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OSCILLATION OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS

C. Zhang,1 T. Li,2 and S.H. Saker3 UDC 517.9

This article deals with the oscillation of a certain class of fourth-order delay differential equations. Some
new oscillation criteria (including Hille- and Nehari-type criteria) are presented. The results obtained in
the paper improve some results from [C. Zhang, T. Li, B. Sun, and E. Thandapani, Appl. Math. Lett., 24,
1618 (2011)]. Two examples are presented to illustrate our main results.

1. Introduction

In the present paper, we consider the oscillation of a fourth-order quasilinear delay differential equation

⇣
r.t/

�
x000.t/

�
˛

⌘0
C q.t/x˛.⌧.t// D 0; for t � t

0

: (1.1)

We assume that the following assumptions hold:

.H
1

/ ˛ is a quotient of odd positive integers;

.H
2

/ r 2 C1Œt
0

;1/; r 0.t/ � 0; r.t/ > 0; q; ⌧ 2 CŒt
0

;1/; q.t/ � 0; ⌧.t/  t; and lim
t!1 ⌧.t/ D 1:

We say that a function x 2 C3ŒT
x

;1/; T
x

� t
0

; is a solution of Eq. (1.1) if it has the property r.x000/˛ 2
C1ŒT

x

;1/ and satisfies Eq. (1.1) on ŒT
x

;1/: We restrict ourselves to the analysis of solutions x of Eq. (1.1) with
the following property: supfjx.t/j W t � T g > 0 for all T � T

x

: It is assumed that Eq. (1.1) possesses solutions
of this kind. A solution of Eq. (1.1) is called oscillatory if it has arbitrarily large zeros on ŒT

x

;1/I otherwise, it is
called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

In recent decades, the oscillation of second- and third-order differential equations have been deeply studied in
the literature. We refer the reader to the related books [1, 3–5, 13, 15, 21] and to the papers [2, 6–12, 14, 16–20,
22]. In what follows, we present some related results that served as a motivation for the contents of this paper.
Agarwal, et al. [2], Kamo and Usami [11, 12], and Kusano, et al. [14] studied the oscillation of the fourth-order
nonlinear differential equation
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⌘00
C q.t/xˇ .t/ D 0:

Grace, et al. [10] examined the oscillation behavior of the fourth-order nonlinear differential equation
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0
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Agarwal, et al. [7] and Zhang, et al. [22] studied the oscillatory properties of the higher-order differential
equation

⇣
r.t/

⇣
x.n�1/.t/

⌘
˛

⌘0
C q.t/xˇ .⌧.t// D 0; (1.2)

under the conditions

1Z

t0

1

r1=˛.t/
dt D 1;

and

1Z

t0

1

r1=˛.t/
dt < 1: (1.3)

Zhang, et al. [22] obtained some results which ensure that every solution x of (1.2) is either oscillatory or
lim

t!1 x.t/ D 0 in the case where (1.3) holds. For a special case n D 4; they proved the following result: Let
.H

1

/; .H
2

/; and (1.3) hold and let ⌧.t/ < t: Further, assume that, for some constant �
0

2 .0; 1/; the delay
differential equation

y
0
.t/C q.t/

✓
�
0

⌧3.t/

6r1=˛.⌧.t//

◆
˛

y.⌧.t// D 0 (1.4)

is oscillatory. If

lim sup
t!1

tZ

t0


q.s/

✓
�
1

2
⌧2.s/

◆
˛

ı˛.s/ � ˛˛C1

.˛ C 1/˛C1

1

ı.s/r1=˛.s/

�
ds D 1 (1.5)

for some constant �
1

2 .0; 1/; where

ı.t/ WD
Z 1

t

r�.1=˛/.s/ ds;

then every solution of (1.1) is either oscillatory or converges to zero as t ! 1:

Our aim in the present paper is to employ the Riccatti technique to establish some new conditions for the
oscillation of all solutions of (1.1). The results not only differ from the results obtained in [22] but also improve
some of them. Some examples are considered to illustrate the main results.

