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DIFFRACTION OF ELECTRIC WAVES ON A CONE FORMED OF PERFECTLY 
MAGNETICALLY AND ELECTRICALLY CONDUCTING SURFACES 

D. B. Kurylyak  UDC 517.9: 537.8 

We solve the problem of diffraction of the field of radial electric dipole on a cone whose surface is 
formed by finite perfectly magnetically conducting and truncated semiinfinite perfectly electrically con-
ducting conical surfaces.  The problem is solved by the Wiener–Hopf technique with the use of the Kon-
torovich–Lebedev integral transformation.  We obtain the exact solution of the problem in the static lim-
it and its approximate solution in the low-frequency case.  We deduce an expression for the directional 
pattern of a cone with perfectly absorbing vertex (within the framework of the Macdonald model).  We 
also clarify the effect of the edge of absorbing fragment of the cone surface on its scattering properties. 

The laws of diffraction of electromagnetic waves on the boundary of the joint of perfectly magnetically and 
electrically conducting surfaces are used to model the field scattered by the edges of perfectly absorbing 
(“black”) coatings with an aim to decrease the radar scattering widths.  Plane scatterers with perfectly magneti-
cally conducting properties were studied in [11].  A more general case in which a part of the plane surface is 
an impedance surface was analyzed in [7].  The results of the experimental investigations of “black” surfaces 
can be found in [10].  The solutions of diffraction problems for perfectly magnetically conducting and “black” 
bodies of canonical shapes are presented in [4].  

The main aim of the present work is to obtain a mathematically rigorous solution of the following electro-
dynamic problem:  In a spherical coordinate system  (r,θ,ϕ) ,  we consider a semiinfinite circular conical sur-
face  Q   with a vertex at the origin.  The cone  Q   consists of two parts:  Q = Q1 ∪Q2 , where Q1 : r ∈ 0, c[ ){ , 
θ = γ , ϕ ∈ 0, 2π[ )}   is a perfectly magnetically conducting finite cone on the surface of which we impose 

a boundary condition of equality of the tangential component of the magnetic field to zero, i.e.,  Htan
(t ) = 0 ,  and  

Q2 : r ∈(c,∞){ , θ = γ , ϕ ∈ 0, 2π[ )}   is a semiinfinite perfectly electrically conducting cone,  Etan
(t ) = 0 ,  with 

truncated vertex (see Fig. 1).  This problem plays the key role in studying the field scattered by the cone for 
which a part of the surface in the form of a finite cone with vertex is perfectly absorbing (within the framework 
of the Macdonald model) [9].  For the solution of this problem, we use the Wiener–Hopf technique.  The inves-
tigations of the diffraction of waves on perfectly electrically conducting conical surfaces with edges can be 
found in [8]. 

Assume that the surface  Q   is excited by an axisymmetrically radial electric dipole located on the axis of 
symmetry of the cone that coincides with the z -axis of the corresponding Cartesian coordinate system  (x, y, z) .  
In a homogeneous medium, a radial electric dipole emits the field with nonzero components  Er ,  Eθ ,  and Hϕ  

independent of the azimuthal coordinate  ϕ .  The time dependence of the field is described by the factor  e−iωt .  
In what follows, it is omitted. 
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Fig. 1 

The total field formed as a result of the interaction of the dipole field with the conical surface  Q   also has 
the axial symmetry and its components can be expressed via the Debye scalar potential  U   as follows: 

 Er = − 1
r sin θ

∂
∂θ

sin θ ∂U
∂θ

⎛
⎝⎜

⎞
⎠⎟ , Eθ = 1

r
∂2

∂r ∂θ
(r U ) , 

   (1) 

 Hϕ = ikZ −1 ∂U
∂θ

, 

where the function  U = U(r,θ)   satisfies the Helmholtz equation and  Z   is the resistance of the medium. 
In the free space, we represent the magnetic component of the dipole field in the form [5]  

 
 
Hϕ

i = iIr
ehk 3 π/2

H 3/2
(1) (kR)

(kR)3/2 r sin θ . (2) 

Here,  Ir
eh   is the dipole moment,  Ir

e   is the amplitude of electric current,  h   is the dipole length,  
 
H 3/2

(1) ( ⋅ )   is 

the Hankel function of the first kind,  R = r2 + r0
2 − 2rr0 cos θ ,  r0   is the radial coordinate of the dipole on the 

axis of symmetry of the cone, and  k   is the wave vector  (k = ′k + i ′′k , ′k , ′′k > 0) . 
We find the Debye potential of the dipole field in a homogeneous medium from relation (2).  For this pur-

pose, in view of the theorem on summation for cylindrical functions [3], we write 

