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ABSENCE OF C1- Ω-EXPLOSION IN THE SPACE OF SMOOTH
SIMPLEST SKEW PRODUCTS

L. Efremova UDC 517.987.5

Abstract. We give a detailed proof of absence of a C1- Ω-explosion in the space of C1-regular simplest
skew products of mappings of an interval (i.e., skew products of mappings of an interval with a closed
set of periodic points). We study the influence of C1-perturbations (of the class of skew products)
to the set of periods of the periodic points of C1-regular simplest skew products, and describe the
peculiarities of period doubling bifurcations of the periodic points.

1. Introduction

Different aspects of Ω-explosion phenomenon in dynamical systems are considered, in particular,
in [2, 4, 6, 7, 12, 13, 16, 17, 25, 26, 28, 30].

In this paper we consider the influence of C1-perturbations (of the class of skew products) to a
nonwandering set of C1-regular simplest skew products of mappings of an interval (i.e., skew products
of mappings of an interval with a closed set of periodic points). Our results should be probably treated
in the context of studies of the general problem concerning perturbations of dynamical systems of the
class of skew products formulated by Anosov in [1].

This paper is a sequel to [4, 12]. It contains a detailed proof of impossibility of a C1- Ω-explosion
in C1-regular simplest skew products of mappings of an interval (this property was announced in [4]);
we study the influence of C1-perturbations (of the class of skew products) to the set of periods of the
periodic points of C1-regular simplest skew products and describe the peculiarities of period doubling
bifurcations of the periodic points (see [13]).

We consider a skew product of mappings of an interval, i.e., a dynamical system (d.s.) F : I → I,
where I = I1 × I2 is a closed rectangle in the plane (I1 and I2 are segments) such that

F (x, y) = (f(x), gx(y)), where gx(y) = g(x, y), (x; y) ∈ I. (1.1)

A mapping f : I1 → I1 is called the factor mapping (factor) of d.s. (1.1), and the mapping gx : I2 → I2
for each x ∈ I1 is called the mapping acting in the layer over the point x.

Due to (1.1), there holds

Fn(x, y) = (fn(x), gx,n(y)), where gx,n = gfn−1(x) ◦ . . . ◦ gx. (1.2)

We use the notation g̃x for the mapping gx,n if x is a periodic point of f (x ∈ Per(f)) and n is its
(smallest) period.

By T 0(I) (T 1(I)), we denote the space of all continuous (C1-regular) skew products of mappings of
an interval with a standard C0 norm || · ||0 (C1 norm || · ||1).

For an arbitrary mapping F ∈ T 0(I) (F ∈ T 1(I)), the C0 (C1) norm is defined by the formula

||F ||0 = max{sup
x∈I1

|f(x)|, sup
(x,y)∈I

|gx(y)|}

(||F ||1 = max{||F ||0, ||DF ||0}), (1.3)
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where ||DF ||0 = max

{

sup
x∈I1

|f ′(x)|, sup
(x,y)∈I

(∣

∣

∣

∣

∂gx(y)

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂gx(y)

∂y

∣

∣

∣

∣

)

}

,

DF : I → I is the differential of F ).
The base of topology in the space T r(I) (r = 0 or 1) is given by the set of ε-balls Br

ε(F ) with a
center F for all ε > 0 and all F ∈ T r(I).

Different functional spaces are related to an arbitrary skew product F ∈ T r(I). Thus we use the
space Cr(Ik) (k = 1, 2) of all continuous mappings of the segment Ik into itself with a C0 norm || · ||0,k,
where

||f ||0,k = sup
t∈Ik

|f(t)|,

for r = 0 and of all C1-regular mappings of the segment Ik into itself with a C1 norm

||f ||1,k = max{sup
t∈Ik

|f(t)|, sup
t∈Ik

|f ′(t)|} (1.4)

for r = 1. In these cases the base of topology in Cr(Ik) is given by the set of ε-balls Br
k,ε(f) for each

ε > 0 and each f ∈ Cr(Ik).
We also need spaces Cr(I, I2) of continuous mappings of a rectangle I into the segment I2 with a

C0 norm || · ||0,(1,2) such that

||g||0,(1,2) = sup
(x;y)∈I

|gx(y)|

for r = 0 and of C1-regular mappings from I into I2 with a C1 norm || · ||1,(1,2) for r = 1.

Let Dg : I → I2 be the differential of the mapping g ∈ C1(I, I2). Put

||Dg||0,(1,2) = sup
(x,y)∈I
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We define the C1 norm || · ||1,(1,2) setting
||g||1,(1,2) = max{||g||0,(1,2), ||Dg||0,(1,2)}. (1.5)

The base of the standard topology in Cr(I, I2) is given by the set of ε-balls

Br
(1,2),ε(g) = {ψ ∈ Cr(I, I2) : ||g − ψ||r,(1,2) < ε}

for each g ∈ Cr(I, I2) and each ε > 0.
We need the following inequality for the skew product F ∈ T 1(I), which immediately follows

from (1.3)–(1.5):

max{||f ||1,1, ||gx||1,2} ≤ max{||f ||1,1, ||g||1,(1,2)} = ||F ||1 (1.6)

for each x ∈ I1.
We assign the functional mapping ρ1 : I1 → Cr(I, I2) called the Cr-representation (se, e.g., [23])

(here r = 0 or 1) such that

ρ1(x) = gx for all x ∈ I1

to a skew product of mappings of the interval F ∈ T r(I).
Recall that the Cr-representation ρ1 : I1 → Cr(I, I2) is continuous at the point x′ ∈ I1 if for

each ε > 0 there exists a positive number δ = δ(x′, ε) such that for each x ∈ I1 satisfying inequality
|x− x′| < δ there holds

||gx − gx′ ||r,(1,2) < ε.

Note that F ∈ T r(I) iff f ∈ Cr(I1), and ρ1 : I1 → Cr(I, I2) is continuous on the segment I1 (i.e., is
continuous at each point of this segment in the aforementioned sense) [20, Ch. 2, Sec. 20, VII; Ch. 4,
Sec. 44, IV].

We need both a definition of a nonwandering set of a dynamical system (see [18, Part I, Ch. 3,
Sec. 3.3]) of form (1.1) and that of a Cr- Ω-explosion (see [2, Ch. 1, Sec. 4]) for r = 0and 1.
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Definition 1.1. A point z0(x0; y0) ∈ I is called a nonwandering point of a mapping F ∈ T 0(I) if for
each its neighborhood U(z0) in I there exists a natural number n = n(z0) such that

U(z0) ∩ Fn(U(z0)) �= ∅.

The set of all nonwandering points of the d.s. (1.1) is called the nonwandering set and denoted as
Ω(F ). Points of the phase space that are not nonwandering are called wandering ones.

Definition 1.2. We say that a mapping F ∈ T r(I) (r = 0or 1) admits a Cr- Ω-explosion if there
exists a δ > 0 such that each ε-neighborhood Br

ε(F ) of the mapping F in the space T r(I) contains a
mapping Φ such that Ω(Φ) �⊂ Uδ(Ω(F )), where Uδ(Ω(F )) is the δ-neighborhood of the nonwandering
set Ω(F ) of the mapping F in the rectangle I.

