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SMALL DEVIATION PROBABILITIES FOR SUMS OF
INDEPENDENT POSITIVE RANDOM VARIABLES
WITH A DISTRIBUTION THAT SLOWLY VARIES AT
ZERO

L. V. Rozovsky∗ UDC 519.2

In the note, we study small deviation probabilities for sums of independent, identically distributed
positive random variables whose distribution function is slowly varying at zero. Bibliography: 5
titles.

1. Introduction and results

Consider independent copies {Xi}i≥1 of a positive random variable X. Set Sn = X1 + . . . +
Xn, n ≥ 1.

The present paper is a continuation of the research from [1] and [2], where, in particular,
it was proved that if the distribution V (x) = P(X < x) decreases as “a power” at zero, then,
with the notation

L(h) = Ee−hX , m(h) = −(
log L(h)

)′
, and σ2(h) =

(
log L(h)

)′′
, h ≥ 0, (1.1)

the small deviation probability of Sn has the classical asymptotics as n → ∞:

P(Sn < x) ∼ 1
hσ(h)

√
2πn

Ln(h) eh x, (1.2)

uniformly in 0 < x ≤ μ n, where the constant μ is such that μ < EX ≤ ∞ and h = h(x/n) is
the unique solution of the equation

m(h) =
x

n
. (1.3)

We treat the case where V (x) is a slowly varying function at zero. This case has not been
examined in the literature. The results obtained show, in particular, that the asymptotics of
type (1.2) in this situation holds for “not too small” x = x(n) only.

Let us introduce the key condition of the present work:

1
y

y∫

0

u dV (u) ∼ l(y), y → +0, (1.4)

where the function l(y) is slowly varying at zero (and, without loss of generality, it can be
assumed positive and continuous for 0 < y ≤ y0).

Notice that (1.4) implies that l(+0) = 0 and

V (y) ∼ l̃(y) =

y∫

0

l(u)/u du, y → +0, (1.5)

where the function l̃(y) is slowly varying at zero.
Conditions (1.4) and (1.5) are obviously satisfied if the distribution V is absolutely contin-

uous in a vicinity of zero with a density p(x) such that p(y) ∼ l(y)/y, y → +0.
Now we formulate the results.
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Theorem 1. Let condition (1.4) hold. Then

P(Sn < x) ∼
√

hx/n

hσ(h)
Ln(h) (hx)hx/Γ(1 + hx), n → ∞, (1.6)

uniformly in 0 < x ≤ μ n, where the function h = h(x/n) is the unique solution of Eq. (1.3)
and the constant μ is such that μ < EX.

In particular, if x > 0 is such that lim x/n = 0, then

P(Sn < x) ∼ Ln(h) (hx)hx/Γ(1 + hx), n → ∞. (1.6′)

Remark 1. If the random variable X is unlattice, then asymptotics (1.2) (or (1.6)) hold
uniformly in ε n ≤ x ≤ μ n for any ε > 0. In this case, (1.4) is not required.

The end of the section includes an example of application of formula (1.6′).
In the following result, the small deviations of the sum Sn are studied in more detail.
Let (see (1.4) and (1.5))

κ(y) = l(y)/l̃(y) = y
(
log l̃(y)

)′
, 0 < y ≤ y0, (1.7)

and let κ(y) = κ(y0) on (y0,∞).
Note that the function κ(y) is slowly varying at zero and κ(y) → 0 as y → +0.
Denote τ = n κ(1/h).

Theorem 2. Let (1.4) hold. Then the following relations hold as n → ∞:
(1)

P(x − y < Sn ≤ x) = Ln(h) eh x 1 − e−h y

hσ(h)
√

2πn

(
e−β2/2 + O (τ−1/2 + (τ1/ε h y)−1

)
(1.8)

uniformly in x > 0, y > 0, and h > ε for any ε > 0, where β = (x − n m(h))/(σ(h)
√

n);
(2)

P(x − y ≤ Sn < x) = Ln(h)
(

hτ xτ − (x − y)τ

Γ(1 + τ)
+ o (1)

)
(1.9)

uniformly in {h : h > n, εn < τ < 1/εn}, {x : 0 < hx = O (1 + τ)}, and {y : 0 < y ≤ x},
where εn is a positive sequence running to zero;
(3)

P(Sn < x) ∼ Ln(h) (1.10)
uniformly in h → ∞ and {x : 0 < xh → 0, τ/(hx) = O (1)}.