2. Main results

In this section, we derive some new criteria for the oscillation of (1.1). To prove our main results, we need the
following lemma:
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Lemma 2.1 (see [3], Lemma 2.2.3). Let f 2 Cn.Œt
0

;1/;RC/: Assume that f .n/.t/ is of fixed sign and
not identically zero on Œt

0

;1/ and that there exists t
1

� t
0

such that f .n�1/.t/f .n/.t/  0 for all t � t
1

: If
lim

t!1 f .t/ ¤ 0; then, for every k 2 .0; 1/; there exists t
k

2 Œt
1

;1/ such that

f .t/ � k

.n � 1/ä
tn�1jf .n�1/.t/j; for t 2 Œt

k

;1/:

We are now ready to state and prove the main results. For convenience, we denote

R.t/ WD
1Z

t

1

r
1
˛ .s/

ds; ⇢
0
C.t/ WD maxf0; ⇢0

.t/g; and ✓
0
C.t/ WD maxf0; ✓ 0

.t/g:

In the sequel, all functional inequalities encountered in the present section are assumed to be eventually true.
This means that they are satisfied for all sufficiently large t:

Theorem 2.1. Let .H
1

/; .H
2

/; and (1.3) hold. Assume that there exists a positive function ⇢ 2 C1Œt
0

;1/

such that

1Z

t0

"
q.s/

✓
⌧2.s/

s2

◆
˛

⇢.s/ � 2˛

.˛ C 1/˛C1

r.s/.⇢
0
C.s//

˛C1

.k
1

⇢.s/s2/˛

#
ds D 1; (2.1)

for some constant k
1

2 .0; 1/: Assume further that there exists a positive function ✓ 2 C1Œt
0

;1/ such that

1Z

t0

2

64✓.s/
1Z

s

2

4 1

r.#/

1Z

#

q.&/

✓
⌧2.&/

&2

◆
˛

d&

3

5

1
˛

d# �
.✓

0
C.s//

2

4✓.s/

3

75 ds D 1: (2.2)

If

1Z

t0

2

4q.s/

0

@
1Z

s

1Z

u

R.v/dvdu

1

A
˛

� ˛˛C1

.˛ C 1/˛C1

R1
s

R.v/dv
R1
s

R1
u

R.v/dvdu

3

5 ds D 1 (2.3)

and

1Z

t0


q.s/

✓
k
2

2
⌧2.s/

◆
˛

R˛.s/ � ˛˛C1

.˛ C 1/˛C1R.s/r1=˛.s/

�
ds D 1 (2.4)

for some constant k
2

2 .0; 1/; then every solution of (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution x: Without loss of generality, we can assume that x

is eventually positive. It follows from (1.1) that there exist four possible cases for t � t
1

; where t
1

� t
0

is
sufficiently large:

Case 1 W x.t/ > 0; x
0
.t/ > 0; x

00
.t/ > 0; x

000
.t/ > 0; x.4/.t/  0; .r.x

000
/˛/

0
.t/  0:
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Case 2 W x.t/ > 0; x
0
.t/ > 0; x

00
.t/ < 0; x

000
.t/ > 0; x.4/.t/  0; .r.x

000
/˛/

0
.t/  0:

Case 3 W x.t/ > 0; x
0
.t/ < 0; x

00
.t/ > 0; x

000
.t/ < 0; .r.x

000
/˛/

0
.t/  0:

Case 4 W x.t/ > 0; x
0
.t/ > 0; x

00
.t/ > 0; x

000
.t/ < 0; .r.x

000
/˛/

0
.t/  0:

Assume that we have Case 1. By the Kiguradze Lemma [13], we find x.t/ � .t=2/x
0
.t/ and, hence,

x.⌧.t//

x.t/
� ⌧2.t/

t2
: (2.5)

Define

!.t/ WD ⇢.t/
r.t/.x

000
/˛.t/

x˛.t/
; t � t

1

: (2.6)

Then !.t/ > 0 for t � t
1

and

!
0
.t/ D ⇢

0
.t/

r.t/.x
000
/˛.t/

x˛.t/
C ⇢.t/

.r.x
000
/˛/

0
.t/

x˛.t/
� ˛⇢.t/

x˛�1.t/x
0
.t/r.t/.x

000
/˛.t/

x2˛.t/
: (2.7)

It follows from Lemma 2.1 that

x
0
.t/ � k

2
t2x

000
.t/ (2.8)

for every k 2 .0; 1/ and all sufficiently large t: Hence, by (2.7) and (2.8), we obtain

!
0
.t/  ⇢

0
.t/

r.t/.x
000
/˛.t/

x˛.t/
C ⇢.t/

.r.x
000
/˛/

0
.t/

x˛.t/
� ˛k

2
t2⇢.t/

x
000
.t/r.t/.x

000
/˛.t/

x˛C1.t/
:

Therefore, in view of (1.1), we get

!
0
.t/  �q.t/

✓
⌧2.t/

t2

◆
˛

⇢.t/C
⇢
0
C.t/
⇢.t/

!.t/ � ˛k

2

t2

.r.t/⇢.t//
1
˛

!
˛C1
˛ .t/: (2.9)

We set

A WD ˛kt2

2.r.t/⇢.t//
1
˛

; B WD
⇢
0
C.t/
⇢.t/

; y WD !.t/:

Using the inequality

By � Ay
˛C1
˛  ˛˛

.˛ C 1/˛C1

B˛C1

A˛

; A; B > 0;
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we find

⇢
0
C.t/
⇢.t/

!.t/ � ˛kt2

2.r.t/⇢.t//
1
˛

!
˛C1
˛ .t/  2˛

.˛ C 1/˛C1

r.t/.⇢
0
C.t//

˛C1

.k⇢.t/t2/˛
:

Hence, we obtain

!
0
.t/  �q.t/

✓
⌧2.t/

t2

◆
˛

⇢.t/C 2˛

.˛ C 1/˛C1

r.t/.⇢
0
C.t//

˛C1

.k⇢.t/t2/˛
;

which implies that

tZ

t1

"
q.s/

✓
⌧2.s/

s2

◆
˛

⇢.s/ � 2˛

.˛ C 1/˛C1

r.s/.⇢
0
C.s//

˛C1

.k⇢.s/s2/˛

#
ds  !.t

1

/;

for every k 2 .0; 1/ and all sufficiently large t but this contradicts (2.1).
Assume that we have Case 2. Integrating (1.1) from t to l; we find

r.l/.x
000
/˛.l/ � r.t/.x

000
/˛.t/C

lZ

t

q.s/x˛.⌧.s// ds D 0:

By virtue of x > 0; x
0
> 0; and x

00
< 0; we get x.t/ � .t=2/x

0
.t/: Therefore, (2.5) holds. Thus, by (2.5), we

obtain

r.l/.x
000
/˛.l/ � r.t/.x

000
/˛.t/C

lZ

t

q.s/

✓
⌧2.s/

s2

◆
˛

x˛.s/ ds  0;

whence it follows, by x
0
> 0; that

r.l/.x
000
/˛.l/ � r.t/.x

000
/˛.t/C x˛.t/

lZ

t

q.s/

✓
⌧2.s/

s2

◆
˛

ds  0:

Letting l ! 1; we arrive at the inequality

�r.t/.x000
/˛.t/C x˛.t/

1Z

t

q.s/

✓
⌧2.s/

s2

◆
˛

ds  0;

i.e.,

�x000
.t/C x.t/

2

4 1

r.t/

1Z

t

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

 0:
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Integrating again from t to 1 , we get

x
00
.t/C x.t/

1Z

t

2

4 1

r.#/

1Z

#

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

d#  0: (2.10)

Define

⇠.t/ WD ✓.t/
x

0
.t/

x.t/
; t � t

1

:

Then ⇠.t/ > 0 for t � t
1

and

⇠
0
.t/ D ✓

0
.t/

x
0
.t/

x.t/
C ✓.t/

x
00
.t/x.t/ � .x

0
/2.t/

x2.t/

D ✓.t/
x

00
.t/

x.t/
C ✓

0
.t/

✓.t/
⇠.t/ � ⇠2.t/

✓.t/
:

Hence, by (2.10), we find

⇠
0
.t/  �✓.t/

1Z

t

2

4 1

r.#/

1Z

#

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

d# C
✓

0
C.t/
✓.t/

⇠.t/ � ⇠2.t/

✓.t/
: (2.11)

Thus, we have

⇠
0
.t/  �✓.t/

1Z

t

2

4 1

r.#/

1Z

#

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

d# C
.✓

0
C.t//

2

4✓.t/
:

This yields

tZ

t1

2

64✓.s/
1Z

s

2

4 1

r.#/

1Z

#

q.&/

✓
⌧2.&/

&2

◆
˛

d&

3

5

1
˛

d# �
.✓

0
C.s//

2

4✓.s/

3

75 ds  ⇠.t
1

/;

which contradicts (2.2).
Assume that we have Case 3. Recalling that r.x

000
/˛ is nonincreasing, we obtain

r1=˛.s/x
000
.s/  r1=˛.t/x

000
.t/; s � t � t

1

:

Dividing this inequality by r1=˛.s/ and integrating the inequality obtained as a result from t to l; we get

x
00
.l/  x

00
.t/C r1=˛.t/x

000
.t/

lZ

t

r�1=˛.s/ ds:
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Letting l ! 1; we arrive at the inequality

x
00
.t/ � �r1=˛.t/x000

.t/R.t/: (2.12)

Integrating (2.12) from t to 1; we obtain

�x0
.t/ �

1Z

t

�r1=˛.s/x000
.s/R.s/ ds � �r1=˛.t/x000

.t/

1Z

t

R.s/ ds: (2.13)

Integrating (2.13) from t to 1; we get

x.t/ �
1Z

t

�r1=˛.u/x000
.u/

1Z

u

R.s/ ds du � �r1=˛.t/x000
.t/

1Z

t

1Z

u

R.s/ ds du: (2.14)

