω

v

)
= z0(α, β1) = A sinα sin β1, A,B > 0, v �= 0,

(5.19)

which shows that in the considered system, the moment of nonconservative forces is independent of
the angular velocity (and depends only on the angles α and β1).

Then, owing to the conditions (5.7) and (5.19), the transformed dynamical part of the equations of
motion (system (5.14)–(5.18)) has the following form:

v′ = vΨ(α, β1, Z1, Z2), (5.20)

α′ = −Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α,

Z ′
2 = sinα cosα− Z2

1

cosα

sinα
+ bZ2(Z

2
1 + Z2

2 ) cosα− bZ2 sin
2 α cosα, (5.21)

Z ′
1 = Z1Z2

cosα

sinα
+ bZ1(Z

2
1 + Z2

2 ) cosα− bZ1 sin
2 α cosα,

β′
1 = Z1

cosα

sinα
, (5.22)

Ψ(α, β1, Z1, Z2) = −b(Z2
1 + Z2

2 ) cosα+ b sin2 α cosα,

where, as above, we choose the dimensionless variable, the parameter b, and the constant n1 as follows:

b = σn0, n2
0 =

AB

I2
, n1 = n0. (5.23)

Therefore, system (5.20)–(5.22) can be considered on its own five-dimensional phase manifold

W1 = R1
+{v} × TS2{Z1, Z2, 0 < α < π, 0 ≤ β1 < 2π}, (5.24)
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i.e., on the direct product of the real line on the tangent bundle of the two-dimensional sphere
S2{0 < α < π, 0 ≤ β1 < 2π}.

2.2. Complete list of first integrals. The independent fourth-order system (5.21), (5.22) was
extracted from system (5.20)–(5.22).

We note that the magnitude of the velocity of the center of mass is the first integral of system (5.1)
by virtue of (5.7) and, therefore, the function of the phase variables

Ψ0(v, α, β1, z1, z2) = v2 + σ2(z21 + z22)− 2σz2v sinα = V 2
C (5.25)

is constant on its phase trajectories (where the values z1 and z2 are chosen as in (5.11)).
Performing a nondegenerate change of the independent variable (for v �= 0), we see that system

(5.20)–(5.22) also has an analytical integral and, therefore, the function of the phase variables

Ψ1(v, α, β1, Z1, Z2) = v2(1 + b2(Z2
1 + Z2

2 )− 2bZ2 sinα) = V 2
C (5.26)

is constant on its phase trajectories.
Equality (5.26) allows one to find the dependence of the velocity of a certain point of the rigid

body (namely, the center D of the disk) on other phase variables without solution of the system
(5.20)–(5.22); namely, for VC �= 0, the equality

v2 =
V 2
C

1 + b2(Z2
1 + Z2

2 )− 2bZ2 sinα
(5.27)

holds.
Since the phase space (5.24) of system (5.20)–(5.22) is five-dimensional and there exist asymptotic

limit sets in it, we see that Eq. (5.26) defines a unique analytical (even continuous) first integral of
system (5.20)–(5.22) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152–154, 156, 213,
427, 438]).

We consider in detail the problem of the existence of other additional first integrals of system
(5.20)–(5.22). Its phase space is stratified into surfaces

{(v, α, β1 , Z1, Z2) ∈ W1 : VC = const}, (5.28)

on which the dynamics is defined by the first integral of system (5.21), (5.22).
First, we compare the third-order system (5.21) with the nonautonomous second-order system

dZ2

dα
=

sinα cosα+ bZ2(Z
2
1 + Z2

2 ) cosα− bZ2 sin
2 α cosα− Z2

1 cosα/ sinα

−Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α
,

dZ1

dα
=

bZ1(Z
2
1 + Z2

2 ) cosα− bZ1 sin
2 α cosα+ Z1Z2 cosα/ sinα

−Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α
.

(5.29)

We rewrite system (5.29) in the algebraic form using the substitution τ = sinα:

dZ2

dτ
=

τ + bZ2(Z
2
1 + Z2

2 )− bZ2τ
2 − Z2

1/τ

−Z2 + bτ(1− τ2) + bτ(Z2
1 + Z2

2 )
,

dZ1

dτ
=

bZ1(Z
2
1 + Z2

2 )− bZ1τ
2 + Z1Z2/τ

−Z2 + bτ(1− τ2) + bτ(Z2
1 + Z2

2 )
.

(5.30)

Further, if we introduce the homogeneous variables by the formulas

Zk = ukτ, k = 1, 2, (5.31)
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we reduce system (5.30) to the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2(u
2
1 + u22)τ

2 − u21
−u2 + bτ2(u21 + u22) + b(1− τ2)

,

τ
du1
dτ

+ u1 =
bu1(u

2
1 + u22)τ

2 − bu1τ
2 + u1u2

−u2 + bτ2(u21 + u22) + b(1− τ2)
,

(5.32)

which is equivalent to

τ
du2
dτ

=
1− bu2 + u22 − u21

−u2 + bτ2(u21 + u22) + b(1− τ2)
,

τ
du1
dτ

=
2u1u2 − bu1

−u2 + bτ2(u21 + u22) + b(1− τ2)
.

(5.33)

We compare the second-order system (5.33) with the nonautonomous first-order equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
, (5.34)

which can be easily reduced to the exact differential equation

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (5.35)

Therefore, Eq. (5.34) has the following first integral:

u22 + u21 − bu2 + 1

u1
= C1 = const, (5.36)

which in the old variables has the form

Z2
2 + Z2

1 − bZ2 sinα+ sin2 α

Z1 sinα
= C1 = const . (5.37)

Remark 5.1. We consider system (5.21) with variable dissipation with zero mean (see [67, 68, 243,
260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438]),
which becomes conservative for b = 0:

α′ = −Z2,

Z ′
2 = sinα cosα− Z2

1
cosα

sinα
,

Z ′
1 = Z1Z2

cosα

sinα
.

(5.38)

It has two analytical first integrals of the form

Z2
2 + Z2

1 + sin2 α = C∗
1 = const, (5.39)

Z1 sinα = C∗
2 = const . (5.40)

Obviously, the ratio of the two first integrals (5.39) and (5.40) is also a first integral of system (5.38).
However, for b �= 0, both functions

Z2
2 + Z2

1 − bZ2 sinα+ sin2 α (5.41)

and (5.40) are not first integrals of system (5.21), but their ratio is a first integral of system (5.21) for
any b.

Further, we find an explicit form of an additional first integral of the third-order system (5.21). For
this, first, we transform the invariant relation (5.36) for u1 �= 0 as follows:(

u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (5.42)
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We see that the parameters of the given invariant relation must satisfy the condition

b2 + C2
1 − 4 ≥ 0, (5.43)

and the phase space of system (5.21) is stratified into a family of surfaces defined by Eq. (5.42).
Thus, by virtue of relation (5.36), the first equation of system (5.33) takes either the form

τ
du2
dτ

=
1− bu2 + u22 − U2

1 (C1, u2)

−u2 + b(1− τ2) + bτ2(U2
1 (C1, u2) + u22)

, (5.44)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(u22 − bu2 + 1)

}
(5.45)

and the integration constant C1 is chosen according to the condition (5.43), or the form of a Bernoulli
equation:

dτ

du2
=

(b− u2)τ − bτ3(1− U2
1 (C1, u2)− u22)

1− bu2 + u22 − U2
1 (C1, u2)

. (5.46)

Using (5.45), we can easily reduce Eq. (5.46) to the linear nonhomogeneous equation

dp

du2
=

2(u2 − b)p + 2b(1 − U2
1 (C1, u2)− u22)

1− bu2 + u22 − U2
1 (C1, u2)

, p =
1

τ2
. (5.47)

This fact means that we can find another transcendental first integral in the explicit form (i.e., as
a finite combination of quadratures). Here, the general solution of Eq. (5.47) depends on an arbitrary
constant C2. We omit the calculation, but note that the general solution of the linear homogeneous
equation obtained from (5.47) even in the particular case b = C1 = 2 has the following solution:

p = p0(u2) = C
[√

1− (u2 − 1)2 ± 1
]
exp

[√
1∓√

1− (u2 − 1)2

1±√
1− (u2 − 1)2

]
, C = const . (5.48)

Remark 5.2. We must substitute formally the left-hand side of the first integral (5.36) into the
expression of the found first integral instead of C1. Then the obtained additional first integral has the
following structural form (which is similar to the transcendental first integral from the plane-parallel
dynamics):

K1

(
sinα,Z2, Z1,

Z2

sinα
,

Z1

sinα

)
= C2 = const . (5.49)

Thus, we have already found two independent first integrals for integration of the forth-order system
(5.21), (5.22). For the complete integrability, it suffices find one additional first integral that “connects”
Eq. (5.22).

Since

dβ1
dτ

=
u1

−u2τ + bτ3(u21 + u22) + bτ(1− τ2)
, (5.50)

du1
dτ

=
u1(2u2 − b)

−u2τ + bτ3(u21 + u22) + bτ(1− τ2)
, (5.51)

we have
du1
dβ1

= 2u2 − b. (5.52)

Obviously, for u1 �= 0, the following equality holds:

u2 =
1

2

⎛
⎝b±

√
b21 − 4

(
u1 − C1

2

)2
⎞
⎠ , b21 = b2 + C2

1 − 4; (5.53)
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therefore, integration of the quadrature

β1 + const = ±
∫

du1√
b21 − 4

(
u1 − C1

2

)2
(5.54)

leads to the invariant relation

2(β1 +C3) = ± arcsin
2u1 − C1√
b2 + C2

1 − 4
, C3 = const . (5.55)

In other words, the equality

sin
[
2(β1 + C3)

]
= ± 2u1 − C1√

b2 + C2
1 − 4

(5.56)

holds; in the old variables, it has the form

sin
[
2(β1 + C3)

]
= ± 2Z1 −C1 sinα√

b2 + C2
1 − 4 sinα

. (5.57)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (5.22). However, we
must formally substitute the left-hand side of (5.37) into the last expression instead of C1.

We perform certain transformations that lead us to the following explicit form of the additional
first integral:

tan2
[
2(β1 + C3)

]
=

(u21 − u22 + bu2 − 1)2

u21(4u
2
2 − 4bu2 + b2)

; (5.58)

here Eq. (5.36) is used.
Returning to the old coordinates, we obtain the additional invariant relation of the form

tan2
[
2(β1 + C3)

]
=

(Z2
1 − Z2

2 + bZ2 sinα− sin2 α)2

Z2
1 (4Z

2
2 − 4bZ2 sinα+ b2 sin2 α)

, (5.59)

or, finally,

−β1 ± 1

2
arctan

Z2
1 − Z2

2 + bZ2 sinα− sin2 α

Z1(2Z2 − b sinα)
= C3 = const . (5.60)

Therefore, in the considered case, under condition (5.19), the system of dynamical equations (5.1)
has five invariant relations: the analytical nonintegrable constraint (5.7), the cyclic first integral (5.5),
(5.6), the first integral (5.37), the first integral expressed by relation (5.47) (see also (5.49)), which is
a transcendental function of its phase variables (in the sense of the complex analysis), and, finally, the
transcendental first integral (5.60).

Theorem 5.1. Under the conditions (5.7), (5.5), (5.6), and (5.19), system (5.1) possesses five in-
variant relations (a complete set), three of which are transcendental functions (in the sense of the
complex analysis). Moreover, at least four of them are expressed as finite combinations of elementary
functions.

2.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 5.2. Under the conditions (5.7), (5.5), (5.6), and (5.19), the first integral (5.37) of system
(5.1) is constant on phase trajectories of system (4.22), (4.23).

Proof. . Indeed, the first integral (5.37) can be obtained by a change of coordinates from (5.36), and
the first integral (4.32) can be obtained by a change of coordinates from (4.31). However, relations
(5.36) and (4.31) coincide. The theorem is proved.
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Thus, we have the following topological and mechanical analogies in the sense explained above.
(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the

presence of a nonintegrable constraint).
(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).
(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves

rectilinearly and uniformly.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity and
the reduced system. We continue to study the dynamics of a two-dimensional rigid body on the
plane. This section (similarly to the corresponding section of Chap. 2) is devoted to the study of the
case of the motion where the moment of forces depends on the angular velocity. We introduce this
dependence just as was done in the previous chapter. We also recall that this point of view will also
allow us to introduce this dependence for three-dimensional and higher-dimensional bodies.

Let x = (x1N , x2N ) be the coordinates of the point N of application of a nonconservative force (in-
teraction with a medium) to a two-dimensional disk and Q = (Q1, Q2) be the components independent
on the angular velocity. We consider only the linear dependence of the functions (x1N , x2N ) = (xN , yN )
on the angular velocity since the introduction of this dependence itself is not a priori obvious (see [33,
34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274–276, 440]).

Thus, we accept the following dependence:

x = Q+R, (5.61)

where R = (R1, R2, R3) is the vector-valued function containing the angular velocity. Here, the
dependence of the function R on the angular velocity is gyroscopic (see also the previous chapter):

R =

⎛
⎝R1

R2

R3

⎞
⎠ = −1

v

⎛
⎝ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞
⎠
⎛
⎝h1
h2
h3

⎞
⎠ , (5.62)

where (h1, h2, h3) are certain positive parameters (cf. [322, 330, 331, 345, 393]).
Now, for our problem, since x1N = xN ≡ 0, we have

x2N = yN = Q2 − h1
Ω3

v
, x3N = zN = Q3 + h1

Ω2

v
. (5.63)

Similarly to the choice of the Chaplygin analytical functions (see [50, 51])

Q2 = A sinα cos β1, Q3 = A sinα sin β1, A > 0, (5.64)

we take the dynamical functions s, yN , and zN as follows:

s(α) = B cosα, B > 0,

yN

(
α, β1,

Ω

v

)
= A sinα cos β1 − h

Ω3

v
, h = h1 > 0, v �= 0,

zN

(
α, β1,

Ω

v

)
= A sinα sin β1 + h

Ω2

v
, h = h1 > 0, v �= 0,

(5.65)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity). Moreover, by virtue of the dynamical symmetry of the
body, we have h2 = h3.
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Then, owing to the conditions (5.7) and (5.65), the transformed dynamical part of the equations of
motion (system (5.14)–(5.18)) has the following form:

v′ = vΨ(α, β1, Z1, Z2), (5.66)

α′ = −Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α− bH1Z2 cos
2 α,

Z ′
2 = sinα cosα− (1 + bH1)Z

2
1
cosα

sinα
+ bZ2(Z

2
1 + Z2

2 ) cosα

− bZ2 sin
2 α cosα+ bH1Z

2
2 sinα cosα−H1Z2 cosα, (5.67)

Z ′
1 = (1 + bH1)Z1Z2

cosα

sinα
+ bZ1(Z

2
1 + Z2

2 ) cosα

− bZ1 sin
2 α cosα+ bH1Z1Z2 sinα cosα−H1Z1 cosα,

β′
1 = (1 + bH1)Z1

cosα

sinα
, (5.68)

Ψ(α, β1, Z1, Z2) = −b(Z2
1 + Z2

2 ) cosα+ b sin2 α cosα− bH1Z2 sinα cosα.

We introduce the dimensionless parameters b and H1 and the constant n1 as follows:

b = σn0, n2
0 =

AB

I2
, H1 =

Bh

I2n0
, n1 = n0. (5.69)

We see that in the fifth-order system (5.66)–(5.68), the independent fourth-order system (5.67),
(5.68) was isolated; this system can be considered on the tangent bundle TS2 of the two-dimensional
sphere S2. Moreover, the independent third-order system (5.67) can be considered on its own three-
dimensional manifold.

3.2. Complete list of first integrals. The independent fourth-order system (5.67), (5.68) was
extracted from system (5.66)–(5.68).

Note that, by virtue of (5.7), the magnitude of the velocity of the center of mass is a first integral of
system (5.1) and, therefore, the function of phase variables (5.25) is constant on its phase trajectories
(here the values z1, z2 are chosen from (5.11)).

Using a nondegenerate change of the independent variable (for v �= 0), we see that system (5.66)–
(5.68) also has an analytical integral, namely, the function of the phase variables

Ψ1(v, α, β1, Z1, Z2) = v2(1 + b2(Z2
1 + Z2

2 )− 2bZ2 sinα) = V 2
C (5.70)

is constant on its phase trajectories.
Equality (5.70) allows one to find the dependence of the velocity of a certain point of a rigid body

(namely, the centerD of the disk) on the other phase variables without solution of system (5.66)–(5.68);
therefore, for VC �= 0, Eq. (5.27) is fulfilled.

Since the phase space of system (5.66)–(5.68) is five-dimensional and there exist asymptotic limit
sets in it, we see that Eq. (5.70) defines a unique analytical (even continuous) first integral of system
(5.66)–(5.68) in the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152–154, 156, 213, 427, 438]).

We consider in detail the problem on the existence of other (additional) first integrals of system
(5.66)–(5.68). Its phase space is stratified into surfaces (5.28) on which the dynamics is defined by the
first integral of system (5.67), (5.68).

First, we compare the third-order system (5.67) with the nonautonomous second-order system

dZ2

dα
=

R2(α,Z1, Z2)

−Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α− bH1Z2 cos2 α
,

dZ1

dα
=

R1(α,Z1, Z2)

−Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α− bH1Z2 cos2 α
,

(5.71)
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R2(α,Z1, Z2) = sinα cosα+ bZ2(Z
2
1 + Z2

2 ) cosα− bZ2 sin
2 α cosα

− (1 + bH1)Z
2
1

cosα

sinα
+ bH1Z

2
2 sinα cosα−H1Z2 cosα,

R1(α,Z1, Z2) = bZ1(Z
2
1 + Z2

2 ) cosα− bZ1 sin
2 α cosα

+ (1 + bH1)Z1Z2
cosα

sinα
+ bH1Z1Z2 sinα cosα−H1Z1 cosα.

Using the substitution τ = sinα, we rewrite system (5.71) in the algebraic form:

dZ2

dτ
=

τ + bZ2(Z
2
1 + Z2

2 )− bZ2τ
2 − (1 + bH1)Z

2
1/τ + bH1Z

2
2τ −H1Z2

−Z2 + bτ(1− τ2) + bτ(Z2
1 + Z2

2 )− bH1Z2(1− τ2)
,

dZ1

dτ
=

bZ1(Z
2
1 + Z2

2 )− bZ1τ
2 + (1 + bH1)Z1Z2/τ + bH1Z1Z2τ −H1Z1

−Z2 + bτ(1 − τ2) + bτ(Z2
1 + Z2

2 )− bH1Z2(1− τ2)
.

(5.72)

Further, introducing the homogeneous variables by the formulas

Zk = ukτ, k = 1, 2, (5.73)

we reduce system (5.72) to the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2(u
2
1 + u22)τ

2 − (1 + bH1)u
2
1 −H1u2 + bH1u

2
2τ

2

−u2 + bτ2(u21 + u22) + b(1− τ2)− bH1u2(1− τ2)
,

τ
du1
dτ

+ u1 =
bu1(u

2
1 + u22)τ

2 − bu1τ
2 + (1 + bH1)u1u2 −H1u1 + bH1u1u2

−u2 + bτ2(u21 + u22) + b(1− τ2)− bH1u2(1− τ2)
,

(5.74)

which is equivalent to

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

−u2 + bτ2(u21 + u22) + b(1− τ2)− bH1u2(1− τ2)
,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−u2 + bτ2(u21 + u22) + b(1− τ2)− bH1u2(1− τ2)
.

(5.75)

We compare the second-order system (5.75) with the nonautonomous first-order equation

du2
du1

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

2(1 + bH1)u1u2 − (b+H1)u1
, (5.76)

which can be easily reduced to the exact differential equation

d

(
(1 + bH1)u

2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1

)
= 0. (5.77)

Therefore, Eq. (5.76) has the following first integral:

(1 + bH1)u
2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1
= C1 = const, (5.78)

which in the old variables has the form

(1 + bH1)Z
2
2 + (1 + bH1)Z

2
1 − (b+H1)Z2 sinα+ sin2 α

Z1 sinα
= C1 = const . (5.79)

Remark 5.3. Consider system (5.67) with variable dissipation with zero mean (see [67, 68, 243, 260,
262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438] which
becomes conservative for b = H1:

α′ = −Z2 + b(Z2
1 + Z2

2 ) sinα+ b sinα cos2 α− b2Z2 cos
2 α,
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Z ′
2 = sinα cosα− (1 + b2)Z2

1

cosα

sinα
+ bZ2(Z

2
1 + Z2

2 ) cosα− bZ2 sin
2 α cosα

+ b2Z2
2 sinα cosα− bZ2 cosα, (5.80)

Z ′
1 = (1 + b2)Z1Z2

cosα

sinα
+ bZ1(Z

2
1 + Z2

2 ) cosα− bZ1 sin
2 α cosα+ b2Z1Z2 sinα cosα− bZ1 cosα.

It has two analytical first integrals of the form

(1 + b2)(Z2
2 + Z2

1 )− 2bZ2 sinα+ sin2 α = C∗
1 = const, (5.81)

Z1 sinα = C∗
2 = const . (5.82)

Obbviously, the ratio of two first integrals (5.81) and (5.82) is also a first integral of system (5.80).
However, for b �= H1, both functions

(1 + bH1)(Z
2
2 + Z2

1 )− (b+H1)Z2 sinα+ sin2 α (5.83)

and (5.82) are not first integrals of system (5.67), but their ratio is a first integral of system (5.67) for
any b and H1.

Further, we find the explicit form of the additional first integral of the third-order system (5.67).
For this, we transform the invariant relation (5.78) for u1 �= 0 as follows:

(
u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (5.84)

We see that the parameters of this invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (5.85)

and the phase space of system (5.67) is stratified into a family of surfaces defined by Eq. (5.84).
Thus, by virtue of relation (5.78), the first equation of system (5.75) has either the form

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)U

2
1 (C1, u2)

−u2 + b(1− τ2) + bτ2(U2
1 (C1, u2) + u22)− bH1u2(1− τ2)

, (5.86)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(1 + bH1)

(
1− (b+H1)u2 + (1 + bH1)u22

)}
, (5.87)

and the integration constant C1 is chosen from condition (5.85), or the form of the Bernoulli equation

dτ

du2
=

(b− (1 + bH1)u2)τ − bτ3(1− U2
1 (C1, u2)− u22 −H1u2)

1− (b+H1)u2 + (1 + bH1)u22 − (1 + bH1)U2
1 (C1, u2)

. (5.88)

Using (5.87), we can reduce Eq. (5.88) to the linear nonhomogeneous equation

dp

du2
=

2((1 + bH1)u2 − b)p+ 2b(1 −H1u2 − u22 − U2
1 (C1, u2))

1− (b+H1)u2 + (1 + bH1)u
2
2 − (1 + bH1)U

2
1 (C1, u2)

, p =
1

τ2
. (5.89)

This fact means that we can find another transcendental first integral in the explicit form (i.e.,
as a finite combination of quadratures). Moreover, the general solution of Eq. (5.89) depends on
an arbitrary constant C2. We omit calculations but note that the general solution of the linear
homogeneous equation obtained from (5.89)) even in the particular case where

|b−H1| = 2, C1 =
1−A4

1

1 +A4
1

, A1 =
1

2
(b+H1),
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has the following solution:

p = p0(u2) = C
[
1−A1u2

]2/(1+A4
1)

∣∣∣∣∣
√

C2
1 − 4A2

1(1−A1u2)2 ± C1√
C2
1 − 4A2

1(1−A1u2)2 ∓ C1

∣∣∣∣∣
±A4

1/(1+A4
1)

× exp
2(A1 − b)

(1 +A4
1)A1(A1u2 − 1)

, C = const . (5.90)

Remark 5.4. We must formally substitute the left-hand side of the first integral (5.78) into the
expression of the found first integral instead of C1. Then the additional first integral obtained has the
following structure (which is similar to a transcendental first integral from the planar dynamics):

K1

(
sinα,Z2, Z1,

Z2

sinα
,

Z1

sinα

)
= C2 = const . (5.91)

We have already found two independent first integrals for integration of the fourth-order system
(5.67), (5.68). For the complete integrability, it suffices to find another additional first integral that
attaches Eq. (5.68).