Note that if mappings of the space T 1(I) are considered as elements of the space T 0(I) with a
C0 norm, one can speak about the phenomenon of a C0- Ω-explosion in C1-regular skew products of
mappings of the interval (see [4, 12]).

The main results of the paper are: Theorem 3.1 on absence of a C1- Ω-explosion in the space of
C1-regular simplest skew products of mappings of an interval (Sec. 3); Theorem 3.2 on an estimate
of periods of periodic points of such mappings from a certain neighborhood of the mapping under
consideration (in T 1(I)) (Sec. 3); Theorems 4.1 and 4.2 on peculiarities of period doubling bifurcations
of the periodic points in C1-regular skew products (Sec. 4). For the sake of comparison with the
assertion of Theorem 3.1, note that at the same time C1-regular simplest skew products of mappings
of an interval do admit a C0- Ω-explosion (see [4, 12]).

2. Preliminaries

In order to formulate and prove the main results of the paper, we need some statements from [5, 15,
19, 21, 27]. Thus, the following proposition on coexistence of periods for periodic points of continuous
skew products of interval mappings is proved in [19].

Proposition 2.1. If a mapping F ∈ T 0(I) contains a periodic orbit of period m, then it also contains
periodic orbits of each period n such that n precedes m (n ≺ m) in the Sharkovsky order:

1 ≺ 2 ≺ 22 ≺ 23 ≺ . . . ≺ 22 · 5 ≺ 22 · 3 . . . . . . ≺ 2 · 5 ≺ 2 · 3 ≺ . . . 9 ≺ 7 ≺ 5 ≺ 3

We also use the auxiliary statement1 proved in [4].

Lemma 2.1. If the set Per(F ) of a C1-regular mapping F is closed, then the set τ(F ) of the (smallest)
periods of periodic points of F is bounded.

Proposition 2.1 and Lemma 2.1 imply that for an arbitrary simplest mapping F ∈ T 1(I) one can
find an integer 0 ≤ ν < +∞ such that τ(F ) = {1, 2, . . . , 2ν}.

It is important to note that each C1-regular mapping of a segment into itself (even in the case of a
bounded set of (the smallest) periods of its periodic points) can be approximated with any precision
in the C0 norm by a C1-regular mapping of the segment that has periodic points with arbitrary large
periods (see, e.g., [29, Ch. 2, Sec. 2]) (this property is a cause, though not the only one [4, 12], of
possibility of a C0- Ω-explosion in C1-regular simplest skew products of interval mappings). At the

1An analogous result is contained in paper [8]. Note that [8] affirms the existence of a C∞-regular skew product of
interval mappings of the type ≺ 2∞ that has a one-dimensional attracting set. But the skew product itself is realized as
a shift mapping along the trajectories of the respective nonautonomous system of differential equations with C∞-regular
right-hand sides. The latter means that the system is considered in R

3, and oscillations of the trajectory near the limit
set are “distributed” along the unbounded axis t. When we consider the skew product in a rectangle of the plane xOy it
is impossible to “distribute” oscillations of a trajectory with a one-dimensional attracting set. This leads to oscillations

of the partial derivative
∂

∂x
gx(y) and to its unboundedness near the attracting set, though in this case the mapping

gx(y) can be of class C∞ with respect to y (but not with respect to the entirety of variables) [11].
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same time, as the following statement from [21] shows, such approximation is impossible in the C1

norm.

Proposition 2.2. If a mapping ϕ ∈ C1(Ik) (k = 1 or 2) has no periodic point with period 2i, then
there exists a ε-neighborhood B1

k,ε(ϕ) of ϕ in C1(Ik) such that each mapping from B1
k,ε(ϕ) has no

periodic points with period 2i+1, whatever i ≥ 1 is.

An effective instrument for studying the phenomenon of a C0- Ω-explosion in different classes
of dynamical systems are chain recurrent points (see, e.g., [7, Ch. I, Sec. 2-3], [6]). Thus, in [12]
chain recurrent points are used to prove the criterion of realizability of a C0- Ω-explosion in C1-
regular simplest skew products of interval mappings. At the same time, in continuous (or C1-regular)
mappings of the segment with a closed set of periodic points the phenomenon of C0- Ω-explosion is
impossible.

In fact, there holds

Proposition 2.3. For a mapping ϕ ∈ C0(Ik) (k = 1 or 2), the following statements are equivalent:

(2.3.1) the set Per(ϕ) of periodic points of ϕ is closed;
(2.3.2) Ω(ϕ) = Per(ϕ) [27];
(2.3.3) CR(ϕ) = Per(ϕ), where CR(·) is the set of chain recurrent points2 of the mapping (see [5,

Ch. 6, Sec. 1, 4]).

Moreover, in [6] the following statement is proved.

Proposition 2.4. A continuous mapping Φ of a compact X into itself admits an Ω-explosion in the
space of continuous embeddings of X into itself iff for sets of chain recurrent points CR(Φ) and of
nonwandering ones Ω(Φ) of the mapping Φ one has

CR(Φ) �= Ω(Φ).

Propositions 2.3 and 2.4 imply impossibility of a C0- Ω-explosion in continuous (or C1-regular)
mappings of a segment with a closed set of periodic points. Since C1(Ik) ⊂ C0(Ik) and B1

k,ε(ϕ) ⊂
B0

k,ε(ϕ) for all ε > 0 and all ϕ ∈ C1(Ik), using the definition of a C1- Ω-explosion in C1-regular

mappings of a segment (see Definition 1.2), we obtain for the sequel

Proposition 2.5. Any mapping ϕ ∈ C1(Ik) (k = 1 or 2) with a closed set Per(ϕ) does not admit a
C1- Ω-explosion.

To conclude this section, we give a proof of the following statement that uses the ideas of [15].

Theorem 2.1. For a C1-regular skew product of interval mappings, the following statements are
equivalent:

(2.1.1) Ω(F ) = Per(F ), where Per(·) is the set of periodic points of the mapping;
(2.1.2) the set of points Per(F ) is closed.

For the proof of Theorem 2.1, we use special multivalued functions related to an arbitrary continuous
skew product of interval mappings.

Definition 2.1 (see [10]). The Ω-function of a mapping F ∈ T 0(I) is the function ζF : Ω(f) → 2I2

such that for any x ∈ Ω(f) one has

ζF (x) = (Ω(F ))(x),

where (Ω(F ))(x) = {y ∈ I2 : (x; y) ∈ Ω(F )} is the cut of the nonwandering set Ω(F ) by a vertical
layer over the point x, 2I2 is the topological space of closed subsets of I2 with exponential topology [20,
Ch. 1, Sec. 17, I].

