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MULTIVARIATE ESTIMATES FOR THE
CONCENTRATION FUNCTIONS OF WEIGHTED SUMS
OF INDEPENDENT, IDENTICALLY DISTRIBUTED
RANDOM VARIABLES

Yu. S. Eliseeva∗ UDC 519.2

In this paper, we formulate and prove multidimensional generalizations of results obtained previ-
ously by the author and A. Yu. Zaitsev. Let X, X1, . . . , Xn be independent, identically distributed
random variables. We study the behavior of the concentration function of the random variable
n∑

k=1

Xkak according to the arithmetic structure of the vectors ak. Recently, interest to this prob-

lem increased significantly due to study of distributions of eigenvalues of random matrices. In this
paper, we formulate and prove some refinements of results of Rudelson–Vershinin and Friedland–
Sodin. Bibliography: 29 titles.

1. Introduction

Let X,X1, . . . ,Xn be independent, identically distributed (i.i.d.) random variables. The
concentration function of an Rd-valued vector Y with distribution F = L(Y ) is defined by the
equality

Q(F, λ) = sup
x∈Rd

P(Y ∈ x + λB), λ > 0,

where B = {x ∈ Rn : ‖x‖ ≤ 1}. Let a = (a1, . . . , an) �= 0, where ak = (ak1, . . . , akd) ∈ Rd,

k = 1, . . . , n. We study the behavior of the concentration function of the sum Sa =
n∑

k=1

Xkak

according to the arithmetic structure of the vectors ak. This problem is called the Littlewood–
Offord problem. It was considered in [1–7]. The classical one-dimensional results were obtained
by Littlewood and Offord [8] and Erdös [9] for i.i.d. Xk taking values ±1 with probabilities 1/2
and integer coefficients ak �= 0. In this case, the concentration function is of order O(n−1/2) (a
similar estimate holds for the multidimensional Littlewood–Offord problem, see [10]). However,
if we assume that all the ak are different, then the estimate can be significantly improved up to
order O(n−3/2) (see [11,12]). Recently, the behavior of the concentration function of weighted
sums Sa was actively investigated due to study of distributions of eigenvalues of random
matrices.

In the sequel, let Fa be the distribution of the sum Sa =
n∑

k=1

Xkak and let G be the

distribution of the symmetrized random variable X̃ = X1 − X2. Let

M(τ) = τ−2

∫

|x|≤τ

x2 G{dx} +
∫

|x|>τ

G{dx} = Emin
{
X̃2/τ2, 1

}
, τ > 0. (1)

The symbol c will be used for absolute positive constants. Note that c can be different in
different (or even in the same) formulas. We write A � B if |A| ≤ cB and B > 0. Similarly,
A �d B if |A| ≤ cdB and B > 0. Note that �d allows constants to be exponential with
respect to d. Also we write A � B if A � B and B � A. Similarly, A �d B if A �d B and
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B �d A. For x = (x1, . . . , xd) ∈ Rd we denote ‖x‖2 = x2
1 + · · · + x2

d and ‖x‖∞ = max
j

|xj |.
The inner product in Rd is denoted by 〈·, ·〉. The product of a vector t = (t1, . . . , td) ∈ Rd

and a multivector a is denoted by t · a = (〈 t, a1〉 , . . . , 〈 t, an〉) ∈ Rn.
Simplest properties of one-dimensional concentration functions are well studied (see, for

instance, [13–15]). It is well known that Q(F, μ) �d (1+μ/λ)d Q(F, λ) for all μ, λ > 0. Hence,

Q(F, cλ) �d Q(F, λ) (2)

and
if Q(F, λ) � K, then Q(F, μ) �d K(1 + (μ/λ))d. (3)

Recall that for any one-dimensional distribution F , the classical Esséen and Kolmogorov–
Rogozin inequalities hold [16] (see as well [14] and [15]). One can find their multidimensional
analogs in [17–20].