Since

dβ1
dτ

=
(1 + bH1)u1

−u2τ + bτ3(u21 + u22) + bτ(1− τ2)− bH1τu2(1− τ2)
, (5.92)

du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−u2τ + bτ3(u21 + u22) + bτ(1− τ2)− bH1τu2(1− τ2)
, (5.93)

we have
du1
dβ1

= 2u2 − b+H1

1 + bH1
. (5.94)

Obviously, for u1 �= 0, the following equality holds:

u2 =
1

2(1 + bH1)

(
(b+H1)±

√
b21 − (2(1 + bH1)u1 − C1)2

)
, (5.95)

where

b21 = (b−H1)
2 + C2

1 − 4.

Then integration of the quadrature

β1 + const = ±(1 + bH1)

∫
du1√

b21 − (2(1 + bH1)u1 − C1)2
(5.96)

leads to the invariant relation

2(β1 + C3) = ± arcsin
2(1 + bH1)u1 − C1√
(b−H1)2 + C2

1 − 4
, C3 = const . (5.97)

In other words, the equality

sin
[
2(β1 + C3)

]
= ± 2(1 + bH1)u1 − C1√

(b−H1)2 + C2
1 − 4

(5.98)

is fulfilled; in the old variables, it has the form

sin
[
2(β1 + C3)

]
= ± 2(1 + bH1)Z1 − C1 sinα√

(b−H1)2 + C2
1 − 4 sinα

. (5.99)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (5.68). However, we
must formally substitute the left-hand side of (5.78) into the last expression instead of C1.
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However, we perform certain transformations that allow one to obtain the following explicit form
of the additional first integral (here Eq. (5.78) is used):

tan2
[
2(β1 + C3)

]
=

((1 + bH1)u
2
1 − (1 + bH1)u

2
2 + (b+H1)u2 − 1)2

u21(2(1 + bH1)u2 − (b+H1))2
. (5.100)

Returning to the old coordinates, we obtain the additional invariant relation of the form

tan2
[
2(β1 + C3)

]
=

((1 + bH1)Z
2
1 − (1 + bH1)Z

2
2 + (b+H1)Z2 sinα− sin2 α)2

Z2
1 (2(1 + bH1)Z2 − (b+H1) sinα)2

, (5.101)

or, finally,

−β1 ± 1

2
arctan

(1 + bH1)Z
2
1 − (1 + bH1)Z

2
2 + (b+H1)Z2 sinα− sin2 α

Z1(2(1 + bH1)Z2 − (b+H1) sinα)
= C3 = const . (5.102)

Therefore, in the considered case, the system of dynamical equations (5.1) under condition (5.65)
has five invariant relations: the analytical nonintegrable constraint (5.7), the cyclic first integral (5.5),
(5.6), the first integral (5.79), the first integral expressed by relation (5.89) (see also (5.91)), which
is a transcendental function of its phase variables (in the sense of complex analysis), and, finally, the
transcendental first integral (5.102).

Theorem 5.3. System (5.1) under conditions (5.7), (5.5), (5.6), and (5.65) possesses five invariant
relations (a complete set), three of which are transcendental functions (in the sense of the complex
analysis). Moreover, at least four of these five relations are expressed as finite combinations of ele-
mentary functions.

3.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 5.4. The first integral (5.79) of system (5.1) under conditions (5.7), (5.5), (5.6), and (5.65)
is constant on phase trajectories of system (4.74), (4.75).

Proof. Indeed, the first integral (5.79) can be obtained by a change of coordinates from relation (5.78)
and the first integral (4.84) can be obtained by a change of coordinates from relation (4.83). But
relations (5.78) and (4.83) coincide. The theorem is proved.

Thus, we have the following topological and mechanical analogies in the sense explained above.
(1) A motion of a free rigid body in a nonconservative force field under a tracing force (in the

presence of a nonintegrable constraint).
(2) A motion of a fixed physical pendulum in a flowing medium (a nonconservative force field).
(3) A rotation of a rigid body in a nonconservative force about its center of mass, which moves

rectilinearly and uniformly.
On more general topological analogies, see [253, 265, 267, 309, 340, 342].
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Chapter 6

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN THE FOUR-DIMENSIONAL SPACE, I

In this chapter, we systematize some earlier results and new results on the study of the equations of
motion of axially symmetric four-dimensional (4D) rigid bodies in nonconservative force fields. The
form of these equations is taken from the dynamics of real lower-dimensional rigid bodies interacting
with resisting medium by laws of jet flows where a body is influenced by a nonconservative tracing
force; under action of this force, the velocity of some characteristic point of the body remains constant,
which means that the system possesses a nonintegrable servo constraint (see [1, 64, 70, 72, 119–121,
157, 164–167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164–167]), the author proved the complete integrability of the equations of a plane-
parallel motion of a body in a resisting medium under the jet flow conditions when the system of
dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities having essential singularities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In the sequel (see [193, 196, 202, 204, 208, 209, 218, 232, 241]), the planar problem was generalized
to the spatial (three-dimensional) case, where the system of dynamical equations possesses a complete
set of transcendental first integrals. In this case, it was assumed that the interaction of the medium
with the body is concentrated on the part of the surface of the body that has the form of a planar
(two-dimensional) disk.

In this chapter, we discuss results, both new and obtained earlier, concerning the case where the
interaction of the medium with the body is concentrated on the part of the surface of the body that has
the form of a three-dimensional disk and the force acts in the direction perpendicular to the disk. We
systematize these results and formulate them in the invariant form. We also introduce the additional
dependence of the moment of a nonconservative force on the angular velocity; this dependence can be
generalized to the motion in higher-dimensional spaces.

1. General Discourse

1.1. Two cases of dynamical symmetry of a four-dimensional body. Let a four-dimensional
rigid body Θ of mass m with smooth three-dimensional boundary ∂Θ be under the influence of a
nonconservative force field; this can be interpreted as a motion of the body in a resisting medium that
fills up the four-dimensional domain of Euclidean space E4. We assume that the body is dynamically
symmetric. If the body has two independent principal moments of inertia, then in some coordinate
system Dx1x2x3x4 attached to the body, the operator of inertia has the form

diag{I1, I2, I2, I2} (6.1)

or the form

diag{I1, I1, I3, I3}. (6.2)

In the first case, the body is dynamically symmetric in the hyperplane Dx2x3x4 and in the second
case, the two-dimensional planes Dx1x2 and Dx3x4 are planes of dynamical symmetry of the body.

1.2. Dynamics on so(4) and R
4. The configuration space of a free, n-dimensional rigid body is

the direct product

R
n × SO(n) (6.3)
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of the space R
n, which defines the coordinates of the center of mass of the body, and the rotation

group SO(n), which defined rotations of the body about its center of mass and has dimension

n+
n(n− 1)

2
=

n(n+ 1)

2
.

Therefore, the dynamical part of the equations of motion has the same dimension, whereas the di-
mension of the phase space is equal to n(n+ 1).

In particular, if Ω is the tensor of angular velocity of a four-dimensional rigid body (it is a second-
rank tensor, see [44, 52, 53, 74–77, 79–81, 85, 86, 89, 133, 433–439]), Ω ∈ so(4), then the part of the
dynamical equations of motion corresponding to the Lie algebra so(4) has the following form (see [69,
436, 438]):

Ω̇Λ + ΛΩ̇ + [Ω,ΩΛ+ ΛΩ] = M, (6.4)

where

Λ = diag{λ1, λ2, λ3, λ4}, (6.5)

λ1 =
−I1 + I2 + I3 + I4

2
, λ2 =

I1 − I2 + I3 + I4
2

,

λ3 =
I1 + I2 − I3 + I4

2
, λ4 =

I1 + I2 + I3 − I4
2

,

M = MF is the natural projection of the moment of external forces F acting on the body in R
4 on the

natural coordinates of the Lie algebra so(4) and [ ] is the commutator in so(4). The skew-symmetric
matrix corresponding to this second-rank tensor Ω ∈ so(4) we represent in the form⎛

⎜⎜⎝
0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠ , (6.6)

where ω1, ω2, ω3, ω4, ω5, and ω6 are the components of the tensor of angular velocity corresponding
to the projections on the coordinates of the Lie algebra so(4).

Obviously, the following relations hold:

λi − λj = Ij − Ii, i, j = 1, . . . , 4. (6.7)

For the calculation of the moment of an external force acting on the body, we need to construct the
mapping

R
4 × R

4 → so(4) (6.8)

than maps a pair of vectors

(DN,F) ∈ R
4 × R

4 (6.9)

to an element of the Lie algebra so(4), where

DN = {0, x2N , x3N , x4N}, F = {F1, F2, F3, F4}, (6.10)

and F is an external force acting on the body. For this end, we construct the following auxiliary
matrix (

0 x2N x3N x4N
F1 F2 F3 F4

)
. (6.11)

Then the right-hand side of system (6.4) takes the form

M =
{
x3NF4 − x4NF3, x4NF2 − x2NF4, −x4NF1, x2NF3 − x3NF2, x3NF1, −x2NF1

}
. (6.12)

Dynamical systems studied in the following chapters, generally speaking, are not conservative; they
are dynamical systems with variable dissipation with zero mean (see [265]). We need to examine by
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direct methods a part of the main system of dynamical equations, namely, the Newton equation, which
plays the role of the equation of motion of the center of mass, i.e., the part of the dynamical equations
corresponding to the space R

4:

mwC = F, (6.13)

where wC is the acceleration of the center of mass C of the body and m is its mass. Moreover, due
to the higher-dimensional Rivals formula (it can be obtained by the operator method) we have the
following relations:

wC = wD +Ω2DC+ EDC, wD = v̇D +ΩvD, E = Ω̇, (6.14)

where wD is the acceleration of the point D, F is the external force acting on the body (in our case,
F = S), and E is the tensor of angular acceleration (second-rank tensor).

So, the system of equations (6.4) and (6.13) of tenth order on the manifold R
4 × so(4) is a closed

system of dynamical equations of the motion of a free four-dimensional rigid body under the action
of an external force F. This system has been separated from the kinematic part of the equations of
motion on the manifold (6.3) and can be examined independently.

2. General Problem on the Motion Under a Tracing Force

Consider a motion of a homogeneous, dynamically symmetric (case (6.1)), rigid body with front
end face (a three-dimensional disk interacting with a medium that fills the four-dimensional space) in
the field of a resistance force S under the quasi-stationarity conditions (see [28, 50, 51, 62–66, 98, 112,
119–121, 160–169, 171, 431, 432]).

Let (v, α, β1, β2) be the (generalized) spherical coordinates of the velocity vector of the center of
the three-dimensional disk lying on the axis of symmetry of the body,

Ω =

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

be the tensor of angular velocity of the body, Dx1x2x3x4 be the coordinate system attached to the
body such that the axis of symmetry CD coincides with the axis Dx1 (recall that C is the center of
mass), and the axes Dx2, Dx3, and Dx4 lie in the hyperplane of the disk, and I1, I2, I3 = I2, I4 = I2,
and m are characteristics of inertia and mass.

We adopt the following expansions in the projections on the axes of the coordinate systemDx1x2x3x4:

DC = {−σ, 0, 0, 0},
vD =

{
v cosα, v sinα cos β1, v sinα sinβ1 cos β2, v sinα sinβ1 sin β2

}
.

(6.15)

In the case (6.1) we additionally have the expansion for the function of the influence of the medium
on the four-dimensional body:

S = {−S, 0, 0, 0}, (6.16)

i.e., in this case F = S.
Then the part of the dynamical equations of motion (including the analytic Chaplygin functions [50,

51]; see below) that describes the motion of the center of mass and corresponds to the space R
4, in

which tangential forces of the influence of the medium on the three-dimensional disk vanish, takes the
form

v̇ cosα− α̇v sinα− ω6v sinα cos β1 + ω5v sinα sin β1 cos β2 − ω3v sinα sin β1 sinβ2

+σ
(
ω2
6 + ω2

5 + ω2
3

)
= − S

m
,

(6.17)
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v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 + ω6v cosα− ω4v sinα sin β1 cosβ2

+ω2v sinα sin β1 sin β2 − σ(ω4ω5 + ω2ω3)− σω̇6 = 0,
(6.18)

v̇ sinα sin β1 cos β2 + α̇v cosα sin β1 cos β2 + β̇1v sinα cosβ1 cos β2 − β̇2v sinα sin β1 sin β2

−ω5v cosα+ ω4v sinα cos β1 − ω1v sinα sin β1 sinβ2 − σ(−ω1ω2 + ω4ω6) + σω̇5 = 0,
(6.19)

v̇ sinα sin β1 sin β2 + α̇v cosα sin β1 sin β2 + β̇1v sinα cosβ1 sin β2 + β̇2v sinα sin β1 cos β2

+ω3v cosα− ω2v sinα cosβ1 + ω1v sinα sin β1 cos β2 + σ(ω2ω6 + ω1ω5)− σω̇3 = 0,
(6.20)

where

S = s(α)v2, σ = CD, v > 0. (6.21)

Further, the auxiliary matrix (6.11) for the calculation of the moment of the resistance force has
the form (

0 x2N x3N x4N
−S 0 0 0

)
; (6.22)

then the part of the dynamical equations of motion that describes the motion of the body about the
center of mass and corresponds to the Lie algebra so(4), becomes

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (6.23)

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = 0, (6.24)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (6.25)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = 0, (6.26)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (6.27)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2. (6.28)

Thus, the phase space of system (6.17)–(6.20), (6.23)–(6.28) of tenth order is the direct product of
the four-dimensional manifold and the Lie algebra so(4):

R
1 × S3 × so(4). (6.29)

We note that system (6.17)–(6.20), (6.23)–(6.28), due to the existing dynamical symmetry

I2 = I3 = I4, (6.30)

possesses cyclic first integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const . (6.31)

In the sequel, we consider the dynamics of the system on zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (6.32)

If one considers a more general problem on the motion of a body under a tracing force T that lies on
the straight line CD = Dx1 and provides the fulfillment of the relation

v ≡ const (6.33)

throughout the motion (see [164–167])), then instead of F1 system (6.17)–(6.20), (6.23)–(6.28) contains

T − s(α)v2, σ = DC. (6.34)
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Choosing the value T of the tracing force appropriately, one can achieve the equality (6.33) through-
out the motion. Indeed, expressing T due to system (6.17)–(6.20), (6.23)–(6.28), we obtain for
cosα �= 0 the relation

T = Tv(α, β1, β2,Ω) = mσ
(
ω2
3 + ω2

5 + ω2
6

)
+ s(α)v2

[
1− mσ

2I2

sinα

cosα
Γv

(
α, β1, β2,

Ω

v

)]
, (6.35)

where

Γv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
sinβ1 sin β2 + x3N

(
α, β1, β2,

Ω

v

)
sin β1 cosβ2

+ x2N

(
α, β1, β2,

Ω

v

)
cosβ1; (6.36)

here we used conditions (6.31)–(6.33).
This procedure can be interpreted in two ways. First, we have transformed the system using the

tracing force (control) that provides the consideration of the class (6.33) of motions interesting for us.
Second, we can treat this as an order-reduction procedure. Indeed, system (6.17)–(6.20), (6.23)–(6.28)
generates the following independent system of sixth order:

α̇v cosα cos β1 − β̇1v sinα sinβ1 + ω6v cosα− σω̇6 = 0, (6.37)

α̇v cosα sin β1 cos β2 + β̇1v sinα cos β1 cosβ2 − β̇2v sinα sin β1 sin β2 − ω5v cosα+ σω̇5 = 0, (6.38)

α̇v cosα sin β1 sin β2 + β̇1v sinα cos β1 sinβ2 + β̇2v sinα sin β1 cos β2 + ω3v cosα− σω̇3 = 0, (6.39)

2I2ω̇3 = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (6.40)

2I2ω̇5 = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (6.41)

2I2ω̇6 = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2, (6.42)

which, in addition to the permanent parameters specified above, contains the parameter v.
System (6.37)–(6.42) is equivalent to the system

α̇v cosα+ v cosα [ω6 cos β1 − ω5 sin β1 cos β2 + ω3 sin β1 sin β2]

+σ [−ω̇6 cos β1 + ω̇5 sin β1 cos β2 − ω̇3 sin β1 sin β2] = 0,
(6.43)

β̇1v sinα− v cosα [ω5 cos β1 cos β2 + ω6 sin β1 − ω3 cos β1 sin β2]

+σ [ω̇5 cos β1 cos β2ω̇6 sin β1 − ω̇3 cos β1 sin β2] = 0,
(6.44)

β̇2v sinα sinβ1 + v cosα [ω3 cos β2 + ω5 sin β2] + σ [−ω̇3 cos β2 − ω̇5 sin β2] = 0, (6.45)

ω̇3 =
v2

2I2
x4N

(
α, β1, β2,

Ω

v

)
s(α), (6.46)

ω̇5 = − v2

2I2
x3N

(
α, β1, β2,

Ω

v

)
s(α), (6.47)

ω̇6 =
v2

2I2
x2N

(
α, β1, β2,

Ω

v

)
s(α). (6.48)
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Introduce the new quasi-velocities. For this, we transform ω3, ω5, and ω6 by two rotations:⎛
⎝z1
z2
z3

⎞
⎠ = T1(−β1) ◦ T3(−β2)

⎛
⎝ω3

ω5

ω6

⎞
⎠ , (6.49)

where

T1(β1) =

⎛
⎝1 0 0
0 cos β1 − sinβ1
0 sin β1 cos β1

⎞
⎠ , T3(β2) =

⎛
⎝cos β2 − sinβ2 0
sin β2 cosβ2 0
0 0 1

⎞
⎠ . (6.50)

Therefore, the following relations hold:

z1 = ω3 cos β2 + ω5 sin β2,

z2 = −ω3 cos β1 sinβ2 + ω5 cos β1 cos β2 + ω6 sin β1,

z3 = ω3 sin β1 sin β2 − ω5 sinβ1 cos β2 + ω6 cos β1.

(6.51)

As we see from (6.43)–(6.48), we cannot solve the system with respect to α̇, β̇1, and β̇2 on the
manifold

O1 =
{
(α, β1, β2, ω3, ω5, ω6) ∈ R

6 : α =
π

2
k, β1 = πl, k, l ∈ Z

}
. (6.52)

Therefore, on the manifold (6.52) the uniqueness theorem formally is violated. Moreover, for even
k and any l, an indeterminate form appears due to the degeneration of the spherical coordinates
(v, α, β1, β2). For odd k, the uniqueness theorem is obviously violated since the first equation (6.43)
degenerates.

This implies that system (6.43)–(6.48) outside (and only outside) the manifold (6.52) is equivalent
to the system

α̇ = −z3 +
σv

2I2

s(α)

cosα
Γv

(
α, β1, β2,

Ω

v

)
, (6.53)

ż3 =
v2

2I2
s(α)Γv

(
α, β1, β2,

Ω

v

)
− (

z21 + z22
) cosα
sinα

− σv

2I2

s(α)

sinα
z2Δv

(
α, β1, β2,

Ω

v

)

+
σv

2I2

s(α)

sinα
z1Θv

(
α, β1, β2,

Ω

v

)
,

(6.54)

ż2 = − v2

2I2
s(α)Δv

(
α, β1, β2,

Ω

v

)
+ z2z3

cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

+

+
σv

2I2

s(α)

sinα
z3Δv

(
α, β1, β2,

Ω

v

)
−− σv

2I2

s(α)

sinα

cos β1
sin β1

z1Θv

(
α, β1, β2,

Ω

v

)
,

(6.55)

ż1 =
v2

2I2
s(α)Θv

(
α, β1, β2,

Ω

v

)
+ z1z3

cosα

sinα
− z1z2

cosα

sinα

cos β1
sin β1

−

− σv

2I2

s(α)

sinα
z3Θv

(
α, β1, β2,

Ω

v

)
+

σv

2I2

s(α)

sinα

cos β1
sin β1

z2Θv

(
α, β1, β2,

Ω

v

)
,

(6.56)

β̇1 = z2
cosα

sinα
+

σv

2I2

s(α)

sinα
Δv

(
α, β1, β2,

Ω

v

)
, (6.57)

β̇2 = −z1
cosα

sinα sin β1
+

σv

2I2

s(α)

sinα sin β1
Θv

(
α, β1, β2,

Ω

v

)
, (6.58)
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where

Δv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β1 sin β2

+ x3N

(
α, β1, β2,

Ω

v

)
cos β1 cos β2

− x2N

(
α, β1, β2,

Ω

v

)
sin β1,

(6.59)

Θv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β2 − x3N

(
α, β1, β2,

Ω

v

)
sinβ2, (6.60)

and the function Γv (α, β1, β2,Ω/v) can be represented in the form (6.36).
Here and in the sequel, the dependence on the group of variables (α, β1, β2,Ω/v) is meant as the

composite dependence on (α, β1, β2, z1/v, z2/v, z3/v) due to (6.51).
The uniqueness theorem for system (6.43)–(6.48) on the manifold (6.52) for odd k is violated in the

following sense: for odd k, through almost all points of the manifold (6.52), passes a nonsingular phase
trajectory of system (6.43)–(6.48) intersecting the manifold (6.52) at right angle and there exists a
phase trajectory that at any time instants completely coincides with the point specified. However,
physically these trajectories are different since they correspond to different values of the tracing force.
Prove this.

As was shown above, to maintain the constraint of the form (6.33), we must take a value of T for
cosα �= 0 according to (6.35).

Let

lim
α→π/2

s(α)

cosα
Γv

(
α, β1, β2,

Ω

v

)
= L

(
β1, β2,

Ω

v

)
. (6.61)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣ ∂∂α
(
Γv

(
α, β1, β2,

Ω

v

)
s(α)

)∣∣∣∣ < +∞. (6.62)

For α = π/2, the required value of the tracing force is defined by the equation

T = Tv

(π
2
, β1, β2,Ω

)
= mσ

(
ω2
3 + ω2

5 + ω2
6

)− mσLv2

2I2
. (6.63)

where ω3, ω5, and ω6 are arbitrary.
On the other hand, maintaining the rotation about some point W by the tracing force, we must

choose this force according to the relation

T = Tv

(π
2
, β1, β2,Ω

)
=

mv2

R0
, (6.64)

where R0 is the distance between C and W .
Relations (6.35) and (6.64) define, in general, different values of the tracing force T for almost all

points of the manifold (6.52), which proves our assertion.

448



3. Case Where the Moment of a Nonconservative Force
Is Independent of the Angular Velocity

3.1. Reduced system. Similarly to the choice of Chaplygin analytic functions (see [50, 51]), we
take the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα,

x2N

(
α, β1, β2,

Ω

v

)
= x2N0(α, β1, β2) = A sinα cos β1,

x3N

(
α, β1, β2,

Ω

v

)
= x3N0(α, β1, β2) = A sinα sin β1 cosβ2,

x4N

(
α, β1, β2,

Ω

v

)
= x4N0(α, β1, β2) = A sinα sin β1 sinβ2,

(6.65)

where A,B > 0 and v �= 0. We see that in the system considered, the moment of nonconservative
forces is independent of the angular velocity (but depends on the angles α, β1, and β2). Herewith, the
functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in system (6.53)–(6.58) take
the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα, Δv

(
α, β1, β2,

Ω

v

)
≡ Θv

(
α, β1, β2,

Ω

v

)
≡ 0. (6.66)

Then, due to the nonintegrable constraint (6.33), outside the manifold (6.52), the dynamical part of
the equations of motion (system (6.53)–(6.58)) has the form of the following analytic system:

α̇ = −z3 +
σABv

2I2
sinα, (6.67)

ż3 =
ABv2

2I2
sinα cosα− (

z21 + z22
) cosα
sinα

, (6.68)

ż2 = z2z3
cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

, (6.69)

ż1 = z1z3
cosα

sinα
− z1z2

cosα

sinα

cosβ1
sinβ1

, (6.70)

β̇1 = z2
cosα

sinα
, (6.71)

β̇2 = −z1
cosα

sinα sin β1
. (6.72)

Further, introducing the dimensionless variables, parameters, and the differentiation as follows:

zk → n0vzk, k = 1, 2, 3, n2
0 =

AB

2I2
, b = σn0, 〈˙〉 = n0v〈 ′〉, (6.73)

we reduce system (6.67)–(6.72) to the form

α′ = −z3 + b sinα, (6.74)

z′3 = sinα cosα− (
z21 + z22

) cosα
sinα

, (6.75)

z′2 = z2z3
cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

, (6.76)

z′1 = z1z3
cosα

sinα
− z1z2

cosα

sinα

cos β1
sin β1

, (6.77)

β′
1 = z2

cosα

sinα
, (6.78)
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β′
2 = −z1

cosα

sinα sin β1
. (6.79)

We see that the sixth-order system (6.74)–(6.79) (which can be considered as a system on the
tangent bundle TS3 of the three-dimensional sphere S3, see below) contains the independent fifth-
order system (6.74)–(6.78) on its own five-dimensional manifold.