2A point z ∈ Ik is called chain recurrent for a mapping ϕ ∈ C0(Ik) if for each ε > 0 there exists a ε-chain with respect
to the mapping ϕ, which connects z with itself. Here a ε-chain with respect to the mapping ϕ connecting points z1 and
z2 is a finite set of points {uk}nk=0 such that u0 = z1, un = z2, and |ϕ(uk−1) − uk| < ε for k = 1, 2, . . . , n (see, e.g., [7,
Ch. I, Sec. 2])
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Note that the Ω-function of the mapping F ∈ T 0(I) has a real dynamic sense: its graph in I
coincides with the nonwandering set Ω(F ) of F [10].

For any mapping F ∈ T 0(I) and any natural number n, introduce a skew product Fn(x, y) =
(id(x), gx,n(y)) and a direct product Fn,1(x, y) = (fn(x), id(y)), where id(x) is the identical mapping
of I1 and id(y) is that of I2, Fn, Fn,1 : I → I. Then the mapping Fn “stops motion” in the base of I1
(any point x ∈ I1 is fixed for its factor mapping id(x)), and this leads to Fn-invariance of each vertical
layer {x} × I2; and the mapping Fn,1 “stops motion” in the vertical layers (any point y ∈ I2 is fixed
for the mapping id(y) in an arbitrary vertical layer), and this leads to Fn,1-invariance of horizontal
layers I1 × {y}.

It is important to note that

Fn = Fn,1 ◦ Fn. (2.1)

Formula (2.1) allows to relate to each iteration of F new multivalued functions such that with the
help of their graphs one can form a nonwandering set of the skew product F ∈ T 0(I) (or, equivalently,
the graph of the Ω-function of F ).

Let the factor mapping f of the skew product F ∈ T 0(I) have a closed set of periodic points Per(f).
Then one has Ω(fn) = Ω(f) = Per(f) (see [27]).

Following [10], define auxiliary multivalued functions ηn : Ω(f) → 2I2 , setting for any x ∈ Ω(f)

ηn(x) = Ω(gx,n).

The closures ηn of the graphs of functions ηn have a real dynamic sense: for any n ≥ 1, the closure
ηn coincides with the nonwandering set of the restriction Fn|Ω(f)×I2 (see [14, 15]).

After defining functions ηn for each n ≥ 1, each point (x; y) of the graph ηn should be moved to
(fn(x); y) by the direct product Fn,1 (see Eq. (2.1)). Thus we naturally obtain multivalued functions
ηn,1 : Ω(f) → 2I2 (n ≥ 1) defined by equalities

ηn,1(x) = (Fn,1(ηn))(x)

for each x ∈ Ω(f); here ηn is the graph of the respective multivalued function in I, and (Fn,1(ηn))(x)
is the cut of the set Fn,1(ηn) by a layer over the point x ∈ Ω(f).

Since we arrive to each point (x; y) on the graph of ηn,1 using Fn,1 from each point (x; y), where
x is an arbitrary point of the nth complete preimage of x with respect to the mapping f|Ω(f), the
following equality holds:

ηn,1(x) =
⋃

x∈{f−n(x)}
ηn(x), (2.2)

where {f−n(x)} is the nth complete preimage of the point x with respect to f|Ω(f).
Multivalued functions ηn and ηn,1 admit natural extensions ηexn to the segment I1 and ηexn,1 to fn(I1)

(n ≥ 1) respectively if Ω(f) �= I1. In this case, whatever n ≥ 1 is, one has

ηexn (x) = Ω(gx,n)

for all x ∈ I1 and

ηexn,1(x) = (Fn,1(η
ex
n ))(x)

for all x ∈ fn(I1), where in the latter equality ηexn is the graph of the respective multivalued function
in I.

Denote by Per(f, ln) the set of all f -periodic points such that the (smallest) period of each such point
is a divisor of ln = 2n, n ≥ 0 (i.e., the (smallest) periods of such points form the set {1, 2, 22, . . . , 2n}).
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For each n ≥ 0, set3

η′ln |Per(f,ln)
=

n
⋃

i=0
ηli |Per(f,li)

; η′ln,1|Per(f,ln)
=

n
⋃

i=0
ηli,1|Per(f,li)

;

ηex
′
ln,1 =

n
⋃

i=0
ηexli,1,

(2.3)

where the last relation in (2.3) holds for all x ∈
n
⋂

i=0
f li(I1).

The proof of Theorem 2.1 is based on the following statement from [15].

Proposition 2.6. Let the factor mapping f of the skew product of interval mappings F ∈ T 0(I) have
a closed set of periodic points Per(f). Then there exist mutually equal topological limits (see [20, Ch. 2,
Sec. 29, VI]) Lim

n→+∞ η′ln,1 |Per(f,ln)
and Lim

n→+∞ η′ln |Per(f,ln)
, and there holds the following formula:

ζF|Per(f)×I2 = Lim
n→+∞ η′ln,1|Per(f,ln)

= Lim
n→+∞ η′ln |Per(f,ln)

=
⋃

x∈Per(f)

{x} × Ω(g̃x),

where η′ln,1 |Per(f,ln)
, η′ln |Per(f,ln)

, and ζF|Per(f)×I2 are the graphs of respective multivalued functions in I,

and (·) is the closure of a set.
Moreover, if x is a periodic point of f with the (smallest) period l(x), which is a limit point for

nonperiodic points of f, then

ζF (x) = Ls
n→+∞ ηex

′
l(x)n,1|U1,εl(x)n

(x)
, (2.4)

where ζF (x) is the value of the Ω function at x (see Definition 2.1), Ls
n→+∞(·) is the upper topological

limit of a sequence of sets [20, Ch. 16, Sec. 29, III-IV], ηex
′

l(x)n,1|U1,εl(x)n
(x)

are graphs of respective

multivalued functions in I, and U1,εl(x)n(x) is the εl(x)n-neighborhood of point x ∈ Per(f) such that
lim

n→+∞ εl(x)n = 0.

We pass to the proof of Theorem 2.1.

Proof of Theorem 2.1. Since Ω(F ) is a closed set, property (2.1.1) implies (2.1.2). Therefore we check
that property (2.1.2) implies (2.1.1). In fact, by Lemma 2.1 for some ν < +∞ one has τ(F ) =
{1, 2, . . . , 2ν}.

1. Consider the case ν = 0, i.e., τ(F ) = {1}. Using Proposition 2.2, we find, firstly, a ε1-
neighborhoodB1

1,ε1(f) of the mapping f in C1(I1) such that for any ϕ ∈ B1
1,ε1(f) one has τ(ϕ) ⊆ {1; 2},

and, secondly, for each n ≥ 2 and x ∈ Per(f) a εn(x)-neighborhood B1
2,εn(x)

(gnx ) of the mapping

gnx = gx,n in C1(I2) such that for any mapping θ ∈ B1
2,εn(x)

(gnx ) one has the inclusion τ(θ) ⊆ {1; 2}.
For all n ≥ 2 and x ∈ Per(f), we use neighborhoods B1

(1,2),εn(x)
(gnx ) of C

1-regular (with respect to

the entirety of variables) mappings in layers {gx,n}x∈I1 for Fn. By inequality (1.6), in particular, for
each x ∈ Per(f) (Per(f) = Per(fn)) one has

B1
(1,2),εn(x)

(gnx ) ⊂ B1
2,εn(x)

(gnx).