 

 

H 3/2
(1) (kR)

(kR)3/2 = − 2π
(kr)3/2(kr0 )3/2 sin θ

λnPλn−1/2
1 (cos θ)

Jλn (kr0 )Hλn
(1)(kr), r ≥ r0,

Jλn (kr)Hλn
(1)(kr0 ), r ≤ r0,

⎧

⎨
⎪

⎩
⎪n=1

∞

∑  

where   Pλn−1/2
1 (cos θ)   is the associated Legendre function, Jλn (kr0 )   is the Bessel function, and  λn  =  n +1/2 ,  

 n = 1, 2,… . 
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Further, in view of relations (1) and (2), we get an expression for the Debye potential of the dipole field in 
the free space.  Here, we present this expression in the integral form:  

 
 
U i (r,θ) = A0

πi sr
νPν−1/2(−cos θ)

cos(πν)
Kν(sr0 )Iν(sr) dν

Γ∗
∫ , (3) 

where  
 
A0 = πIr

ehZ/ r0 sr0( ) ,  Γ∗   is the contour of integration parallel to the imaginary axis  Im ν   in the strip  

 Π : Re ν < 1/2{ }   of regularity of the integrand,  Iν(sr)   and  Kν(sr0 )   are the modified Bessel and Macdon-
ald functions, respectively,  s = − ik ,  and   Pν−1/2(cos θ)   is the Legendre function.  Here and in what follows,  
we use [3] the definition  

  
 
Pν−1/2

1 (± cos θ)= ± ∂
∂θ

[Pν−1/2(± cos θ)] . 

The integral in (3) is absolutely and uniformly convergent for  0 ≤ θ < π ,   0 < r/r0 < ∞ ,  and determines 
the Debye potential of the dipole field in the free space to within a quantity proportional to the residue of  the 
integrand at the point   ν = 1/2 .  This residue is independent of the variable  θ   and does not contribute to the 

components of the field.  We can deform the contour of integration  Γ∗   in (3) within the domain of regulari-
ty  Π   and change the order of arguments of the modified Bessel and Macdonald functions without changing the 
value of the integral. 

The electrodynamic problem is now reduced to the following mixed boundary-value problem for the Helm-
holtz equation: 

 ΔU + k2U = 0 , (4) 

where  U = U(r,θ)   is the unknown scalar potential of the diffracted field and  Δ   is the Laplace operator, 
which can be represented for the axisymmetric case in a spherical coordinate system as 

 Δ = ∂2

∂r2 + 2
r

∂
∂r

+ 1
r2 sin θ

∂
∂θ

sin θ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ . 

The function  U   must satisfy the following boundary conditions: 

 – on the perfectly magnetically conducting surface  r,θ ∈Q1( )  

 ∂U t

∂θ
= 0 ; (5ʹ′) 

 – on the perfectly electrically conducting surface  r,θ ∈Q2( )  

 1
r sin θ

∂
∂θ

sin θ ∂U t

∂θ
⎛

⎝⎜
⎞

⎠⎟
= 0 . (5ʺ″) 
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Here,  U t   (≡U +U i )   is the scalar potential of the total field.  In addition, for the uniqueness of solution, 
the required function must satisfy the condition of boundary absorption at infinity and the condition of bounded-
ness of energy of the electromagnetic field in any bounded volume. 

We represent the solution of boundary-value problem (4), (5) in the form of the Kontorovich–Lebedev inte-
gral, which is written as 

 
 
U(r,θ) = 1

πi sr
νF(ν)Pν−1/2(cos θ)Iν(sr) dν

Γ∗
∫ . (6) 

Here,  F(ν)   is the unknown transform, which is an even function regular in the strip  Π . 
With regard for representation (6), we reduce the boundary-value problem (4), (5) to a system of dual inte-

gral equations: 

 
 

1
πi sr

ν (ν2 −1/4)
Γ∗
∫ F(ν)Pν−1/2(cos γ ) +

A0Pν−1/2(− cos γ )Kν(sr0 )
cos (πν)

⎡
⎣
⎢

⎤
⎦
⎥ Iν(sr) dν = 0, c < r < ∞ , (7ʹ′) 

 
 

1
πi sr

ν F(ν)Pν−1/2
1 (cos γ ) − A0

Pν−1/2
1 (− cos γ )Kν(sr0 )

cos (πν)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Iν(sr) dν
Γ∗
∫ = 0 ,      0 ≤ r < c , (7ʺ″) 

where  Re s > 0   and we take  Im s = 0   to guarantee the convergence of integrals (7).  In the final relations, 
we pass to complex values of this parameter, including imaginary. 