For the complete integration of system (6.74)–(6.79), in general, we need five independent first
integrals. However, after the change of variables(

z1
z2

)
→

(
z
z∗

)
, z =

√
z21 + z22 , z∗ = z2/z1, (6.80)

system (6.74)–(6.79) splits as follows:

α′ = −z3 + b sinα, (6.81)

z′3 = sinα cosα− z2
cosα

sinα
, (6.82)

z′ = zz3
cosα

sinα
, (6.83)

z′∗ = (±)z
√

1 + z2∗
cosα

sinα

cosβ1
sinβ1

, (6.84)

β′
1 = (±)

zz∗√
1 + z2∗

cosα

sinα
, (6.85)

β′
2 = (∓)

z√
1 + z2∗

cosα

sinα sin β1
. (6.86)

We see that the sixth-order system splits into independent subsystems of lower order: system (6.81)–
(6.83) has order three and system (6.84), (6.85) (after the change of the independent variable) has order
two. Thus, for the complete integration of system (6.81)–(6.86) it suffices to specify two independent
first integrals of system (6.81)–(6.83), one first integral of system (6.84), (6.85), and an additional first
integral that “attaches” Eq. (6.86).

Note that system (6.81)–(6.83) can be considered on the tangent bundle TS2 of the two-dimensional
sphere S2.

3.2. Complete list of invariant relations. System (6.81)–(6.83) has the form of a system that
appears in the dynamics of a three-dimensional (3D) rigid body in a field of nonconservative forces.

First, to the third-order system (6.81)–(6.83), we put in correspondence the nonautonomous second-
order system

dz3
dα

=
sinα cosα− z2 cosα/ sinα

−z3 + b sinα
,

dz

dα
=

zz3 cosα/ sinα

−z3 + b sinα
.

(6.87)

Applying the substitution τ = sinα, we rewrite system (6.87) in the algebraic form

dz3
dτ

=
τ − z2/τ

−z3 + bτ
,

dz

dτ
=

zz3/τ

−z3 + bτ
.

(6.88)

Introducing the homogeneous variables by the formulas

z = u1τ, z3 = u2τ, (6.89)
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we reduce system (6.88) to the following form:

τ
du2
dτ

+ u2 =
1− u21
−u2 + b

,

τ
du1
dτ

+ u1 =
u1u2

−u2 + b
,

(6.90)

which is equivalent to the system

τ
du2
dτ

=
1− u21 + u22 − bu2

−u2 + b
,

τ
du1
dτ

=
2u1u2 − bu1
−u2 + b

.

(6.91)

To the second-order system (6.91), we put in correspondence the nonautonomous first-order equation

du2
du1

=
1− u21 + u22 − bu2

2u1u2 − bu1
, (6.92)

which can be easily reduced to the exact differential equation

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (6.93)

Thus, Eq. (6.92) has the following first integral:

u22 + u21 − bu2 + 1

u1
= C1 = const, (6.94)

which in the previous variables has the form

z23 + z2 − bz3 sinα+ sin2 α

z sinα
= C1 = const . (6.95)

Remark 6.1. Consider system (6.81)–(6.83) with variable dissipation with zero mean (see [67, 68,
243, 260, 262, 265, 282, 283, 285, 286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421,
437, 438]) that becomes conservative for b = 0:

α′ = −z3,

z′3 = sinα cosα− z2
cosα

sinα
,

z′ = zz3
cosα

sinα
.

(6.96)

It possesses two analytic first integrals of the form

z23 + z2 + sin2 α = C∗
1 = const, (6.97)

z sinα = C∗
2 = const . (6.98)

Obviously, the ratio of the first two integrals (6.97) and (6.98) is also a first integral of system (6.96).
However, for b �= 0, each of the functions

z23 + z2 − bz3 sinα+ sin2 α (6.99)

and (6.98) is not a first integral of system (6.81)–(6.83) but their ratio is a first integral for any b.

Further, we find the explicit form of the additional first integral of the third-order system (6.81)–
(6.83). For this, we transform the invariant relation (6.94) for u1 �= 0 as follows:(

u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (6.100)
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We see that the parameters of this invariant relation satisfy the condition

b2 + C2
1 − 4 ≥ 0, (6.101)

and the phase space of system (6.81)–(6.83) is stratified into the family of surfaces defined by Eq. (6.100).
Thus, by relation (6.94), the first equation of system (6.91) has the form

τ
du2
dτ

=
2
(
1− bu2 + u22

)− C1U1(C1, u2)

−u2 + b
, (6.102)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
; (6.103)

the integration constant C1 is defined by condition (6.101).
Therefore, the quadrature for the search for the additional first integral of system (6.81)–(6.83)

becomes ∫
dτ

τ
=

∫
(b− u2)du2

2
(
1− bu2 + u22

)− C1

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
/2

. (6.104)

Obviously, the left-hand side (up to an additive constant) equals

ln | sinα|. (6.105)

If

u2 − b

2
= w1, b21 = b2 + C2

1 − 4, (6.106)

then the right-hand side of Eq. (6.104) has the form

− 1

4

∫
d
(
b21 − 4w2

1

)
(
b21 − 4w2

1

)± C1

√
b21 − 4w2

1

− b

∫
dw1

(b21 − 4w2
1)± C1

√
b21 − 4w2

1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4w2
1

C1
± 1

∣∣∣∣∣±
b

2
I1, (6.107)

where

I1 =

∫
dw3√

b21 − w2
3(w3 ± C1)

, w3 =
√

b21 − 4w2
1 . (6.108)

In the calculation of integral (6.108), the following three cases are possible.

I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4 +

√
b21 − w2

3

w3 ± C1
± C1√

b2 − 4

∣∣∣∣∣+

+
1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4−

√
b21 − w2

3

w3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣+ const; (6.109)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const; (6.110)

III. b = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (6.111)
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Returning to the variable

w1 =
z3

sinα
− b

2
, (6.112)

we obtain the final expression for I1:

I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4± 2w1√
b21 − 4w2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4∓ 2w1√
b21 − 4w2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣+ const; (6.113)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1

√
b21 − 4w2

1 + b21

b1

(√
b21 − 4w2

1 ± C1

) + const; (6.114)

III. b = 2:

I1 = ∓ 2w1

C1

(√
b21 − 4w2

1 ± C1

) + const . (6.115)

Thus, we have found an additional first integral for the third-order system (6.81)–(6.83) and we
have the complete set of first integrals that are transcendental functions of their phase variables.

Remark 6.2. We must substitute the left-hand side of the first integral (6.94) in the expression of
this first integral instead of C1. Then the additional first integral obtained has the following structure
(similar to the transcendental first integral in planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (6.116)

Thus, for the integration of the sixth-order system (6.81)–(6.86), we have found two independent first
integrals. For the complete integration, as was mentioned above, it suffices to find one first integral for
(potentially separated) system (6.84), (6.85), and an additional first integral that “attaches” Eq. (6.86).

To find a first integral for (potentially separated) system (6.84), (6.85), we put in correspondence
the following nonautonomous first-order equation:

dz∗
dβ1

=
1 + z2∗
z∗

cos β1
sin β1

. (6.117)

After integration, this leads to the invariant relation√
1 + z2∗
sin β1

= C3 = const, (6.118)

which in the variables z1 and z2 has the form√
z21 + z22

z1 sin β1
= C3 = const . (6.119)

Further, for the search for an additional first integral that “attaches” Eq. (6.86), to Eqs. (6.86)
and (6.84) we put in correspondence the following nonautonomous equation:

dz∗
dβ2

= − (
1 + z2∗

)
cos β1. (6.120)

Since, by (6.118),

C3 cos β1 = ±
√
C2
3 − 1− z2∗ , (6.121)
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we have
dz∗
dβ2

= ∓ 1

C3

(
1 + z2∗

)√
C2
3 − 1− z2∗ . (6.122)

Integrating the last relation, we arrive at the following quadrature:

∓(β2 + C4) =

∫
C3dz∗

(1 + z2∗)
√
C2
3 − 1− z2∗

, C4 = const . (6.123)

Integrating this relation we obtain

∓ tan(β2 + C4) =
C3z∗√

C2
3 − 1− z2∗

, C4 = const . (6.124)

In the variables z1 and z2 the last invariant relation has the form

∓ tan(β2 + C4) =
C3z2√(

C2
3 − 1

)
z21 − z22

, C4 = const . (6.125)

Finally, we have the following form of the additional first integral that “attaches” Eq. (6.86):

arctan
C3z∗√

C2
3 − 1− z2∗

± β2 = C4, C4 = const (6.126)

or

arctan
C3z2√(

C2
3 − 1

)
z21 − z22

± β2 = C4, C4 = const . (6.127)

Thus, in the case considered, the system of dynamical equations (6.17)–(6.20) and (6.23)–(6.28)
under condition (6.65) has eight invariant relations: the nonintegrable analytic constraint of the
form (6.33); the cyclic first integrals of the form (6.31), (6.32); the first integral of the form (6.95); the
first integral expressed by relations (6.109)–(6.116), which is a transcendental function of the phase
variables (in the sense of complex analysis) expressed through a finite combination of elementary
functions; and, finally, the transcendental first integrals of the form (6.118) (or (6.119)) and (6.126)
(or (6.127)).

Theorem 6.1. System (6.17)–(6.20), (6.23)–(6.28) under conditions (6.33), (6.65), (6.32) possesses
eight invariant relations (complete set), four of which are transcendental functions from the point of
view of complex analysis. Herewith, all relations are expressed through finite combinations of elemen-
tary functions.

3.3. Topological analogies. Consider the following fifth-order system:

ξ̈ + b∗ξ̇ cos ξ + sin ξ cos ξ − [
η̇1

2 + η̇2
2 sin2 η1

] sin ξ
cos ξ

= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
− η̇2

2 sin η1 cos η1 = 0,

η̈2 + b∗η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+ 2η̇1η̇2

cos η1
cos η1

= 0, b∗ > 0,

(6.128)

which describes a fixed four-dimensional pendulum in a flowing medium for which the moment of forces
is independent of the angular velocity, i.e., a mechanical system in a nonconservative field (see [48,
49, 439]). In general the order of such a system is equal to 6, but the phase variable η2 is a cyclic
variable, which leads to the stratification of the phase space and reduces the order of the system.

The phase space of this system is the tangent bundle

TS3
{
ξ̇, η̇1, η̇2, ξ, η1, η2

}
(6.129)
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of the three-dimensional sphere S3{ξ, η1, η2}. The equation that transforms system (6.128) into the
system on the tangent bundle of the two-dimensional sphere

η̇2 ≡ 0, (6.130)

and the equations of great circles

η̇1 ≡ 0, η̇2 ≡ 0 (6.131)

define families of integral manifolds.
It is easy to verify that system (6.128) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (6.129) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 6.2. System (6.17)–(6.20), (6.23)–(6.28) under conditions (6.33), (6.65), and (6.32) is
equivalent to the dynamical system (6.128).

Proof. Indeed, it suffices to set α = ξ, β1 = η1, β2 = η2, and b = −b∗.

On more general topological analogies, see [253, 265, 267, 309, 340, 342].

4. Case Where the Moment of a Nonconservative Force
Depends on the Angular Velocity

4.1. Introduction of the dependence on the angular velocity. This chapter is devoted to the
dynamics of a four-dimensional rigid body in the four-dimensional space. Since the present section
is devoted to the study of the motion in the case where the moment of forces depends on the tensor
of angular velocity, we introduce this dependence in a more general situation. This also allows us to
introduce this dependence for multi-dimensional bodies.

Let x = (x1N , x2N , x3N , x4N ) be the coordinates of the point N of application of a nonconservative
force (influence of the medium) acting on the three-dimensional disk and Q = (Q1, Q2, Q3, Q4) be the
components of the force S of the influence of the medium independent of the tensor of the angular
velocity. We consider only linear dependence of the functions (x1N , x2N , x3N , x4N ) on the tensor of
angular velocity since this introduction itself is not obvious (see [33, 34, 48, 49, 57–66, 120, 121, 169,
182, 203, 205, 249, 250, 261, 274–276, 440]).

We adopt the following dependence:

x = Q+R, (6.132)

where R = (R1, R2, R3, R4) is a vector-valued function containing the components of the tensor of
angular velocity. The dependence of the function R on the components of the tensor of angular
velocity is gyroscopic:

R =

⎛
⎜⎜⎝
R1

R2

R3

R4

⎞
⎟⎟⎠ = −1

v

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ , (6.133)

where (h1, h2, h3, h4) are some positive parameters (cf. [322, 330, 331, 345, 393]).
Since x1N ≡ 0, we have

x2N = Q2 − h1
ω6

v
, x3N = Q3 + h1

ω5

v
, x4N = Q4 − h1

ω3

v
. (6.134)
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4.2. Reduced system. Similarly to the choice of the Chaplygin analytic functions (see [50, 51])

Q2 = A sinα cos β1,

Q3 = A sinα sin β1 cosβ2,

Q4 = A sinα sin β1 sinβ2, A > 0,

(6.135)

we take the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα, B > 0,

x2N

(
α, β1, β2,

Ω

v

)
= A sinα cos β1 − h

ω6

v
, h = h1 > 0, v �= 0,

x3N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 cos β2 + h

ω5

v
, h = h1 > 0, v �= 0,

x4N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 sin β2 − h

ω3

v
, h = h1 > 0, v �= 0.

(6.136)

This shows that in the problem considered, there is an additional damping (but accelerating in certain
domains of the phase space) moment of a nonconservative force (i.e., there is a dependence of the
moment on the components of the tensor of angular velocity). Moreover, h2 = h3 = h4 due to the
dynamical symmetry of the body.

In this case, the functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in sys-
tem (6.53)–(6.58) have the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα− h

v
z3,

Δv

(
α, β1, β2,

Ω

v

)
=

h

v
z2,

Θv

(
α, β1, β2,

Ω

v

)
= −h

v
z1.

(6.137)

Then, due to the nonintegrable constraint (6.33), outside the manifold (6.52) the dynamical part of
the equations of motion (system (6.53)–(6.58)) takes the form of the analytic system

α̇ = −
(
1 +

σBh

2I2

)
z3 +

σABv

2I2
sinα, (6.138)

ż3 =
ABv2

2I2
sinα cosα−

(
1 +

σBh

2I2

)(
z21 + z22

) cosα
sinα

− Bhv

2I2
z3 cosα, (6.139)

ż2 =

(
1 +

σBh

2I2

)
z2z3

cosα

sinα
+

(
1 +

σBh

2I2

)
z21

cosα

sinα

cosβ1
sinβ1

− Bhv

2I2
z2 cosα, (6.140)

ż1 =

(
1 +

σBh

2I2

)
z1z3

cosα

sinα
−
(
1 +

σBh

2I2

)
z1z2

cosα

sinα

cos β1
sin β1

− Bhv

2I2
z1 cosα, (6.141)

β̇1 =

(
1 +

σBh

2I2

)
z2

cosα

sinα
, (6.142)

β̇2 = −
(
1 +

σBh

2I2

)
z1

cosα

sinα sin β1
. (6.143)

Introducing the dimensionless variables, parameters, and the differentiation as follows:

zk → n0vzk, k = 1, 2, 3, n2
0 =

AB

2I2
, b = σn0, H1 =

Bh

2I2n0
, 〈˙〉 = n0v〈 ′〉, (6.144)
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we reduce system (6.138)–(6.143) to the form

α̇ = − (1 + bH1) z3 + b sinα, (6.145)

ż3 = sinα cosα− (1 + bH1)
(
z21 + z22

) cosα
sinα

−H1z3 cosα, (6.146)

ż2 = (1 + bH1) z2z3
cosα

sinα
+ (1 + bH1) z

2
1

cosα

sinα

cos β1
sin β1

−H1z2 cosα, (6.147)

ż1 = (1 + bH1) z1z3
cosα

sinα
− (1 + bH1) z1z2

cosα

sinα

cos β1
sin β1

−H1z1 cosα, (6.148)

β̇1 = (1 + bH1) z2
cosα

sinα
, (6.149)

β̇2 = − (1 + bH1) z1
cosα

sinα sin β1
. (6.150)

We see that the sixth-order system (6.145)–(6.150) (which can be considered on the tangent bundle
TS3 of the three-dimensional sphere S3), contains an independent fifth-order system (6.145)–(6.149)
on its own five-dimensional manifold.

For the complete integration of system (6.145)–(6.150), we need, in general, five independent first
integrals. However, after the change of variables

(
z1
z2

)
→

(
z
z∗

)
, z =

√
z21 + z22 , z∗ = z2/z1, (6.151)

system (6.145)–(6.150) splits as follows:

α′ = −(1 + bH1)z3 + b sinα, (6.152)

z′3 = sinα cosα− (1 + bH1)z
2 cosα

sinα
−H1z3 cosα, (6.153)

z′ = (1 + bH1)zz3
cosα

sinα
−H1z cosα, (6.154)

z′∗ = (±)(1 + bH1)z
√

1 + z2∗
cosα

sinα

cos β1
sin β1

, (6.155)

β′
1 = (±)(1 + bH1)

zz∗√
1 + z2∗

cosα

sinα
, (6.156)

β′
2 = (∓)(1 + bH1)

z√
1 + z2∗

cosα

sinα sin β1
. (6.157)

We see that the sixth-order system splits into independent subsystems of lower orders: system (6.152)–
(6.154) of order 3 and system (6.155), (6.156) (certainly, after a choice of the independent variables)
of order 2. Thus, for the complete integration of system (6.152)–(6.157), it suffices to find two inde-
pendent first integrals of system (6.152)–(6.154), one first integral of system (6.155), (6.156), and an
additional first integral that “attaches” Eq. (6.157).

Note that system (6.152)–(6.154) can be considered on the tangent bundle TS2 of the two-dimensional
sphere S2.

4.3. Complete list of invariant relations. System (6.152)–(6.154) has the form of a system of
equations that appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative
field. First, to the third-order system (6.152)–(6.154), we put in correspondence the nonautonomous
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second-order system

dz3
dα

=
sinα cosα− (1 + bH1)z

2 cosα/ sinα−H1z3 cosα

−(1 + bH1)z3 + b sinα
,

dz

dα
=

(1 + bH1)zz3 cosα/ sinα−H1z cosα

−(1 + bH1)z3 + b sinα
.

(6.158)

Using the substitution τ = sinα, we rewrite system (6.158) in the algebraic form:

dz3
dτ

=
τ − (1 + bH1)z

2/τ −H1z3
−(1 + bH1)z3 + bτ

,

dz

dτ
=

(1 + bH1)zz3/τ −H1z

−(1 + bH1)z3 + bτ
.

(6.159)

Further, introducing the homogeneous variables by the formulas

z = u1τ, z3 = u2τ, (6.160)

we reduce system (6.159) to the following form:

τ
du2
dτ

+ u2 =
1− (1 + bH1)u

2
1 −H1u2

−(1 + bH1)u2 + b
,

τ
du1
dτ

+ u1 =
(1 + bH1)u1u2 −H1u1

−(1 + bH1)u2 + b
,

(6.161)

which is equivalent to

τ
du2
dτ

=
(1 + bH1)

(
u22 − u21

)− (b+H1)u2 + 1

−(1 + bH1)u2 + b
,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−(1 + bH1)u2 + b
.

(6.162)

To the second-order system (6.162), we put in correspondence the nonautonomous first-order equa-
tion

du2
du1

=
1− (1 + bH1)

(
u21 − u22

)− (b+H1)u2

2(1 + bH1)u1u2 − (b+H1)u1
, (6.163)

which can be easily reduce to the exact differential equation

d

(
(1 + bH1)

(
u22 + u21

)− (b+H1)u2 + 1

u1

)
= 0. (6.164)

Thus, Eq. (6.163) has the following first integral:

(1 + bH1)
(
u22 + u21

)− (b+H1)u2 + 1

u1
= C1 = const, (6.165)

which in the original variables has the form

(1 + bH1)
(
z23 + z2

)− (b+H1)z3 sinα+ sin2 α

z sinα
= C1 = const . (6.166)

Remark 6.3. Consider system (6.152)–(6.154) with variable dissipation with zero mean (see [265]),
which becomes conservative for b = H1:

α′ = − (
1 + b2

)
z3 + b sinα,

z′3 = sinα cosα− (
1 + b2

)
z2

cosα

sinα
− bz3 cosα,

z′ =
(
1 + b2

)
zz3

cosα

sinα
− bz cosα.

(6.167)
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It possesses the following two analytic first integrals:(
1 + b2

) (
z23 + z2

)− 2bz3 sinα+ sin2 α = C∗
1 = const, (6.168)

z sinα = C∗
2 = const . (6.169)

Obviously, the ratio of the two first integrals (6.168) and (6.169) is also a first integral of system (6.167).
However, for b �= H1, none of the functions

(1 + bH1)
(
z23 + z2

)− (b+H1)z3 sinα+ sin2 α (6.170)

and (6.169) is a first integral of system (6.152)–(6.154), but their ratio is a first integral of sys-
tem (6.152)–(6.154) for any b and H1.

We find the explicit form of the additional first integral of the third-order system (6.152)–(6.154).
First, we transform the invariant relation (6.165) for u1 �= 0 as follows:(

u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (6.171)

We see that the parameters of this invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (6.172)

and the phase space of system (6.152)–(6.154) is stratified into the family of surfaces defined by
Eq. (6.171).

Thus, due to relation (6.165), the first equation of system (6.162) has the form

τ
du2
dτ

=
2(1 + bH1)u

2
2 − 2(b+H1)u2 + 2− C1U1(C1, u2)

b− (1 + bH1)u2
, (6.173)

where

U1(C1, u2) =
1

2(1 + bH1)
{C1 ± U2(C1, u2)},

U2(C1, u2) =
√

C2
1 − 4(1 + bH1)

(
1− (b+H1)u2 + (1 + bH1)u

2
2

)
,

(6.174)

and the integration constant C1 is defined by condition (6.172).
Therefore, the quadrature for the search for an additional first integral of system (6.152)–(6.154)

becomes∫
dτ

τ
=

∫
(b− (1 + bH1)u2)du2

2(1 − (b+H1)u2 + (1 + bH1)u22)− C1{C1 ± U2(C1, u2)}/(2(1 + bH1))
. (6.175)

Obviously, the left-hand side(up to an additive constant) is equal to

ln | sinα|. (6.176)

If

u2 − b+H1

2(1 + bH1)
= w1, b21 = (b−H1)

2 + C2
1 − 4, (6.177)

then the right-hand side of Eq. (6.175) becomes

− 1

4

∫
d
(
b21 − 4(1 + bH1)w

2
1

)
(
b21 − 4(1 + bH1)w2

1

)± C1

√
b21 − 4(1 + bH1)w2

1

− (b−H1)(1 + bH1)

∫
dw1(

b21 − 4(1 + bH1)w
2
1

)± C1

√
b21 − 4(1 + bH1)w

2
1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4(1 + bH1)w2
1

C1
± 1

∣∣∣∣∣±
b−H1

2
I1, (6.178)
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where

I1 =

∫
dw3√

b21 −w2
3(w3 ±C1)

, w3 =
√

b21 − 4(1 + bH1)w2
1. (6.179)

In the calculation of integral (6.179), the following three cases are possible:

I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4 +
√

b21 − w2
3

w3 ± C1
± C1√

(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4−
√

b21 − w2
3

w3 ± C1
∓ C1√

(b−H1)2 − 4

∣∣∣∣∣+ const; (6.180)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const; (6.181)

III. |b−H1| = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (6.182)

Returning to the variable

w1 =
z2

sinα
− b+H1

2(1 + bH1)
, (6.183)

we have the following final form of I1:

I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4± 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w

2
1 ± C1

± C1√
(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4∓ 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w

2
1 ± C1

∓ C1√
(b−H1)2 − 4

∣∣∣∣∣+ const; (6.184)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1

√
b21 − 4(1 + bH1)2w2

1 + b21

b1

(√
b21 − 4(1 + bH1)2w2

1 ± C1

) + const; (6.185)

III. |b−H1| = 2:

I1 = ∓ 2(1 + bH1)w1

C1

(√
b21 − 4(1 + bH1)2w

2
1 ± C1

) + const . (6.186)

Thus, we have found an additional first integral for the third-order system (6.152)–(6.154) and we
have the complete set of first integrals that are transcendental functions of their phase variables.