Therefore, for each x′ ∈ I1 such that gx′,n ∈ B1
(1,2),ε(x)(g

n
x ), one has the inclusion τ(gx′,n) ⊆ {1; 2}.

For each n ≥ 2, we use the C1-representation ρn : I1 → C1(I, I2), where ρn(x) = gx,n for each x ∈ I1.
The continuity of ρn and the compactness of Per(f) imply the compactness of the image ρn(Per(f)) =
{gx,n}x∈Per(f) in the family of C1-regular mappings in layers {gx,n}x∈I1 for the mapping Fn. The

3Introducing functions η′
ln and η′

ln,1 allows to avoid difficulties related to the possible failure of the equality Ω(g̃2
i

x ) =

Ω(g̃2
i−1

x ) (see [9]).
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family of neighborhoods {B1
(1,2),εn(x)

(gnx )}x∈Per(f) is an open covering of the compact ρn(Per(f)),

infinite iff Per(f) is an infinite set. In case of an infinite set Per(f) we extract a finite subcovering

{B1
(1,2),εn(xi)

(gnxi
)}r(n)i=1 from the open covering {B1

(1,2),εn(x)
(gnx )}x∈Per(f) of the compact set ρn(Per(f)).

Put εn = min
1≤i≤r(n)

{εn(xi)}. For εn > 0, using the equicontinuity of the C1-representation ρn : I1 →
C1(I, I2), we choose a positive number δn < εn/2 so that for each x, x′ ∈ I1 such that |x − x′| < δn
there holds ||gx,n − gx′,n||1,(1,2) < εn/2.

For each n ≥ 2, choose and fix an arbitrary 0 < δ′n < δn. Denote by U1,δ′n(Fix(f)) the closure of
the δ′n-neighborhood in I1 of the set of f -fixed points Fix(f) (in item 1 we have Fix(f) = Per(f))
and consider multivalued functions ηexn |U1,δ′n (F ix(f)) (n ≥ 2). By the above, the graph of each such

function coincides with the closed set of periodic points of the restriction Fn|(U1,δ′n (F ix(f)))×I2
. Using

the closedness of the set Per(Fn|(U1,δ′n (F ix(f)))×I2
), the compactness of I2 and the Hausdorff property

of I1, hence we get that each function ηexn |U1,δ′n (F ix(f)) (n ≥ 2) is upper semicontinuous. Choose and

fix an arbitrary point x ∈ Ω(f) = Fix(f) (see Proposition 2.3). Using the upper semicontinuity
ηexn |U1,δ′n (F ix(f)) (at x), for each n ≥ 2 and for εn > 0 we find 0 < δ′′n < δ′n so that for all x′ ∈ I1

such that |x′−x| < δ′′n there holds the inclusion ηexn (x′) ⊂ U2,εn(Per(g̃x)), where U2,εn(Per(g̃x)) is the
εn-neighborhood of the set Per(g̃x) in I2.

Choose a sequence {εn}n≥2 so that lim
n→∞ εn = 0. Then, using the continuity of f, formula (2.2)

and Proposition 2.6 (see Eq. (2.4)), we get that ζF (x) ⊂ Per(g̃x). The latter implies the validity of
property (2.1.1) for ν = 0.

2. Let ν ≥ 1. Then Ω(F 2ν ) = Per(F 2ν ) = Per(F ) (see item 1). From Def. 1.1 it follows that
Ω(F 2ν ) ⊂ Ω(F ). Note that in the case under consideration the opposite inclusion

Ω(F ) ⊂ Ω(F 2ν ) (2.5)

is also valid. In fact, take an arbitrary point (x0; y0) ∈ Ω(F ). By Proposition 2.6, we have x0 ∈
Per(f). Denote by n(x0) the (smallest) period of the point x0. Since Per(f) is a closed set, we can
find a neighborhood U1(x

0) ⊂ I1 of x0 with the following property: U1(x
0)
⋂

fn(U1(x
0)) �= ∅ iff

n is a multiple of the period n(x0) = 2i0 of x0 (see [24]). Hence, using formula (1.1), we get that

(x0; y0) ∈ Ω(F ) iff (x0; y0) ∈ Ω(Fn(x0)). Therefore, inclusion (2.5) holds for n(x0) = 2ν .
Let n(x0) = 2ν−1. If (x0; y0) is a limit point for the set Ω(F ) such that x0 is a limit point for

points of the set Per(f) such that the smallest period of each such point equals 2ν , then, using the
closedness of Ω(F ), we get from the above that (x0; y0) ∈ Ω(F 2ν ). Suppose that (x0; y0) does not
have this property. In this case x0 is either an isolated point of Per(f) or a limit point for such points
of Per(f) that the smallest period of each such point equals 2ν−1 (but not 2ν). Therefore, there exists
a neighborhood U1(x

0) of x0 in I1 that does not contain points from Per(f), such that the smallest

period of each such point equals 2ν . Repeating the arguments from item 1 for
(

f|U1(x0)

)2ν
, we find that

(x0; y0) ∈ Per(F ) = Ω(F 2ν ). Repeating these arguments consecutively for the cases n(x0) = 2ν−p if
2 ≤ p ≤ ν − 1, we find that (x0; y0) ∈ Per(F ) = Ω(F 2ν ). Therefore, one has inclusion (2.5). This and
the opposite inclusion prove the validity of property (2.1.1) for ν ≥ 1. Theorem 2.1 is proved.

3. Theorem on Absence of a C1- Ω-explosion. Estimate of the Set of Periods
of Periodic Points

One of the main results of this section is

Theorem 3.1. Let F ∈ T 1(I), and let Per(F ) be a closed set. Then F does not admit a Ω-explosion
in T 1(I), and there exists a neighborhood B1

ε (F ) of the mapping F in the space T 1(I) such that any
mapping Φ ∈ B1

ε (F ) has a closed set of periodic points.
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The proof of Theorem 3.1 consists of two stages separated into Propositions 3.1 and 3.2.

Proposition 3.1. Let F ∈ T 1(I), and let Per(F ) be a closed set. Then there exists a neighborhood
B1

ε (F ) of the mapping F in the space T 1(I) such that any mapping Φ ∈ B1
ε (F ) has a closed set of

periodic points.

