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ON CONSTRUCTION OF THE REFINED EQUATIONS OF VIBRATION OF ELASTIC 
PLATES 

I. T. Selezov  UDC 539.3 

We describe the key stages of the development of generalized dynamic theories of bending vibrations of 
the bars, plates, and shells, based on the shear model proposed by S. P. Timoshenko, outstanding 
Ukrainian scientist, in 1921 (“On the correction for shear of the differential equation for transverse vi-
brations of prismatic bar,”  Phil. Mag., Ser. 6, 41, No. 245, 744–746).  We present the mathematical 
construction of equations of the theory of plates derived as hyperbolic approximations of the elastody-
namic problem for a layer.  The analytic expression for the coefficient of thickness shear is obtained.  
Some contemporary investigations are also discussed.  As an example, we consider the process of wave 
propagation along an elastically restrained strip.  

Introduction 

The refined equations for plates were first written by Uflyand in 1948 [14].  A fundamental contribution to 
the development of the Timoshenko theory was made in 1951 by Mindlin [28], who generalized the Timoshenko 
theory of beams to plates.  A fundamental survey of investigations carried out in this field up to 1972 was pro-
posed by Grigolyuk and Selezov [4].  In 1960, both the known refined equations of the theory of plates and new 
equations of higher order were constructed as hyperbolic approximations of the elastodynamic problem for 
a layer in [13].  In the present work, we describe the main stages of development of the method of power series 
{starting from Cauchy (1828) [16] and Poisson (1829) [30]} and its applications.  We deduce and present a gen-
eralized equation of the theory of plates including the known equations and new (more exact) equations without 
introducing physical hypotheses and correcting shear coefficients.  We also reveal the correspondence between 
the equations obtained in [28] and more exact equations deduced in [13] and show the difference between these 
equations. 

To construct refined theories, the researchers applied the method of power series, asymptotic and some oth-
er methods.  The asymptotic methods in the dynamics of bars, plates, and shells began to develop much later 
than in the other natural sciences.  All known methods are, in fact, reduced to decreasing, in one or another way, 
the dimension of the three-dimensional problem of the theory of elasticity, i.e., to the replacement of a three-
dimensional problem with a two-dimensional problem.  

Parallel with analytic methods, the computational approaches become more and more extensively used at 
present.  Reliable computer programs have been developed.  However, the application of numerical analysis, 
especially in the dimensional form, often decreases the possibilities of establishing the regularities of the inves-
tigated processes.  As one of the ways of decreasing the dimension of the boundary-value problems, one can 
mention its reduction to boundary integral equations.  Another way is connected with its transformation to the 
problem of finding the minimum of a functional defined on the boundary of the domain [3].  The application of 
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spline functions in the problem of reduction enables one to consider higher modes, which enables us to construct 
a very efficient algorithm occupying, in fact, an intermediate position between the theory of plates and the theo-
ry of elasticity.  However, this is not a method for the development of models but just an application of compu-
tational mathematics. 

1.  On the Development of the Cauchy–Poisson Method for the Reduction of Three-Dimensional Problems 
to Two-Dimensional Problems 

The method of power series was applied for the first time in the works of Cauchy and Poisson, outstanding 
mathematicians of the 19th century [16, 30].1  They derived the approximate equations of plates proceeding 
from the fact that a plate represents a domain in the three-dimensional space one dimension of which (thickness) 
is small as compared with the other dimensions and, therefore, the solutions were sought as power series in the 
thickness coordinate.  This method was further developed and applied to the construction of refined models of 
plates and shells.  In Fig. 1, we show the applications of the method of power series to the construction of ap-
proximate models of plates and shells.  

 
Expansions in power series 
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
1  

2h   is thickness 

    is the horizontal scale 
 

Elastodynamics of a layer;   Cauchy (1828), Poisson (1829) 
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and shells 
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Krauss (1929) [26] 
 

 

Kennard (1953) [24] 
 

Kil’chevskii (1939) [5] Selezov (1960) [13] 

Fig. 1.  Evolution of the Cauchy–Poisson algorithm. 
                                                        
1 The author managed to read these works in 1958 at the Lenin Library in Moscow. 
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As follows from Fig. 1, this method was first used in the statics of shells (left column) and then in the dy-
namics of plates and shells (right column). 