Remark 6.4. Formally, in the expression of the found first integral, we must substitute instead of C1

the left-hand side of the first integral (6.165).
Then the obtained additional first integral has the following structure (similar to the transcendental

first integral from planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (6.187)
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Thus, to integrate the sixth-order system (6.152)–(6.157), we have already found two independent
first integrals. For the complete integration, as was mentioed above, it suffices to find one first integral
for the (potentially separated) system (6.155), (6.156) and an additional first integral that “attaches”
Eq. (6.157).

To find a first integral of the (potentially separated) system (6.155), (6.156), we put in correspon-
dence the following nonautonomous first-order equation:

dz∗
dβ1

=
1 + z2∗
z∗

cos β1
sin β1

. (6.188)

After integration we obtain the required invariant relation√
1 + z2∗
sin β1

= C3 = const, (6.189)

which in the variables z1 and z2 has the form√
z21 + z22

z1 sin β1
= C3 = const . (6.190)

Further, to obtain an additional first integral that “attaches” Eq. (6.157), to Eqs. (6.157) and (6.155)
we put in correspondence the following nonautonomous equation:

dz∗
dβ2

= − (
1 + z2∗

)
cos β1. (6.191)

Since

C3 cos β1 = ±
√

C2
3 − 1− z2∗ (6.192)

by (6.189), we have
dz∗
dβ2

= ∓ 1

C3

(
1 + z2∗

)√
C2
3 − 1− z2∗ . (6.193)

Integrating this relation, we arrive at the following quadrature:

∓(β2 + C4) =

∫
C3dz∗

(1 + z2∗)
√
C2
3 − 1− z2∗

, C4 = const . (6.194)

Integration leads to the relation

∓ tan(β2 + C4) =
C3z∗√

C2
3 − 1− z2∗

, C4 = const . (6.195)

In the variables z1 and z2 this invariant relation has the form

∓ tan(β2 + C4) =
C3z2√(

C2
3 − 1

)
z21 − z22

, C4 = const . (6.196)

Finally, we have the following additional first integral that “attaches” Eq. (6.157):

arctan
C3z∗√

C2
3 − 1− z2∗

± β2 = C4, C4 = const (6.197)

or

arctan
C3z2√(

C2
3 − 1

)
z21 − z22

± β2 = C4, C4 = const . (6.198)

Thus, in the case considered, the system of dynamical equations (6.17)–(6.20), (6.23)–(6.28) under
condition (6.136) has eight invariant relations: the analytic nonintegrable constraint of the form (6.33),
the cyclic first integrals of the form (6.31) and (6.32), the first integral of the form (6.166), the
first integral expressed by relations (6.180)–(6.187), which is a transcendental function of the phase
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variables (in the sense of complex analysis) expressed through a finite combination of functions, and
the transcendental first integrals of the form (6.189) (or (6.190)) and (6.197) (or (6.198)).

Theorem 6.3. System (6.17)–(6.20), (6.23)–(6.28) under conditions (6.33), (6.136), and (6.32) pos-
sesses eight invariant relations (complete set); four of them are transcendental functions from the
point of view of complex analysis. All relations are expressed through finite combinations of elemen-
tary functions.

4.4. Topological analogies. Consider the following fifth-order system:

ξ̈ + (b∗ −H1∗)ξ̇ cos ξ + sin ξ cos ξ − [
η̇1

2 + η̇2
2 sin2 η1

] sin ξ
cos ξ

= 0,

η̈1 + (b∗ −H1∗)η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
− η̇2

2 sin η1 cos η1 = 0,

η̈2 + (b∗ −H1∗)η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+ 2η̇1η̇2

cos η1
cos η1

= 0,

(6.199)

where b∗ > 0 and H1∗ > 0. This system describes a fixed four-dimensional pendulum in a flowing
medium for which the moment of forces depends on the angular velocity, i.e., a mechanical system in
a nonconservative field (see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360,
376, 377, 386, 392, 429, 442]). Generally speaking, the order of this system must be equal to 6, but
the phase variable η2 is a cyclic variable, which leads to stratification of the phase space and reduction
of the order of the system.

The phase space of this system is the tangent bundle

TS3
{
ξ̇, η̇1, η̇2, ξ, η1, η2

}
(6.200)

of the three-dimensional sphere S3{ξ, η1, η2}. The equation that transforms system (6.128) into the
system on the tangent bundle of the two-dimensional sphere

η̇2 ≡ 0 (6.201)

and the equations of great circles
η̇1 ≡ 0, η̇2 ≡ 0 (6.202)

define families of integral manifolds.
It is easy to verify that system (6.199) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (6.200) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 6.4. System (6.17)–(6.20), (6.23)–(6.28) under conditions (6.33), (6.136), and (6.32) is
equivalent to the dynamical system (6.199).

Proof. Indeed, it suffices to set α = ξ, β1 = η1, β2 = η2, b = −b∗, and H1 = −H1∗.

On more general topological analogies, see [253, 265, 267, 309, 340, 342].
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Chapter 7

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN THE FOUR-DIMENSIONAL SPACE, II

In this chapter, we systematize results, both new and obtained earlier, concerning the study of equa-
tions of motion of an axis-symmetric four-dimensional (4D) rigid body in a field of nonconservative
forces. These equations are taken from the dynamics of realistic rigid bodies of lesser dimension that
interact with a resisting medium by laws of jet flow when the body is subjected to a nonconservative
tracing force such that throughout the motion, the center of mass of the body moves rectilinearly and
uniformly; this means that in the system there exists a nonconservative couple of forces (see [1, 64,
70, 72, 119–121, 157, 164–167, 180, 181, 184, 191, 194, 212, 231, 258, 291, 353, 354, 374, 390, 414]).

Earlier, in [164–167] the author proved the complete integrability of the equations of a plane-parallel
motion of a body in a resisting medium under the conditions of jet flow in the case where the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities. It was assumed that the interaction of
the body with the medium is concentrated on a part of the surface of the body that has the form of
a (one-dimensional) plate.

In the sequel (see [193, 196, 202, 204, 208, 209, 218, 232, 241]), the planar problem was generalized
to the spatial (three-dimensional) case, where the system of dynamical equations possesses a complete
set of transcendental first integrals. In this case, it was assumed that the interaction of the medium
with the body is concentrated on the part of the surface of the body that has the form of a planar
(two-dimensional) disk.

In this chapter, we discuss results, both new and obtained earlier, concerning the case where the
interaction of the medium with the body is concentrated on the part of the surface of the body that
has the form of a three-dimensional disk and the force acts in a direction perpendicular to the disk. We
systematize these results and formulate them in the invariant form. We also introduce the additional
dependence of the moment of a nonconservative force on the angular velocity; this dependence can be
generalized to the motion in higher-dimensional spaces.

1. General Problem on the Motion Under a Tracing Force

Consider the motion of a homogeneous, dynamically symmetric (case (6.1)), rigid body with front
end face (a three-dimensional disk interacting with a medium that fills the four-dimensional space) in
the field of a resistance force S under the quasi-stationarity conditions (see [28, 50, 51, 62–66, 98, 112,
119–121, 160–169, 171, 431, 432]).

Let (v, α, β1, β2) be the (generalized) spherical coordinates of the velocity vector of the center D of
the three-dimensional disk lying on the axis of symmetry of the body,

Ω =

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

be the tensor of angular velocity of the body, Dx1x2x3x4 be the coordinate system attached to the
body such that the axis of symmetry CD coincides with the axis Dx1 (recall that C is the center of
mass), the axes Dx2, Dx3, and Dx4 lie in the hyperplane of the disk, and I1, I2, I3 = I2, I4 = I2,
and m are characteristics of inertia and mass.
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We adopt the following expansions in the projections to the axes of the coordinate systemDx1x2x3x4:

DC = {−σ, 0, 0, 0},
vD =

{
v cosα, v sinα cos β1, v sinα sinβ1 cos β2, v sinα sinβ1 sin β2

}
.

(7.1)

In the case (6.1) we additionally have the expansion for the function of the influence of the medium
on the four-dimensional body:

S = {−S, 0, 0, 0} (7.2)

i.e., in this case F = S.
Then the part of dynamical equations of motion of the body (including the Chaplygin analytic

functions, [50, 51], see below) that describes the motion of the center of mass and corresponds to the
space R4, in which tangent forces of the influence of the medium on the three-dimensional disk vanish,
takes the form

v̇ cosα− α̇v sinα− ω6v sinα cos β1 + ω5v sinα sin β1 cos β2 − ω3v sinα sinβ1 sin β2

+σ
(
ω2
6 + ω2

5 + ω2
3

)
= − S

m
,

(7.3)

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 + ω6v cosα− ω4v sinα sinβ1 cos β2

+ω2v sinα sin β1 sin β2 − σ(ω4ω5 + ω2ω3)− σω̇6 = 0,
(7.4)

v̇ sinα sin β1 cos β2 + α̇v cosα sin β1 cos β2 + β̇1v sinα cos β1 cos β2 − β̇2v sinα sin β1 sinβ2

−ω5v cosα+ ω4v sinα cos β1 − ω1v sinα sinβ1 sin β2 − σ(−ω1ω2 + ω4ω6) + σω̇5 = 0,
(7.5)

v̇ sinα sin β1 sin β2 + α̇v cosα sin β1 sin β2 + β̇1v sinα cos β1 sin β2 + β̇2v sinα sinβ1 cos β2

+ω3v cosα− ω2v sinα cos β1 + ω1v sinα sin β1 cos β2 + σ(ω2ω6 + ω1ω5)− σω̇3 = 0,
(7.6)

where

S = s(α)v2, σ = CD, v > 0. (7.7)

Further, the auxiliary matrix (6.11) for the calculation of the moment of the resistance force takes
the form (

0 x2N x3N x4N
−S 0 0 0

)
; (7.8)

then the part of dynamical equations that describes the motion of the body about the center of mass
and corresponds to the Lie algebra so(4) takes the form

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (7.9)

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = 0, (7.10)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (7.11)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = 0, (7.12)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (7.13)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2. (7.14)
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Thus, the phase space of tenth-order system (7.3)–(7.6), (7.9)–(7.14) is the direct product of the
four-dimensional manifold and the Lie algebra so(4):

R
1 × S3 × so(4). (7.15)

Note that system (7.3)–(7.6), (7.9)–(7.14), due to the existing dynamical symmetry

I2 = I3 = I4, (7.16)

possesses the cyclic first integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const . (7.17)

In the sequel, we will consider the dynamics of the system on zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (7.18)

If we consider a more general problem on the motion of a body under a tracing force T lying on
the straight line CD = Dx1 that provides throughout the motion the fulfillment of the condition

VC ≡ const (7.19)

(hereVC is the velocity of the center of mass, see also [164–167]), then system (7.3)–(7.6), (7.9)–(7.14),
equals zero instead of Fx, since a nonconservative couple of forces acts on the body:

T − s(α)v2 ≡ 0, σ = DC. (7.20)

For this, obviously, we must take the value of the tracing force T in the form

T = Tv(α,Ω) = s(α)v2, T ≡ −S. (7.21)

The case (7.21) of the choice of the value T of the tracing force is a particular case of the separation
of an independent fifth-order subsystem after a certain transformation of the sixth-order system (7.3)–
(7.6), (7.9)–(7.14).

Indeed, let the following condition for T hold:

T = Tv(α, β1, β2,Ω) =

4∑
i,j=0,
i≤j

τi,j

(
α, β1, β2,

Ω

v

)
ΩiΩj = T1

(
α, β1, β2,

Ω

v

)
v2, Ω0 = v. (7.22)

Introduce the new quasi-velocities in the system. For this, we transform ω3, ω5, and ω6 by a
composition of two rotations: ⎛

⎝z1
z2
z3

⎞
⎠ = T1(−β1) ◦T3(−β2)

⎛
⎝ω3

ω5

ω6

⎞
⎠ , (7.23)

where

T1(β1) =

⎛
⎝1 0 0
0 cos β1 − sinβ1
0 sin β1 cos β1

⎞
⎠ , T3(β2) =

⎛
⎝cosβ2 − sin β2 0
sinβ2 cos β2 0
0 0 1

⎞
⎠ . (7.24)

Thus, the following relations hold:

z1 = ω3 cos β2 + ω5 sin β2,

z2 = −ω3 cos β1 sinβ2 + ω5 cos β1 cos β2 + ω6 sin β1,

z3 = ω3 sin β1 sin β2 − ω5 sinβ1 cos β2 + ω6 cos β1.

(7.25)
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System (7.3)–(7.6), (7.9)–(7.14) in the cases (7.16)–(7.18) and (7.22) can be rewritten in the form

v̇ + σ
(
z21 + z22 + z23

)
cosα− σ

v2

2I2
s(α) sinα · Γv

(
α, β1, β2,

Ω

v

)

=
T1

(
α, β1, β2,

Ω
v

)
v2 − s(α)v2

m
cosα,

(7.26)

α̇v + z3v − σ
(
z21 + z22 + z23

)
sinα− σ

v2

2I2
s(α) cosα · Γv

(
α, β1, β2,

Ω

v

)

=
s(α)v2 − T1

(
α, β1, β2,

Ω
v

)
v2

m
sinα,

(7.27)

β̇1 sinα− z2 cosα− σv

2I2
s(α) ·Δv

(
α, β1, β2,

Ω

v

)
= 0, (7.28)

β̇2 sinα sin β1 + z1 cosα− σv

2I2
s(α) ·Θv

(
α, β1, β2,

Ω

v

)
= 0, (7.29)

ω̇3 =
v2

2I2
x4N

(
α, β1, β2,

Ω

v

)
s(α), (7.30)

ω̇5 = − v2

2I2
x3N

(
α, β1, β2,

Ω

v

)
s(α), (7.31)

ω̇6 =
v2

2I2
x2N

(
α, β1, β2,

Ω

v

)
s(α). (7.32)

Introducing the new dimensionless phase variables and differentiation by the formulas

zk = n1vZk, k = 1, 2, 3, 〈˙〉 = n1v〈 ′〉, n1 > 0, n1 = const, (7.33)

we reduce system (7.26)–(7.32) to the following form:

v′ = vΨ(α, β1, β2, Z), (7.34)

α′ = −Z3 + σn1

(
Z2
1 + Z2

2 + Z2
3

)
sinα+

σ

2I2n1
s(α) cosα · Γv (α, β1, β2, n1Z)

− T1 (α, β1, β2, n1Z)− s(α)

mn1
sinα,

(7.35)

Z ′
3 =

s(α)

2I2n2
1

· Γv (α, β1, β2, n1Z)− (
Z2
1 + Z2

2

) cosα
sinα

− σ

2I2n1
Z2

s(α)

sinα
·Δv (α, β1, β2, n1Z) +

σ

2I2n1
Z1

s(α)

sinα
·Θv (α, β1, β2, n1Z)

− Z3 ·Ψ(α, β1, β2, Z) ,

(7.36)
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Z ′
2 = − s(α)

2I2n2
1

·Δv (α, β1, β2, n1Z) + Z2Z3
cosα

sinα
+ Z2

1

cosα

sinα

cos β1
sin β1

+
σ

2I2n1
Z3

s(α)

sinα
·Δv (α, β1, β2, n1Z)− σ

2I2n1
Z1

s(α)

sinα
·Θv (α, β1, β2, n1Z)

− Z2 ·Ψ(α, β1, β2, Z) ,

(7.37)

Z ′
1 =

s(α)

2I2n2
1

·Θv (α, β1, β2, n1Z) + Z1Z3
cosα

sinα
− Z1Z2

cosα

sinα

cos β1
sin β1

− σ

2I2n1

s(α)

sinα sin β1
·Θv (α, β1, β2, n1Z) · [Z3 sin β1 − Z2 cosβ1

]

− Z1 ·Ψ(α, β1, β2, Z) ,

(7.38)

β′
1 = Z2

cosα

sinα
+

σ

2I2n1

s(α)

sinα
·Δv (α, β1, β2, n1Z) , (7.39)

β′
2 = −Z1

cosα

sinα sin β1
+

σ

2I2n1

s(α)

sinα sin β1
·Θv (α, β1, β2, n1Z) , (7.40)

where

Ψ(α, β1, β2, Z) = −σn1

(
Z2
1 + Z2

2 + Z2
3

)
cosα+

σ

2I2n1
s(α) sinα · Γv (α, β1, β2, n1Z)

+
T1 (α, β1, β2, n1Z)− s(α)

mn1
cosα,

(7.41)

Γv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
sinβ1 sin β2 + x3N

(
α, β1, β2,

Ω

v

)
sin β1 cosβ2

+ x2N

(
α, β1, β2,

Ω

v

)
cos β1,

(7.42)

Δv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β1 sinβ2 + x3N

(
α, β1, β2,

Ω

v

)
cos β1 cos β2

− x2N

(
α, β1, β2,

Ω

v

)
sin β1,

(7.43)

Θv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β2 − x3N

(
α, β1, β2,

Ω

v

)
sin β2. (7.44)

We see that the seventh-order system (7.34)–(7.40) contains an independent sixth-order subsys-
tem (7.35)–(7.40), which can be separately examined on its own six-dimensional phase space.

In particular, this method of separation of an independent sixth-order subsystem can be also applied
under condition (7.21).

Here and in what follows, the dependence on the group of variables (α, β1, β2,Ω/v) is meant as the
composite dependence on (α, β1, β2, z1/v, z2/v, z3/v) (and further of (α, β1, β2, n1Z1, n1Z2, n1Z3)) due
to (7.25) and (7.33).
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2. Case Where the Moment of a Nonconservative Force
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of Chaplygin analytic functions (see [50, 51]), we
take the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα,

x2N

(
α, β1, β2,

Ω

v

)
= x2N0(α, β1, β2) = A sinα cos β1,

x3N

(
α, β1, β2,

Ω

v

)
= x3N0(α, β1) = A sinα sinβ1 cos β2,

x4N

(
α, β1, β2,

Ω

v

)
= x4N0(α, β1, β2) = A sinα sin β1 sinβ2,

(7.45)

where A,B > 0 and v �= 0. We see that in the system considered, the moment of nonconservative
forces is independent of the angular velocity but depends only on the angles α, β1, and β2. The
functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in system (7.34)–(7.40) have
the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα, Δv

(
α, β1, β2,

Ω

v

)
≡ Θv

(
α, β1, β2,

Ω

v

)
≡ 0. (7.46)

Then, due to conditions (7.19) and (7.45), the transformed dynamical part of the equations of
motion (system (7.34)–(7.40)) becomes the analytic system

v′ = vΨ(α, β1, β2, Z), (7.47)

α′ = −Z3 + b
(
Z2
1 + Z2

2 + Z2
3

)
sinα+ b sinα cos2 α, (7.48)

Z ′
3 = sinα cosα− (

Z2
1 + Z2

2

) cosα
sinα

+ bZ3

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ3 sin

2 α cosα, (7.49)

Z ′
2 = Z2Z3

cosα

sinα
+ Z2

1

cosα

sinα

cos β1
sin β1

+ bZ2

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ2 sin

2 α cosα, (7.50)

Z ′
1 = Z1Z3

cosα

sinα
− Z1Z2

cosα

sinα

cos β1
sin β1

+ bZ1

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ1 sin

2 α cosα, (7.51)

β′
1 = Z2

cosα

sinα
, (7.52)

β′
2 = −Z1

cosα

sinα sin β1
, (7.53)

where

Ψ(α, β1, β2, Z) = −b
(
Z2
1 + Z2

2 + Z2
3

)
cosα+ b sin2 α cosα

and the dimensionless parameter b and the constant n1 are chosen as follows:

b = σn0, n2
0 =

AB

2I2
, n1 = n0. (7.54)

Thus, system (7.47)–(7.53) can be considered on its own seven-dimensional phase manifold

W1 = R
1
+{v} × TS3

{
Z1, Z2, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
, (7.55)

i.e., on the direct product of the number half-line and the tangent bundle of the three-dimensional
sphere S3

{
0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
.

We see that the seven-dimensional system (7.47)–(7.53) contains the independent sixth-order sys-
tem (7.48)–(7.53) on its own six-dimensional manifold.
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For the complete integration of system (7.47)–(7.53) we need, in general, six independent first
integrals. However, after the change of variables(

Z1

Z2

)
→

(
Z
Z∗

)
, Z =

√
Z2
1 + Z2

2 , Z∗ = Z2/Z1, (7.56)

system (7.48)–(7.53) splits as follows:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α, (7.57)

Z ′
3 = sinα cosα− Z2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα, (7.58)

Z ′ = ZZ3
cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα, (7.59)

Z ′
∗ = (±)Z

√
1 + Z2∗

cosα

sinα

cos β1
sin β1

, (7.60)

β′
1 = (±)

ZZ∗√
1 + Z2∗

cosα

sinα
, (7.61)

β′
2 = (∓)

Z√
1 + Z2∗

cosα

sinα sin β1
. (7.62)

We see that the sixth-order system also splits into independent subsystems of lower orders: sys-
tem (7.57)–(7.59) of order 3 and system (7.60), (7.61) (after the change of the independent variable)
of order 2. Thus, for the complete integrability of system (7.47), (7.57)–(7.62) it suffices to specify
two independent first integrals of system (7.57)–(7.59), one first integral of system (7.60), (7.61), and
two additional first integrals that “attach” Eqs. (7.62) and (7.47).

Note that system (7.57)–(7.59) can be considered on the tangent bundle TS2 of the two-dimensional
sphere S2.

2.2. Complete list of first integrals. System (7.57)–(7.59) has the form of a system that appears
in the dynamics of a three-dimensional (3D) rigid body in a nonconservative field.

Note that, by (7.19), the value of the velocity of the center of mass is a first integral of system (7.26)–
(7.32) (under condition (7.21)); namely, the function of phase variables

Ψ0(v, α, β1, β2, z1, z2, z3) = v2 + σ2
(
z21 + z22 + z23

)− 2σz3v sinα = V 2
C (7.63)

is constant on phase trajectories of the system (here z1, z2, and z3 are chosen due to (7.25)).
Due to a nondegenerate change of the independent variable (for v �= 0), system (7.47), (7.57)–(7.62)

also possesses an analytic integral, namely, the function of phase variables

Ψ1(v, α, β1, β2, Z, Z∗, Z3) = v2
(
1 + b2

(
Z2 + Z2

3

)− 2bZ3 sinα
)
= V 2

C (7.64)

is constant on phase trajectories of the system.
Equality (7.64) allows one to find the dependence of the velocity of the characteristic point of the

rigid body (the center D of the disk) on the other phase variables without solving system (7.47), (7.57)–
(7.62); namely, for VC �= 0 we have the relation

v2 =
V 2
C

1 + b2
(
Z2 + Z2

3

)− 2bZ3 sinα
. (7.65)

Since the phase space

W2 = R
1
+{v} × TS3

{
Z, Z∗, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
(7.66)
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of system (7.47), (7.57)–(7.62) has dimension 7 and contains asymptotic limit sets, Eq. (7.64) defined
a unique analytic (even continuous) first integral of system (7.47), (7.57)–(7.62) in the whole phase
space (see [23, 24, 43, 53, 103, 105, 137, 152–154, 156, 213, 427, 438]).