Theorem 1 is a direct corollary of Theorem 2 for h that satisfy Eq. (1.3) in view of Lemma
1 of the present work and the Stirling formula Γ(1 + λ) =

√
2πλ (λ/e)λ eθ/λ, 0 < θ < 1/12.

Remark 2. Let
lim inf
y→+0

min
y≤u≤1

κ(u)/κ(y) > 0 (1.11)

(for example, κ(y) does not decrease at (0, 1)).
Then, if hn → ∞ so that n κ(1/hn) → ∞, it is possible to assume in statement (1) of

Theorem 2 that ε < h < hn, and if hn → ∞ so that n κ(1/hn) → 0, one can replace the
condition h → ∞ in statement (3) of Theorem 2 by h > hn.

Consider an example.
Example. Let a > 0, δ > 0, a1, a2, . . . be constants. Assume that

V (e−t) = a t−δ
(
1 +

k∑

j=1

aj t−j + O(t−k−1)
)
, t → +∞, (1.12)
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for any integer k ≥ 1. Then

h =
δ

εξ

(
1 +

k∑

j=1

πj(s) ξ−j + O(s/ξ)k+1
)

(1.13)

and

log L(h) = log a − δs − δ

ξ

(
1 +

k−1∑

j=1

πj(s) ξ−j
)

+ δ
k∑

j=1

ξ−j
( j∑

m=0

π
(m)
j (s)/jm+1

)
+ O(s/ξ)k+1

(1.14)

in (1.6′), where k ≥ 1, ε = x/n, ξ = − log ε, s = log ξ, and πj(·) are polynomials of degree
j with explicitly determined coefficients depending on δ and a1, . . . , aj (for example, π1(s) =
δ−1 a1 − C − log δ + s, where C is the Euler constant).

In particular, if x > 0 is such that ξ = log (n/x) → ∞ and δ n/ξ → ρ as n → ∞ with a
constant ρ ∈ [0,∞), then

P(Sn < x) ∼ Aan e−δn(1−1/ξ) log ξ, n → ∞,

where A = eρ(log ρ+δ−1 a1−C−log δ)/Γ(1 + ρ), and if

n/ξ → ∞ and n(log ξ/ξ)2 → 0,

then

P(Sn < x) ∼ an

√
ξ

2πδn
e−δn(log ξ−(δ−1 a1−C−log δ+log ξ)/ξ), n → ∞.

2. Proof of statement (1) of Theorem 2

Introduce an auxiliary random variable X(h), h ≥ 0, with distribution e−hr V (dr)/L(h).
Recall (see (1.1)) that m(h) = EX(h) and σ2(h) = VarX(h).

Lemma 1. Let (1.4) hold. Then (see (1.5) and (1.7))

V (1/h) ∼ L(h) ∼ l̃(1/h), (2.1)

(−1)k L(k)(h) ∼ (k − 1)! l(1/h)/hk , k = 1, 2, . . . , (2.2)

hm(h) ∼ h2 σ2(h) ∼ κ(1/h), and hEX3(h)/σ2(h) = O (1) (2.3)

as h → ∞.

Proof of Lemma 1. For y > 0 set

μ(y) =

y∫

0

u dV (u) and μ̂(y) = μ(y)/y, μ̃(y) =

y∫

0

μ̂(u) du/u.

We have

(−1)k L(k)(h) =

∞∫

0

e−hyyk−1 dμ(y) = −
∞∫

0

μ(y) dyk−1 e−hy

= −
∞∫

0

μ̂(y) {(k − 1)yk−1 − hyk} e−hy dy
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∼ l(1/h)h−k

∞∫

0

e−t{tk − (k − 1)tk−1} dt

for h → ∞ whence (2.2) follows; next, by (1.5),

L(h) = h

∞∫

0

e−hu V (u) du =

∞∫

0

e−y V (y/h) dy ∼ V (1/h),

and therefore, (2.1) holds.
Now we check (2.3). By (2.1) and (2.2),

h2 σ2(h) =
hL′(h)
L(h)

(hL′′(h)
L′(h)

− hL′(h)
L(h)

)
∼ −hL′(h)

L(h)
∼ κ(1/h)

as h → ∞; similarly,

hEX3(h)/σ2(h) =
∣∣hL′′′(h)/(L(h)σ2(h))

∣∣ → 2.