2.  Refined Known and New Equations of Higher Orders as Hyperbolic Approximations of the 
Elastodynamic Problem for a Layer 

Consider the reduction of a three-dimensional elastodynamic problem for a layer to a two-dimensional 
problem based on the method of power series in the thickness coordinate  x3   for hyperbolic models.  The re-
duction of the set of mathematical approximations obtained in this case enables one to construct refined models 
improving the classical models.  The algorithm used in this case leads to the degeneracy of the original initial-
boundary problem with respect to the small thickness coordinate  ξ   and decreases the dimension of the prob-
lem: 

 (x1, x2 , x3, t ) → (x1, x2 , t ) . (1) 

However, this is attained by the degeneracy of the spectrum of the original problem. 
Consider an elastodynamic problem for an infinite layer of thickness  2h   bounded by the surfaces  

x3 = ±h   in a domain 

 
  
Ω = (x1, x2 , x3 )∈R3 : x1, x2 (−∞,∞), x3 ∈ − ξ

2 , ξ2
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

, ξ = 2h


, (2) 

of the Cartesian coordinate system  (x1, x2 , x3 ) ,  where      is the horizontal scale of the layer.  The initial-
boundary-value problem for the displacement vector  u = (u1,u2 ,u3 = w)   is formulated as follows:  It is neces-
sary to find a vector function  u = u(x1, x2 , x3,t )   as a solution in the domain   Ω× [0,T ] ,  T > 0   of the hyper-
bolic equations  

 ∇2uk + 1+ λ
G

⎛
⎝⎜

⎞
⎠⎟
∂k (∇∇ ⋅u) = ∂tt uk , k = 1,2,3, (3) 

satisfying the following boundary conditions for the components of the stress tensor on the surfaces of the layer  
x3 = ±ξ/2 : 

 σ33 x3=ξ /2 = q± (x1, x2 ,t ) , 

 σ3i x3=−ξ /2 = pi
± (x1, x2 ,t ), i = 1,2 , (4) 

and the initial conditions at  t = 0 : 

 uk = 0, ∂t uk = 0, k = 1,2,3 . (5) 
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The dimensionless quantities are introduced everywhere and the following characteristic scales are used for 
this purpose:  length    ,  shear modulus  G ,  and the velocity of propagation of shear waves  cs = G /ρ .  We 
assume that  λ   and  G   are constants. 

In what follows, it is assumed that the thickness of the layer is small,   ξ1 ,  and hence, it is natural to use 
expansions in the dimensionless coordinate  x3   relative to the middle surface  x3 = 0 ,  decreasing in this way 
the dimension of our problem [35, 36].  This leads to the degeneracy of the original hyperbolic model.  In this 
case, there are three possible cases of degeneracy resulting in equations of the parabolic, hyperbolic, and mixed 
types.  Note that only the degeneracy of a hyperbolic model into a hyperbolic model is correct and has a physical 
meaning provided that the velocity of propagation of disturbances is finite [10]. 

We represent the unknown functions in the form of power series: 

 uk (x1, x2 , x3,t ) = ukm (x1, x2 ,t )x3
m

m=0

∞

∑ , k = 1,2,3 . (6) 

As a result, the original problem (2)–(5) is reduced to finding infinitely many functions  ukm  satisfying an 
infinite system of differential equations and recursive relations.  In turn, this infinite system is decomposed into 
two independent subsystems, corresponding to the symmetric (plane) and asymmetric (bending) deformation of 
the middle surface  x3 = 0 .  The case of symmetric vibrations is considered in [37]. 

Consider the case of asymmetric deformations (summation is carried out from  s = 0   to  s = ∞ ): 

 
 
e(x1, x2 , x3,t ) = e(2s+1) (x1, x2 ,t )x3

2s+1

s=0

∞

∑ , e = ui,i , i = 1,2 , 

 
 
w(x1, x2 , x3,t ) = w(2s ) (x1, x2 ,t )x3

2s

s=0

∞

∑ , 

 
  

[(2s +1) e2s+1 +∇
2 w2s ]2−2s ξ2s

s=0

∞

∑ = ∂
∂x1

1
2 ( p1

+ + p1
− )+ ∂

∂x2

1
2 ( p2

+ + p2
− ) , 

   (7) 

 
 