We examine the existence of other (additional) first integrals of system (7.47), (7.57)–(7.62). Its
phase space is stratified into surfaces{

(v, α, β1, β2, Z, Z∗, Z3) ∈ W2 : VC = const
}
; (7.67)

dynamics on these surfaces is determined by the first integrals of system (7.47), (7.57)–(7.62).
First, to the independent third-order subsystem (7.57)–(7.59), we put in correspondence the nonau-

tonomous second-order system

dZ3

dα
=

sinα cosα+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα− Z2 cosα/ sinα

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α

,

dZ

dα
=

bZ
(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα+ ZZ3 cosα/ sinα

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α

.

(7.68)

Applying the substitution τ = sinα, we rewrite system (7.68) in the algebraic form:

dZ3

dτ
=

τ + bZ3

(
Z2 + Z2

3

)− bZ3τ
2 − Z2/τ

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

) ,

dZ

dτ
=

bZ
(
Z2 + Z2

3

)− bZτ2 + ZZ3/τ

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

) .
(7.69)

Further, introducing the homogeneous variables by the formulas

Z = u1τ, Z3 = u2τ, (7.70)

we reduce system (7.69)) to the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2
(
u21 + u22

)
τ2 − u21

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1

(
u21 + u22

)
τ2 − bu1τ

2 + u1u2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

(7.71)

which is equivalent to

τ
du2
dτ

=
1− bu2 + u22 − u21

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

τ
du1
dτ

=
2u1u2 − bu1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

.

(7.72)

To the second-order system (7.72), we put in correspondence the nonautonomous first-order equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
, (7.73)

which is easily transformed to the exact differential equation

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (7.74)

Thus, Eq. (7.73) has the first integral

u22 + u21 − bu2 + 1

u1
= C1 = const, (7.75)
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which in the previous variables has the form

Z2
3 + Z2 − bZ3 sinα+ sin2 α

Z sinα
= C1 = const . (7.76)

Remark 7.1. Consider system (7.57)–(7.59) with variable dissipation with zero mean (see [67, 68,
243, 260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438]),
which becomes conservative for b = 0:

α′ = −Z3,

Z ′
3 = sinα cosα− Z2 cosα

sinα
,

Z ′ = ZZ3
cosα

sinα
.

(7.77)

This system possesses two analytic first integrals of the form

Z2
3 + Z2 + sin2 α = C∗

1 = const, (7.78)

Z sinα = C∗
2 = const . (7.79)

Obviously, the ratio of two first integrals (7.78) and (7.79) is also a first integral of system (7.77).
However, for b �= 0, none of the functions

Z2
3 + Z2 − bZ3 sinα+ sin2 α (7.80)

and (7.79) is a first integral of system (7.57)–(7.59), but their ratio is a first integral system (7.57)–
(7.59) for any b.

Further, we find an additional first integral of the third-order system (7.57)–(7.59). First, we
transform the invariant relation (7.75) for u1 �= 0 as follows:

(
u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (7.81)

We see that the parameters of this invariant relation must satisfy the condition

b2 + C2
1 − 4 ≥ 0, (7.82)

and the phase space of system (7.57)–(7.59) is stratified into the family of surfaces defined by (7.81).
Thus, due to relation (7.75), the first equation of system (7.72) takes the form

τ
du2
dτ

=
1− bu2 + u22 − U2

1 (C1, u2)

−u2 + b (1− τ2) + bτ2
(
U2
1 (C1, u2) + u22

) , (7.83)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
(7.84)

and the integration constant C1 is defined by condition (7.82), or the form of the Bernoulli equation:

dτ

du2
=

(b− u2)τ − bτ3
(
1− U2

1 (C1, u2)− u22
)

1− bu2 + u22 − U2
1 (C1, u2)

. (7.85)

Using (7.84), we can transform Eq. (7.85) to the form of a nonhomogeneous linear equation:

dp

du2
=

2(u2 − b)p + 2b
(
1− U2

1 (C1, u2)− u22
)

1− bu2 + u22 − U2
1 (C1, u2)

, p =
1

τ2
. (7.86)

This means that we can find another transcendental first integral in the explicit form (i.e., in the
form of a finite combination of quadratures). Herewith, the general solution of Eq. (7.86) depends on
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an arbitrary constant C2. We omit complete calculations but note that the general solution of the
homogeneous linear equation obtained from (7.86) in the particular case b = C1 = 2 has the form

p = p0(u2) = C
[√

1− (u2 − 1)2 ± 1
]
exp

[√
1∓√

1− (u2 − 1)2

1±√
1− (u2 − 1)2

]
, C = const . (7.87)

Remark 7.2. Formally, in the expression of the found first integral, we must substitute instead of C1

the left-hand side of the first integral (7.75).
Then the obtained additional first integral has the following structure (similar to the transcendental

first integral from planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (7.88)

Thus, for integration of the sixth-order system (7.57)–(7.62) we already have two independent
first integrals. For the complete integration, it suffices to find one first integral for the (potentially
separated) system (7.60), (7.61) and an additional first integral that “attaches” Eq. (7.62).

To find a first integral of the (potentially separated) system (7.60), (7.61), we put into correspon-
dence the following nonautonomous first-order equation:

dZ∗
dβ1

=
1 + Z2∗
Z∗

cos β1
sin β1

. (7.89)

After integration we obtain the required invariant relation√
1 + Z2∗
sin β1

= C3 = const; (7.90)

in the variables Z1 and Z2 it has the form√
Z2
1 + Z2

2

Z1 sin β1
= C3 = const . (7.91)

Further, to find an additional first integral that “attaches” Eq. (7.62), to Eqs. (7.62) and (7.60) we
put into correspondence the following nonautonomous equation:

dZ∗
dβ2

= − (
1 + Z2

∗
)
cos β1. (7.92)

Since, due to (7.90),

C3 cosβ1 = ±
√
C2
3 − 1− Z2∗ , (7.93)

we have
dZ∗
dβ2

= ∓ 1

C3

(
1 + Z2

∗
)√

C2
3 − 1− Z2∗ . (7.94)

Integrating this relation, we obtain the following quadrature:

∓(β2 + C4) =

∫
C3dZ∗

(1 + Z2∗ )
√
C2
3 − 1− Z2∗

, C4 = const . (7.95)

Another integration leads to the relation

∓ tan(β2 + C4) =
C3Z∗√

C2
3 − 1− Z2∗

, C4 = const . (7.96)

In the variables Z1 and Z2, this invariant relation has the form

∓ tan(β2 + C4) =
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

, C4 = const . (7.97)
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Finally, we have the following form of the additional first integral that “attaches” Eq. (7.62):

arctan
C3Z∗√

C2
3 − 1− Z2∗

± β2 = C4, C4 = const, (7.98)

or

arctan
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

± β2 = C4, C4 = const . (7.99)

Thus, in the case considered the system of dynamical equations (7.3)–(7.6), (7.9)–(7.14) under
condition (7.45) has 8 invariant relations: the analytic nonintegrable constraint of the form (7.19)
corresponding to the analytic first integral (7.63), the cyclic first integrals of the form (7.17) and (7.18),
the first integral of the form (7.76). Moreover, there exists a first integral that can be found from
Eq. (7.86); it is a transcendental function of phase variables (in the sense of complex analysis). Finally,
we have the transcendental first integrals of the form (7.90) (or (7.91)) and (7.98) (or (7.99)).

Theorem 7.1. System (7.3)–(7.6), (7.9)–(7.14) under conditions (7.19), (7.45), (7.18), and (7.17)
possesses 8 invariant relations (complete set), four of which are transcendental functions (from the
point of view of complex analysis). Herewith, seven of these eight relations are expressed through finite
combinations of elementary function.

2.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 7.2. The first integral (7.76) of system (7.3)–(7.6), (7.9)–(7.14) under conditions (7.19),
(7.45), (7.18), and (7.17) is constant on the phase trajectories of system (6.74)–(6.79).

Proof. Indeed, the first integral (7.76) can be obtained by the change of coordinates by relation (7.75),
whereas the first integral (6.95) can be obtained by the change of coordinates by relation (6.94). But
relations (7.75) and (6.94) coincide. The theorem is proved.

Thus, we have the following topological and mechanical analogies in the sense explained above:

(1) a motion of a free rigid body in a nonconservative field with a tracing force (under a noninte-
grable constraint);

(2) a motion of a fixed physical pendulum in flowing medium (a nonconservative field);
(3) a rotation of a rigid body about the center of mass, which, in its turn, moves rectilinearly and

uniformly in a nonconservative field.

On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case Where the Moment of a Nonconservative Force
Depends on the Angular Velocity

3.1. Introduction of the dependence on the angular velocity and the reduced system.
In this section, we continue to study the dynamics of a four-dimensional rigid body in the four-
dimensional space. The present section, similarly to the previous section, is devoted to the study of
the motion in the case where the moment of forces depends on the tensor of angular velocity. Thus,
we introduce this dependence similarly to the previous chapter. This also allows us to introduce this
dependence for multi-dimensional bodies.

Let x = (x1N , x2N , x3N , x4N ) be the coordinates of the application point N of the nonconservative
force (influence of the medium) on the three-dimensional disk and Q = (Q1, Q2, Q3, Q4) be the compo-
nents of the force S of the influence of the medium independent of the tensor of angular velocity. We
consider only linear dependence of the function (x1N , x2N , x3N , x4N ) on the tensor of angular velocity
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since this introduction itself is not obvious (see [33, 34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205,
249, 250, 261, 274–276, 440]).

We adopt the following dependence:

x = Q+R, (7.100)

where R = (R1, R2, R3, R4) is a vector-valued function containing the components of the tensor of
angular velocity. The dependence of the functions R on the components of the tensor of angular
velocity is gyroscopic:

R =

⎛
⎜⎜⎝
R1

R2

R3

R4

⎞
⎟⎟⎠ = −1

v

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ , (7.101)

where (h1, h2, h3, h4) are some positive parameters (cf. [322, 330, 331, 345, 393]).
Since x1N ≡ 0, we have

x2N = Q2 − h1
ω6

v
, x3N = Q3 + h1

ω5

v
, x4N = Q4 − h1

ω3

v
. (7.102)

Similarly to the choice of the Chaplygin analytic functions (see [50, 51]),

Q2 = A sinα cos β1,

Q3 = A sinα sin β1 cosβ2,

Q4 = A sinα sin β1 sinβ2,

(7.103)

where A > 0, and we take the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα, B > 0,

x2N

(
α, β1, β2,

Ω

v

)
= A sinα cos β1 − h

ω6

v
, h = h1 > 0, v �= 0,

x3N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 cos β2 + h

ω5

v
, h = h1 > 0, v �= 0,

x4N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 sin β2 − h

ω3

v
, h = h1 > 0, v �= 0.

(7.104)

This shows that in the problem considered, there is an additional damping (but accelerating in certain
domains of the phase space) moment of a nonconservative force (i.e., there is a dependence of the
moment on the components of the tensor of angular velocity). By the dynamical symmetry of the
body, h2 = h3 = h4.

The functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in system (7.35)–(7.40)
have the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα− h

v
z3,

Δv

(
α, β1, β2,

Ω

v

)
=

h

v
z2,

Θv

(
α, β1, β2,

Ω

v

)
= −h

v
z1.

(7.105)
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By conditions (7.19) and (7.104), the transformed dynamical part of the equations of motion (sys-
tem (7.34)–(7.40)) becomes the following analytic system:

v′ = vΨ(α, β1, β2, Z), (7.106)

α′ = −Z3 + b
(
Z2
1 + Z2

2 + Z2
3

)
sinα+ b sinα cos2 α− bH1Z3 cos

2 α, (7.107)

Z ′
3 = sinα cosα− (1 + bH1)

(
Z2
1 + Z2

2

) cosα
sinα

+ bZ3

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ3 sin

2 α cosα

+ bH1Z
2
3 sinα cosα−H1Z3 cosα,

(7.108)

Z ′
2 = (1 + bH1)Z2Z3

cosα

sinα
+ (1 + bH1)Z

2
1

cosα

sinα

cos β1
sin β1

+ bZ2

(
Z2
1 + Z2

2 + Z2
3

)
cosα

− bZ2 sin
2 α cosα+ bH1Z2Z3 sinα cosα−H1Z2 cosα,

(7.109)

Z ′
1 = (1 + bH1)Z1Z3

cosα

sinα
− (1 + bH1)Z1Z2

cosα

sinα

cos β1
sin β1

+ bZ1

(
Z2
1 + Z2

2 + Z2
3

)
cosα

− bZ1 sin
2 α cosα+ bH1Z1Z3 sinα cosα−H1Z1 cosα,

(7.110)

β′
1 = (1 + bH1)Z2

cosα

sinα
, (7.111)

β′
2 = − (1 + bH1)Z1

cosα

sinα sin β1
, (7.112)

where

Ψ(α, β1, β2, Z) = −b
(
Z2
1 + Z2

2 + Z2
3

)
cosα+ b sin2 α cosα− bH1Z3 sinα cosα;

as above, the dimensionless parameters b and H1 and the constant n1 are chosen as follows:

b = σn0, n2
0 =

AB

2I2
, H1 =

Bh

2I2n0
, n1 = n0. (7.113)

Thus, system (7.106)–(7.112) can be considered on its seven-dimensional phase manifold

W1 = R
1
+{v} × TS3

{
Z1, Z2, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
, (7.114)

i.e., on the direct product of the number half-line and the tangent bundle of the three-dimensional
sphere S3{0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π}.

We see that the seventh-order system (7.106)–(7.112) contains the independent sixth-order sys-
tem (7.107)–(7.112) on its own six-dimensional manifold.

For the complete integration of system (7.106)–(7.112), in general, we need six independent first
integrals. However, after the change of variables(

Z1

Z2

)
→

(
Z
Z∗

)
, Z =

√
Z2
1 + Z2

2 , Z∗ = Z2/Z1, (7.115)

system (7.107)–(7.112) splits as follows:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos

2 α, (7.116)

Z ′
3 = sinα cosα− (1 + bH1)Z

2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

+ bH1Z
2
3 sinα cosα−H1Z3 cosα,

(7.117)
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Z ′ = (1 + bH1)ZZ3
cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα

+ bH1ZZ3 sinα cosα−H1Z cosα,
(7.118)

Z ′
∗ = (±) (1 + bH1)Z

√
1 + Z2∗

cosα

sinα

cosβ1
sinβ1

, (7.119)

β′
1 = (±) (1 + bH1)

ZZ∗√
1 + Z2∗

cosα

sinα
, (7.120)

β′
2 = (∓) (1 + bH1)

Z√
1 + Z2∗

cosα

sinα sin β1
. (7.121)

We see that the sixth-order system splits into independent subsystems of lower orders: system (7.116)–
(7.118) of order 3 and system (7.119), (7.120) (after the change of the independent variable) of order 2.
This, for the complete integrability of system (7.106), (7.116)–(7.121), it suffices to specify two inde-
pendent first integrals of system (7.116)–(7.118), one first integral of system (7.119), (7.120), and two
additional first integrals that “attach” Eqs. (7.121) and (7.106).

Note that system (7.116)–(7.118) can be considered on the tangent bundle TS2 of the two-dimensional
sphere S2.

3.2. Complete list of first integrals. System (7.116)–(7.118) has the form of a system of equa-
tions that appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative field.

Note that, by (7.19), the value of the velocity of the center of mass is a first integral of system (7.26)–
(7.32) (under condition (7.21)); namely, the function of phase variables

Ψ0(v, α, β1, β2, z1, z2, z3) = v2 + σ2
(
z21 + z22 + z23

)− 2σz3v sinα = V 2
C (7.122)

is constant on phase trajectories of this system (the values of z1, z2, and z3 are taken due to (7.25)).
Due to the nondegenerate change of the independent variable (for v �= 0), system (7.106), (7.116)–

(7.121) also possesses an analytic integral, namely, the function of phase variables

Ψ1(v, α, β1, β2, Z, Z∗, Z3) = v2
(
1 + b2

(
Z2 + Z2

3

)− 2bZ3 sinα
)
= V 2

C (7.123)

is constant on phase trajectories of this system.
Equality (7.123) allows one to find the dependence of the velocity of the characteristic point of the

rigid body (the cemter D of the disk) on other phase variable without solving system (7.106), (7.116)–
(7.121); namely, for VC �= 0 we have

v2 =
V 2
C

1 + b2
(
Z2 + Z2

3

)− 2bZ3 sinα
. (7.124)

Since the phase space

W2 = R
1
+{v} × TS3

{
Z, Z∗, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
(7.125)

of system (7.106), (7.116)–(7.121) has dimension 7 and contains asymptotic limit sets, we see that
Eq. (7.123) determines the unique analytic (even continuous) first integral of system (7.106), (7.116)–
(7.121) on the whole phase space (cf. [23, 24, 43, 53, 103, 105, 137, 152–154, 156, 213, 427, 438]).

We examine the existence of other (additional) first integrals of system (7.106), (7.116)–(7.121). Its
phase space is stratified into surfaces{

(v, α, β1, β2, Z, Z∗, Z3) ∈ W2 : VC = const
}
; (7.126)

the dynamics on these surfaces is determined by the first integrals of system (7.106), (7.116)–(7.121).
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First, to the independent third-order subsystem (7.116)–(7.118), we put in correspondence the
nonautonomous second-order system

dZ3

dα
=

R2(α,Z,Z3)

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos2 α

,

dZ

dα
=

R1(α,Z,Z3)

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos2 α

,

R2(α,Z,Z3) = sinα cosα+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

− (1 + bH1)Z
2 cosα

sinα
+ bH1Z

2
3 sinα cosα−H1Z3 cosα,

R1(α,Z,Z3) = bZ
(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα

+ (1 + bH1)ZZ3
cosα

sinα
+ bH1ZZ3 sinα cosα−H1Z cosα.

(7.127)

Using the substitution τ = sinα, we rewrite system (7.127) in the algebraic form

dZ3

dτ
=

τ + bZ3

(
Z2 + Z2

3

)− bZ3τ
2 − (1 + bH1)Z

2/τ + bH1Z
2
3τ −H1Z3

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

)− bH1Z3 (1− τ2)
,

dZ

dτ
=

bZ
(
Z2 + Z2

3

)− bZ1τ
2 + (1 + bH1)ZZ3/τ + bH1ZZ3τ −H1Z

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

)− bH1Z3 (1− τ2)
.

(7.128)

Further, introducing the homogeneous variables by the formulas

Z = u1τ, Z3 = u2τ, (7.129)

we transform system (7.128) to the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2
(
u21 + u22

)
τ2 − (1 + bH1)u

2
1 −H1u2 + bH1u

2
2τ

2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1

(
u21 + u22

)
τ2 − bu1τ

2 + (1 + bH1)u1u2 −H1u1 + bH1u1u2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

(7.130)

which is equivalent to

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

.

(7.131)

To the second-order system (7.131), we put in correspondence the first-order nonautonomous equa-
tion

du2
du1

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

2(1 + bH1)u1u2 − (b+H1)u1
, (7.132)

which can be easily transformed to the complete differential

d

(
(1 + bH1)u

2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1

)
= 0. (7.133)

Therefore, Eq. (7.132) has the first integral

(1 + bH1)u
2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1
= C1 = const, (7.134)
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which in the previous variables has the form

(1 + bH1)Z
2
3 + (1 + bH1)Z

2 − (b+H1)Z3 sinα+ sin2 α

Z sinα
= C1 = const . (7.135)

Remark 7.3. Consider system (7.116)–(7.118) with variable dissipation with zero mean (see [67, 68,
243, 260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437, 438]),
which becomes conservative for b = H1:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− b2Z3 cos

2 α,

Z ′
3 = sinα cosα− (

1 + b2
)
Z2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

+ b2Z2
3 sinα cosα− bZ3 cosα,

Z ′ =
(
1 + b2

)
ZZ2

cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα+ b2ZZ3 sinα cosα− bZ cosα.

(7.136)
It possesses two analytic first integrals(

1 + b2
) (

Z2
3 + Z2

)− 2bZ3 sinα+ sin2 α = C∗
1 = const, (7.137)

Z sinα = C∗
2 = const . (7.138)

Obviously, the ratio of two first integrals (7.137) and (7.138) is also a first integral of system (7.136).
However, for b �= H1, none of the functions

(1 + bH1)
(
Z2
3 + Z2

)− (b+H1)Z3 sinα+ sin2 α (7.139)

and (7.138) is a first integral of system (7.116)–(7.118), but their ratio is a first integral of sys-
tem (7.116)–(7.118) for all b and H1.

We find the explicit form of an additional first integral of the third-order system (7.116)–(7.118).
For this, we transform the invariant relation (7.134) for u1 �= 0 as follows:(

u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (7.140)

We see that the parameters of this invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (7.141)

and the phase space of system (7.116)–(7.118) is stratified into the family of surfaces determined by
Eq. (7.140).

Thus, by relation (7.134), the first equation of system (7.131) has the form

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)U

2
1 (C1, u2)

−u2 + b (1− τ2) + bτ2
(
U2
1 (C1, u2) + u22

)− bH1u2 (1− τ2)
, (7.142)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(1 + bH1)

(
1− (b+H1)u2 + (1 + bH1)u22

)}
(7.143)

and the integration constant C1 is defined by condition (7.141), or the form of the Bernoulli equation:

dτ

du2
=

(b− (1 + bH1)u2)τ − bτ3
(
1− U2

1 (C1, u2)− u22 −H1u2
)

1− (b+H1)u2 + (1 + bH1)u
2
2 − (1 + bH1)U

2
1 (C1, u2)

. (7.144)

Using (7.143), we can easily transform Eq. (7.144) to the nonhomogeneous linear equation

dp

du2
=

2((1 + bH1)u2 − b)p + 2b
(
1−H1u2 − u22 − U2

1 (C1, u2)
)

1− (b+H1)u2 + (1 + bH1)u
2
2 − (1 + bH1)U

2
1 (C1, u2)

, p =
1

τ2
. (7.145)
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This means that there exists another transcendental first integral in explicit form (i.e., through a finite
combination of quadratures). Herewith, the general solution of Eq. (7.145) depends on an arbitrary
constant C2. We omit complete calculations but note that the general solution of the homogeneous
linear equation obtained from (7.145), in the particular case

|b−H1| = 2, C1 =
1−A4

1

1 +A4
1

, A1 =
1

2
(b+H1),

has the following solution:

p = p0(u2) = C[1−A1u2]
2/(1+A4

1)

∣∣∣∣∣
√

C2
1 − 4A2

1(1−A1u2)2 ± C1√
C2
1 − 4A2

1(1−A1u2)2 ∓ C1

∣∣∣∣∣
±A4

1/(1+A4
1)

× exp
2(A1 − b)(

1 +A4
1

)
A1(A1u2 − 1)

, C = const . (7.146)

Remark 7.4. Formally, in the expression of the found first integral, we must substitute instead of C1

the left-hand side of the first integral (7.134).
Then the additional first integral obtained has the following structure (similar to the transcendental

first integral from the planar dynamics):

ln | sinα|+G2

(
sinα,

Z3

sinα
,

Z

sinα

)
= C2 = const . (7.147)

Thus, for integration of the sixth-order system (7.116)–(7.121) we already have two independent
first integrals. For the complete integrability, as was noted above, it suffices to find one first integral
for the (potentially separated) system (7.119), (7.120) and an additional first integral that “attaches”
Eq. (7.121).