For a random vector Y with distribution F = L(Y ) in Rd, the following Esséen inequality
holds (see [3, Lemma 3.4]):

Q(F,
√

d) �d

∫

B(
√

d)

|F̂ (t)| dt, (4)

where F̂ (t) = E exp(i 〈 t, Y 〉) is the characteristic function of Y . Let
∫

Rd

|F̂ (u)| du < ∞ (other-

wise, we can achieve this by applying smoothing); we assume additionally that the distribu-
tion F is symmetric and F̂ (t) ≥ 0 for all t ∈ R. Then, applying relation (4) to the measure

F̂ (t) dt
∫

Rd

F̂ (u) du
, we obtain the inequality

Q(F,
√

d) d

∫

B(
√

d)

F̂ (t) dt. (5)

One can find estimates of that type but with a different dependence on the dimension d in [21].
Thereby,

Q(F,
√

d) �d

∫

B(
√

d)

F̂ (t) dt. (6)

Use of relation (6) allows us to simplify our arguments compared to those in [3] and [22].
Recall a multidimensional generalization of the Kolmogorov–Rogozin inequality.

Proposition 1. Let Y1, . . . , Yn be independent random vectors with distributions Fk = L(Yk).
Let λ1, . . . , λn be positive numbers, λk ≤ λ, k = 1, . . . , n. Then

Q

(

L
( n∑

k=1

Yk

)
, λ

)

� λ
( n∑

k=1

λ2
k

(
1 − Q(F̃k, λk)

))−1/2
, (7)

where F̃k are the distributions of the corresponding symmetrized random vectors.

Siegel [18] improved the statement of Proposition 1. He showed that the following result
holds.

Proposition 2. Under the conditions of Proposition 1,

Q
(
L( n∑

k=1

Yk

)
, λ

)
� λ

( n∑

k=1

λ2
kMk(λk)

)−1/2
. (8)
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One can find one-dimensional versions and refinements of these results in [13–15, 23–28].
Note that the constants in (7) and (8) do not depend on the dimension d. However, there
exist estimates of Kolmogorov–Rogozin type with constants depending on d (see, for example,
[23,29]).

The Littlewood–Offord problem was considered in [1–7,22]. In this paper, we formulate and
prove multidimensional generalizations of results of [6]. They also refine results of [3] and [22].

Now we formulate results of [3] and [22] in common notation.
Friedland and Sodin [22] have simplified the reasoning of Rudelson and Vershynin [2] and

obtained the following result.

Proposition 3. Let X,X1, . . . ,Xn be i.i.d. random variables, let Q(L(X), 1) ≤ 1 − p, where
p > 0, and let a1, . . . , an ∈ Rd. If, for some 0 < D < d and α > 0,

n∑

k=1

(〈t, ak〉 − mk)2 ≥ α2 for all m1, . . . ,mn ∈ Z, t ∈ Rd, such that

max
k

| 〈t, ak〉 | ≥ 1/2 and ‖t‖ ≤ D,

(9)

then

Q(Fa, d/D) �d exp(−cpα2) +
( √

d√
pD

)d(
detN

)−1/2
, (10)

where

N =
n∑

k=1

Nk, Nk =

⎛

⎜
⎜
⎝

a2k1 ak1ak2 . . . ak1akd

ak2ak1 a2k2 . . . ak2akd

. . . . . . . . . . . .
akdak1 . . . . . . a2kd

⎞

⎟
⎟
⎠ ,

ak = (ak1, . . . , akd), k = 1, . . . , n.

(11)

Note that the statement of Proposition 3 in [22] was formulated and proved in a weakened
form. The right-hand side of inequality (10) contained p2 instead of p. The possibility of
replacing p2 by p was noted, for example, in [3] (see Proposition 4). It easily follows from
elementary properties of the concentration function.

Moreover, in [22] it was assumed that 0 < D < d. Furthermore, the left-hand side of
inequality (10) contained Q(Fa, 1) instead of Q(Fa, d/D). Since d/D > 1 for 0 < D < d, the
value Q(Fa, 1) can be essentially less than Q(Fa, d/D). If the authors of [22] considered their
result for D = d, they could deduce from it the inequality for any D > 0 and with Q(Fa, d/D)
instead of Q(Fa, 1) in the same simple way as we below deduce Corollary 1 from Theorem 1.

Note that
(
dist(t · a,Zn)

)2 =
n∑

k=1

min
mk∈Z

(〈t, ak〉 − mk)2 =
n∑

k=1

〈t, ak〉2 (12)

for max
k

| 〈 t, ak〉 | ≤ 1/2, where

dist(t · a,Zn) = min
m∈Zn

‖ t · a − m‖.

Thus, the assumption that max
k

| 〈t, ak〉 | ≥ 1/2 in condition (9) is natural.

Let us now formulate the multidimensional Theorem 3.3 of [3] in the same notation.