Proof. 1. Let at first τ(F ) = {1} (in this case τ(F 2) = {1} as well). Using Proposition 2.2, we find
firstly a ε1-neighborhood B1

1,ε1(f) of the mapping f in the space C1(I1) such that for any ϕ ∈ B1
1,ε1(f)

one has τ(ϕ) ⊆ {1; 2}, and, moreover, for each x ∈ Per(f) one has ε2(x)-neighborhood B1
2,ε2(x)

(g2x)

of the mapping g2x = gx,2 the space C1(I2) such that for any mapping θ ∈ B1
2,ε2(x)

(g2x) one has the

inclusion τ(θ) ⊆ {1; 2}.
For all x ∈ Per(f), we use neighborhoods B1

(1,2),ε2(x)
(g2x) of C

1-regular (with respect to the entirety

of variables) mappings in the layers {gx,2}x∈I1 for F 2. By inequality (1.6), in particular, for each
x ∈ Per(f) (Per(f) = Per(f2)) one has B1

(1,2),ε2(x)
(g2x) ⊂ B1

2,ε2(x)
(g2x). Therefore, for each x′ ∈ I1

such that gx′,2 ∈ B1
(1,2),ε(x)(g

2
x) one has the inclusion τ(gx′,2) ⊆ {1; 2}.

We make use of the C1-representation ρ2 : I1 → C1(I, I2), where ρ2(x) = gx,2 for each x ∈ I1 (see
Sec. 1). Continuity of ρ2 and compactness of Per(f) imply compactness of the image ρ2(Per(f)) =
{gx,2}x∈Per(f) in the family of C1-regular mappings in the layers {gx,2}x∈I1 for the mapping F 2. The

family of neighborhoods {B1
(1,2),ε2(x)

(g2x)}x∈Per(f) is an open covering of the compact set ρ2(Per(f)),

which is infinite iff Per(f) is an infinite set. In the case of an infinite set Per(f) we extract a finite
subcovering {B1

(1,2),ε2(xi)
(g2xi

)}ri=1 from the open covering {B1
(1,2),ε2(x)

(g2x)}x∈Per(f) of the compact set

ρ2(Per(f)). We put ε2 = min
1≤i≤r

{ε2(xi)}. For ε2 > 0, using the equicontinuity of the C1-representation

ρ2 : I1 → C1(I, I2), we find a positive number δ2 < ε2/2 such that for any x, x′ ∈ I1 such that
|x− x′| < δ2 there holds the inequality ||g2x − g2x′ ||1,(1,2) < ε2/2.

We choose and fix an arbitrary positive number δ3 < δ2. Using the absence of C1- Ω-explosion of
regular mappings of a segment with a closed set of periodic points (see Proposition 2.5), for a number
δ3 > 0 we find an ε3-neighborhood B1

1,ε3(f) of the mapping f in the space C1(I1) so that for each

mapping ϕ ∈ B1
1,ε3(f) one has Per(ϕ) ⊂ U1,δ3(Per(f)).

Let a positive number ε be chosen from ε∗ = 1/2min{ε1, ε3, δ3} (ε < ε∗) so that for each Φ ∈ B1
ε (F )

there holds Φ2 ∈ B1
ε∗(F

2), where Φ(x, y) = (ϕ(x), ψx(y)). Then due to the choice of the number ε∗ > 0

and to inequality (1.6) one has: ϕ ∈ B1
1,ε1

(f), and for any x′ ∈ Per(ϕ) there is a point x ∈ Per(f)

such that |x − x′| < δ2, and therefore, ψx′,2 ∈ B1
(1,2),ε2

(g2x). Hence we immediately get the inclusion

τ(Φ) ⊆ {1, 2, 22}. Boundedness of the set τ(Φ) implies closedness of the set Per(Φ).
2. Now let τ(F ) = {1, 2, . . . , 2ν} for some 0 < ν < +∞. Then by item 1 τ(F 2ν ) = {1}, and there

exists a neighborhood B1
ε (F

2ν ) of the mapping F 2ν in the space T 1(I) such that for any Φ ∈ B1
ε (F )

one has τ(Φ) ⊆ {1, 2, 22}. Choose a positive number ε′ from ε so that for each mapping Φ ∈ B1
ε′(F )

there holds Φ2ν ∈ B1
ε (F

2ν ). Then each Φ ∈ B1
ε′(F ) has a bounded set of (the smallest) periods of

periodic points (one has the inclusion τ(Φ) ⊆ {1, 2, . . . , 2ν+2}) and, hence, a closed set Per(Φ).
Proposition 3.1 is proved.

We give an upper estimate of the set of (the smallest) periods of periodic points of the simplest
mappings in T 1(I).

Corollary 3.1. Let F ∈ T 1(I) be one of the simplest mappings such that τ(F ) = {1, 2, . . . , 2ν} for
some 0 ≤ ν < +∞. Then there exists a neighborhood B1

ε (F ) of the mapping F in the space T 1(I) with
the following property: for each Φ ∈ B1

ε (F ) one has4 τ(Φ) ⊆ {1, 2, . . . , 2ν+2}.
4Note for the sequel that an upper estimate of the set of (the smallest) periods of periodic points of the simplest

mappings from T 1(I) given in Corollary 3.1 can be improved. A sharp (unimprovable) estimate of this set is obtained
in Theorem 3.2.
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Proposition 3.2. Let F ∈ T 1(I), and let the set Per(F ) be closed. Then F does not admit an Ω-
explosion in the space T 1(I).

Proof. Suppose the converse. Let there exist the simplest mapping F∗ ∈ T 1(I) that admits an Ω-
explosion in the space T 1(I).

1. At first assume that Per(F∗) = Fix(F∗). Here τ(F∗) = {1}. Using Corollary 3.1 for ν = 0, we
find a ε0-neighborhood B1

ε0(F∗) of the mapping F∗ in the space T 1(I) so that for an arbitrary skew

product Φ ∈ B1
ε0(F∗) one has τ(Φ) ⊆ {1, 2, 22}. By Definition 1.2 and Theorem 2.1, there exists a

δ > 0 such that for any positive ε < ε0 one can find a Φ ∈ B1
ε (F∗) with the following property: for

each point w0 ∈ Per(Φ), one has w0 �∈ Uδ(Fix(F∗)).
2. Let a sequence of positive numbers {εn}+∞

n=1 be such that lim
n→+∞ εn = 0. Then one can find a

n0 ≥ 1 such that for any n ≥ n0 one has εn < ε0. Therefore, for each n ≥ n0 one can find a mapping
Φn ∈ B1

εn(F∗) such that for some point wn ∈ Per(Φn) one has wn �∈ Uδ(Fix(F∗)).
Using the compactness of I, from sequence {wn}n≥n0 we extract a subsequence {wnk

}k≥1 convergent
to some point w∗(x∗, y∗). Then w∗ �∈ Uδ(Fix(F∗)). Show that w∗ ∈ P (F∗) \ Fix(F∗), where P (F∗) is
the set of Poisson stable points5.