Lemma 1 is proved. �
Lemma 2. Set fh(t) = Eeit X(h). If (1.4) holds, then

1 − |fh(v)| ≥ δ e−2πh/v l(1/v)/L(h), v > v0, h > 0, (2.4)

where v0 is large enough and a positive number δ does not depend on v and h.

Proof of Lemma 2. Set Y = X(h). We have

1 − |fh(v)| ≥ I =

a+(2−τ)π∫

0

2 sin2 (y−a
2 ) dFY (y/v),

where a = a(v) ∈ [0, 2π), τ ∈ (0, 1), and FY (y) is the distribution function of Y .
If s1 = [a − (2 − τ)π, a − τπ] and s2 = [a + τπ, a + (2 − τ)π], then

2 sin2 (y−a
2 ) ≥ c0 = 2 sin2 (τπ/2).

Let τ = 1/2. Then c0 = 1, s1 = [a − 3π/2, a − π/2], and s2 = [a + π/2, a + 3π/2]. Hence,

I ≥
∫

s2

dFY (y/v) +
∫

s1

dFY (y/v) = I1 + I2. (2.5)

It is obvious that

I1 ≥
3π/2∫

π

dFY (y/v), a ∈ [0, π/2], I1 ≥
2π∫

3π/2

dFY (y/v), a ∈ [π/2, π],

I2 ≥
π∫

π/2

dFY (y/v), a ∈ [3π/2, 2π], and I2 ≥
π/2∫

0

dFY (y/v), a ∈ [π, 3π/2].

Further, if b > a, then
b∫

a

dFY (y/v) =
1

L(h)

b/v∫

a/v

e−hu dV (u) ≥ 1
L(h)

e−bh/v

b/v∫

a/v

dV (u). (2.6)
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Since
β∫

α
dV (u) =

β∫

α
dμ(u)/u ≥ (μ(β) − μ(α))/β, α < β, for any fixed 0 < a < b < ∞,

b/v∫

a/v

dV (u) ≥ v

b
μ(1/v)

μ(b/v) − μ(a/v)
μ(1/v)

∼ v

b
μ(1/v) (b − a) ∼ b − a

b
l(1/v), v → ∞. (2.7)

Relation (2.4) follows from (2.5), (2.6), and (2.7) taking into account the lower bounds for I1
and I2. Lemma 2 is proved. �

Proof of statement (1) of Theorem 2. As in [2], denote independent copies of a random vari-
able X(h) by Xj(h), j ≥ 1, and set (see (1.1))

Sn(h) = X1(h) + · · ·Xn(h), gh(t) = E exp
(
it

Sn(h) − n m(h)
σ(h)

√
n

)
,

τ = hσ(h)
√

n, β =
x − n m(h)

σ(h)
√

n
, and δγ(h) =

1/γ∫

0

|gh(t) − e−t2/2| dt (γ > 0).
(2.8)

In [3, Lemma 2], it was proved that for any positive x, h, y, and γ,

P(x − y < Sn ≤ x) = Ln(h) eh x 1 − e−h y

hσ(h)
√

2πn

×
(
e−β2/2 + θ (|β| e−β2/2/τ + 1/τ2 + ργ(h, y))

)
,

(2.9)

where |θ| is bounded above by an absolute constant,

ργ(h, y) = δγ(h) + (1 + δγ(h))(1 + 1
h y ) τγ. (2.10)

It is known (see [4, Chap. 5, Lemma 1]) that

|gh(t) − e−t2/2| ≤ 16ν e−t2/3, |t| ≤ 1/ν, (2.11)

where (see (2.3))

ν =
4

σ3(h)
√

n
E|X(h) −EX(h)|3 ≤ 1

c1τ
(2.12)

(hereinafter, ci, i = 1, 2, . . . , are positive constants).
Assuming that τ is large enough (otherwise, (1.6) is a consequence of the estimate P(Sn <

x) ≤ Ln(h) eh x), we set γ = τ̃−k−1, k ≥ 1. From (2.8), (2.11), and (2.12) it follows that