We now supplement the right-hand sides of Eqs. (7) to the complete interval and apply the inverse Konto-
rovich–Lebedev transformation.  We exclude the unknown function  F(ν)   from the obtained relations and ar-
rive at the following functional equation: 

 
 
Φ1(ν)M (ν) − 2A0Kν(sr0 )

π sin γPν−1/2(cos γ )
= Φ2(ν) . (8) 

Here, 

 Φ1(ν) = s g1(r)Kν(sr) dr
r0

c

∫ , (9ʹ′) 

 Φ2(ν) = s g2(r)Kν(sr) dr
rc

∞

∫ , (9ʺ″) 

where  g1(r) = − rEr
t (r, γ )   and   g2(r) = Hϕ

t (r, γ )/iωε   are new unknown functions, different from zero in the 
domains  0 ≤ r < c   and  c < r < ∞ ,  respectively, and 
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M (ν) =

Pν−1/2
1 (cos γ )

(ν2 −1/4)Pν−1/2(cos γ )
. (10) 

The function  M (ν)   is even and regular and has no zeros in the domain  Π .  As  ν → ∞ , the function 

M (ν)   tends to zero as  ν−1   in Π .  Outside the domain  Π ,  the function  M (ν)   has simple real zeros and 
poles at the points  ν = ± zn   and  ν = ± νn ,   n = 1, 2,… ,  respectively, obtained as solutions of the equations 

  
Pzn−1/2

1 (cos γ )/(νn
2 −1/4) = 0 , (11ʹ′) 

  
Pνn−1/2(cos γ ) = 0 . (11ʺ″ ) 

The asymptotics of the roots of the equations   Pηn−1/2
1 (cos γ ) = 0   and   Pνn−1/2(cos γ ) = 0   as  n → ∞   are as 

follows [2]: 

  ηn = π(n − 3/4)/γ + O(1/n), νn = π(n −1/4)/γ + O(1/n) . (12) 

Consider new unknown functions (9) appearing in Eq. (8).  As  r → 0 ,  the function  g1(r)  =  O(r z1−1/2 ) ,  
where  z1   is the first positive root of Eq. (11ʹ′).  Since the minimal value of  z1   is reached as  γ → π   and, 

in addition,   z1 → 3/2 + 2(π − γ )2/9   [3], the function  g1(r)   is bounded for all  0 < γ < π   at the vertex of the 
cone  Q1 .  On the boundary of the joint of the surfaces  Q1   and  Q2 ,   the function  g1(r)   has an integrable 

singularity  
 
g1(r) = O (r − c)−1/2( )   as  r → c − 0 . 

Taking into account that    Kν(sr) ∼ sr/2( )− ν   as  r → 0 ,  ν ≠ 0   and   K0(sr) ∼ ln (srT2)   as  r → 0 ,  
we obtain the following estimate for the function  Φ1(ν)   (9ʹ′): 

 Φ1(ν) ≤ C0 x− ν +z1−1 dx
0

1

∫ = C0
− ν + z1

, 

where the constant  C0   is independent of  ν   and  γ .  Hence,  Φ1(ν)   is bounded in the strip  Π1 : 

 Re ν < 3/2{ }   for any  c   and  γ .  Since  Π ⊂ Π1 ,  we see that  Φ1(ν)   is bounded in  Π . 

As  r → c + 0 ,  the function    g2(r) ∼ Hϕ
t (r, γ ) = O((r − c)1/2 )   and, as  r → ∞ ,  it satisfies the condition of 

boundary absorption.  Hence,  Φ2(ν)   defined by (9ʺ″) is an integer function over the entire complex plane  ν   
ν < ∞( ) .  In view of the fact that 

 
 
Kν(sr) ∼ 1

2
Γ ν( ) sr

2
⎛
⎝⎜

⎞
⎠⎟
− ν

, ν
sr
≫ 1 , 

where  Γ(ν)   is the gamma-function, we find  
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Φ2(ν)
Γ(−ν)

sc
2

⎛
⎝⎜

⎞
⎠⎟
−ν

= O ν −3/2( )  (13) 

in the domain   Re ν < 1/2   as  ν → ∞ . 
The known term in Eq. (8) is also a regular function in the strip of regularity  Π   and exponentially vanish-

es as  e− ν γ   for  ν → ∞ .  Hence, Eq. (8) is true in  Π . 
Using the formula of representation of the Macdonald function in terms of the modified Bessel func-

tions [3], we rewrite function (9ʹ′) as follows [6]: 