Proposition 4. Let X, . . . ,Xn be i.i.d. random variables with zero mean and let Q(L(X), 1)
≤ 1 − p, where p > 0.
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Consider a = (a1, . . . , an), ak ∈ Rd, such that
n∑

k=1

〈t, ak〉2 ≥ ‖t‖2 for any t ∈ Rd. Let α,

D > 0, γ ∈ (0, 1), and

( n∑

k=1

(〈t, ak〉 − mk)2
)1/2 ≥ min{γ‖t · a‖, α} for all m1, . . . ,mn ∈ Z and ‖t‖ ≤ D. (13)

Then

Q
(
Fa,

d

D

)
�d

( √
d

γD
√

p

)d
+ exp(−2 p α2). (14)

Note that the assumption EX = 0 is unnecessary in the formulation of [3, Theorem 3.3].
It is obvious that if

0 < D ≤ D(a) = inf
{‖t‖ > 0 : t ∈ Rd,dist(t · a,Zn) ≤ min{γ‖ t · a‖, α}}, (15)

then condition (13) holds. Rudelson and Vershynin [3] called the value D(a) the essential least
common denominator of a vector a ∈ (Rd)n.

Now we formulate one of the main results of this paper.

Theorem 1. Let X,X1, . . . ,Xn be i.i.d. random variables. Let a = (a1, . . . , an), ak ∈ Rd.
Assume that for some α > 0, condition (9) holds for D =

√
d, i.e.,

n∑

k=1

(〈t, ak〉 − mk)2 ≥ α2 for all m1, . . . ,mn ∈ Z, t ∈ Rd such that

max
k

| 〈t, ak〉 | ≥ 1/2, ‖t‖ ≤
√

d.

(16)

Then

Q(Fa,
√

d) �d

( 1
√

M(1)

)d 1√
detN

+ exp
( − c α2M(1)

)
,

where M(1) is defined in (1) and the matrix N is defined in (11).

Hence, it is easy to see what follows from Theorem 1 under the conditions of Proposition 3.
Namely, the following statement holds.

Corollary 1. Let the conditions of Theorem 1 be satisfied under condition (9) instead of (16)
for an arbitrary D > 0. Then

Q
(
Fa,

d

D

)
�d

( √
d

D
√

M(1)

)d 1√
detN

+ exp(−c α2M(1)).

Note that the value M(1) is essential in refining results of [3] and [22]. It is clear that
M(1) may be significantly larger than p. For example, p may equal 0 while M(1) > 0 for any
nondegenerate distribution F = L(X). Therefore, Corollary 1 is an essential improvement of
Proposition 3. It is obvious that Corollary 1 is related to Proposition 3 in the same way as the
multidimensional variant of Esséen’s inequality (8) is related to the multidimensional variant
of the Kolmogorov–Rogozin inequality (7).

The proofs of Theorem 1 and Corollary 1 are somewhat easier than those in [3] and [22]
because they do not include complicated decompositions of the integration set. This is achieved
by using relation (6) and methods of Esséen [29] (see the proof of [15, Chap. II, Lemma 4]).

We reformulate Corollary 1 for the random variables Xk/τ , τ > 0.
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Corollary 2. Let Va,τ = L( n∑

k=1

akXk/τ
)
. Then

Q
(
Va,τ ,

d

D

)
= Q

(
Fa,

d τ

D

)
�d exp

(−c α2M(τ)
)

+
( √

d

D
√

M(τ)

)d 1√
detN

.

under the conditions of Corollary 1. For τ = D/d,

Q
(
Fa, 1

) �d

( √
d

D
√

M(D/d)

)d 1√
detN

+ exp
(−c α2M(D/d)

)
.

To prove Corollary 2, it suffices to use relation (1).
Note that τ can be arbitrarily small in Corollary 2. Applying this statement for τ tending

to zero, we obtain the estimate

Q(Fa, 0) �d

( √
d

D

√

P(X̃ �= 0)

)d 1√
detN

+ exp
( − c α2 P(X̃ �= 0)

)
.

This estimate can also be deduced from results of [3] and [22].
Now we formulate refinements of Proposition 4. They are analogs of Theorem 1 and Corol-

laries 1 and 2.

Theorem 2. Let X,X1, . . . ,Xn be i.i.d. random variables. Let a = (a1, . . . , an), ak ∈ Rd,
α > 0, γ ∈ (0, 1), and

( n∑

k=1

(〈t, ak〉 − mk)2
)1/2 ≥ min{γ‖t · a‖, α}

for all m1, . . . ,mn ∈ Z and t ∈ Rd, ‖t‖ ≤
√

d.