δγ(h) ≤ c2/τ + I(h), I(h) = τ

τk∫

c1

|fh(th)|ndt. (2.13)

Let first h > h0, where h0 is large enough (a critical case). Estimating |fh(th)| by (2.4) and
(2.3) and using the fact that l(·) is slowly varying at zero, we obtain for any fixed k (see (1.7))
the estimate

|fh(t h)| ≤ e−c3 κ(1/h)/τ , t ∈ (c1, τk). (2.14)
Therefore,

I(h) ≤ c4 /τ. (2.15)
Let now h ∈ [ε, h0]. Then c5 ≤ h2 σ2(h) ≤ c6 (and L(h) ≤ 1), and, similarly to (2.14) we

show that
|fh(t h)| ≤ e−c7/

√
n, t ∈ (c1, τk),
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for t ≥ t0. Thus, (2.15) takes place again.
Finally, if c1 ≤ t ≤ t0 and ε ≤ h ≤ h0, then |fh(t h)| ≤ e−c9 since the mapping between the

distributions of X and X(h) is continuous in h and X is unlattice due to (1.4). Therefore,
(2.15) is valid again.

Equality (1.8) follows from (2.9), (2.10), (2.13), and (2.15); to check Remark 1, one can use
the last part of the proof of statement (1) of Theorem 2. Remark 2, regarding to statement (1)
of Theorem 2, holds since (1.11) implies that min

1≤h≤hn

κ(1/h) ≥ δ κ(1/hn) for some δ > 0. �

3. Proofs of statements (2,3) of Theorem 2

It is known (see [5, Theorem 2 and (1.8)]) that

Ln(h) eh x ≥ P(Sn < x) ≥ Ln(u)(1 − n m(u)/x) (3.1)

for x > 0, h > 0, K > 1 and u = K h. By Lemma 1,

log L(u) − log L(h) = −
u∫

h

m(t)dt ∼ −κ(1/h) log K, m(u) ∼ m(h)/K, (3.2)

as h → ∞. Substituting (3.2) into (3.1) and letting K tend to infinity, we arrive at (1.10).
Remark 2 to statement (3) of Theorem 2 is valid since (1.11) is equivalent to the condition

lim sup
y→+0

max
0<u≤y

κ(u)/κ(y) < ∞, which implies that n max
hn≤h<∞

κ(1/h) → 0.

Now let us check relation (1.9). We have (see, for instance, [3, (2.1)]) the relation

P(x − y ≤ Sn < x) = Ln(h)

h x∫

h (x−y)

eu dFh(u), (3.3)

where Fh(·) is the distribution function of hSn(h) (see (2.8)).
Let Gτ (·) be gamma-distribution with parameter τ = n κ(1/h) and the corresponding char-

acteristic function Ĝτ (t) = (1 − it)−τ .
Then

h x∫

h (x−y)

et dFh(t) =

h x∫

h (x−y)

eu dGτ (u) +

h x∫

h (x−y)

eu dΔh(u) = I + J, (3.4)

where Δh(u) = Fh(u) − Gτ (u).
Obviously,

I =

h x∫

h (x−y)

eu e−uuτ−1/Γ(τ) du = hτ xτ − (x − y)τ

Γ(1 + τ)
. (3.5)

To prove statement (2) of Theorem 2, it is sufficient to show that there exists a sequence
0 < εn → 0 such that

J = o (1), n → ∞, (3.6)
uniformly in

h > n, 0 < hx = O (1 + τ), and εn < τ < 1/εn. (3.7)
Let us prove this.

Denoting sup
u

|Δh(u)| by Δh, we obtain the inequality

|J | ≤ 2 eh x Δh. (3.8)
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Now let us estimate Δh. To this end, we apply Theorems 1 and 2 of [4, Chap. V]. Simple
calculations show that

Δh ≤ C (T−ν + T δT ) (3.9)

for any T > 1, where ν = min (1, τ), δT = sup
0<t≤T

|qn
h(t) − Ĝτ (t)|/t, and qh(t) = Eeit hX(h).

Let 0 < t ≤ T . It follows from (1.1) and (2.3) that

|n(qh(t) − 1)| ≤ n t hm(h) ∼ t τ, h → ∞.