In fact, choose and fix an arbitrary positive number ε < ε0. Using equicontinuity of F∗ on the
compact set I, for ε and each i ≥ 1 we find a positive number ηi < ε so that, firstly, for arbitrary
points z′, z′′ ∈ I such that d(z′, z′′) < ηi (here d is a metric in I generating the product topology), one
has the inequality

d(F 4i

∗ (z′), F 4i

∗ (z′′)) < ε, (3.1)

and, secondly, for each Φ ∈ B1
ηi(F∗) one has

Φ4i ∈ B1
ε (F

4i

∗ ). (3.2)

Let a natural number k(i) be chosen so that one has the inequality d(wnk(i)
, w∗) < ηi. Then, using

relations (3.1) and (3.2) and the equality Φ4i(wnk(i)
) = wnk(i)

, where Φ ∈ B1
ηi(F∗), we have

d(w∗, F 4i∗ (w∗)) ≤ d(w∗, wnk(i)
) + d(Φ4i(wnk(i)

), F 4i∗ (wnk(i)
))

+ d(F 4i∗ (wnk(i)
), F 4i∗ (w∗)) < 3ε.

(3.3)

Inequality (3.3) is equivalent to simultaneous validity of the following two inequalities for the factor
mapping and the mapping in the layer over the point x∗ of the skew product F∗:

|x∗ − f4i(x∗)| < 3ε, |y∗ − gx∗,4i(y∗)| < 3ε,

and for w∗ �∈ Uδ(Fix(F∗)) one has either f4i(x∗) �= x∗ or y∗ �= gx∗,4i(y∗). Hence, w∗ ∈ P (F∗)\Per(F∗).
The latter is impossible, since Theorem 2.1 implies that P (F∗) = Per(F∗). Thus, the assumption is
wrong, and each simplest mapping F ∈ T 1(I) such that τ(F ) = {1} does not admit an Ω-explosion in
the space T 1(I).

3. Now let τ(F ) = {1, 2, . . . , 2ν} for some 0 < ν < +∞. Then τ(F 2ν ) = {1}, and by the above,
the mapping F 2ν does not admit an Ω-explosion in the space T 1(I). Since Ω(F 2ν ) = Per(F 2ν ) =
Per(F ) = Ω(F ) (see Theorem 2.1), using the definition of the absence of an Ω-explosion in the space
T 1(I), hence we get that the mapping F does not admit an Ω-explosion in the space T 1(I) either.
Proposition 3.2 is proved.

5A point z0(x0, y0) ∈ I is called Poisson stable (see [22, Ch. V, Sec. 5]) for the mapping F∗, if there exists a sequence
of natural numbers n1 < n2 < . . . < ni < . . . such that there holds the equality

lim
i→+∞

Fni∗ (z0) = z0.
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Validity of Theorem 3.1 follows from Propositions 3.1 and 3.2. Theorem 3.1 is proved.
To conclude Sec. 3, we extend Proposition 2.2 to the case of mappings from T 1(I) improving the

upper estimate for the set of (the smallest) periods of periodic points of regular simplest skew products
given in Corollary 3.1.

Theorem 3.2. If a mapping F ∈ T 1(I) does not contain a periodic point with period 2i, there exists
an ε-neighborhood B1

ε (F ) of F in T 1(I) such that any mapping from B1
ε (F ) does not contain periodic

points with period 2i+1 for any i ≥ 1.

Proof 6. 1. Let F be an arbitrary mapping from T 1(I) that does not contain a periodic point with
period 2i for some i ≥ 1. By the results of [19], under the hypotheses of Theorem 3.2 we have: τ(F ) =

{1, 2, . . . , 2i−1} for some 1 ≤ i < +∞. Then for the mapping G = F 2i−1
we have τ(G) = {1}. Using

Corollary 3.1, we find a neighborhood B1
ε′(G) of G in the space T 1(I) such that for any Φ ∈ B1

ε′(G)
one has τ(Φ) ⊆ {1, 2, 22}.

2. Show that there exists a subneighborhood B1
ε′′(G) of the neighborhood B1

ε′(G) of the mapping G
such that an arbitrary mapping from B1

ε′′(G) does not contain periodic points with period 4. Suppose
the converse. Then there exists a sequence of mappings {Φn}n≥1 such that

lim
n→+∞ ||Φn −G||1 = 0, (3.4)

and the mapping Φn for any n ≥ 1 contains a periodic point with period 4. Due to [19], a projection
of a periodic orbit of the mapping Φn with period 4 to the axis Ox is a periodic orbit of the factor
mapping of the skew product Φn with period 2. Let this periodic orbit consist of points

(xn1 , y
n
1 ), (x

n
2 , y

n
2 ), (x

n
1 , y

n
3 ), (x

n
2 , y

n
4 ), and yn3 �= yn1 , yn4 �= yn2 .

Let Φn(x, y) = (fn(x), (gn)x(y)), n ≥ 1. We construct graphs of functions y = (gn)xn
1
(y) and

y = (gn)xn
2
(y) in the plane Y OY . We connect points (yn1 ; y

n
2 ) with (yn3 ; y

n
4 ) on the graph of the

function y = (gn)xn
1
(y) and (yn2 ; y

n
3 ) with (yn4 ; y

n
1 ) on the graph of the function y = (gn)xn

2
(y) by

straight line segments.
We write out the equations of each line containing these segments. Thus, points (yn1 ; y

n
2 ) and

(yn3 ; y
n
4 ) are connected by the line ln1 given by the equation

y =
yn4 − yn2
yn3 − yn1

(y − yn1 ) + yn2 ,

and points (yn2 ; y
n
3 ) and (yn4 ; y

n
1 ) — by the line ln2 given by the equation

y =
yn3 − yn1
yn2 − yn4

(y − yn4 ) + yn1 .

Put kn1 =
yn4 − yn2
yn3 − yn1

, kn2 =
yn3 − yn1
yn2 − yn4

. Then we have

kn1 k
n
2 = −1, (3.5)

i.e., the lines ln1 and ln2 are mutually perpendicular (for each n ≥ 1).
At the same time, one has the equalities

kn1 =
(gn)xn

1
(yn3 )− (gn)xn

1
(yn1 )

yn3 − yn1
, kn2 =

(gn)xn
2
(yn2 )− (gn)xn

2
(yn4 )

yn2 − yn4
.

Define intervals
Jn
1,3 = {xn1} × (min{yn1 , yn3 }, max{yn1 , yn3 }),

Jn
2,4 = {xn2} × (min{yn2 , yn4 }, max{yn2 , yn4 }).

6Analogous arguments for one-parametric families of C1-regular skew products of interval mappings were given by
Blinova and the author in [4].
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Using the classical Lagrange theorem for a function of one variable, we find points ξn1 ∈ Jn
1,3 and

ξn2 ∈ Jn
2,4 such that one has

∂

∂y
(gn)xn

1
(ξn1 ) = kn1 ,

∂

∂y
(gn)xn

2
(ξn2 ) = kn2 .