− e2s+1 −
1

2s +1 Ls w2s
⎡
⎣

⎤
⎦2−(2s+1)ξ2s+1

s=0

∞

∑ = 1
2 (q+ − q− ) , 

 
 
w2s+2 = − 1+ λ/G

(2s + 2)(2 + λ/G)
e2s+1 −

1
(2s +1)(2s + 2)(2 + λ/G) Ls w2s , 

 
 
e2s+3 = 1

(2s + 2)(2s + 3) − Le +
1+ λ/G
2 + λ/G ∇2⎡

⎣⎢
⎤
⎦⎥
e2s+1

 
+ 1

(2s +1)(2s + 2)(2s + 3)
1+ λ/G
2 + λ/G ∇2 + Ls w2s , 

where 
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 Ls = cs
2∇2 − ∂2

∂t 2 , Le = ce
2∇2 − ∂2

∂t 2 , 

e   is the divergence of planar displacements,  w   is a deviation,  pi
±   and  q±   are the shear and normal loads 

along the faces of the layers, and  cs   and  ce   are the velocities of propagation of shear and dilatation waves. 
Equations (7) give the exact solution of our problem.  The reduction of this system enables one to obtain 

a series of approximations of different kinds.  The hyperbolic degeneracy of the initial-boundary-value problem 
for a finite hyperbolic system of equations of any order in   Rn   based on the method of power series was con-
sidered in [36].  Thus, the necessary and sufficient conditions for the degeneracy were established.  They include 
the completeness of the reduced system and the preservation of all space-time differential operators up to a cer-
tain order.  

The truncation of Eqs. (7) up to the seventh order, inclusively, leads to a three-mode approximation (thick-
ness wave modes), which can be reduced to the following equation: 

 ξ ∂2

∂t 2
+ ξ3a1∇

2∇2⎛
⎝⎜

⎞
⎠⎟ K

− ξ3a2
∂2

∂t 2
∇2

R
+ ξ3a3

∂4

∂t 4
⎡

⎣
⎢

⎤

⎦
⎥

TM

− ξ5b1∇
2∇2∇2⎧

⎨
⎪

⎩⎪
 

   +ξ5b2
∂2

∂t 2
∇2∇2 − ξ5b3

∂4

∂t 4
∇2 + ξ5b4

∂6

∂t 6
⎫
⎬
⎪

⎭⎪TMS

w  

  = 1− ξ2d1∇
2 + ξ2d2

∂2

∂t 2
⎡
⎣⎢

⎤
⎦⎥TM

⎧
⎨
⎩

 

   + ξ4d3∇
2∇2 − ξ4d4

∂2

∂t 2 ∇
2 + ξ4d5

∂4

∂t 4
⎫
⎬
⎭TMS

(q+ − q− ) . (8) 

Timoshenko [40] generalized the Bernoulli–Euler parabolic model of bending vibrations of a beam to a hy-
perbolic model on the phenomenological basis by introducing corrections responsible for thickness shear strains 
and rotary inertia.  On this basis, Mindlin [28] generalized the Kirchhoff parabolic model of the bending vibra-
tions of the plates [25] [operator  K   in Eq. (8)] to a hyperbolic model (double-mode model—ТМ operators).  
A more general hyperbolic model [13] was constructed as a mathematical approximation without introducing 
phenomenological assumptions (three-mode approximation—ТМS operators), including a two-dimensional sys-
tem as a special case. 

3.  Shear Coefficient 

It is worth noting that the coefficients  ap , bq ,  and  dr   in Eq. (8) depend only on Poisson’s ratio  ν .  This 
fact enables us to find the exact value of the shear coefficient  
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 k2 = 2
2 − ν + 1/2 + ν2

 (9) 

by comparing Eq. (10) given below with the correcting shear coefficient and equation  [⋅]TM   in (8) obtained as 
a mathematical approximation.  A more exact value of the shear coefficient can be found from the complete op-
erator   {⋅}TMS   in (8).  