 Φ1(ν) = 1
2
Φ1

+ (ν) sc
2

⎛
⎝⎜

⎞
⎠⎟
ν
Γ(−ν) + 1

2
Φ1

− (ν) sc
2

⎛
⎝⎜

⎞
⎠⎟
−ν

Γ(ν) . (14) 

Here, 

 
 
Φ1

± (ν) = Γ(1± ν) sc
2

⎛
⎝⎜

⎞
⎠⎟
∓ν

s g1(r)I±ν(sr) dr
r0

c

∫ , (15) 

and the relation  Φ1
+ (ν) = Φ1

− (− ν)   is true. 
Since the asymptotic estimate 

 
 
I±ν(sr) ∼ 1

Γ(1± ν)
sr
2

⎛
⎝⎜

⎞
⎠⎟
±ν

, ν
sr
≫ 1 , 

is valid for the modified Bessel functions, the relation 

 Φ1
± (ν) ≤ C1 x±ν+z1−1 dx

0

1

∫ = C1
± ν + z1

 (16) 

is true for functions (15).  Here,  C1   is a constant independent of  ν   and  γ . 

As follows from relation (16), the functions  Φ1
± (ν)   are regular in the half planes  Re ν < z1

> −z1  of the com-

plex plane  ν ,  respectively. 
In view of the behavior of  Er (r, γ ) ,  i.e., the component of the field as  r → c − 0 ,  we obtain the follow-

ing estimate for the functions  Φ1
± (ν)   as  ν → ∞ : 

 
 
Φ1

± (ν) ≤ C2 (1− x)−1/2 x±ν−1/2 dx
0

1

∫ = C2B 1
2

, 1
2
± ν⎛

⎝⎜
⎞
⎠⎟ = O(ν−1/2 ) , 

 
 
Re ν < 1/2

> −1/2 , 

where  C2   is a constant and  B(x, y)   is the beta-function [3]. 
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Further, we factorize function (10):  

 M (ν) = M+ (ν)M− (ν) , (17) 

where  M ± (ν)   are regular functions not equal to zero in the half planes  
 
Re ν < 1/2

> −1/2 ,  respectively.  Further-

more, in this case, we have M+ (ν) = M− (− ν)   and, as ν → ∞ , in the domains of regularity, we get  M ± (ν)  = 

 
O ν−1/2( )   and 

 M+ (ν) = B0

1+ ν
zn

⎛
⎝⎜

⎞
⎠⎟

e
− νγ

nπ

n=1

∞

∏

1+ ν
νn

⎛
⎝⎜

⎞
⎠⎟

e
− νγ

nπ

n=1

∞

∏
, (18) 

where  

  
 
B0 = 2i

P−1/2
1 (cos γ )

P−1/2(cos γ )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

. 

We now substitute expression (14) in Eq. (8) and multiply the relation obtained as a result by  

 2(sc/2)−νM−
−1(ν)Γ−1(−ν) .  As a result, we arrive at a functional equation of the form 

 Φ1
+ (ν)M+ (ν) + Φ1

− (ν)M+ (ν) sc
2

⎛
⎝⎜

⎞
⎠⎟
−2ν Γ(ν)

Γ(−ν)
 

   – 
 

4A0(sc/2)−νKν(sr0 )
π sin γ Γ(−ν) M− (ν) Pν−1/2(cos γ )

 

  = 
 
Φ2(ν) 2(sc/2)−ν

Γ(−ν)M− (ν)
. (19) 

The first term on the left-hand side of Eq. (19) represents a function regular in the right half plane  

 Re ν > −1/2   and, as  ν → ∞ ,  approaches zero as  ν−1 .  The right-hand side of (19) represents a function 

regular in the domain   Re ν < 1/2   and, since estimate (13) is true, also tends to zero like  ν−1   as  ν → ∞ .  
The remaining terms of this equation are regular in the strip  Π ,  approach zero in this strip as  ν → ∞ ,  and, 
outside this strip, admit singularities of the type of simple poles.  In other words, Eq. (19) is a modified Wiener –
Hopf equation. 