Using (3.5), hence we get
∣

∣

∣

∣

∂

∂y
(gn)xn

1
(ξn1 )−

∂

∂y
(gn)xn

2
(ξn2 )

∣

∣

∣

∣

= |kn1 − kn2 | =
∣

∣

∣

∣

kn1 +
1

kn1

∣

∣

∣

∣

≥ 2. (3.6)

On the other hand, by Theorem 3.1 the mapping G does not admit an Ω-explosion in the space T 1(I).
Use Definition 1.2 and take an appropriate sequence of positive numbers {δm}m≥1, which converges to
0. Then for each m ≥ 1, there exists a positive number ε(δm) such that for any mapping Φ ∈ B1

ε(δm)(G)

one has Ω(Φ) ⊂ Uδm(Ω(G)); and, in particular, by (3.4) for each m ≥ 1 there exists a mapping
Φnm ∈ B1

ε(δm)(G) that contains a periodic orbit of period 4 and such that Ω(Φnm) ⊂ Uδm(Ω(G)).

Thus, any convergent (as m → ∞) sequence of points from Ω(Φnm) has a unique limit point, which
is fixed with respect to the mapping G. Hence, using Eq. (3.4) and continuity of the mappings G and

Φnm, we immediately obtain that if a subsequence {(xnmk
1 , y

nmk
1 )}k≥1 converges and

lim
k→+∞

(x
nmk
1 , y

nmk
1 ) = (x0, y0), where G(x0, y0) = (x0, y0),

then so does each sequence {(xnmk
1 , y

nmk
3 )}k≥1 and {(xnmk

2 , y
nmk
s )}k≥1 for s = 2, 4, and there hold

equalities

(x0, y0) = lim
k→+∞

(x
nmk
1 , y

nmk
3 ) = lim

k→+∞
(x

nmk
2 , y

nmk
s ).

Then, using the obtained relations, Eq. (3.4) and C1 regularity of the mappings Φnm, we get

∂

∂y
gx0,2i−1(y0) = lim

k→+∞
∂

∂y
(gnmk

)
x
nmk
1

(ξ
nmk
1 ) = lim

k→+∞
∂

∂y
(gnmk

)
x
nmk
2

(ξ
nmk
2 ).

Therefore,

lim
k→+∞

∣

∣

∣

∣

∂

∂y
(gnmk

)
x
nmk
1

(ξ
nmk
1 )− ∂

∂y
(gnmk

)
x
nmk
2

(ξ
nmk
2 )

∣

∣

∣

∣

= 0,

and at the same time inequality (3.6) implies

lim
k→+∞

∣

∣

∣

∣

∂

∂y
(gnmk

)
x
nmk
1

(ξ
nmk
1 )− ∂

∂y
(gnmk

)
x
nmk
2

(ξ
nmk
2 )

∣

∣

∣

∣

≥ 2.

Thus, inequality (3.6) contradicts C1 regularity of the mappings Φnm . Therefore, our assumption is
wrong, and there exists a subneighborhood B1

ε′′(G) of the neighborhood B1
ε′(G) of the mapping G

such that any mapping from B1
ε′′(G) contains no periodic points with period 4 (though it may contain

ones with period 2).
3. Now let τ(F ) = {1, 2, . . . , 2i−1} for some 2 ≤ i < +∞. Using the number ε′′ > 0 (see item 2), we

choose a positive number ε so that for any mapping Ψ ∈ B1
ε (F ) it holds Ψ2i−1 ∈ B1

ε′′(G). Then Ψ2i−1

contains no periodic points with period 4, and hence, Ψ contains no periodic points with period 2i+1

(though it may contain ones with period 2i). Theorem 3.2 is proved.

As the example below shows, the estimate of the set of (the smallest) periods of periodic points
for C1-regular skew products of interval mappings from some neighborhood of one of the simplest
mappings in the space T 1(I) obtained in Theorem 3.2 is unimprovable.
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Example 3.1. Consider a mapping F1 ∈ T 1([0, 1]2) such that its factor mapping f(x) is defined by
the following equality:

f(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x for x ∈
(

1

22j+1
,
1

22j

]

;

x+
1

22j+5
sin2 π(22j+2x− 1) for x ∈

(

1

22j+2
,

1

22j+1

]

, j ≥ 0;

0 for x = 0.

(3.7)

Hence the set of f -fixed points Fix(f) is perfect (and has the cardinality of continuum). We pass to
definition of mappings in layers.

Denote by λi (i ≥ 1) the bifurcation value of the parameter in the family of logistic mappings
x = λx(1 − x) such that for λ = λi the logistic mapping has a nonrough attracting periodic orbit
with period 2i−1, and for λi < λ < λi+1 logistic mappings have a periodic orbit with period 2i (see,
e.g., [29, Ch. 1, Sec. 2] and [3]). Define mappings in the layers gx(y) of the skew product F1, putting
gx(y) = ((λi − λi−1)x+ λi−1)y(1 − y), i ≥ 2.

Then τ(F1) = {1, 2, . . . , 2i−1}. Since f is a growing diffeomorphism (see Eq. (3.7)), there exists a
neighborhood B1

1,ε1(f) of the mapping f in the space C1(I1) such that each mapping ϕ ∈ B1
1,ε1(f)

is also a growing diffeomorphism (i.e., τ(ϕ) = {1}). By Proposition 2.2, for each x ∈ Fix(f) there
exists a neighborhood B1

2,ε2(x)
(gx) such that an arbitrary mapping g ∈ B1

2,ε2(x)
(gx) does not contains

periodic orbits with period 2i for x = 0 (in this case {1, 2, . . . , 2i−2} ⊆ τ(g) ⊆ {1, 2, . . . , 2i−1}) or those
with period 2i+1 for x ∈ (0, 1] (here {1, 2, . . . , 2i−1} ⊆ τ(g) ⊆ {1, 2, . . . , 2i}).

We use neighborhoods B1
(1,2),ε2(x)

(gx) ⊂ B1
2,ε2(x)

(gx) of C1 regular (with respect to the entirety of

variables) mappings in the layers of the skew product F1 for all x ∈ Fix(f). Then for each x′ ∈ [0, 1]
such that gx′ ∈ B1

(1,2),ε2(x)
(gx) for some x ∈ Fix(f) the set τ(gx′) does not contain the natural

number 2i+1.
Continuity of the C1-representation ρ1 : [0, 1] → C1([0, 1]2, [0, 1]) (see Sec. 1) and compactness

of Fix(f) imply compactness of ρ1(Fix(f)) = {gx}x∈F ix(f) in the family of C1 regular mappings

in layers {gx}x∈[0,1] of the mapping F1. The family of neighborhoods {B1
(1,2),ε2(x)

(gx)}x∈F ix(f) is an

infinite open coverage of the compact set ρ1(Fix(f)). Let the neighborhoods {B1
(1,2),ε2(xi)

(gxi)}ri=1

form a finite subcovering of the compact set ρ1(Fix(f)). Put ε2 = min
1≤i≤r

{ε2(xi)}.
Using equicontinuity of the C1 representation ρ1, for ε2 > 0 we find a positive number δ2 < ε2/2 so

that for any x, x′ ∈ [0, 1] such that |x− x′| < δ2 one has the inequality ||gx − gx′ ||1,(1,2) < ε2/2.