The Mindlin refined equations of vibration of the plates are based on the same distribution of displacements 
as in the Timoshenko model.  The resolving equation for the deflection  w0   has the form 

 ∂2

∂t 2 + D
ρh∇

2∇2 − D
k2Gh

+ I
h
∂2

∂t 2 ∇
2 + ρI

k2Gh
∂4

∂t 4
⎧
⎨
⎩

⎫
⎬
⎭

w0 = 1
ρh + I

k2Gh2
∂2

∂t 2
− D

k2Gρh2 ∇
2⎧

⎨
⎩

⎫
⎬
⎭

q , (10) 

where  D = Eh3 /12(1− ν2 )   is the flexural rigidity,  ρ   is density,  h   is thickness,  k2   is the shear coefficient,  
G   is the shear modulus,  I   is the moment of inertia,  E   is the Young modulus,  ν   is Poisson’s ratio,  t   is 
time,  q   is the transverse load, and  ∇2   is the Laplacian.  

Comparing Eq. (10) with a more exact equation (8), we see their difference: Eq. (8) takes into account three 
wave modes unlike two modes in (10). 

In the Timoshenko model applied to plates, the analysis of thickness shear stresses is performed by rejecting 
the hypothesis of normality of a linear element to the middle surface of the plate.  At the same time, it is sup-
posed that the element originally linear and normal to the middle surface remains linear after deformation.  This 
does not agree with the parabolic law of changes in the stresses of thickness shear.  In the case of static bending 
of the plate, Vlasov [2] removed this disagreement by bending of an originally rectilinear element of the plate.  
The corresponding analog in the theory of bars was considered earlier [9].  Another attempt to take into account 
transverse shear more exactly was made in [34].  

The refined theory of layered composite plates taking into account the actual (parabolic) distribution of 
transverse stresses over the thickness of the plate was developed by Reddy in [32].  Later, the shear strains of 
higher orders were taken into account for layered composite plates in [33].  It should be emphasized that the de-
rived system of three equations in displacements is quite cumbersome and, hence, their application to the solu-
tion of problems is possible only with the use of computer calculations. 

4. Correctness of the Formulation of Problems and Their Solvability 

In the solution of boundary-value problems, the refined equations are supplemented by the boundary condi-
tions corresponding to the Timoshenko model.  In this case, the problem of correctness of the boundary condi-
tions is very important.  The correct boundary conditions were proposed in [41], where one can also find the 
proof of existence of the second spectrum (see also [4, p. 80]).  Formerly, in some earlier and contemporary 
works, the equations of Timoshenko beam were solved with the boundary conditions of the classical theory cor-
responding to the single-mode approximation [43].  Therefore, all subsequent considerations and conclusions 
concerning the frequency spectra and the meaning of the second spectrum remain debatable [1, 8, 15, 18, 29]. 

We also emphasize that there exists a principal difference between the Rayleigh equation (single-mode ap-
proximation) 
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 ξ ∂2 w
∂t 2

+ ξ3a1
∂4 w
∂x4 − ξ3a2

∂4 w
∂t 2 ∂x2

= q+ − q−  (11) 

and the Timoshenko equation (double-mode approximation) 

 ξ ∂2 w
∂t 2

+ ξ3a1
∂4 w
∂x4 − ξ3a2

∂4 w
∂t 2 ∂x2

+ ξ3a3
∂4 w
∂t 4

= 1− ξ2d1
∂2

∂x2 + ξ2d2
∂2

∂t 2
⎛
⎝⎜

⎞
⎠⎟

(q+ − q− ) . (12) 

The classical method of separation of the variables [11] 

 w(x,t ) = W (x)T (t )  

leads to the complete separation of variables in the first case [Eq. (11)]; however, the variables are not separated 
in the second case [Eq. (12)]. 

It is also worth noting that the dynamic reaction of anisotropic layered composite plates to stationary ran-
dom excitations was studied in [17] on the basis of the Elishakoff monograph [19]. 

The models of the dynamics of bars, plates, and shells, taking into account shear strains and rotary inertia, 
are used in the contemporary analysis of elements of different structures [6, 7, 21–23, 27, 31, 38, 39, 42, 44]. 