We apply to Eq. (19) the procedure of factorization with respect to a contour placed in the vertical strip  Π   
by the relations [1] 

 
 

[…]± = ∓ 1
2πi

[…] dν
ν − α

Γ±
∫ , 
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where   […]±   are functions regular in the half planes  
 
Re ν < 1/2

> −1/2 ,  respectively,  α, ν ∈Π ,  Reα > Re ν   for  

Γ+ ,  and  Reα < Re ν   for  Γ− . 
We now group the terms of the obtained integral equation: the functions regular for   Re ν > −1/2   are 

moved to the left-hand side and the functions regular for   Re ν < 1/2  are moved to the right-hand side.  

As  ν → ∞ ,  they vanish in these half planes like  ν−1 .  Since the equality holds in the common strip of regu-
larity, its right- and left-hand sides form a function regular in the entire complex plane.  According to the Liou-
ville theorem, this function is identically equal to zero in the entire complex plane.  Thus, the left- and right-
hand sides of this equation are equivalent to the integral equations (7ʹ′) and (7ʹ′ʹ′), respectively.  We write one of 
these equations, sufficient for the solution of our problem, in the following way: 

 Φ1
+ (α)M+ (α) − 1

2πi
Φ1

− (ν)M+ (ν) sc
2

⎛
⎝⎜

⎞
⎠⎟
−2ν Γ(ν)

Γ(− ν)
dν

ν − α
Γ+
∫  

  = 
 
− 2A0

π2i sin γ
(sc/2)−νKν(sr0 )

Γ(− ν)M− (ν)Pν−1/2(cos γ )
dν

ν − α
Γ+
∫ . (20) 

Here, the integrand on the left-hand side has simple poles at the points  ν = − n   and  ν = − νn ,   n = 1, 2,… ,  
and the integrand on the right-hand side at the points  ν = − νn . 

We restrict ourselves to the case where  r0 > c .  Thus, deforming the contour  Γ+   in (20) into the left half 
plane and replacing integrals by the series of residues, we obtain the following functional relation: 

 Φ1
+ (α)M+ (α) +

(−1)nΦ1
+ (n)M− (n) sc

2
⎛
⎝

⎞
⎠

2n

Γ(n)Γ(n +1)(n + α)n=1

∞

∑  

   + 
πΦ1

+ (νn ) sc
2

⎛
⎝

⎞
⎠

2νn

Γ(νn )Γ(νn +1) sin (πνn ) M−
−1(νn )⎡⎣ ⎤⎦

′ (νn + α)n=1

∞

∑  

  = 

 

− 4A0
π sin γ

Kνn (sr0 ) sc
2

⎛
⎝

⎞
⎠

νn

Γ(νn )M+ (νn )(νn + α) ∂
∂ν

Pν−1/2(cos γ )⎡⎣ ⎤⎦νn
n=1

∞

∑ , (21) 

where  Φ1
+ (n)   and  Φ1

+ (νn )   are unknown values of the function  Φ1
+ (α)   at discrete points.   

We determine the derivative  
 

∂
∂ν

Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn
  of the Legendre function with respect to its subscript 

by using the well-known formula [3] and find 
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M−
−1(νn )⎡⎣ ⎤⎦

′ ≡ d
dν

M −1(ν)⎡⎣ ⎤⎦ν=νn
=

(ν2 − 1/4)M+ (νn )∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦νn

Pνn−1/2
1 (cos γ )

. 

The following theorems are true: 

Theorem 1.  For any parameters of the boundary-value problem (4), (5), the functional relation (21) guar-
antees the possibility of construction of a function  Φ1

+ (α)  regular in   Reα > −1/2 ,  approaching zero like  

 α
−1/2   as  α → ∞ ,  and possessing simple poles in the negative part of the real axis at the points  α = − n   

and  α = − zn ,   n = 1, 2,… . 

Proof.   In (21), we set  α = p   and  α = ν p ,   p = 1, 2,… .  As a result, we arrive at two infinite systems of 

linear algebraic equations of the second kind.  Further, we introduce vectors of unknowns   X = {xn}n=1
∞   and  

 Y = {yn}n=1
∞ ,  where  xn = Φ1

+ (n)M+ (n)   and  yn = Φ1
+ (νn )M+ (νn ) .  Then  X   and  Y   belong to the Hilbert 

space   ℓ 2   because   xn , yn = O(1/n)   as  n → ∞ .  The matrices of these systems are written as the sum of oper-
ators unit and compact in   ℓ 2 .  Hence, the obtained infinite systems of linear algebraic equations admit solutions 
with given accuracy for arbitrary parameters of the problem (except the points of the spectrum).  The assertions 
of Theorem 1 directly follow from relation (21), Q.E.D.  