We choose and fix an arbitrary number δ3 < δ2. Using the absence of C1- Ω-explosions of segment
mappings with a closed sets of periodic points in C1([0, 1]), for a number δ3 > 0 we find an ε3-
neighborhood B1

1,ε3
(f) of the mapping f in the space C1([0, 1]) such that ε3 < ε1, and for each

mapping ϕ ∈ B1
1,ε3(f) there holds Fix(ϕ) ⊂ U1,δ3(Fix(f)).

Put ε∗ = 1/2min{ε3, δ3}. Then any mapping Φ ∈ B1
ε∗(F1) does not contain periodic points with

(the smallest) period equal to 2i+1. At he same time, let ε be an arbitrary positive number such that
ε < min{ε∗, λi+1 − λi}. Put

Φε(x, y) = (f(x), (λi − λi−1)x+ λi−1 + ε)y(1 − y)).

Then Φε ∈ B1
ε∗(F1) and τ(Φε) = {1, 2, . . . , 2i}.

4. Note on Peculiarities of Period Doubling Bifurcations in the Simplest C1 Regular
Skew Products

To conclude the paper, we note some distinctive peculiarities of period doubling bifurcations for
periodic points of regular skew products of interval mappings, where the multiplier λ1((x

0; y0)) of
the fixed point (x0; y0) passes −1, and the multiplier λ2((x

0; y0)) of the same point passes either 1
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or −1. Recall that in regular mappings of a segment into itself whenever a multiplier of a fixed point
passes −1, there appears a unique periodic orbit with period 2 formed by sinks (see, e.g., [29, Ch. 2,
Sec. 3] and [3]), where the fixed point becomes a source (though it was an attracting point at the
moment of bifurcation).

Theorem 4.1. Let Fα : I → I, Fα(x, y) = (fα(x), gα,x(y)), be a one-parameter family of C3 regular
skew products of interval mappings, with a C1 regular dependence on the parameter α ∈ (α1, α2),
(x0; y0) — a fixed point of the skew product Fα0 , where λ1((x

0; y0)) = −1 and λ2((x
0; y0)) = 1. Let for

α = α0 at the fixed point (x0; y0) the following inequalities hold:

(4.1.1)
∂3

∂x3
(f2

α(x)) < 0,
∂2

∂y2
(gα,x,2(y)) > 0,

(4.1.2)
∂

∂α
(f2

α(x)) < 0,
∂

∂α
(gα,x,2(y)) < 0.

Then there exist ε > 0 and δ > 0 such that

(4.1.a) for α ∈ (α0 − δ, α0, the skew product Fα has no fixed points in the open square (x0 − ε,
x0 + ε)× (y0 − ε, y0 + ε);

(4.1.b) for α ∈ (α0, α0+ δ), the skew product Fα in the open square (x0− ε, x0+ ε)× (y0− ε, y0+ ε)
has two fixed points with the same fixed point of the factor mapping fα as the projection, so
that one of the fixed points Fα is a source, and the other is a saddle; and a pair of periodic
orbits with period 2 with the same periodic orbit with period 2 of the factor mapping fα as
the projection, where one of the periodic orbits with period 2 of the skew product Fα consists
of sinks, and the other one of saddle periodic points.

Proof. Consider a family of two equations such that its solutions are fixed points and periodic points
with period 2 of the skew product Fα:

{

f2
α(x)− x = 0,
gα,x,2(y)− y = 0.

(4.1)

Apply the first inequalities (4.1.1) and (4.1.2) to the first equation (4.1). Then by the results of [29,
Ch. 2, Sec. 3] one can find ε′ > 0 and δ′ > 0 such that the first equation (4.1)

(1) has a unique solution for α ∈ (α0 − δ′, α0) from the interval (x0 − ε′, x0 + ε′) that corresponds
to the sink of the factor equation fα;

(2) has three solutions for α ∈ (α0, α0 + δ′) belonging to the interval (x0 − ε′, x0 + ε′), such that
one of them, namely x0+ = x0+(α), corresponds to the source of the factor mapping fα, and the
other two form a sink of period 2.

Before passing to the second equation in (4.1) note that for α = α0 at the fixed point (x0; y0) one
has equalities

∂

∂y
(gα,x(y)) =

∂

∂y
(gα,x,2(y)) = 1.

Apply the second inequalities in (4.1.1) and (4.1.2) to the second equation in (4.1). Using the results
of [29, Ch. 2, Sec. 3], we find ε′′ > 0 and δ′′ > 0 such that the second equation in (4.1)

(3) has no solutions with respect to y in the interval (y0 − ε′′, y0 + ε′′) for α ∈ (α0 − δ′′, α0) and
each x ∈ (x0 − ε′′, x0 + ε′′);

(4) has 2 solutions α = αx,i(y) (i = 1, 2) for y ∈ (y0 − ε′′, y0 + ε′′), α ∈ (α0, α0 + δ′′) and each
x ∈ (x0 − ε′′, x0 + ε′′), where one value of y is a sink, and another one is a source for the
mapping gα,x,2 : I2 → I2; for x = x0+(α), each of the two values y such that α = αx,i(y) is a
fixed point of the mapping gα,x (if the points αx,i(y) formed a periodic orbit with period 2 with
respect to y in the interval I2, then the interval bounded by these points would have contained
also a fixed point gα,x for x = x0+(α), and the second equation in (4.1) would have 3 solutions).
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Then for ε = min{ε′, ε′′}, δ = min{δ′, δ′′} each of the properties (4.1.a) and (4.1.b) holds.
Theorem 4.1 is proved.

Arguing similarly to the proof of the previous Theorem 4.1, we can see that the following statement
holds.

Theorem 4.2. Let Fα : I → I, Fα(x, y) = (fα(x), gα,x(y)), be a one-parameter family of C3-regular
skew products of interval mappings, C1-regularly dependent on a parameter α ∈ (α1, α2), (x

0; y0) — a
fixed point of the skew product Fα0 , where λ1((x

0; y0)) = −1 and λ2((x
0; y0)) = −1. Let for α = α0 at

the fixed point (x0; y0) the following inequalities hold:

(4.2.1)
∂3

∂x3
(f2

α(x)) < 0,
∂3

∂y3
(gα,x,2(y)) < 0,

(4.2.2)
∂

∂α
(f2

α(x)) < 0,
∂

∂α
(gα,x,2(y)) < 0.

Then there exist ε > 0 and δ > 0 such that

(4.2.a) for α ∈ (α0− δ, α0) the skew product Fα has only one fixed point in the open square (x0− ε,
x0 + ε)× (y0 − ε, y0 + ε), and this point is a sink;

(4.2.b) for α ∈ (α0, α0+δ), Fα in the open square (x0−ε, x0+ε)×(y0−ε, y0+ε) has only one fixed
point — a source and 4 periodic orbits with period 2, where one of the orbits with period
2 with the same projection as the fixed point is formed by saddle periodic points; one of
the three periodic orbits with period 2 of the mapping Fα with the same periodic orbit with
period 2 of the factor mapping fα as a projection is formed by saddle periodic points, and
the two other ones by sinks.
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