(17)

Then

Q
(
Fa,

√
d
) �d

( 1

γ
√

M(1)

)d 1√
detN

+ exp
(−c α2M(1)

)
.

Note that Theorem 2 yields a more general result than the result of Proposition 4 because

the condition
n∑

k=1

〈t, ak〉2 ≥ ‖t‖2 is omitted in the formulation of Theorem 2.

Corollary 3. Let X,X1, . . . ,Xn be i.i.d. random variables. Let a = (a1, . . . , an), ak ∈ Rd,
α > 0, D > 0, γ ∈ (0, 1), and

( n∑

k=1

(〈t, ak〉 − mk)2
)1/2 ≥ min{γ‖t · a‖, α}

for all m1, . . . ,mn ∈ Z and t ∈ Rd, ‖t‖ ≤ D.

(18)

Then

Q
(
Fa,

d

D

)
�d

( √
d

D γ
√

M(1)

)d 1√
detN

+ exp
(−c α2M(1)

)
.

Note that if the condition
n∑

k=1

〈t, ak〉2 ≥ ‖t‖2 is satisfied, then
1√

detN
≤ 1. Hence, Corollary

3 yields a more general result than that of Proposition 4. Now we reformulate Corollary 3 for
the variables Xk/τ , τ > 0.
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Corollary 4. Let Va,τ = L( n∑

k=1

akXk/τ
)
. Then

Q
(
Va,τ ,

d

D

)
= Q

(
Fa,

d τ

D

)
�d

( √
d

D γ
√

M(τ)

)d 1√
detN

+ exp
(−c α2M(τ)

)

under the conditions of Corollary 3. If τ = D/d, then

Q
(
Fa, 1

) �d

( √
d

D γ
√

M(D/d)

)d 1√
detN

+ exp
(−c α2M(D/d)

)
.

To prove Corollary 4, it suffices to use relation (1).

2. Proofs

Proof of Theorem 1. We represent the distribution G = L(X̃) as a mixture G = qE +
∞∑

j=0
pjGj , where q = P(X̃ = 0), pj = P(X̃ ∈ Cj), j = 0, 1, 2, . . ., C0 = {x : |x| > 1},

Cj = {x : 2−j < |x| ≤ 2−j+1}, E is the probability measure concentrated at zero, and Gj

are probability measures defined (for pj > 0) by the equality Gj{X} =
1
pj

G{X ⋂
Cj} for any

Borel set X. If pj = 0, then we can take as Gj arbitrary measures.
For z ∈ R and γ > 0 we introduce symmetric d-dimensional infinitely divisible distributions

Hz,γ with characteristic functions

Ĥz,γ(t) = exp
(
− γ

2

n∑

k=1

(
1 − cos(2 z 〈 t, ak〉)

))
, t ∈ Rd. (19)

It is clear that these functions are everywhere positive.
For any characteristic function Ŵ (t) of a random vector Y ,

|Ŵ (t)|2 = E exp
(
i
〈
t, Ỹ

〉)
= E cos

(〈
t, Ỹ

〉)
,

where Ỹ is the corresponding symmetrized random vector. Then

|Ŵ (t)| ≤ exp
(
− 1

2
(
1 − |Ŵ (t)|2)

)
= exp

(
− 1

2
E

(
1 − cos

(〈
t, Ỹ

〉)))
. (20)

Using inequalities (4) and (20), we conclude that

Q(Fa,
√

d) �d

∫

B(
√

d)

|F̂a(t)| dt

�d

∫

B(
√

d)

exp
(
− 1

2

n∑

k=1

E
(
1 − cos(2 〈 t, ak〉 X̃)

))
dt = I.
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It is clear that

n∑

k=1

E
(
1 − cos(2 〈t, ak〉 X̃)

)
=

n∑

k=1

∞∫

−∞

(
1 − cos(2 〈 t, ak〉x)

)
G{dx}

=
n∑

k=1

∞∑

j=0

∞∫

−∞

(
1 − cos(2 〈 t, ak〉 x)

)
pj Gj{dx}

=
∞∑

j=0

n∑

k=1

∞∫

−∞

(
1 − cos(2 〈 t, ak〉 x)

)
pj Gj{dx}.

We denote βj = 2−2jpj, β =
∞∑

j=0
βj , and μj = βj/β, j = 0, 1, 2, . . . . It is obvious that

∞∑

j=0
μj = 1 and pj/μj = 22jβ (for pj > 0).