To find the first integral of the (potentially separated) system (7.119), (7.120), we put in correspon-
dence the following nonautonomous first-order equation:

dZ∗
dβ1

=
1 + Z2∗
Z∗

cos β1
sin β1

. (7.148)

After integration, this leads to the required invariant relation√
1 + Z2∗
sin β1

= C3 = const, (7.149)

which in the variables Z1 and Z2 has the form√
Z2
1 + Z2

2

Z1 sin β1
= C3 = const . (7.150)

Further, to find an additional first integral that “attaches” Eq. (7.121), to Eqs. (7.121) and (7.119)
we put in correspondence the following nonautonomous equation:

dZ∗
dβ2

= − (
1 + Z2

∗
)
cos β1. (7.151)

Since, by (7.149),

C3 cosβ1 = ±
√
C2
3 − 1− Z2∗ , (7.152)

we have
dZ∗
dβ2

= ∓ 1

C3

(
1 + Z2

∗
)√

C2
3 − 1− Z2∗ . (7.153)
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Integrating this relation, we obtain the following quadrature:

∓(β2 +C4) =

∫
C3dZ∗

(1 + Z2∗ )
√

C2
3 − 1− Z2∗

, C4 = const . (7.154)

Another integration leads to the relation

∓ tan(β2 + C4) =
C3Z∗√

C2
3 − 1− Z2∗

, C4 = const . (7.155)

In the variables Z1 and Z2, this invariant relation becomes

∓ tan(β2 + C4) =
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

, C4 = const . (7.156)

Finally, we have the additional first integral that “attaches” Eq. (7.121):

arctan
C3Z∗√

C2
3 − 1− Z2∗

± β2 = C4, C4 = const (7.157)

or

arctan
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

± β2 = C4, C4 = const . (7.158)

Thus, in the case considered, the system of dynamical equations (7.3)–(7.6), (7.9)–(7.14) under con-
dition (7.104) has 8 invariant relations: the analytic nonintegrable constraint of the form (7.19) corre-
sponding to the analytic first integral (7.122), the cyclic first integrals of the form (7.17) and (7.18), the
first integral of the form (7.135); moreover, there is a first integral that can be found from Eq. (7.145)
(it is a transcendental function of phase variables in the sense of complex analysis), and, finally,
transcendental first integrals of the form (7.149) (or (7.150)) and (7.157) (or (7.158)).

Theorem 7.3. System (7.3)–(7.6), (7.9)–(7.14) under conditions (7.19), (7.104), (7.18), and (7.17)
possesses 8 invariant relations (complete set), four of which are transcendental functions (from the
point of view of complex analysis). Herewith, at least seven of these eight relations are expressed
through finite combinations of elementary functions.

3.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 7.4. The first integral (7.135) of system (7.3)–7.6, (7.9)–(7.14) under conditions (7.19),
(7.104), (7.18), and (7.17) is constant on phase trajectories of system (6.145)–(6.150).

Proof. Indeed, the first integral (7.135) can be obtained by the change of coordinates by relation (7.134),
whereas the first integral (6.166) can be obtained by the change of coordinates by relation (6.165).
But relations (7.134) and (6.165) coincides. The theorem is proved.

Thus, we have the following topological and mechanical analogies in the sense explained above:

(1) a motion of a free rigid body in a nonconservative field with a tracing force (under a noninte-
grable constraint);

(2) a motion of a fixed physical pendulum in a flowing medium (nonconservative field);
(3) a rotation of a rigid body about the center of mass that moves rectilinearly and uniformly in a

nonconservative field.

On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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Chapter 8

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN THE FOUR-DIMENSIONAL SPACE, III

In this chapter, we systematize results, both new and obtained earlier, concerning the study of equa-
tions of motion of a dynamically symmetric four-dimensional (4D) rigid body in a field of noncon-
servative forces in the case of a special dynamical symmetry. These equations are taken from the
dynamics of realistic rigid bodies of lesser dimension that interact with a resisting medium by laws of
jet flow when the body is subjected to a nonconservative tracing force such that the magnitude of the
velocity of a certain typical point of the body and another phase variable remain constant throughout
the motion; this means that the system possesses a a nonintegrable servo constraint (see [1, 64, 70,
72, 119–121, 157, 164–167, 182, 184, 191, 198, 237, 242, 346, 351, 352, 390]).

Earlier (see [164–167]), the author has already proved the complete integrability of the equations of
a plane-parallel motion of a body in a resisting medium under the jet flow conditions when the system
of dynamical equations possesses a first integral, which is a transcendental (in the sense of the theory
of functions of a complex variable) function of quasi-velocities having essential singularities. It was
assumed that the interaction of the medium with the body is concentrated on a part of the surface of
the body that has the form of a (one-dimensional) plate.

In the sequel (see [193, 196, 202, 204, 208, 209, 218, 232, 241]), the planar problem was generalized
to the spatial (three-dimensional) case, where the system of dynamical equations possesses a complete
set of transcendental first integrals. In this case, it was assumed that the interaction of the medium
with the body is concentrated on the part of the surface of the body that has the form of a planar
(two-dimensional) disk.

In this chapter, we discuss results, both new and obtained earlier, concerning the case where the
interaction of the medium with the body is concentrated on the part of the surface of the body that has
the form of a three-dimensional disk and the force acts in the direction perpendicular to the disk. We
systematize these results and formulate them in the invariant form. We also introduce the additional
dependence of the moment of a nonconservative force on the angular velocity; this dependence can be
generalized to the motion in higher-dimensional spaces.

1. General Problem on the Motion under a Tracing Force

Consider the motion of a homogeneous, dynamically symmetric (case (6.1)), rigid body with front
end face (a two-dimensional disk interacting with a medium that fills the four-dimensional space) in
the field of a resistance force S under the quasi-stationarity conditions (see [28, 50, 51, 62–66, 98, 112,
119–121, 160–169, 171, 431, 432].

Let (v, α, β2, β1) be the coordinates of the velocity vector of a certain typical point D of a rigid body
(namely, D be the center of two-dimensional disk) such that α is the angle between the vector vD and
the plane Dx1x2, β2 be the angle measured in the plane Dx1x2 between the velocity vector vD and
its projection on the plane Dx1x2, and let β1 be the angle measured in the plane Dx3x4 between the
velocity vector vD and its projection on the plane Dx3x4. Let

Ω =

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠
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be the tensor of angular velocity of the body, let Dx1x2x3x4 be the coordinate system attached to
the body such that the straight line CD lies in the plane Dx1x2 (here C is the center of mass of the
body), and the axes Dx3 and Dx4 lie in the plane of the disk; moreover, let I1, I2 = I1, I3, I4 = I3,
and m be the characteristics of inertia and mass.

We adopt the following expansions in the projections to the axes of the coordinate systemDx1x2x3x4:

DC = {σ sin γ, −σ cos γ, 0, 0},
vD =

{
v cosα sin β2, v cosα cos β2, v sinα cos β1, v sinα sin β1

}
.

(8.1)

In the case (6.2), the expansion is also valid for the function of the action of the interaction to the
four-dimensional body:

S = {S1, S2, 0, 0} (8.2)

and

S1 = S sin γ, S2 = −S cos γ, γ = const, (8.3)

i.e., in this case F = S, and the angle γ is measured in the plane Dx1x2.
Then the part of dynamical equations of the body motion (including also the case of Chaplygin

analytical functions [50, 51], see below) that describe the motion of the center of mass and correspond
to the space R4 where tangent forces to the three-dimensional disk vanish, has the form

v̇ cosα sin β2 − α̇v sinα sin β2 + β̇2v cosα cos β2

− ω6v cosα cosβ2 + ω5v sinα cos β1 − ω3v sinα sin β1

− σ(ω2
6 + ω2

5 + ω2
3) sin γ − σ(ω4ω5 + ω2ω3) cos γ + σω̇6 cos γ =

S1

m
, (8.4)

v̇ cosα cos β2 − α̇v sinα cos β2 − β̇2v cosα sin β2

+ ω6v cosα sinβ2 − ω4v sinα cos β1 + ω2v sinα sin β1

+ σ(ω2
6 + ω2

4 + ω2
2) cos γ + σ(ω4ω5 + ω2ω3) sin γ + σω̇6 sin γ =

S2

m
, (8.5)

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1

− ω5v cosα sinβ2 + ω4v cosα cos β2 − ω1v sinα sin β1

+ σ(ω4ω6 − ω1ω3) sin γ − σ(ω5ω6 + ω1ω2) cos γ − σω̇5 sin γ − σω̇4 cos γ = 0, (8.6)

v̇ sinα sin β1 + α̇v cosα sin β1 + β̇1v sinα cos β1

+ ω3v cosα sin β2 − ω2v cosα cos β2 + ω1v sinα cos β1

− σ(ω2ω6 + ω1ω5) sin γ + σ(ω3ω6 − ω1ω4) cos γ + σω̇3 sin γ + σω̇2 cos γ = 0, (8.7)

where

S = s(α)v2, σ = CD, v > 0. (8.8)

Further, the auxiliary matrix (6.11) for the calculation of the moment of the resisting force has the
form (

0 0 x3N x4N
S1 S2 0 0

)
, (8.9)

and, therefore, the part of dynamical equations that describe the motion of the body around the center
of mass and correspond to the Lie algebra so(4) has the form

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (8.10)
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(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = −x4N

(
α, β1, β2,

Ω

v

)
s(α)v2 cos γ, (8.11)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = −x4N

(
α, β1, β2,

Ω

v

)
s(α)v2 sin γ, (8.12)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = x3N

(
α, β1, β2,

Ω

v

)
s(α)v2 cos γ, (8.13)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = x3N

(
α, β1, β2,

Ω

v

)
s(α)v2 sin γ, (8.14)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = 0. (8.15)

Thus, the direct product

R1 × S3 × so(4) (8.16)

of the four-dimensional manifold by the Lie algebra so(4) is the phase space of the tenth-order system
(8.4)–(8.7), (8.10)–(8.15).

Note that system (8.4)–(8.7), (8.10)–(8.15), by the dynamical symmetry

I1 = I2, I3 = I4, (8.17)

possesses the cyclic first integrals

ω1 ≡ ω0
1 = const, ω6 ≡ ω0

6 = const . (8.18)

Therefore, in what follows, we consider the dynamics of the system on the zero level:

ω0
1 = ω0

6 = 0. (8.19)

If we consider a more general problem on the motion of the body with a tracing force T that acts
in the plane Dx1x2 and obeys the fulfillment of the conditions (see also [164–167])

v ≡ const, β2 ≡ const, (8.20)

then in system (8.4)–(8.7), (8.10)–(8.15), we must replace F1 and F2 by

T1 + S1, T2 + S2, (8.21)

respectively.
As a result of the corresponding choice of the magnitude T of the tracing force, it is possible to

satisfy Eqs. (8.20) formally during all time of the motion. Indeed, if we express T using (8.4)–(8.7)
and (8.10)–(8.15), we obtain for cosα �= 0

T1 = T1,v,β2(α, β1,Ω) = −mσ(ω2
5 + ω2

3) sin γ −mσ(ω4ω5 + ω2ω3) cos γ

+mω5v sinα cos β1 cos
2 β2 −mω3v sinα sin β1 cos

2 β2

+mω4v sinα cos β1 sinβ2 cos β2 −mω2v sinα sin β1 sinβ2 cos β2

− s(α)v2
[
sin γ − mσ

I1 + I3

sinα

cosα
sinβ2 · Λv,β2

(
α, β1,

Ω

v

)]
, (8.22)

T2 = T2,v,β2(α, β1,Ω) = mσ(ω2
4 + ω2

2) cos γ +mσ(ω4ω5 + ω2ω3) sin γ

−mω4v sinα cos β1 sin
2 β2 +mω2v sinα sin β1 sin

2 β2

−mω5v sinα cos β1 sinβ2 cos β2 +mω3v sinα sin β1 sinβ2 cos β2

+ s(α)v2
[
cos γ − mσ

I1 + I3

sinα

cosα
cosβ2 · Λv,β2

(
α, β1,

Ω

v

)]
, (8.23)
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where

Λv,β2

(
α, β1,

Ω

v

)
= x3N

(
α, β1, β2,

Ω

v

)
cos β1 + x4N

(
α, β1, β2,

Ω

v

)
sin β1. (8.24)

Conditions (8.18)–(8.20) are used for obtaining Eqs. (8.22) and (8.23).
This procedure can be interpreted in two ways. First, we have transformed the system using the

tracing force (control) that provides the consideration of interesting classes of motion (8.20). Second,
we can treat this as an order-reduction procedure. Indeed, system (8.4)–(8.7), (8.10)–(8.15) generates
the following independent system of sixth order:

α̇v cosα cos β1 − β̇1v sinα sin β1 − ω5v cosα sinβ2

+ ω4v cosα cos β2 − σω̇5 sin γ − σω̇4 cos γ = 0, (8.25)

α̇v cosα sin β1 + β̇1v sinα cos β1 + ω3v cosα sinβ2

− ω2v cosα cos β2 + σω̇3 sin γ + σω̇2 cos γ = 0, (8.26)

(I1 + I3)ω̇2 = −x4N

(
α, β1, β2,

Ω

v

)
s(α)v2 cos γ, (8.27)

(I1 + I3)ω̇3 = −x4N

(
α, β1, β2,

Ω

v

)
s(α)v2 sin γ, (8.28)

(I1 + I3)ω̇4 = x3N

(
α, β1, β2,

Ω

v

)
s(α)v2 cos γ, (8.29)

(I1 + I3)ω̇5 = x3N

(
α, β1, β2,

Ω

v

)
s(α)v2 sin γ, (8.30)

which, in addition to the permanent parameters specified above, contains the parameters v and β2.

1.1. Two approaches to the integrability. First, we make a remark on analytic first integrals.
Obviously, system (8.25)–(8.30) possesses two analytical first integrals expressed as finite combinations
of elementary functions:

ω2 sin γ − ω3 cos γ = W ′
1 = const, (8.31)

ω4 sin γ − ω5 cos γ = W ′
2 = const . (8.32)

This means that system (8.25)–(8.30) can be reduced to a fourth-order system on its own four-
dimensional phase manifold.

Further, we can study system (8.25)–(8.30) in two ways.
I. We may ignore the first integrals (8.31) and (8.32) of the system. Then, after transformations,

we reduce system (8.25)–(8.30) to an equivalent system in which a lower-dimensional system is sepa-
rated. For complete integration, it suffices to find several independent first integrals (owing to (8.31)
and (8.32), the number of these integrals is two less than the total number of integrals).

II. Using the first integrals (8.31) and (8.32), we can express two phase variables from the list
ω2, ω3, ω4, and ω5. In this case, we obtain a fourth-order system on its own four-dimensional phase
manifold as a reduction of system (8.25)–(8.30).

Consider the first way.
Indeed, system (8.25)–(8.30) is equivalent to the following system:

α̇v cosα− ω5v cosα cosβ1 sin β2 + ω4v cosα cos β1 cos β2

+ ω3v cosα sin β1 sinβ2 − ω2v cosα sin β1 cos β2 − σω̇5 sin γ cos β1

− σω̇4 cos γ cos β1 + σω̇3 sin γ sinβ1 + σω̇2 cos γ sin β1 = 0, (8.33)
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β̇1v sinα+ ω3v cosα cos β1 sin β2 − ω2v cosα cos β1 cos β2

+ ω5v cosα sin β1 sinβ2 − ω4v cosα sin β1 cos β2 + σω̇3 sin γ cos β1

+ σω̇2 cos γ cos β1 + σω̇5 sin γ sinβ1 + σω̇4 cos γ sin β1 = 0, (8.34)

ω̇2 = − v2

I1 + I3
x4N

(
α, β1, β2,

Ω

v

)
s(α) cos γ, (8.35)

ω̇3 = − v2

I1 + I3
x4N

(
α, β1, β2,

Ω

v

)
s(α) sin γ, (8.36)

ω̇4 =
v2

I1 + I3
x3N

(
α, β1, β2,

Ω

v

)
s(α) cos γ, (8.37)

ω̇5 =
v2

I1 + I3
x3N

(
α, β1, β2,

Ω

v

)
s(α) sin γ, (8.38)

We introduce the new quasi-velocities in the system. For this, we transform ω2, ω3, ω4, and ω5 by
the following rotations:(

z1
−z2

)
= T∗(−β1)

(
ω3

ω5

)
,

(
z3
−z4

)
= T∗(−β1)

(
ω2

ω4

)
, (8.39)

where

T∗(β1) =
(

cos β1 − sin β1
sin β1 cos β1

)
, (8.40)

and also (
w1

w2

)
= T∗(β2)

(
z3
z1

)
,

(
w3

w4

)
= T∗(−β2)

(−z4
z2

)
. (8.41)

Thus, the following relations hold:

z1 = ω3 cos β1 + ω5 sinβ1, z2 = ω3 sin β1 − ω5 cos β1,

z3 = ω2 cos β1 + ω4 sinβ1, z4 = ω2 sin β1 − ω4 cos β1,

w1 = −z1 sin β2 + z3 cos β2, w2 = z3 sin β2 + z1 cos β2,

w3 = z2 sin β2 − z4 cos β2, w4 = z4 sin β2 + z2 cos β2.

(8.42)

We see from (8.33)–(8.38) that on the manifold

O2 =

{
(α, β1, ω2, ω3, ω4, ω5) ∈ R6 : α = πk/2, k ∈ Z

}
, (8.43)

the system is not uniquely solvable with respect to α̇ and β̇1. Thus, on the manifold (8.43), the
uniqueness theorem formally is violated. Moreover, first, the uncertainty appears for even or odd k due
to the degeneration of the coordinates (v, α, β1, β2), which parameterize the three-dimensional sphere
(note that they are not the conventional spherical coordinates), and, second, an obvious violation of
the uniqueness theorem for odd k occurs since the first equation in (8.33) is degenerate in this case.

Indeed, the Jacobian of the transformation (x1, x2, x3, x4) → (v, α, β1, β2) defined by the formulas

x1 = v cosα sin β2,

x2 = v cosα cos β2,

x3 = v sinα cos β1,

x4 = v sinα sin β1

(8.44)

is equal to

v3 cosα sinα;
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it differs from the Jacobian of the generalized spherical coordinates v, α, β1, β2, which, in turn, is
equal to

v3 sinα sinβ1.

It follows that system (8.33)–(8.38) outside the manifold (8.43) (and only outside it) is equivalent
to the system

α̇ = −w3 +
σv

I1 + I3

s(α)

cosα
· Λv,β2

(
α, β1,

Ω

v

)
, (8.45)

ż4 = − v2

I1 + I3
s(α) cos γ · Λv,β2

(
α, β1,

Ω

v

)

+ z3

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.46)

ż3 =
v2

I1 + I3
s(α) cos γ ·Πv,β2

(
α, β1,

Ω

v

)

− z4

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.47)

ż2 = − v2

I1 + I3
s(α) sin γ · Λv,β2

(
α, β1,

Ω

v

)

+ z1

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.48)

ż1 =
v2

I1 + I3
s(α) sin γ ·Πv,β2

(
α, β1,

Ω

v

)

− z2

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.49)

β̇1 = w1
cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)
, (8.50)

or, finally,

α̇ = −w3 +
σv

I1 + I3

s(α)

cosα
· Λv,β2

(
α, β1,

Ω

v

)
, (8.51)

ẇ4 = − v2

I1 + I3
s(α) sin(β2 + γ) · Λv,β2

(
α, β1,

Ω

v

)

+ w2

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.52)

ẇ3 =
v2

I1 + I3
s(α) cos(β2 + γ) · Λv,β2

(
α, β1,

Ω

v

)

− w1

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.53)
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ẇ2 =
v2

I1 + I3
s(α) sin(β2 + γ) ·Πv,β2

(
α, β1,

Ω

v

)

− w4

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.54)

ẇ1 =
v2

I1 + I3
s(α) cos(β2 + γ) ·Πv,β2

(
α, β1,

Ω

v

)

+ w3

[
w1

cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)]
, (8.55)

β̇1 = w1
cosα

sinα
− σv

I1 + I3

s(α)

sinα
·Πv,β2

(
α, β1,

Ω

v

)
, (8.56)

where

Πv,β2

(
α, β1,

Ω

v

)
= −x4N

(
α, β1,

Ω

v

)
cos β1 + x3N

(
α, β1,

Ω

v

)
sin β1, (8.57)

and the function Λv,β2(α, β1,Ω/v) is represented in the form (8.24).
In what follows, the dependence on the variables (α, β1, β2,Ω/v) must be treated as the compos-

ite dependence on (α, β1, β2, z1/v, z2/v, z3/v, z4/v) (or (α, β1, β2, w1/v,w2/v,w3/v,w4/v)) by virtue
of (8.42).

The violation of the uniqueness theorem happens for system (8.33)–(8.38) on the manifold (8.43)
for odd k in the following sense:

regular phase trajectories of system (8.33)–(8.38) pass through almost all points of the manifold
(8.43) and intersect this manifold at a right angle, and also there exists a phase trajectory that
completely coincides with the specified point at all time instants. However, these trajectories are
different since they correspond to different values of the tracing force. Let us prove this.

As was shown above, to fulfill constraints (8.20), one must choose the value of T1 and T2 for cosα �= 0
in the form (8.22) and (8.23).

Let

lim
α→π/2

s(α)

cosα
Λv,β2

(
α, β1,

Ω

v

)
= L

(
β1, β2,

Ω

v

)
. (8.58)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣ ∂∂α
(
Λv,β2

(
α, β1,

Ω

v

)
s(α)

)∣∣∣∣ < +∞. (8.59)

The required values of the tracing force for α = π/2 can be found from the relations

T1 = T1,v,β2

(
π

2
, β1,Ω

)
= −mσ(ω2

5 + ω2
3) sin γ −mσ(ω4ω5 + ω2ω3) cos γ

+mω5v cosβ1 cos
2 β2 −mω3v sin β1 cos

2 β2 +mω4v cos β1 sin β2 cos β2

−mω2v sin β1 sin β2 cos β2 + v2
mσ

I1 + I3
sin β2 · L (8.60)

and

T2 = T2,v,β2

(
π

2
, β1,Ω

)
= mσ(ω2

4 + ω2
2) cos γ +mσ(ω4ω5 + ω2ω3) sin γ

−mω4v cos β1 sin
2 β2 +mω2v sin β1 sin

2 β2 −mω5v cos β1 sin β2 cos β2

+mω3v sin β1 sinβ2 cos β2 − v2
mσ

I1 + I3
cos β2 · L, (8.61)
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where the values of ω2, ω3, ω4, and ω5 are arbitrary.
On the other hand, if we support the rotation about a certain point W by the tracing force, we

must choose the projections of the tracing force as follows:

T = T1

(
π

2
, β1, β2,Ω

)
=

mv2

R01
, (8.62)

T = T2

(
π

2
, β1, β2,Ω

)
=

mv2

R02
, (8.63)

where R01 and R02 are the projections of the segment CW on the corresponding coordinate axes.
Equalities (8.22)–(8.23) and (8.62)–(8.63) define, generally speaking, different values of the tracing

force T for almost all points of manifold (8.43), and the remark is proved.

2. Case where the Moment of Nonconservative Forces
Is Independent of the Angular Velocity

2.1. Reduced system. Similarly to the choice of Chaplygin analytical functions (see [50, 51]), we
choose the dynamical functions s, x3N , and x4N as follows:

s(α) = B cosα,

x3N

(
α, β1, β2,

Ω

v

)
= x3N0(α, β1) = A sinα cos β1,

x4N

(
α, β1, β2,

Ω

v

)
= x4N0(α, β1) = A sinα sin β1, A,B > 0, v �= 0,

(8.64)

which shows that for the considered system, the moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angles α, β1, and β2).