Theorem 2.  The scalar potential  U  of the field of a radial electric dipole on the axis of the cone  Q  = 

 Q1 ∪Q2   can be represented as a series in eigenfunctions of the Helmholtz equation for conical domains with 
perfectly electrically conducting surface for  r > c   and perfectly magnetically conducting surface for  r < c . 

Proof.   Consider the case where  r > c .  Then we determine from Eq. (7ʹ′) the transform of the scalar po-
tential of the diffracted field and substitute it in relation (6).  In view of relation (14) and expression (3) for the 
vanishing field, we represent the potential of the total field in the form 

 
 
U t (r,θ) = 1

πi sr
ν
Φ1

+ (ν) sc
2

⎛
⎝

⎞
⎠

ν
Γ(−ν)Pν−1/2(cos θ)

2(ν2 −1/4)Pν−1/2(cos γ )
Iν(sr) dν

Γ∗
∫  

  + 
 

1
πi sr

ν
Φ1

− (ν) sc
2

⎛
⎝

⎞
⎠

−ν
Γ(ν)Pν−1/2(cos θ)

2(ν2 −1/4)Pν−1/2(cos γ )
Iν(sr) dν

Γ∗
∫  

  – 
 

A0
πi sr

ν Pν−1/2⎡⎣ (− cos γ )Pν−1/2(cos θ)
Γ∗
∫  

  –  Pν−1/2(cos γ )Pν−1/2 (− cos θ) ⎤⎦ cos (πν)Pν−1/2(cos γ )⎡⎣ ⎤⎦
−1

Kν(sr0 )Iν(sr) dν . (22) 

We replace the first integral in (22) by a series of residues, closing the contour of integration into the right 
half-plane, where the integrand has simple poles at the points  ν = n   and  ν = νn ,   n = 1, 2,… ,  and for  
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 ν = 1/2 .  We represent the second integral in (22) by a series of residues at the points   ν = −1/2 ,  ν = − n ,  and  
ν = − νn ,   n = 1, 2,… ,  closing the contour of integration into the left half plane.  Since  In (sr) = I−n (sr) ,  it is 
easy to see that the residues at the points  ν = n   and  ν = − n  are mutually canceled and, by virtue of the rela-
tion 

 Kνn (sr) = 1
2
Γ(− νn )Γ(νn +1) Iνn (sr) − I−νn (sr)⎡⎣ ⎤⎦ , 

we can form a series of Macdonald functions from the residues at the points  ν = νn   and  ν = − νn .  We obtain 
the required representation of the third integral in (22) by rearranging the arguments of the modified Bessel 
function and Macdonald function in this integral and replacing it by a series of residues at the points  ν = νn .  
The final expression for the potential can be written as 

 

 

U t (r,θ) = 2A0
sr

νnPνn−1/2(− cos γ )Iνn (sr0 )Pνn−1/2(cos θ)Kνn (sr)
cos (πνn )∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

n=1

∞

∑  

  – 

 

2
sr

Φ1
+ (νn ) sc

2
⎛
⎝

⎞
⎠

νn

Pνn−1/2(cos θ)Kνn (sr)

(νn
2 −1/4)Γ(νn )∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

n=1

∞

∑ . (23) 

Here, the first series corresponds to the scalar potential of the complete field of a perfectly conducting semiinfi-
nite cone under the condition of its excitation by the field of radial dipole (2), whereas the second series de-
scribes the disturbance introduced to this potential by a finite perfectly magnetically conducting conical surface. 

Note that, in (23), we omitted the terms independent of the angle  θ   and corresponding to the poles of the 
integrand at the points   ν = ±1/2 .  These terms do not make contributions to the expressions for the components 
of the field. 

Further, we obtain an expression for the field potential in the domain  r < c . By using relations (1) and rep-
resentation (23) for  θ = γ ,  we find  

 
 

Hϕ
t (r, γ )
iωε

= − 2
π sin γ

A0
πi sr

νKν(sr0 )
Pν−1/2(cos γ )

Iν(sr) dν
−i∞

i∞

∫  

  – 

 

2
sr

Φ1
+ (νn ) sc

2
⎛
⎝

⎞
⎠

νn

Pνn−1/2
1 (cos γ )

(νn
2 −1/4)Γ(νn )∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

Kνn (sr)
n=1

∞

∑ . (24) 

In deriving (24), we have taken into account that if   Pνn−1/2(cos γ ) = 0 ,  then the equality 