5.  Wave Propagation Along a Strip with Elastically Restrained Edges 

Consider the problem of propagation of harmonic waves in an infinite elastic plate of width  b   with elas-
tically restrained edges.  The motion of elastic plate is described by the Mindlin refined theory taking into ac-
count rotary inertia and the strains of transverse shear [12]: 

 ∂2

∂t 2 + D
ρh∇

4 − D
ks

2Gh
+ I

h
⎛

⎝⎜
⎞

⎠⎟
∂2

∂t 2 ∇
2 + ρI

ks
2Gh

∂4

∂t 4
⎡

⎣
⎢

⎤

⎦
⎥w = 0 , (13) 

 D(1− ν)
∂2ψ1
∂x2

2 + D(1− ν) ∂2

∂x1
2 − 2ks

2Gh − 2ρI ∂2

∂t 2
⎡

⎣
⎢

⎤

⎦
⎥ψ1  

  = ∂
∂x1

D(1+ ν)∇2 + 2ks
2Gh − ρD(1+ ν)

ks
2G

∂2

∂t 2
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
w , (14) 

 −D(1− ν)
∂2ψ1
∂x1 ∂x2

+ D(1− ν) ∂2

∂x1
2 − 2ks

2Gh − 2ρI ∂2

∂t 2
⎡

⎣
⎢

⎤

⎦
⎥ψ2  

  = 2 ∂
∂x2

D∇2 + ks
2Gh − Dρ

ks
2G

∂2

∂t 2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢

⎤

⎦
⎥w . (15) 

The boundary conditions corresponding to elastic restraint are taken in the form  
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 w x2=0 = 0,
∂ψ2
∂x2 x2=0

= R1ψ2 , 

   (16) 

 w x2=b = 0,
∂ψ2
∂x2 x2=b

= −R2ψ2 , 

where  w   is a deflection,  ψ   is a rotation angle,  I = h3 /12   is the cross-sectional moment of inertia,  h   is 
thickness,  R1   and  R2   are the stiffnesses of elastic restraints for the rotation of the edges,  ν   is Poisson’s ra-

tio,  E   is Young’s modulus,  G =   E /[2(1+ ν)]   is the Lamé constant,  and   ks
2 = 2/(2 − ν + 0.5 + ν2 )   is the 

shear coefficient [13].  In Eqs. (13)–(16) and in what follows, we use dimensionless quantities introduced by the 
following relations (the asterisks are omitted):  

 
 
(x1

∗, x2
∗ ,w∗,h∗ ) = 1


(x1, x2 ,w,h), t∗ = t v


, ρ∗ = ρ

ρ0
, 

 
  
D∗ = D

3ρv3 , G∗ = G
ρv2 , I ∗ = I

3
, {R1

∗, R2
∗} = {R1, R2 } , 

where      and  v   are the characteristic length and velocity, respectively. 
We seek the solution in the class of running waves: 

 f (x1, x2 ,t ) = f (x2 )ei(kx1−ωt ) . (17) 

Then Eqs. (13)–(15) with regard for (17) take the form 

 D d 4w
dx2

4 + D
ks

2Gh
+ I

h
⎛

⎝⎜
⎞

⎠⎟
ω2 d2w

dx2
2 + Dk 4

ρh + ρIω4

ks
2Gh

⎧
⎨
⎪

⎩⎪
− ω2 + D

ks
2Gh

+ I
h

⎛

⎝⎜
⎞

⎠⎟
ω2k2⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
w = 0 , (18) 

 
 
D(1− ν)

d2ψ1
dx2

2 + [− k2D(1− ν)− 2ks
2Gh + 2ρIω2 ]ψ1 = ik D(1− ν) d2

dx2
2

⎡

⎣
⎢  

  + k2D(1+ ν)+ 2ks
2Gh + ρω2D(1+ ν)

ks
2G

⎤

⎦
⎥w , (19) 

 
 
[− k2D(1− ν)− 2ks

2Gh + 2ρω2 I ]ψ2 = 2 d
dx2

D d2

dx2
2 − k2D

⎛

⎝⎜
⎡

⎣
⎢  

  + 2ks
2Gh + ω2ρD

ks
2G

⎞

⎠⎟
⎤

⎦
⎥w + ikD(1− ν)

dψ1
dx2

. (20) 
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In the general case, the solution of the problem under consideration has the form  

 w = C1e
−α1x2 +C2eα1x2 +C3e

−α3x2 +C4eα3x2 , (21) 

 ψ1 =
η1e

−α1x2

α1
2 − η2 C1 +

η1e
α1x2

α1
2 − η2 C2 +

η3e
−α3x2

α3
2 − η2 C3 +

η3e
α3x2

α3
2 − η2 C4 , (22) 