Hence, if
T τ/

√
n = o (1), (3.10)

then
qn
h(t) = en(qh(t)−1) + O (t2 τ2/n), 0 < t ≤ T, n → ∞. (3.11)

Now we evaluate qh(t)− 1 more accurately. Set u(y) = e−y(eit y − 1)/y. Using the notation
of Lemma 1, we get the relations

L(h)(qh(t) − 1) =

∞∫

0

u(y)hdμ(y/h) = −
∞∫

0

μ̂(y/h) y u′(y) dy. (3.12)

Standard reasoning using properties of slowly varying functions shows that, under condition
(1.4),

∞∫

0

μ̂(y/h) y u′(y) dy = l(1/h)
( ∞∫

0

y u′(y) dy + θ t ε(h)
)
, h → ∞,

where t > 0, ε(h) → 0, and |θ| is bounded from above by a constant uniformly in t and h > 1.
From this relation, (3.12), and Lemma 1 it follows that a similar estimate (with different θ

and ε(h)) is valid for n(qh(t) − 1):

n(qh(t) − 1) = τ
( ∞∫

0

y u′(y) dy + θ t ε(h)
)
, h → ∞. (3.13)

Taking into consideration the equality
∞∫

0

y u′(y) dy = −
∞∫

0

u(y) dy = log (1 − it)

and assuming that
τε(h) = o (1), n → ∞, (3.14)

we deduce from (3.13) that

en(qh(t)−1) − Ĝτ (t) = t Ĝτ (t)O (τε(h)), n → ∞,

uniformly in t ∈ (0, T ] with a suitable T which will be chosen later. Thus (see also (3.9) and
(3.11)),

δT ≤ C (τε(h) + T τ2/n), (3.15)
where the constant C does not depend on T for all n large enough.

Let T = (τε(h))−1/(1+ν) (see (3.7)). Assuming, without loss of generality, that n ε2(h) > 1
(in this case, condition (3.10) is satisfied), we deduce from (3.7), (3.8), and (3.9) that

|J | ≤ c ecτ (ε(h))ν/(1+ν)

for all n (and h) large enough with some constant c. Thus, under an appropriate choice of εn,
(3.6) follows.

161



Statement (2) of Theorem 2 is proved. �

4. Verification of the statement of the example

Let condition (1.12) be fulfilled. We claim (see (1.1)) that in this case,

L(h) = a τ−δ
(
1 +

k∑

ν=1

bντ−ν + O (τ−k−1)
)

and

hL′(h) = −a τ−δ−1
(
δ +

k∑

ν=1

(δ + ν) bν τ−ν + O (τ−k−1)
)

(4.1)

as h → ∞ for any k ≥ 1, where τ = log h and the coefficients bν are given by explicit formulas.
In particular, b1 = a1 − δC and b2 = a2 − a1(1 + δ)C + δ(1 + δ)(C2 + π2/6)/2, where C is the
Euler constant.

Set y0 = τ−k−1/h, y1 = (k + 1) log τ/h, and y2 = (δ + k + 1) log τ/h.
We represent

L(h) =
( y0∫

0

+

y1∫

y0

+

∞∫

y1

)
V (y)e−hy dhy = I1 + I2 + I3. (4.2)

Thus,
I1 ≤ V (y0)hy0 ∼ aτ−δ−k−1

and

I3 ≤ τ−δ−k−1 +

y2∫

y1

V (y)e−hy dhy ∼ (1 + a)τ−δ−k−1. (4.3)

Let us estimate I2. Put g(t) = a t−δ
(
1 +

∑k
j=1 aj t−j

)
. Then

I2 =

y1∫

y0

g(− log y)e−hy dhy + O (1)

y1∫

y0

(− log y)−δ−k−1e−hy dhy = I4 + O (τ−δ−k−1), (4.4)

where

I4 =

t1∫

t0

g(τ + t)e−te−e−t
dt, t0 = − log log τ − log (k + 1), and t1 = (k + 1) log τ. (4.5)

Further,

g(τ + t) =
k∑

l=0

g(l)(τ) tl/l! + g(k+1)(τ + θt) tk+1/(k + 1)!, 0 < θ < 1,

where

g(l)(u) = au−δ−l
k∑

ν=0

aνlu
−ν , a0l = (−1)lΓ(l + δ)/Γ(δ),

and

aνl = aν (−1)l l!/Γ(δ)
l∑

m=0

Γ(l + δ − m)Cm
ν+m−1/(l − m)!, ν ≥ 1.