Now we estimate the value β:

β =
∞∑

j=0

βj =
∞∑

j=0

2−2jpj = P
(|X̃| > 1

)
+

∞∑

j=1

2−2j P
(
2−j < |X̃ | ≤ 2−j+1

)

≥
∫

|x|>1

G{dx} +
∞∑

j=1

∫

2−j<|x|≤2−j+1

x2

4
G{dx}

≥ 1
4

∫

|x|>1

G{dx} +
1
4

∫

|x|≤1

x2 G{dx} =
1
4

M(1).

Thus,

β ≥ 1
4

M(1). (21)

Now we proceed like in the proof of Esséen’s lemma [29] (see [15, Chap. II, Lemma 4]).
Applying the Hölder inequality, it is easy to see that

I ≤
∞∏

j=0

I
μj

j , (22)

where

Ij =
∫

B(
√

d)

exp
(
− pj

2μj

n∑

k=1

∞∫

−∞

(
1 − cos(2 〈 t, ak〉x)

)
Gj{dx}

)
dt

=
∫

B(
√

d)

exp
(
− 22j−1β

n∑

k=1

∫

Cj

(
1 − cos(2 〈 t, ak〉x)

)
Gj{dx}

)
dt

if pj > 0, and Ij = 1 for pj = 0.
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Applying Jensen’s inequality to the exponential in the integrand (see [15, p. 19]), we conclude
that

Ij ≤
∫

B(
√

d)

∫

Cj

exp
(
− 22j−1β

n∑

k=1

(
1 − cos(2 〈 t, ak〉x)

))
Gj{dx} dt

=
∫

Cj

∫

B(
√

d)

exp
(
− 22j−1β

n∑

k=1

(
1 − cos(2 〈t, ak〉x)

))
dt Gj{dx}

≤ sup
z∈Cj

∫

B(
√

d)

Ĥ22jβ
z,1 (t) dt.

We estimate the function Ĥπ,1(t) for max
k

| 〈 t, ak〉 | ≤ 1/2. It is clear that there exists a c

such that 1 − cos x ≥ cx2 for |x| ≤ π. Thus,

Ĥπ,1(t) ≤ exp
(
− 1

2

n∑

k=1

(
1 − cos (2π 〈 t, ak〉)

))

≤ exp
(
− c

n∑

k=1

| 〈 t, ak〉 |2
)
≤ exp (−c 〈Nt, t〉)

for max
k

| 〈 t, ak〉 | ≤ 1/2, where the matrix N is defined in (11).

It is well known that
∫

Rd

exp (−c 〈Nt, t〉) dt �d
1√

detN
. (23)

For t such that max
k

| 〈 t, ak〉 | ≥ 1/2 and ‖t‖ ≤ √
d, one can proceed in the same way as in

[3] and [22]; namely, taking into account that

1 − cos x ≥ c min
m∈Z

|x − 2πm|2,

we see that

Ĥπ,1(t) ≤ exp
(
− c

n∑

k=1

min
mk∈Z

∣
∣2π 〈 t, ak〉 − 2πmk

∣
∣2

)

= exp
(
− c

n∑

k=1

min
mk∈Z

| 〈 t, ak〉 − mk|2
)
≤ exp(−c α2)

(24)

for ‖t‖ ≤ √
d and max

k
| 〈 t, ak〉 | ≥ 1/2.

Now we use estimates (23) and (24) to estimate the integrals Ij. At first, we consider the
case where j = 1, 2, . . . . Note that the characteristic functions Ĥz,γ(t) satisfy the equalities

Ĥz,γ(t) = Ĥy,γ

(
zt/y

)
and Ĥz,γ(t) = Ĥγ

z,1(t). (25)
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If z ∈ Cj, then 2−j < |z| ≤ 2−j+1 < π. Hence, if ‖ t‖ ≤ √
d, then ‖zt/π‖ <

√
d. Thus, using

equalities (25) with y = π and estimates (23) and (24), we conclude that

sup
z∈Cj

∫

B(
√

d)

Ĥ22jβ
z,1 (t) dt ≤

∫

B(
√

d)

exp(−c β 〈Nt, t〉) dt +
∫

B(
√

d)

exp(−22jc α2β) dt

�d

( 1√
β

)d 1√
det N

+ exp(−c α2β)

for z ∈ Cj .
Now we consider the case j = 0. Equalities (25) imply that

Q(Hz,γ ,
√

d) = Q
(
H1,γ ,

√
d/z

)
(26)

for z > 0 and γ > 0. Thus, according to relations (2), (6), (25), and (26), we obtain the
relation

sup
z∈C0

∫

B(
√

d)