 ψ2 = ξ1α1e
−α1x2C1 − ξ1α1e

α1x2C2 + ξ3α3e
−α3x2C3 − ξ3α3e

α3x2C4 , (23) 

where 

 α1,3 = −β ± − k4 +β2k
2 +β3 , 

 η1,3 = ik 1+ ν
1− ν α1,3

2 − k2 +
2ks

2Gh
D(1+ ν) +

ρω2

ks
2G

⎛

⎝⎜
⎞

⎠⎟
, 

 ξ1,3 = 2
η2 (1− ν)

α1,3
2 − k2 +

ikη1,3(1− ν)
2(α1,3

2 − η2 )
+

ks
2Gh
D + ω2ρ

ks
2G

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, 

 β1 = ρh
2D

D
ks

2 + I
h

⎛

⎝⎜
⎞

⎠⎟
ω2 , β2 = 2β1, η = k2 −

2(ρω2 I − ks
2Gh)

D(1− ν) , 

 β3 = ρ2h2

4D2
D

ks
2Gh

+ I
h

⎛

⎝⎜
⎞

⎠⎟

2

− 4DI
ks
2Gh

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ω4 + ρhω2

D . 

Substituting solutions (21)–(23) in the boundary conditions (16), we arrive at a dispersion equation 

 

1 1 1 1
(α1

2 + R1α1)ξ1 (α1
2 − R1α1)ξ1 (α3

2 + R1α3 )ξ3 (α3
2 − R1α3 )ξ3

e−α1b eα1b e−α3b eα3b

(α1
2 −R2α1)ξ1e−α1b (α1

2 +R2α1)ξ1eα1b (α3
2 −R2α3 )ξ3e−α3b (α3

2 +R2α3 )ξ3eα3b

= 0 . (24) 

The numerical determination of the roots of the dispersion equation (24) was carried out for the wave num-
bers   kb ∈[0.01, 10]   and the following dimensionless parameters: characteristic length  b = 1 , ρ = 1 , 

D = 2.974 ⋅10−10 ,  cr = 1.231 ,  I = 8.333 ⋅10−11 ,  R1 = −10 ,  and  R2 = 10 .  As the characteristic values, we 

took the rate of wave propagation according to the Timoshenko theory  v = cr = Gks
2 /ρ    and the width of the 

plate    = b .  The results of calculation of the dependence of phase velocity  cp = ω /k   on the frequency  ω   for 
different thicknesses of the plate are presented in Fig. 2. 
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Fig. 2.  Dependences of the phase velocity  cp   on the circular frequency  ω   for different thicknesses. 

The performed analysis shows that, within the analyzed interval of wave numbers, the dispersion equa-
tion (24) has two real roots one of which weakly depends on the thickness  h ,  whereas the second root strongly 
depends on  h .  The presented curves illustrate the dispersion properties of the analyzed system and we see, 
in particular, that, the dispersion increases with the thickness of the plate.  

REFERENCES 

 1. N. S. Bakhvalov and M. É. Églit,  “On the equations of high order of accuracy used to describe vibrations of thin plates,”  Prikl. Mat. 
Mekh., 69, No. 4, 656–675 (2005). 

 2. B. F. Vlasov,  “On the equations of the theory of bending of plates,”  Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 12, 57–60 (1957). 
 3. R. V. Gol’dshtein,  “Supplement.  On the application of the method of boundary integral equations for the solution of problems of 

the continuum mechanics,” in: Mechanics: Advances in Foreign Science [in Russian], Issue 15: T. A. Cruse and F. J. Rizzo (editors),  
Method of Boundary Integral Equations, Mir, Moscow (1978), pp. 183–209.  

 4. É. I. Grigolyuk and I. T. Selezov,  “Nonclassical theories of the vibration of bars, plates, and shells,” in: Advances in Science and 
Technology [in Russian], Ser. Mechanics of Deformable Solids, Vol. 5, VINITI, Moscow (1973), pp. 1–272. 