 
 
Pνn−1/2(− cos γ )Pνn−1/2

1 (cos γ ) = 2 cos πνn
π sin γ

 

is true and the first series in (23) has been represented in the form of an integral. 
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We now substitute expression (24) in relation (9ʺ″ ) and represent the function  Φ2(α)   in the domain  
Reα > Re ν ∈Π   as follows: 

 

 

Φ2(α) = 2
Φ1

+ (νn )Pνn−1/2
1 (cos γ ) sc

2
⎛
⎝

⎞
⎠

νn

(νn
2 −1/4)Γ(νn )∂/ ∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

n=1

∞

∑
scW Kνn Kα⎡⎣ ⎤⎦sc

α2 − νn
2  

  – 

 

4A0
π sin γ

νnKνn (sr0 )
∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

n=1

∞

∑ scW [Iνn Kα ]sc

α2 − νn
2  – 

 

2A0Kα (sr0 )
π sin γPα−1/2(cos γ )

. (25) 

Here,  W fαϕν[ ]t = fα (t) ′ϕν(t) − ϕν(t) ′fα (t) ,  where  fα (t)   and  ϕν(t)   are arbitrary Bessel functions and the 
primes stand for the derivatives with respect to the argument. 

The series in (25) converge absolutely and uniformly with respect to  α   α < ∞( ) .  The function  Φ2(α)   
is regular because the singularities of the second sum at the points  α = ± νn ,  where   n = 1, 2,… ,  are compen-
sated by the singularities of the third term of (25) at these points. 

We can now write the transform of required scalar potential of the diffracted field as follows: 

 
 
F(ν) = Φ2(ν)

Pν−1/2
1 (cos γ )

+
A0Pν−1/2

1 (− cos γ )Kν(sr0 )
cos (πν)Pν−1/2

1 (cos γ )
. (26) 

Substituting relation (26) in (6) and taking into account expression (25), we obtain an integral along the 
contour  Γ∗   whose integrand satisfies the Jordan lemma in the right half plane.  Further, we replace this integral 
by a series of residues and, by virtue of relation (3), obtain the representation of scalar potential of the total field 
in the form of a series in eigenfunctions of the Helmholtz equation for a conical domain with perfectly magneti-
cally conducting surface: 

 
 

U t (r,θ) = 1
sr

2zpΨ pPzp−1/2(cos θ)

∂/∂z Pzp−1/2
1 (cos γ )⎡⎣ ⎤⎦

Izp (sr)
p=1

∞

∑ . (27) 

Here, 

 
 
Ψ p = − 2

Φ1
+ (νn ) sc/2( )νn Pνn−1/2

1 (cos γ )scW Kνn Kzp
⎡⎣ ⎤⎦sc

(νn
2 −1/4)Γ(νn )∂/∂ν Pνn−1/2(cos γ )⎡⎣ ⎤⎦ (zp

2 − νn
2 )n=1

∞

∑  

  + 
 

4A0
π sin γ sr

νnKνn (sr0 )scW Iνn Kzp
⎡⎣ ⎤⎦sc

∂/∂ν Pνn−1/2(cos γ )⎡⎣ ⎤⎦ (zp
2 − νn

2 )n=1

∞

∑ . (28) 

Representations (23) and (27) complete the proof of Theorem 2.  

Corollary.  The values of the function  Φ1
+ (ν)   at the points  ν = νn ,   n = 1, 2,… ,  guarantee the possibility 

of construction of the solution of the Wiener–Hopf equation (8) and, hence, of the original diffraction problem. 
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Field in the Radiation Zone.  As  r → ∞ ,  relations (1) and (23) yield 

 Eθ
t (r,θ) = ZHϕ

t (r,θ) = D(θ) eikr

r
. (29) 

Here,  D(θ)   is the directional pattern of the cone  Q : 

 D(θ) = D1(θ) + D2(θ) , 

where 

 
 
D1(θ) = − 2A0

sin γ
2
π

νnIνn (sr0 )Pνn−1/2
1 (cos θ)

Pνn−1/2
1 (cos γ )∂/ ∂ν Pνn−1/2(cos γ )⎡⎣ ⎤⎦n=1

∞

∑ , (30) 

 

 

D2(θ) = 2 π
2

Φ1
+ (νn ) sc

2
⎛
⎝

⎞
⎠

νn

Pνn−1/2
1 (cos θ)

(νn
2 − 1/4)Γ(νn )∂/∂ν Pν−1/2(cos γ )⎡⎣ ⎤⎦ν=νn

n=1

∞

∑ . (31) 