Ĥβ
z,1(t) dt = sup

z≥1

∫

B(
√

d)

Ĥz,β(t) dt �d sup
z≥1

Q(Hz,β,
√

d)

= sup
z≥1

Q
(
H1,β,

√
d/z

) ≤ Q(H1,β,
√

d) �d Q
(
H1,β,

√
d/π

)
= Q(Hπ,β,

√
d)

�d

∫

B(
√

d)

Ĥπ,β(t) dt =
∫

B(
√

d)

Ĥβ
π,1(t) dt.

Estimates (23) and (24) for the characteristic function Ĥπ,1(t) and the relation Vol(B(
√

d))
�d 1 imply that

∫

B(
√

d)

Ĥβ
π,1(t) dt ≤

∫

B(
√

d)

exp(−cβ 〈Nt, t〉) dt +
∫

B(
√

d)

exp(−c α2β) dt

�d

( 1√
β

)d 1√
detN

+ exp(−c α2β).

We obtained the same bound for all the integrals Ij for pj �= 0. Since
∞∑

j=0
μj = 1,

I ≤
∞∏

j=0

I
μj

j �d

( 1√
β

)d 1√
detN

+ exp(−c α2β).

Hence,

Q
(
Fa,

√
d

)
�d

( 1√
β

)d 1√
detN

+ exp(−c α2β)

�d

( 1
√

M(1)

)d 1√
detN

+ exp(−c α2M(1)),

as was claimed. �
Now we deduce Corollary 1 from Theorem 1.
Proof of Corollary 1. We denote

b = (b1, . . . , bn) =
D√
d

a =
D√
d

(a1, . . . , an) ∈ (Rd)n.
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Then the equality Q(Fa, d/D) = Q(Fb,
√

d) holds. The conditions of Theorem 1 for the

multivector a are valid for the multivector b as well. Indeed,
n∑

k=1

(〈u, bk〉 − mk)2 ≥ α2 for all

m1, . . . ,mn ∈ Z and u ∈ Rd such that ‖u‖ ≤ √
d and max

k
| 〈 u, bk〉 | ≥ 1/2. This follows from

condition (9) of Corollary 1 if we denote u =

√
d t

D
. It remains to apply Theorem 1 to the

multivector b. �

Proof of Theorem 2. We proceed similarly to the proof of Theorem 1. Using the notation
of Theorem 1, we recall that

Q
(
Fa,

√
d

)
�d

∞∏

j=0

sup
z∈Cj

∫

B(
√

d)

Ĥ22jβ
z,1 (t) dt ≤

∞∏

j=0

sup
z∈Cj

∫

B(
√

d)

Ĥ22jβ
π,1

(
zt/π

)
dt.

The conditions of Theorem 2 imply that

Ĥπ,1(t) ≤ exp
(
− c

n∑

k=1

min
mk∈Z

∣
∣2π〈 t, ak〉 − 2πmk

∣
∣2

)

≤ exp(−c α2) + exp
( − C γ2〈Nt, t〉)

for all ‖t‖ ≤ √
d, where N is defined in (11). Hence,

Q
(
Fa,

√
d

)
�d

∫

B(
√

d)

exp(−c γ2β 〈Nt, t〉) dt +
∫

B(
√

d)

exp(−c α2β) dt

�d

( 1
γ
√

β

)d 1√
detN

+ exp(−c α2β).

According to (21), β ≥ M(1)/4. Then

Q
(
Fa,

√
d

)
�d

( 1

γ
√

M(1)

)d 1√
detN

+ exp(−c α2M(1)),

as was claimed. �

Proof of Corollary 3. This proof is similar to the proof of Corollary 1. We denote b =
D√
d

a ∈

(Rd)n and u =

√
d t

D
. Then

( n∑

k=1

(〈u, bk〉 −mk)2
)1/2 ≥ min{γ‖t · a‖, α} for all m1, . . . ,mn ∈ Z

and ‖u‖ ≤ √
d. Thus, the conditions of Theorem 2 for the multivector a are valid for the

multivector b as well. It remains to note that Q
(
Fa, d/D

)
= Q(Fb,

√
d) and to apply Theorem

2 to the multivector b. �
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