162



Therefore,

I4 =
k∑

l=0

g(l)(τ)/l!

t1∫

t0

tl e−te−e−t
dt + O (τ−δ−k−1) =

k∑

l=0

cl g
(l)(τ) + O (τ−δ−k−1)

with cl = (−1)lΓ(l)(1)/l! (c0 = 1, c1 = C, and c2 = C2/2 + π2/12).
This equality and (4.2)–(4.5) imply the first equality in (4.1) with coefficients

bν =
ν∑

l=0

cl aν−l,l.

The second statement is checked similarly in view of the equality hL′(h) =
∞∫

0

V (y) d(hye−hy).

From (4.1) (see also [4, Chap. VI, Lemma 1] and (1.1)) it follows that

hm(h) = δ τ−1
( k∑

ν=0

βν τ−ν + O (τ−k−1)
)

(4.6)

with β0 = 1 and

βν =
ν

δ

∑
(−1)r−1(r − 1)!

ν∏

l=1

(bl)ml

ml!
, ν ≥ 1, (4.7)

where summation is taken over all integer nonnegative solutions (m1, . . . ,mν) of the equations
1 · m1 + · · · + ν · mν = ν and r = m1 + · · · + mν .

In particular, β1 = b1/δ, β2 = (2b2 − b21)/δ, and β3 = (3b3 − 3b1b2 + b31)/δ.
Consider the equation

m(h) = ε; (4.8)

we claim that the function h = h(ε) from (1.13) is its approximate solution with necessary
degree of accuracy.

First let us note that, in the notation of (1.13),

τ = log h = log δ + ξ − s + ξ
k+1∑

ν=2

Qν(s) ξ−ν + O(s/ξ)k+1

= ξ
(
1 +

k+1∑

ν=1

Qν(s) ξ−ν
)

+ O(s/ξ)k+1,

(4.9)

where (see the notation in (4.7))

Q1(t) = log δ − t and Qν+1(t) =
∑

(−1)r−1(r − 1)!
ν∏

l=1

πml
l (t)/ml!, ν ≥ 1. (4.10)

For instance,

Q2(s) = π1(s), Q3(s) = π2(s) − π2
1(s)/2, Q4(s) = π3(s) − π1(s)π2(s) + π3

1(s)/3.

In addition,

τ−l = ξ−l
(
1 +

k+1∑

ν=1

Qν(s) ξ−ν + O(sk+1/ξk+2)
)−l

= ξ−l
( k∑

ν=0

clν(s) ξ−ν + O(s/ξ)k+1
)
, (4.11)
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where l ≥ 1 is integer, cl0(s) = 1, and (see (4.7)) the coefficients

clν(t) =
1

(l − 1)!

∑
(−1)r(l + r − 1)!

ν∏

l=1

Qml
l (t)/ml!, ν ≥ 1, (4.12)

are polynomials of degree ν (that depend on the functions πj(t) for 1 ≤ j < ν).
Substituting (4.6), (4.11), and (1.13) into (4.8), we find the representation of the functions

πν(·) under which (4.8) is satisfied in the form of a recurrence relation:

πm(t) =
m∑

l=0

βl cl+1,m−l(t), (4.13)

which makes it possible to calculate these functions taking into account (4.7), (4.10), and
(4.12).

Thus, the solution h(ε) of Eq. (4.8) has the form

h(ε) =
δ

εξ

(
1 +

k∑

j=1

πj(s) ξ−j + O(s/ξ)k+1
)
, ε → +0, (4.14)

where k ≥ 1 is an arbitrary integer, ξ = − log ε, and s = log ξ.
Relation (1.13) follows from (4.14) for ε = x/n → +0.
To check (1.14), we use (4.14) and the equality

log L(h(ε)) = −δ log log (1/ε) + log a − ε h(ε) +

ε∫

0

(h(ε) − δ

ε| log ε|) dε, ε > 0, (4.15)

which holds under condition (1.12).
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Translated by L. V. Rozovsky.
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