The functions Λv,β2 (α, β1,Ω/v), Πv,β2 (α, β1,Ω/v) in system (8.51)–(8.56) have the following form:

Λv,β2

(
α, β1,

Ω

v

)
= A sinα, Πv,β2

(
α, β1,

Ω

v

)
≡ 0. (8.65)

Then, owing to the nonintegrable constraint (8.20), outside the manifold (8.43) (and only outside
it) the dynamical part of the equations of motion (system (8.51)–(8.56)) has the form of the following
analytical system:

α̇ = −w3 +
σABv

I1 + I3
sinα, (8.66)

ẇ4 = − ABv2

I1 + I3
sin(β2 + γ) sinα cosα+ w1w2

cosα

sinα
, (8.67)

ẇ3 =
ABv2

I1 + I3
cos(β2 + γ) sinα cosα− w2

1

cosα

sinα
, (8.68)

ẇ2 = −w1w4
cosα

sinα
, (8.69)

ẇ1 = w1w3
cosα

sinα
, (8.70)

β̇1 = w1
cosα

sinα
. (8.71)

Introducing the dimensionless variables, the parameters, and the differentiation as follows:

wk → n0vwk, k = 1, 2, 3, 4, n2
0 =

AB

I1 + I3
, b = σn0, 〈·〉 = n0v〈′〉, (8.72)
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we reduce system (8.66)–(8.71) to the form

α′ = −w3 + b sinα, (8.73)

w′
4 = − sin(β2 + γ) sinα cosα+ w1w2

cosα

sinα
, (8.74)

w′
3 = cos(β2 + γ) sinα cosα−w2

1

cosα

sinα
, (8.75)

w′
2 = −w1w4

cosα

sinα
, (8.76)

w′
1 = w1w3

cosα

sinα
, (8.77)

β′
1 = w1

cosα

sinα
. (8.78)

We see that in the sixth-order system (8.73)–(8.78), which can be considered on the six-dimensional
manifold

TS2 ×R2, (8.79)

the direct product of the tangent bundle TS2 of a two-dimensional sphere S2 and a two-dimensional
plane, an independent fifth-order system (8.73)–(8.77) has been formed; this fifth-order system can be
considered on its own five-dimensional manifold.

Moreover, the sixth order system (8.73)–(8.78) has the independent third-order subsystem

α′ = −w3 + b sinα, (8.80)

w′
3 = cos(β2 + γ) sinα cosα− w2

1

cosα

sinα
, (8.81)

w′
1 = w1w3

cosα

sinα
, (8.82)

the second-order system

w′
4 = − sin(β2 + γ) sinα cosα+ w1w2

cosα

sinα
, (8.83)

w′
2 = −w1w4

cosα

sinα
, (8.84)

(this system is still dependent), and the equation

β′
1 = w1

cosα

sinα
. (8.85)

In general, for the complete integrability of system (8.73)–(8.78), it suffices to know five independent
first integrals. However, after splitting the system into three parts (system (8.80)–(8.82), system
(8.83)–(8.84), and Eq. (8.85)), for the complete integrability it suffices to know two independent first
integrals of system (8.80)–(8.82), one first integral of system (8.83)–(8.84) (after the reduction of this
system to an independent subsystem), and one first integral that “attaches” Eq. (8.85).

Note that these arguments are typical for the first way of studying the system (see p. 484). Indeed,
we now ignore the two analytical first integrals (8.31) and (8.32). Therefore, when we obtain two in-
dependent first integrals of the independent third-order system (8.80)–(8.82) and also the first integral
that “attaches” Eq. (8.85), we obtain a complete set of independent first integrals of the fourth-order
system (8.80)–(8.82), (8.85). The obtained complete set (three integrals) together with the analytical
first integrals (8.31) and (8.32) forms a complete set of five first integrals of the sixth-order system
(8.80)–(8.85).

In what follows, in particular, we will see that the composition of analytical first integrals (8.31)
and (8.32) yields a first integral of system (8.83), (8.84).
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2.2. Complete list of invariant relations. System (8.80)–(8.82) has the form of system (4.22)
that appears in the dynamics of a three-dimensional rigid body in a field of nonconservative forces
(see Chap. 4). In this case, the phase variables z1 and z2 in system (4.22) correspond to the phase
variables z and z3 of system (8.80)–(8.82). We recall certain facts discussed in Chap. 4 in the new
notation.

First, we compare the third-order system (8.80)–(8.82) with the nonautonomous second-order sys-
tem

dw3

dα
=

cos(β2 + γ) sinα cosα− w2
1 cosα/ sinα

−w3 + b sinα
,

dw1

dα
=

w1w3 cosα/ sinα

−w3 + b sinα
.

(8.86)

Using the substitution τ = sinα, we rewrite system (8.86) in the algebraic form

dw3

dτ
=

cos(β2 + γ)τ − w2
1/τ

−w3 + bτ
,

dw1

dτ
=

w1w3/τ

−w3 + bτ
.

(8.87)

Further, introducing the homogeneous variables by the formulas

w1 = u1τ, w3 = u2τ, (8.88)

we reduce system (8.87) to the following form:

τ
du2
dτ

+ u2 =
cos(β2 + γ)− u21

−u2 + b
,

τ
du1
dτ

+ u1 =
u1u2

−u2 + b
,

(8.89)

which is equivalent to

τ
du2
dτ

=
cos(β2 + γ)− u21 + u22 − bu2

−u2 + b
,

τ
du1
dτ

=
2u1u2 − bu1
−u2 + b

.

(8.90)

We compare the second-order system (8.90) with the nonautonomous first-order equation

du2
du1

=
cos(β2 + γ)− u21 + u22 − bu2

2u1u2 − bu1
, (8.91)

which can be easily reduced to the exact differential equation

d

(
u22 + u21 − bu2 + cos(β2 + γ)

u1

)
= 0. (8.92)

Therefore, Eq. (8.91) has the following first integral:

u22 + u21 − bu2 + cos(β2 + γ)

u1
= C1 = const, (8.93)

which in the old variables has the form

w2
3 + w2

1 − bw3 sinα+ cos(β2 + γ) sin2 α

w1 sinα
= C1 = const . (8.94)
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Remark 8.1. We consider the system (8.80)–(8.82) with variable dissipation with zero mean (see [67,
68, 243, 260, 262, 265, 282–286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413, 421, 437,
438]), which becomes conservative for b = 0:

α′ = −w3,

w′
3 = cos(β2 + γ) sinα cosα− w2

1

cosα

sinα
,

w′
1 = w1w3

cosα

sinα
.

(8.95)

It has two analytical first integrals of the form

w2
3 + w2

1 + cos(β2 + γ) sin2 α = C∗
1 = const, (8.96)

w1 sinα = C∗
2 = const . (8.97)

Obviously, the ratio of the first integrals (8.96) and (8.97) is also a first integral of system (8.95).
However, for b �= 0, both functions

w2
3 + w2

1 − bw3 sinα+ cos(β2 + γ) sin2 α (8.98)

and (8.97) are not first integrals of system (8.80)–(8.82), but their ratio is a first integral of the system
for any b.

Further, we find an explicit form of an additional first integral of the third-order system (8.80)–
(8.82). First, we transform the invariant relation (8.93) for u1 �= 0 as follows:

(
u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− cos(β2 + γ). (8.99)

We see that the parameters of this invariant relation must satisfy the condition

b2 + C2
1 − 4 cos(β2 + γ) ≥ 0, (8.100)

and the phase space of system (8.80)–(8.82) is stratified into a family of surfaces defined by Eq. (8.99).
Thus, by (8.93), the first equation of system (8.90) has the form

τ
du2
dτ

=
2(cos(β2 + γ)− bu2 + u22)− C1U1(C1, u2)

−u2 + b
, (8.101)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(u22 − bu2 + cos(β2 + γ))

}
(8.102)

and the integration constant C1 is chosen from condition (8.100).
Therefore, the quadrature for the search for an additional first integral of system (8.80)–(8.82) has

the form∫
dτ

τ
=

∫
(b− u2)du2

2(cos(β2 + γ)− bu2 + u22)− C1

{
C1 ±

√
C2
1 − 4(u22 − bu2 + cos(β2 + γ))

}
/2

. (8.103)

Obviously, the left-hand side up to an additive constant is equal to

ln | sinα|. (8.104)

If

u2 − b

2
= p1, b21 = b2 + C2

1 − 4 cos(β2 + γ), (8.105)
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then the right-hand side of Eq. (8.103) has the form

− 1

4

∫
d(b21 − 4p21)

(b21 − 4p21)± C1

√
b21 − 4p21

− b

∫
dp1

(b21 − 4p21)± C1

√
b21 − 4p21

= −1

2
ln

∣∣∣∣∣
√

b21 − 4p21
C1

± 1

∣∣∣∣∣±
b

2
I1, (8.106)

where

I1 =

∫
dp3√

b21 − p23(p3 ± C1)
, p3 =

√
b21 − 4p21. (8.107)

In the calculation of integral (8.107), the following three cases are possible.
I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4 +

√
b21 − p23

p3 ± C1
± C1√

b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4−

√
b21 − p23

p3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣+ const . (8.108)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1p3 + b21
b1(p3 ± C1)

+ const . (8.109)

III. b = 2:

I1 = ∓
√

b21 − p23
C1(p3 ± C1)

+ const . (8.110)

Returning to the variable

p1 =
w3

sinα
− b

2
, (8.111)

we obtain the final form of the integral I1.
I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4± 2p1√
b21 − 4p21 ± C1

± C1√
b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4∓ 2p1√
b21 − 4p21 ±C1

∓ C1√
b2 − 4

∣∣∣∣∣+ const . (8.112)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1

√
b21 − 4p21 + b21

b1

(√
b21 − 4p21 ± C1

) + const . (8.113)

III. b = 2:

I1 = ∓ 2p1

C1

(√
b21 − 4p21 ± C1

) + const . (8.114)

Thus, we have found an additional first integral for the third-order system (8.80)–(8.82), i.e., we
have a complete set of first integrals that are transcendental functions of their phase variables.
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Remark 8.2. In the expression of the found first integral, we must formally substitute the left-hand
side of the first integral (8.93) instead of C1. Then the obtained additional first integral has the
following structure similar to the transcendental first integral from the planar dynamics):

ln | sinα|+G2

(
sinα,

w3

sinα
,
w1

sinα

)
= C2 = const . (8.115)

Thus, we have already found two independent first integrals for the integration of the sixth-order
system (8.80)–(8.85). Now, using the first way of studying the system (where we ignore two analytical
first integrals (8.31) and (8.32)), and the complete integrability, it suffices to find one first integral for
system (8.83), (8.84) (which is potentially separated) and one additional first integral that “attaches”
Eq. (8.85).

After the change of the variables

w∗ = w3 sin(γ + β2) + w4 cos(γ + β2),

w∗∗ = w1 sin(γ + β2)− w2 cos(γ + β2),
(8.116)

system (8.83), (8.84) can be reduced to the form

dw∗
dβ1

= −w∗∗,
dw∗∗
dβ1

= w∗, (8.117)

which implies the existence of the analytical first integral

w2
∗ + w2

∗∗ = C3 = const . (8.118)

The following question arises: How is the first integral (8.118) related to the analytical first integrals
of the form (8.31) and (8.32)?

Indeed, two ways of the study (I and II, see p. 484) correspond to the following alternatives. For
the complete integration of the sixth-order system (8.25)–(8.30):

(1) either we find five independent first integrals of the sixth-order system (8.25)–(8.30),
(2) or we transform the sixth-order system (8.25)–(8.30) such that independent subsystems of lower

orders are extracted from it.

Thus, since after the introduction of such coordinates as w∗ and w∗∗, the vector field of the system
is stratified so that the independent second-order subsystem (8.117) is formed, we must find only four
independent first integrals instead of five (three first integrals for integration of the fourth-order system
(8.80)–(8.82), (8.85) and one first integral for integration of the separated second-order system (8.117)).

Finally, we rewrite the analytical first integrals (8.31) and (8.32) in the new variables as follows:

w∗∗ cos β1 − w∗ sin β1 = W ′′
1 = const, (8.119)

w∗∗ sin β1 +w∗ cos β1 = W ′′
2 = const . (8.120)

Obviously, the analytical first integrals (8.119) and (8.120) yield the analytical first integral (8.118)
(to see this, it suffices to add the squares of the left-hand sides of Eqs. (8.119) and (8.120)).

Further, for integration of the fourth-order system (8.80)–(8.82), (8.85), we have found two inde-
pendent first integrals. For its complete integrability, it suffices to find another additional first integral
that “attaches” Eq. (8.85).

Since
du1
dτ

=
u1(2u2 − b)

(b− u2)τ
,

dβ1
dτ

=
u1

(b− u2)τ
, (8.121)

we have
du1
dβ1

= 2u2 − b. (8.122)
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Obviously, for u1 �= 0, the following equality holds:

u2 =
1

2

(
b±

√
b21 − 4

(
u1 − C1

2

)2
)
, b21 = b2 + C2

1 − 4 cos(β2 + γ); (8.123)

therefore, integration of the quadrature

β1 + const = ±
∫

du1√
b21 − 4

(
u1 − C1

2

)2
(8.124)

leads to the invariant relation

2(β1 + C4) = ± arcsin
2u1 − C1√

b2 + C2
1 − 4 cos(β2 + γ)

, C4 = const . (8.125)

In other words, the relation

sin
[
2(β1 + C4)

]
= ± 2u1 − C1√

b2 + C2
1 − 4 cos(β2 + γ)

(8.126)

holds. After the transition to the old variables, we obtain

sin
[
2(β1 + C4)

]
= ± 2w1 − C1 sinα√

b2 + C2
1 − 4 cos(β2 + γ) sinα

. (8.127)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (8.85). However, we
must formally substitute the left-hand side of (8.93) into the last expression instead of C1.

We perform certain transformations which lead us to the following form of the additional first
integral:

tan2
[
2(β1 + C4)

]
=

(u21 − u22 + bu2 − cos(β2 + γ))2

u21(4u
2
2 − 4bu2 + b2)

; (8.128)

here Eq. (8.93) is used.
Returning to the old coordinates, we obtain the additional invariant relation in the form

tan2
[
2(β1 + C4)

]
=

(w2
1 − w2

3 + bw3 sinα− cos(β2 + γ) sin2 α)2

w2
1(4w

2
3 − 4bw3 sinα+ b2 sin2 α)

, (8.129)

or, finally,

−β1 ± 1

2
arctan

w2
1 −w2

3 + bw3 sinα− cos(β2 + γ) sin2 α

w1(2w3 − b sinα)
= C4 = const . (8.130)

Therefore, in the considered case, the system of dynamical equations (8.4)–(8.7), (8.10)–(8.15) under
the condition (8.64) possesses eight invariant relations: the analytical nonintegrable constraints (8.20),
the cyclic first integrals (8.18) and (8.19), the first integral (8.94), the first integral expressed by the
relations (8.108)–(8.115), which is a transcendental function of its phase variables (in the sense of the
complex analysis) expressed as a finite combination of elementary functions, the transcendental first
integral (8.130) (see also (8.129)), and, finally, the analytical first integral (8.118).

Theorem 8.1. System (8.4)–(8.7), (8.10)–(8.15) under the conditions (8.20), (8.64), and (8.19) pos-
sesses eight invariant relations (a complete set), three of which are transcendental functions (in the
sense of the complex analysis). All these relations are expressed as finite combinations of elementary
functions.
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2.3. Topological analogies. We consider the following third-order system:

ξ̈ + b∗ξ̇ cos ξ +R3 sin ξ cos ξ − η̇21
sin ξ

cos ξ
= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
= 0, b∗ > 0,

(8.131)

that describes a fixed spherical pendulum in a flowing medium in the case where the moment of forces
is independent of the angular velocity, i.e., a mechanical system in a nonconservative field of forces
(see [120, 162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386, 392, 429,
442]). In general, the order of such a system must be equal to 4, but the phase variable η1 is cyclic,
which leads to the stratification of the phase space and reduction of order.

The phase space is the tangent bundle

TS2{ξ̇, η̇1, ξ, η1} (8.132)

of the two-dimensional sphere S2{ξ, η1}, where the equation of the large circles

η̇1 ≡ 0 (8.133)

defines the family of integral manifolds.
It is easy to verify that system (8.131) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (8.132) of the two-dimensional sphere. Moreover, the following
theorem holds.

Theorem 8.2. System (8.4)–(8.7), (8.10)–(8.15) under the conditions (8.20), (8.138), and (8.19) is
equivalent to dynamical system (8.131).

Indeed, it suffices to take α = ξ, β1 = η1, b = −b∗, and R3 = cos(γ + β2).
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].

3. Case where the Moment of Nonconservative Forces
Depends on the Angular Velocity

3.1. Dependence of the moment of nonconservative forces on the angular velocity. We
continue to study the dynamics of a three-dimensional rigid body in the four-dimensional space. This
section is devoted to the study of the case of the motion where the moment of forces depends on the
angular velocity. We introduce this dependence in the general case; this will allow us to generalize
this dependence to higher-dimensional bodies.

Let x = (x1N , x2N , x3N , x4N ) be the coordinates of the point N of application of a nonconservative
force (interaction with a medium) on a two-dimensional disk and Q = (Q1, Q2, Q3, Q4) be the compo-
nents independent of the angular velocity. We introduce only the linear dependence of the functions
(x1N , x2N , x3N , x4N ) on the angular velocity since the introduction of this dependence itself is not
a priori obvious (see [33, 34, 48, 49, 57–66, 120, 121, 169, 182, 203, 205, 249, 250, 261, 274–276, 440]).

Thus, we accept the following dependence:

x = Q+R, (8.134)

where R = (R1, R2, R3, R4) is the vector-valued function containing the components of the tensor of
angular velocity. Here the dependence of the function R on the angular velocity tensor is gyroscopic:

R =

⎛
⎜⎜⎝
R1

R2

R3

R4

⎞
⎟⎟⎠ = −1

v

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ , (8.135)
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where (h1, h2, h3, h4) are some positive parameters (cf. [322, 330, 331, 345, 393]).
Now, for our problem, since x1N ≡ x2N ≡ 0, we have

x3N = Q3 − h1
v
(ω4 − ω5), x4N = Q4 − h1

v
(ω3 − ω2). (8.136)

3.2. Reduced system. Similarly to the choice of Chaplygin analytical functions (see [50, 51])

Q3 = A sinα cos β1, Q4 = A sinα sin β1, A > 0, (8.137)

we take the dynamical functions s, x3N , and x4N of the following form:

s(α) = B cosα, B > 0,

x3N

(
α, β1, β2,

Ω

v

)
= A sinα cos β1 − h

v
(ω4 − ω5), h = h1 > 0, v �= 0,

x4N

(
α, β1, β2,

Ω

v

)
= A sinα sin β1 − h

v
(ω3 − ω2), h = h2 > 0, v �= 0,

(8.138)

which shows that an additional dependence of the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is also present in the system considered (i.e., the
moment depends on the angular velocity). Moreover, by virtue of dynamical symmetry (8.17) of the
body we have h1 = h2 and h3 = h4.

Further, we use the first way of studying the system, but also take into account the second way (see
p. 484).

We introduce the following phase variables:

u1 = ω2 − ω3,

u2 = ω4 − ω5,

u3 = ω2 cos β2 − ω3 sin β2,

u4 = ω4 cos β2 − ω5 sin β2.

(8.139)

These coordinates are well defined for

cos β2 �= sin β2, (8.140)

and the Jacobian of the mapping is equal to

− 1

(cos β2 − sinβ2)2
; (8.141)

the inverse transformation is defined as follows:

ω2 =
u3 − u1 sin β2
cos β2 − sin β2

, ω3 =
u3 − u1 cos β2
cos β2 − sinβ2

,

ω4 =
u4 − u2 sin β2
cos β2 − sin β2

, ω5 =
u4 − u2 cos β2
cos β2 − sinβ2

.

(8.142)

The particular case where

cos β2 = sin β2, (8.143)

which simplifies the dynamical equations, can be considered separately.
Under the condition (8.138), Eqs. (8.33)–(8.38) outside the manifold

O3 =

{
(α, β1, ω2, ω3, ω4, ω5) ∈ R6 : α =

π

2
+ πk, k ∈ Z

}
(8.144)

(and only outside it) are transformed to the following equations:

α̇− u3 sinβ1 + u4 cos β1 − σn2
0v sinα+ σH ′

1

[− u1 sinβ1 + u2 cos β1
]
= 0, (8.145)

β̇1 sinα− cosα
[
u3 cos β1 + u4 sinβ1

]− σH ′
1 cosα

[
u1 cos β1 + u2 sin β1

]
= 0, (8.146)
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u̇1 = −n2
0v

2r1 sinα cosα sin β1 − Bvh

I1 + I3
r1u1 cosα, (8.147)

u̇2 = n2
0v

2r1 sinα cosα cos β1 − Bvh

I1 + I3
r1u2 cosα, (8.148)

u̇3 = −n2
0v

2 sinα cosα sinβ1 cos(γ + β2)− Bvh

I1 + I3
u1 cosα cos(γ + β2), (8.149)

u̇4 = n2
0v

2 sinα cosα cos β1 cos(γ + β2)− Bvh

I1 + I3
u2 cosα cos(γ + β2), (8.150)

where

r1 = cos γ − sin γ �= 0, n2
0 =

AB

I1 + I3
, H ′

1 =
Bh

I1 + I3
. (8.151)

We note that the particular case

cos γ = sin γ (r1 = 0), (8.152)

which simplifies the dynamical equations, can also be considered separately (similarly to the case (8.143)).
Let us introduce the following phase variables:

v1 = −u1 sin β1 + u2 cos β1,

v2 = u1 cos β1 + u2 sin β1,

v3 = −u3 sin β1 + u4 cos β1,

v4 = u3 cos β1 + u4 sin β1.

(8.153)

Then, outside the manifold

O4 =
{
(α, β1, u1, u2, u3, u4) ∈ R6 : β1 = πk, k ∈ Z

}
(8.154)

(and only outside it), system (8.145)–(8.150) has the form

α̇ = −v3 − bH1v1 + b sinα, (8.155)

β̇1 = [v4 + bH1v2]
cosα

sinα
, (8.156)

v̇1 = n2
0v

2r1 sinα cosα−H ′
1vr1v1 cosα− v2 · [v4 + bH1v2]

cosα

sinα
, (8.157)

v̇2 = −H ′
1vr1v2 cosα+ v1 · [v4 + bH1v2]

cosα

sinα
, (8.158)

v̇3 = n2
0v

2 sinα cosα cos(γ + β2)−H ′
1vv1 cosα cos(γ + β2)− v4 · [v4 + bH1v2]

cosα

sinα
, (8.159)

v̇4 = −H ′
1vv2 cosα cos(γ + β2) + v3 · [v4 + bH1v2]

cosα

sinα
, (8.160)

where, as before, we introduce the dimensionless parameters as follows:

n2
0 =

AB

I1 + I3
, b = σn0, [b] = 1, H1 =

H ′
1

n0
=

Bh

(I1 + I3)n0
, [H1] = 1. (8.161)

We also introduce the following auxiliary change of a part of the phase variables as follows:

s1 = v3 + bH1v1, s2 = v4 + bH1v2. (8.162)

Then system (8.155)–(8.160) after the introduction of the dimensionless variables and differentiation

vk → n0vvk, k = 1, . . . , 4, 〈·〉 = n0v〈′〉 (8.163)

takes the form

α′ = −s1 + b sinα, (8.164)

β′
1 = s2

cosα

sinα
, (8.165)
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s′1 = R1 sinα cosα− s22
cosα

sinα
−R1H1v1 cosα, (8.166)

s′2 = s1s2
cosα

sinα
−R1H1v2 cosα, (8.167)

v′1 = R2 sinα cosα− s2v2
cosα

sinα
−H1R2v1 cosα, (8.168)

v′2 = s2v1
cosα

sinα
−H1R2v2 cosα, (8.169)

where

R1 = bH1(cos γ − sin γ) + cos(γ + β2), R2 = r1 = cos γ − sin γ. (8.170)

We see that for H1 = 0, the independent fourth-order subsystem (8.164)–(8.167) on the tangent
bundle TS2 of the two-dimensional sphere S2{0 < α < π, 0 ≤ β1 < 2π} can be extracted from system
(8.164)–(8.169). Further, the independent third-order subsystem (8.164), (8.166), (8.167) can be
extracted from fourth-order subsystem (8.164)–(8.167); this third-order subsystem can be considered
on its own three-dimensional phase manifold.

This fact is quite obvious since, for H1 = 0, the moment of forces is independent of the angular
velocity tensor (see the previous section and system (8.80)–(8.82), (8.85)). This allows one to integrate
completely the fourth-order system (8.164)–(8.167) and, therefore, the sixth-order system (8.164)–
(8.169), since there exist two independent analytical first integrals (8.31) and (8.32) or (8.119) and
(8.120) (see above about the discussion on the two ways of the study, p. 484).