 5. N. A. Kil’chevskii,  “Generalization of the contemporary theory of shells,”  Prikl. Mat. Mekh., 2, No. 4, 427–438 (1939). 
 6. A. B. Kudryashov,  “Beam finite element based on the S. P. Timoshenko theory,” in: Transactions of the Central Aerohydrodynamic 

Institute [in Russian], Issue 2664 (2004), pp. 207–212. (04.11–16В.111). 
 7. P. F. Ledorezov,  “On the analysis of transverse shears and rotary inertia in the vibration bending of a viscoelastic plate-strip,” 

in: Mechanics of Deformable Media (Saratov State Univ.) [in Russian], Issue 14 (2002), pp. 144–151. 
 8. V. V. Nesterenko,  “On the theory of transverse vibrations of the Timoshenko beam,”  Prikl. Mat. Mekh., 57, No. 4, 83–91 (1993). 
 9. S. D. Ponomarev, V. L. Biderman, K. K. Likharev, et al.,  Foundations of theContemporary Methods of Strength Analysis in Ma-

chine Building: Analysis Under Statistical Loads [in Russian], Mashgiz, Moscow (1950). 
 10. I. T. Selezov,  “Concept of hyperbolicity in the theory of controlled dynamic systems,”  Kibern. Vychisl. Tekh., No. 1, 131–137 

(1969). 
 11. I. T. Selezov and Yu. G. Krivonos,  Mathematical Methods in the Problems of Wave Propagation and Diffraction [in Russian], Nau-

kova Dumka, Kiev (2012). 
 12. I. T. Selezov, V. A. Tkachenko, and Yu. P. D’yachenko,  “Propagation of harmonic waves in the Timoshenko-type plate with elas-

tically restrained edges,” in: Conf. on the Problems of the Dynamics of Interaction of Deformable Media (Goris, Armenia, March, 
1989) [in Russian], Izd. Akad. Nauk Arm. SSR, Yerevan (1990), pp. 240–243. 

 13. I. T. Selezov,  “Investigation of transverse vibrations of the plate,”  Prykl. Mekh., 6, No. 3, 319–327 (1960).  
 14. Ya. S. Uflyand,  “Wave propagation under transverse vibrations of bars and plates,”  Prikl. Mat. Mekh., 12, No. 3, 287–300 (1948). 
 15. B. M. Barbashov and V. V. Nesterenko,  “Continuous symmetries in field theory,”  Fortschr. Phys./Prog. Phys., 31, No. 10, 535–

567 (1983). 
 16. A. L. Cauchy,  “Sur l’equilibre et le mouvement d’une lame solide,”  Exercices Math., 3, 245–326 (1828). 



ON CONSTRUCTION OF THE REFINED EQUATIONS OF VIBRATION OF ELASTIC PLATES 133 

 17. G. Celebraum, I. Elishakoff, and L. Librescu,  “Random vibration of laminated plates modeled within the first order shear defor-
mation theory,”  J. Compos. Struct., 12, 97–111 (1989). 

 18. A. M. Chervyakov and V. V. Nesterenko,  “Is it possible to assign physical meaning to field theory with higher derivatives?,” Phys. 
Rev., Ser. D, 48, No. 12, 5811–5817 (1993). 

 19. I. Elishakoff,  Solution Manual to Accompany Probabilistic Methods in the Theory of Structures, Wiley, New York (1985). 
 20. P. S. Epstein,  “On the theory of elastic vibrations in plates and shells,”  J. Math. Phys., 21, No. 3, 198–209 (1942). 
 21. J. R. Hutchinson,  “On Timoshenko beams of rectangular cross section,”  Trans. ASME, J. Appl. Mech., 71, No. 3, 359–367 (2004). 
 22. J. R. Hutchinson,  “Shear coefficients for Timoshenko beam theory,”  Trans. ASME, J. Appl. Mech., 68, No. 1, 87–92 (2001). 
 23. L. S. Jing and S. J. Lia,  “Free vibration of an extensible rotating inclined Timoshenko beam,”  J. Sound Vib., 304, No. 3–5, 606–624 

(2007). 
 24. E. H. Kennard,  “The new approach to shells theory: circular cylinders,”  Trans. ASME, J. Appl. Mech., 20, No. 1, 33–40 (1953). 
 25. G. R. Kirchhoff,  Vorlesungen über Mathematische Physik.  Mechanic, Teubner, Leipzig (1876). 
 26. F. Krauß,  “Über die Grundgleichungen der Elastizitätstheorie schwach deformierter Schalen,“  Math. Ann., 101, No. 1, 61–92 

(1929). 
 27. T. Lin and Q. Li,  “Transient elastic wave propagation in an infinite Timoshenko beam on viscoelastic foundation,”  Int. J. Solids 

Struct., 40, No. 13-14, 3211–3228 (2003). 
 28. R. D. Mindlin,  “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates,”  Trans. ASME, J. Appl. 