Relations (30) and (31) enable us to get, within the framework of the Macdonald model [9], an expression 
for the directional pattern of a semiinfinite cone with “black” vertex: 

 
 

⌢
D(θ) = D1(θ) + D(θ)

2
. (32) 

Special Cases.  In the static limit  (s → 0) ,  the functional equation (21) admits the following exact solu-
tion:  

 
 

Φ1
+ (νn ) = − 2A0

π sin γM+ (νn )
(c/r0 )ν p

M+ (ν p )(ν p + νn )∂/∂ν Pν p−1/2(cos γ )⎡⎣ ⎤⎦p=1

∞

∑ , (33) 

where series (33) converges absolutely and uniformly in  γ . 
Now let   γ = π/2 .  Under this condition, we get   νn = 2n − 1/2 .  Then 

 
 
M+ (νn ) = i

2n
Γ(n + 1/2)

Γ(n)
, (34) 

 
 
Pνn−1/2

1 (0) = (−1)n 2Γ(n +1/2)
π Γ(n)

, (35) 

 
 

∂Pνn−1/2(0)
∂ν

= (−1)n π Γ(n)
2Γ(n +1/2)

. (36) 
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In view of relations (34)–(36), we rewrite expression (33) as follows: 

 
 
Φ1

+ (νn ) = 4A0Γ(n +1)
π3/2(c/r0 )1/2Γ(n +1/2)

(−1)p p(c/r0 )2 p

p + n −1/2p=1

∞

∑ . (37) 

If   sc/2 < 1 ,  then, by using relations (34)–(37), we obtain the following approximations for the radiation 
field (30), (31) in the low-frequency range: 

 
 
D1(θ) = − 2A0

2
π

sr0
2

⎛
⎝

⎞
⎠

2n−1
2 P2n−1

1 (cos θ)

Γ(2n −1/2)n=1

∞

∑ , (38) 

 
 
D2(θ) = 4A0

π
2
π

(−1)n/
2n−1

2 P2n−1
1 (cos θ)

(2n −1)Γ(2n −1/2)n=1

∞

∑ (−1)p p(c/r0 )2 p−1/2

(p + n −1/2)p=1

∞

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (39) 

If    c/r0 ≪ 1 ,  then, in the analysis of (38) and (39), we restrict ourselves to the single-mode approximation: 

 D1(θ) = − 2iIr
ehkZ sin θ + O kr0

2
⎛
⎝⎜

⎞
⎠⎟

3⎛

⎝⎜
⎞

⎠⎟
, 

   (40) 

 D2(θ) = 8iIr
ehkZ
3π

c
r0

⎛
⎝⎜

⎞
⎠⎟

3
+ O c

r0

⎛
⎝⎜

⎞
⎠⎟

5⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin θ + O kr0
2

⎛
⎝⎜

⎞
⎠⎟

3 c
r0

⎛
⎝⎜

⎞
⎠⎟

5⎛

⎝
⎜

⎞

⎠
⎟ . 

In view of relations (40), we represent the field scattered by the conducting plane with “black” circle of 
small radius in the form 

 
 

⌢
D(θ) = − 2iIr

ehkZ 1− 2
3π

c
r0

⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sin θ . (41) 

Relation (41) illustrates the effect of decay of the field because   
⌢
D(θ) < D1(θ) .  As follows from this formu-

la, the level of efficiency of absorbing disk in the plane is determined by the cube of the ratio   c/r0   and increas-
es as the source approaches the vertex. 

  CONCLUSIONS 

We solve the problem of diffraction of the field of a radial electric dipole on a cone whose surface is formed 
by finite perfectly magnetically conducting and truncated perfectly electrically conducting surfaces.  Using the 
Wiener – Hopf technique together with the Kontorovich–Lebedev integral transformation, we obtain the solution 
guaranteeing that all necessary conditions of the boundary-value problem are satisfied for arbitrary values of the 
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parameters.  We deduce the representations of the field via the series in eigenfunctions.  The exact solution of 
the problem is obtained in the static limit and its approximate solution is obtained in the low-frequency range.  
We propose an expression for the directional pattern of the cone with perfectly absorbing vertex.  In the low-
frequency case, it is shown that if the conducting plane with circular absorbing coating (the case   γ = π/2 )  is 
excited by a radial electric dipole, then the efficiency of absorption is determined by the cube of the ratio of ra-
dius of the circle  c   to the radial coordinate of the dipole  r0 . 
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