In this case, the inequality H1 �= 0 is important. Therefore, we transform the analytical first
integrals (8.31) and (8.32) or (8.119) and (8.120). Their explicit form is as follows:

u3 − u1 sinβ2
cos β − 2− sin β2

sin γ − u3 − u1 cos β2
cos β − 2− sin β2

cos γ = W ′
1 = const, (8.171)

u4 − u2 sin β2
cos β − 2− sin β2

sin γ − u4 − u2 cosβ2
cosβ − 2− sin β2

cos γ = W ′
2 = const . (8.172)

If we consider the case (8.20) (i.e., in particular, the case where the value β2 is identically constant
along phase trajectories), then the following analytical functions are constant on phase trajectories of
the considered system:

u3(sin γ − cos γ) + u1 cos(γ + β2) = W 0
1 = const, (8.173)

u4(sin γ − cos γ) + u2 cos(γ + β2) = W 0
2 = const . (8.174)

In other variables, these two invariant relations have the form

(v2 cos β1 − v1 sin β1) cos(γ + β2) + (v4 cos β1 − v3 sinβ1)(sin γ − cos γ) = W 0
1 = const, (8.175)

(v2 sin β1 + v1 cos β1) cos(γ + β2) + (v4 sinβ1 + v3 cos β1)(sin γ − cos γ) = W 0
2 = const (8.176)

or

R1v2 cos β1 −R1v1 sinβ1 +R2[s1 sin β1 − s2 cos β1] = W 0
1 = const, (8.177)

R1v2 sinβ1 +R1v1 cosβ1 −R2[s1 cos β1 + s2 sin β1] = W 0
2 = const, (8.178)

where

R1 = cos(γ + β2) + bH1(cos γ − sin γ), R2 = cos γ − sin γ. (8.179)

We express the values v1 and v2 from the relations (8.177) and (8.178). We have

v2R1 = R2s2 + ψ1(β1,W
0
1 ,W

0
2 ), (8.180)

v1R1 = R2s1 + ψ2(β1,W
0
1 ,W

0
2 ), (8.181)
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where

ψ1(β1,W
0
1 ,W

0
2 ) = W 0

1 cos β1 +W 0
2 sinβ1,

ψ2(β1,W
0
1 ,W

0
2 ) = W 0

2 cos β1 −W 0
1 sinβ1.

(8.182)

Then system (8.164)–(8.167) becomes the following independent fourth-order system:

α′ = −s1 + b sinα, (8.183)

s′1 = R1 sinα cosα− s22
cosα

sinα
−R2H1s1 cosα−H1ψ2(β1,W

0
1 ,W

0
2 ) cosα, (8.184)

s′2 = s1s2
cosα

sinα
−R2H1s2 cosα−H1ψ1(β1,W

0
1 ,W

0
2 ) cosα, (8.185)

β′
1 = s2

cosα

sinα
. (8.186)

System (8.183)–(8.186) can be considered as system (8.164)–(8.167) reduced to the levels (W 0
1 ,W

0
2 )

of the analytical first integrals (8.177) and (8.178).
Obviously,

ψ1(β1, 0, 0) ≡ ψ2(β1, 0, 0) ≡ 0. (8.187)

Therefore, we consider system (8.183)–(8.186) on the zero levels of the analytical first integrals (8.177)
and (8.178):

W 0
1 = W 0

2 = 0. (8.188)

Then it takes the form

α′ = −s1 + b sinα, (8.189)

s′1 = R1 sinα cosα− s22
cosα

sinα
−R2H1s1 cosα, (8.190)

s′2 = s1s2
cosα

sinα
−R2H1s2 cosα, (8.191)

β′
1 = s2

cosα

sinα
. (8.192)

This system can be considered on the tangent bundle TS2 of the two-dimensional sphere S2{0 < α <
π, 0 ≤ β1 < 2π}. Moreover, we can extract the independent third-order subsystem (8.189)–(8.191)
on its own three-dimensional phase manifold from system (8.189)–(8.192).

Thus, for integration of the sixth-order system, we have first used the first way of studying (see
p. 484) and have not taken into account the existence of two independent analytical first integrals
(8.31) and (8.32). Subsequently, we have reduced the considered sixth-order system to levels (in
particular, to the zero level) of the first integrals, i.e., we have used the second way of studying.

3.3. Complete list of invariant relations. System (8.189)–(8.191) is similar to system (4.74)
that arises in the dynamics of a three-dimensional rigid body in a nonconservative field (see Chap. 4).
The phase variables z1 and z2 in system (4.74) correspond to the phase variables s2 and s1 of system
(8.189)–(8.191).

Compare the third-order system (8.189)–(8.191) with the nonautonomous second-order system

ds1
dα

=
R1 sinα cosα− s22 cosα/ sinα−R2H1s1 cosα

−s1 + b sinα
,

ds2
dα

=
s1s2 cosα/ sinα−R2H1s2 cosα

−s1 + b sinα
.

(8.193)
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We rewrite system (8.193) in the algebraic form using the substitution τ = sinα:

ds1
dτ

=
R1τ − s22/τ −R2H1s1

−s1 + bτ
,

ds2
dτ

=
s1s2/τ −R2H1s2

−s1 + bτ
.

(8.194)

If we introduce the homogeneous variables by the formulas

s1 = t1τ, s2 = t2τ, (8.195)

we reduce system (8.194) to the following form:

τ
dt1
dτ

+ t1 =
R1 − t22 −R2H1t1

−t1 + b
,

τ
dt2
dτ

+ t2 =
t1t2 −R2H1t2

−t1 + b
,

(8.196)

which is equivalent to

τ
dt1
dτ

=
t21 − t22 − (b+R2H1)t1 +R1

−t1 + b
,

τ
dt2
dτ

=
2t1t2 − (b+R2H1)t2

−t1 + b
.

(8.197)

We compare the second-order system (8.197) with the nonautonomous first-order equation

dt1
dt2

=
t21 − t22 − (b+R2H1)t1 +R1

2t1t2 − (b+R2H1)t2
, (8.198)

which can be easily reduced to the exact differential equation

d

(
t21 + t22 − (b+R2H1)t1 +R1

t2

)
= 0. (8.199)

Therefore, Eq. (8.198) possesses the first integral

t21 + t22 − (b+R2H1)t1 +R1

t2
= C1 = const, (8.200)

which in the old variables has the form

s21 + s22 − (b+R2H1)s1 sinα+R1 sin
2 α

s2 sinα
= C1 = const . (8.201)

Remark 8.3. We consider system (8.189)–(8.191) with variable dissipation with zero mean (see [67,
68, 243, 260, 262, 265, 282–284, 286, 286, 291, 295, 309, 324, 333, 340, 384, 391, 404–408, 412, 413,
421, 437, 438], which becomes conservative for b = R2H1:

α′ = −s1 + b sinα,

s′1 = R1 sinα cosα− s22
cosα

sinα
− bs1 cosα,

s′2 = s1s2
cosα

sinα
− bs2 cosα.

(8.202)

It has two analytical first integrals of the form

s21 + s22 − 2bs1 sinα+R1 sin
2 α = C∗

1 = const, (8.203)

s2 sinα = C∗
2 = const . (8.204)
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Obviously, the ratio of the first integrals (8.203) and (8.204) is also a first integral of system (8.202).
However, for b �= R2H1, both functions

s21 + s22 − (b+R2H1)s1 sinα+R1 sin
2 α (8.205)

and (8.204) are not first integrals of system (8.189)–(8.191), but their ratio is a first integral of system
(8.189)–(8.191) for any b and R2H1.

Further, we find the explicit form of an additional first integral of the third-order system (8.189)–
(8.191). For this, we transform the invariant relation (8.200) for u1 �= 0 as follows:(

t1 − b+R2H1

2

)2

+

(
t2 − C1

2

)2

=
(b+R2H1)

2 + C2
1 − 4R1

4
. (8.206)

We see that the parameters of this invariant relation must satisfy the condition

(b+R2H1)
2 +C2

1 − 4R1 ≥ 0, (8.207)

and the phase space of system (8.189)–(8.191) is stratified into a family of surfaces defined by
Eq. (8.206).

Thus, by relation (8.200), the first equation of system (8.197) has the form

τ
dt1
dτ

=
2t21 − 2(b+R2H1)t1 + 2R1 − C1U1(C1, t1)

b− t1
, (8.208)

where

U1(C1, t1) =
1

2
{C1 ± U2(C1, t1)},

U2(C1, t1) =
√

C2
1 − 4(R1 − (b+R2H1)t1 + t21),

(8.209)

and the integration constant C1 is chosen from condition (8.207).
Therefore, the quadrature for the search for an additional first integral of system (8.189)–(8.191)

has the form ∫
dτ

τ
=

∫
(b− t1)dt1

2(R1 − (b+R2H1)t1 + t21)− C1{C1 ± U2(C1, t1)}/2 . (8.210)

Obviously, the left-hand side (up to an additive constant) is equal to

ln | sinα|. (8.211)

If

t1 − b+R2H1

2
= w1, b21 = (b+R2H1)

2 + C2
1 − 4R1, (8.212)

then the right-hand side of Eq. (8.210) has the form

− 1

4

∫
d(b21 − 4w2

1)

(b21 − 4w2
1)± C1

√
b21 − 4w2

1

− (b+R2H1)

∫
dw1

(b21 − 4w2
1)± C1

√
b21 − 4w2

1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4w2
1

C1
± 1

∣∣∣∣∣±
b+R2H1

2
I1, (8.213)

where

I1 =

∫
dw3√

b21 − w2
3(w3 ± C1)

, w3 =
√

b21 − 4w2
1 . (8.214)

In the calculation of integral (8.214), the following three cases are possible.
I. (b+R2H1)

2 − 4R1 > 0:
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I1 = − 1

2
√

(b+R2H1)2 − 4R1

ln

∣∣∣∣∣
√

(b+R2H1)2 − 4R1 +
√

b21 − w2
3

w3 ± C1
± C1√

(b+R2H1)2 − 4R1

∣∣∣∣∣
+

1

2
√

(b+R2H1)2 − 4R1

ln

∣∣∣∣∣
√
(b+R2H1)2 − 4R1 −

√
b21 − w2

3

w3 ± C1
∓ C1√

(b+R2H1)2 − 4R1

∣∣∣∣∣+ const .

(8.215)

II. (b+R2H1)
2 − 4R1 < 0:

I1 =
1√

4R1 − (b+R2H1)2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const . (8.216)

III. (b+R2H1)
2 − 4R1 = 0:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (8.217)

When we return to the variable

w1 =
s1

sinα
− b+R2H1

2
, (8.218)

we obtain the final form for the value I1:
I. (b+R2H1)

2 − 4R1 > 0:

I1 = − 1

2
√

(b+R2H1)2 − 4R1 > 0
ln

∣∣∣∣∣
√
(b+R2H1)2 − 4R1 ± 2w1√

b21 − 4w2
1 ± C1

± C1√
(b+R2H1)2 − 4R1

∣∣∣∣∣

+
1

2
√

(b+R2H1)2 − 4R1

ln

∣∣∣∣∣
√

(b+R2H1)2 − 4R1 ∓ 2w1√
b21 − 4w2

1 ±C1

∓ C1√
(b+R2H1)2 − 4R1

∣∣∣∣∣+ const . (8.219)

II. (b+R2H1)
2 − 4R1 < 0:

I1 =
1√

4R1 − (b+R2H1)2
arcsin

±C1

√
b21 − 4w2

1 + b21

b1(
√

b21 − 4w2
1 ± C1)

+ const . (8.220)

III. (b+R2H1)
2 − 4R1 = 0:

I1 = ∓ 2w1

C1(
√

b21 − 4w2
1 ± C1)

+ const . (8.221)

Thus, we have found an additional first integral of the third-order system (8.189)–(8.191), i.e., we
have a complete set of first integrals that are transcendental functions of their phase variables.

Remark 8.4. We must formally substitute the left-hand side of the first integral (8.200) in the ex-
pression of the found first integral instead of C1.

Then the obtained additional first integral has the following structure (which is similar to the form
of the transcendental first integral in the planar dynamics):

ln | sinα|+G2

(
sinα,

s1
sinα

,
s2

sinα

)
= C2 = const . (8.222)

Thus, we have already found two independent first integrals for integration of the fourth-order
system (8.189)–(8.192). To complete integration, it suffices to find an additional first integral that
“attaches” Eq. (8.192).

Since
dt2
dτ

=
2t1t2 − (b+R2H1)t2

(b− t1)τ
,

dβ1
dτ

=
t2

(b− t1)τ
, (8.223)
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we have
dt2
dβ1

= 2t1 − (b+R2H1). (8.224)

It is obvious that for t2 �= 0 the following equality holds:

t1 =
1

2

(
(b+R2H1)±

√
b21 − (2t2 − C1)2

)
, (8.225)

b21 = (b+R2H1)
2 + C2

1 − 4R1,

and, therefore, integration of the quadrature

β1 + const = ±
∫

dt2√
b21 − (2t2 − C1)2

(8.226)

leads to the invariant relation

2(β1 + C3) = ± arcsin
2t1 − C1√

(b+R2H1)2 + C2
1 − 4R1

, C3 = const . (8.227)

In other words, the equality

sin
[
2(β1 + C3)

]
= ± 2t2 − C1√

(b+R2H1)2 + C2
1 − 4R1

(8.228)

holds and, after the transition to the old variables,

sin
[
2(β1 + C3)

]
= ± 2s2 − C1 sinα√

(b+R2H1)2 + C2
1 − 4R1 sinα

. (8.229)

Thus, we have obtained an additional invariant relation that “attaches” Eq. (8.192). However, we
must formally substitute the left-hand side of (8.200) into the last expression instead of C1.

We perform some transformations that lead to the following explicit form of the additional first
integral (here Eq. (8.200) is used):

tan2
[
2(β1 + C3)

]
=

(t22 − t21 + (b+R2H1)t1 −R1)
2

t22(2t1 − (b+R2H1))2
. (8.230)

Returning to the old coordinates, we obtain an additional invariant relation in the form

tan2
[
2(β1 + C3)

]
=

(s22 − s21 + (b+R2H1)s1 sinα−R1 sin
2 α)2

s22(2s1 − (b+R2H1) sinα)2
, (8.231)

or, finally,

β1 ± 1

2
arctan

s22 − s21 + (b+R2H1)s1 sinα−R1 sin
2 α

s2(2s1 − (b+R2H1) sinα)
= C3 = const . (8.232)

Therefore, the system of dynamical equations (8.4)–(8.7), (8.10)–(8.15) under the condition (8.138)
has nine invariant relations in the considered case: the analytical nonintegrable constraints (8.20),
the cyclic first integrals (8.18) and (8.19), the analytical first integrals (8.31) and (8.32), the first
integral (8.201), the first integral expressed by relations (8.215)–(8.222), which is a transcendental
function of its phase variables (in the sense of the complex analysis) and is expressed as a finite
combination of elementary functions, and, finally, the transcendental first integral (8.232).

Theorem 8.3. System (8.4)–(8.7), (8.10)–(8.15) under the conditions (8.20), (8.138), (8.19), and (8.188)
possesses nine invariant relations (a complete set), three of which are transcendental functions from
the point of view of the complex analysis. All the relations are expressed as finite combinations of
elementary functions.
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We also note that, in a similar theorem (see Theorem 8.1 of this chapter), the question is on a
complete set of first integrals consisting of eight first integrals, although there exist nine first integrals.
But in the proof of Theorem 8.1, we use the first way of studying (see p. 484), which implies the
introduction of phase coordinates (in particular, wk, k = 1, . . . , 4) in which the vector field of the
system admits additional stratifications. Here, the analytical first integrals (8.31) and (8.32) are not
used directly; this allows one to use a fewer first integrals.

And, in the proof of Theorem 8.3, we have used the second way of studying, which implies the
reduction of the system examined to (zero) levels of the analytical first integrals (8.31) and (8.32). In
this case, we need a complete set of first integrals.

3.4. Topological analogies. We consider the following third-order system:

ξ̈ + (b∗ −H∗
1 )ξ̇ cos ξ +R3 sin ξ cos ξ − η̇21

sin ξ

cos ξ
+H∗∗

1 [W 0
1 sin η1 −W 0

2 cos η1] = 0,

η̈1 + (b∗ −H∗
1 )η̇1 cos ξ + ξ̇η̇1

1 + cos2 ξ

cos ξ sin ξ
+H∗∗

1 [W 0
1 cos η1 +W 0

2 sin η1] = 0, b∗ > 0, H∗∗
1 > 0,

(8.233)
which describes a fixed spherical pendulum in a flowing medium in the case where the moment of forces
depends on the angular velocity, i.e., a mechanical system in a nonconservative force field (see [120,
162, 188, 201, 203, 235, 238, 276, 316, 317, 319, 320, 338, 359, 360, 376, 377, 386, 392, 429, 442]).
In contrast to previous chapters, the order of such a system is equal to 4 (but not 3) since the phase
variable η1 is not cyclic and hence the phase space is not stratified and the order reduction does not
occur.

The phase space of this system is the tangent bundle

TS2{ξ̇, η̇1, ξ, η1} (8.234)

of the two-dimensional sphere S2{ξ, η1}, where the equation of the large circles

η̇1 ≡ 0 (8.235)

defined a family of integral manifolds only for W 0
1 = W 0

2 = 0.
It is easy to verify that system (8.233) is equivalent to the dynamical system with variable dissipation

with zero mean on the tangent bundle (8.234) of the two-dimensional sphere. Moreover, the following
theorem holds.

Theorem 8.4. System (8.4)–(8.7), (8.10)–(8.15) under conditions (8.20), (8.138), and (8.19) is equiv-
alent to dynamical system (8.233).

Indeed, it suffices to take α = ξ, β1 = η1, b = −b∗, H1 = H∗∗
1 , R2H1 = −H∗

1 , and R1−bR2H1 = R3.
On more general topological analogies, see also [253, 265, 267, 309, 340, 342].
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356. M. V. Shamolin, “Topographical Poincaré systems in many dimensional spaces,” in: Fifth Collo-
quium on the Qualitative Theory of Differential Equations, Bolyai Institute, Regional Committee
of the Hungarian Academy of Sciences, July 29–August 2, 1996, Szeged, Hungary (1996), p. 45.

357. M. V. Shamolin, “Classical problem of a three-dimensional motion of a pendulum in a jet flow,”
in: 3rd EUROMECH Solid Mechanics Conference, Book of Abstracts, Stockholm, Sweden, August
18–22, 1997, Royal Inst. of Technology, Stockholm, Sweden (1997), p. 204.

358. M. V. Shamolin, “Families of three-dimensional phase portraits in dynamics of a rigid body,” in:
EQUADIFF 9, Abstracts, Enlarged Abstracts, Brno, Czech Rep., August 25–29, 1997, Masaryk
Univ., Brno, Czech Rep. (1997), p. 76.

359. M. V. Shamolin, “Three-dimensional structural optimization of controlled rigid motion in a re-
sisting medium,” in: Proceedings of WCSMO–2, Zakopane, Poland, May 26–30, 1997, Zakopane,
Poland (1997), p. 387–392.

360. M. V. Shamolin, “Three-dimensional structural optimization of controlled rigid motion in a
resisting medium,” in: WCSMO–2, Extended Abstracts, Zakopane, Poland, May 26–30, 1997,
Zakopane, Poland (1997), pp. 276–277.

361. M. V. Shamolin, “Lyapunov functions method and many-dimensional topographical Poincaré
systems in rigid body dynamics,” in: Abstracts of Reports of IV Crimean International Math-
ematical School ‘Lyapunov Function Method and Its Application,’ Crimea, Alushta, September
5–12, 1998 [in Russian], Simpheropol’ State University (1998), p. 80.

362. M. V. Shamolin, “Many-dimensional topographical Poincaré systems in rigid body dynamics,” in:
Abstracts of GAMM Wissenschaftliche Jahrestangung’98, 6–9 April, 1998, Bremen, Germany,
Universitat Bremen (1998), p. 128.

363. M. V. Shamolin, “New two-parameter families of the phase portraits in three-dimensional rigid
body dynamics,” in: Abstracts of Reports of International Conference Dedicated to 90th Anniver-
sary of L. S. Pontryagin, Moscow, August 31–September 6, 1998, Sect. Differential Equations
[in Russian], MGU, Moscow (1998), pp. 97–99.

364. M. V. Shamolin, “Some classical problems in a three dimensional dynamics of a rigid body inter-
acting with a medium,” in: Proc. of ICTACEM’98, Kharagpur, India, Dec.1–5, 1998, Aerospace
Engineering Dep., Indian Inst. of Technology, Kharagpur, India (1998), 11 p.

365. M. V. Shamolin, “Integrability in terms of transcendental functions in rigid body dynamics,”
in: Abstracts of GAMM Annual Meeting, April 12–16 1999, Metz, France, Universite de Metz
(1999), p. 144.

366. M. V. Shamolin, “Long-periodic trajectories in rigid body dynamics,” in: Sixth Colloquium on
the Qualitative Theory of Differential Equations, Bolyai Institute, Regional Committee of the
Hungarian Academy of Sciences, August 10–14, 1999, Szeged, Hungary (1999), p. 47.

367. M. V. Shamolin, “Mathematical modelling in 3D dynamics of a rigid body interacting with a
medium,” in: Book of Abstracts of the Second Int. Conf. “Tools for Mathematical Modelling,”
St.-Petersburg, Russia, 14–19 June, 1999, St.-Petersburg State Tech. Univ. (1999), pp. 122–123.

368. M. V. Shamolin, “Methods of analysis of a deceleration of a rigid in 3D medium,” in: Contributed
abstracts of 3rd ENOC, Copenhagen (Lyngby), Denmark, August 8–12, 1999, Tech. Univ. of
Denmark (1999).

369. M. V. Shamolin, “New families of the non-equivalent phase portraits in 3D rigid body dynamics,”
in: Abstracts of Second Congress ISAAC 1999, Fukuoka, Japan, August 16–21, 1999, Fukuoka
Ins. of Tech (1999), pp. 205–206.

370. M. V. Shamolin, “Properties of integrability of systems in terms of transcendental functions,”
in: Final Progr. and Abstracts of Fifth SIAM Conf. on Appl. of Dynamic. Syst., May 23–27,
1999, Snowbird, Utah, USA, SIAM (1999), p. 60.

525



371. M. V. Shamolin, “Some properties of transcendental integrable dynamical systems,” in: Book of
Abst. of EQUADIFF 10, Berlin, August 1–7, 1999, Free Univ. of Berlin (1999), p. 286–287.

372. M. V. Shamolin, “Structural stability in 3D dynamics of a rigid body,” in: CD–Proc. of
WCSMO–3, Buffalo, NY, May 17–21, 1999, Buffalo, NY (1999).

373. M. V. Shamolin, Structural stability in 3D dynamics of a rigid body,” In: WCSMO–3, Short
Paper Proc., vol. 2, Buffalo, NY, May 17–21, 1999, State Univ. of NY at Buffalo (1999), p. 475–
477.

374. M. V. Shamolin, “About interaction of a rigid body with a resisting medium under an assumption
of a jet flow,” in: Book of Abst. II (General sessions) of 4th EUROMECH Solid Mech. Conf.,
Metz, France (June 26–30, 2000), Univ. of Metz (2000), p. 703.

375. M. V. Shamolin, “Integrability and non-integrability in terms of transcendental functions,” in:
CD-abs. of 3rd ECM (Poster sessions), Barcelona, Spain, June 10–14 (2000) (poster No. 36).

376. M. V. Shamolin, “Mathematical modelling of interaction of a rigid body with a medium and
new cases of integrability,” in: Book of Abst. of ECCOMAS 2000, Barcelona, Spain, 11–14
September, Barcelona (2000), p. 495.

377. M. V. Shamolin, “Mathematical modelling of interaction of a rigid body with a medium and new
cases of integrability,” in: CD-Proc. of ECCOMAS 2000, Barcelona, Spain, 11–14 September,
Barcelona (2000).

378. M. V. Shamolin, “Methods of analysis of dynamics of a rigid body interacting with a medium,”
in: Book of Abstracts of Annual Scient. Conf. GAMM 2000 at the Univ. of Göttingen, 2–7 April,
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