Mech., 18, No. 1, 31–38 (1951). 
 29. V. V. Nesterenko,  “Singular Lagrangians with higher derivatives,”  J. Phys., Ser. A: Math. Gen., 22, No. 10, 1673–1687 (1989). 
 30. S. D. Poisson,  “Mеmoire sur l’еquilibre et le mouvement des corps еlastiques,”  M³t. Acad. Roy. Sci., 8, 357–570 (1829). 
 31. G. V. Rao, K. Saheb Meera, and G. R. Janardhan,  “Large-amplitude free vibrations of uniform Timoshenko beams.  A novel formu-

lation,”  AIAA Journal, 45, No. 11, 2810–2812 (2007). 
 32. J. N. Reddy,  “A simple higher-order theory for laminated composite plates,”  Trans. ASME, J. Appl. Mech., 51, No. 4, 745–752 

(1984). 
 33. J. N. Reddy and R. A. Arciniega,  “Shear deformation plate and shell theories: from Stavsky to present,”  Mech. Adv. Mater. Struct., 

11, No. 6, 535–582 (2004). 
 34. H. Saunders,  “Extension of the Myklestad matrix method to include rotary inertia and shear deformation,”  J. Acoust. Soc. Am., 32, 

No. 3, 403–410 (1960). 
 35. I. Selezov,  “Some hyperbolic models for wave propagation,” in: Hyperbolic Problems: Theory, Numerics, Applications (7th Int. 

Conf. in Zurich, 1998) (Int. Ser. of Numerical Mathematics, Vol. 130), Birkhauser, Basel, Switzerland, Vol. 2 (1999), pp. 833–842. 
 36. I. T. Selezov,  “Degenerated hyperbolic approximations of the wave theory of elastic plates,” in: Ser. Operator Theory: Advances 

and Applications, Vol. 117, Differential Operators and Related Topics (Proc. Mark Krein Int. Conf., Odessa, Ukraine, August 18–
22, 1997), Birkhauser, Basel, Switzerland (2000), pp. 339–354. 

 37. I. T. Selezov and Yu. G. Krivonos,  “A study of longitudinal waves in a plate on the basis of refined theories,”  Prikl. Mekh., 9, 
No. 11, 56–63 (1973);  English translation: Int. Appl. Mech., 9, No. 11, 1196–1201 (1973). 

 38. R. P. Shimpi,  “Refined plate theory and its variants,”  AIAA Journal, 40, No. 1, 137–146 (2002). 
 39. P. Śniady,  “Dynamic response of Timoshenko beam to a moving force,”  Trans ASME, J. Appl. Mech., 75, No. 2 (2008). 

P. 024503/4 p. Doi:10.1115/1.2775500. 
 40. S. Timoshenko, “On the correction for shear of the differential equation for transverse vibrations of prismatic bar,” Phil. Mag., Ser. 

6, 41, No. 245, 744–746 (1921). 
 41. R. W. Traill-Nash and A. R. Collar,  “The effect of shear flexibility and rotatory inertia on the bending vibrations of beams,”  Quart. 

J. Mech. Appl. Math., 6, Pt. 2, 186–222 (1953). 
 42. E. Viola, P. Ricci, and V. H. Aliabadi,  “Free vibration analysis of axially loaded cracked Timoshenko beam structures using the 

dynamic stiffness method,”  J. Sound Vib., 304, No. 1, 124–153 (2007). 
 43. T. M. Wang,  “Natural frequencies of continuous Timoshenko beams,”  J. Sound Vib., 13, No. 4, 409–414 (1970). 
 44. L. Zietsman, N. F. J. van Rensburg, and A. J. van der Merwe,  “A Timoshenko beam with tip body and boundary damping,”  Wave 

Motion, 39, 199–211 (2004). 


	Abstract
	Introduction
	1. On the Development of the Cauchy–Poisson Method for the Reduction of Three-Dimensional Problems to Two-Dimensional Problems
	2. Refined Known and New Equations of Higher Orders as Hyperbolic Approximations of the Elastodynamic Problem for a Layer
	3. Shear Coefficient
	4. Correctness of the Formulation of Problems and Their Solvability
	5. Wave Propagation Along a Strip with Elastically Restrained Edges
	REFERENCES