We now define

'.t/ WD r.t/.x
000
/˛.t/

x˛.t/
; t � t

1

: (2.15)

Thus, '.t/ < 0 for t � t
1

; and, by (2.13), we conclude that

'
0
.t/ D .r.x

000
/˛/

0
.t/

x˛.t/
� ˛

r.t/.x
000
/˛.t/x

0
.t/

x˛C1.t/

 �q.t/x
˛.⌧.t//

x˛.t/
� ˛

r
˛C1
˛ .t/.x

000
/˛C1.t/

x˛C1.t/

1Z

t

R.s/ ds: (2.16)

Hence, by (2.15) and (2.16), we obtain

'
0
.t/  �q.t/ � ˛'

˛C1
˛ .t/

1Z

t

R.s/ ds: (2.17)

From (2.14), we get

'.t/

0

@
1Z

t

1Z

u

R.s/ ds du

1

A
˛

� �1: (2.18)

Multiplying (2.17) by
✓Z 1

t

Z 1

u

R.s/ ds du

◆
˛

and integrating the resulting inequality from t
1

to t; we

find
0

@
1Z

t

1Z

u

R.s/ ds du

1

A
˛

'.t/ �

0

@
1Z

t1

1Z

u

R.s/ ds du

1

A
˛

'.t
1

/
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C ˛

tZ

t1

1Z

s

R.v/ dv

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛�1

'.s/ ds

C
tZ

t1

q.s/

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛

ds

C ˛

tZ

t1

'
˛C1
˛ .s/

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛ 1Z

s

R.v/ dv ds  0:

We set

B WD
1Z

s

R.v/ dv

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛�1

;

and

A WD

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛ 1Z

s

R.v/ dv; y WD �'.s/:

Using the inequality

�By C Ay
˛C1
˛ � � ˛˛

.˛ C 1/˛C1

B˛C1

A˛

; A; B > 0; (2.19)

we conclude that

1Z

s

R.v/ dv

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛�1

'.s/C '
˛C1
˛ .s/

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛ 1Z

s

R.v/ dv

� � ˛˛

.˛ C 1/˛C1

R1
s

R.v/ dv
R1
s

R1
u

R.v/ dv du
:

Hence, by (2.18), we obtain

tZ

t1

2

4q.s/

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
˛

� ˛˛C1

.˛ C 1/˛C1

R1
s

R.v/ dv
R1
s

R1
u

R.v/ dv du

3

5 ds



0

@
1Z

t1

1Z

u

R.s/ ds du

1

A
˛

'.t
1

/C 1
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but this contradicts (2.3).
Assume that we have Case 4. In view of the proof of Case 3, we have (2.12). On the other hand, by Lemma 2.1,

we get

x.t/ � k

2
t2x

00
.t/ (2.20)

for every k 2 .0; 1/ and all sufficiently large t: We now define

�.t/ WD r.t/.x
000
/˛.t/

.x
00
/˛.t/

; t � t
1

: (2.21)

Then �.t/ < 0 for t � t
1

and, by virtue of (2.20) and (2.21), we conclude that

�
0
.t/ D �q.t/ x˛.⌧.t//

.x
00
.⌧.t///˛

.x
00
.⌧.t///˛

.x
00
/˛.t/

� ˛
�

˛C1
˛ .t/

r
1
˛ .t/

 �q.t/
✓
k

2
⌧2.t/

◆
˛

� ˛
�

˛C1
˛ .t/

r
1
˛ .t/

: (2.22)

Multiplying this inequality by R˛.t/ and integrating the resulting inequality from t
1

to t; we find

R˛.t/�.t/ �R˛.t
1

/�.t
1

/C ˛

tZ

t1

r�1=˛.s/R˛�1.s/�.s/ ds

 �
tZ

t1

q.s/

✓
k

2
⌧2.s/

◆
˛

R˛.s/ ds � ˛

tZ

t1

�.˛C1/=˛.s/

r1=˛.s/
R˛.s/ ds:

We set B WD r�1=˛.s/R˛�1.s/; A WD R˛.s/=r1=˛.s/; and y WD ��.s/: In view of inequalities (2.19) and
(2.12), for every k 2 .0; 1/ and all sufficiently large t; we obtain

tZ

t1


q.s/

✓
k

2
⌧2.s/

◆
˛

R˛.s/ � ˛˛C1

.˛ C 1/˛C1

1

R.s/r1=˛.s/

�
ds  R˛.t

1

/�.t
1

/C 1

but this contradicts (2.4).
Theorem 2.1 is proved.

It is well known (see [8]) that the differential equation

.a.t/.x
0
.t//˛/

0 C q.t/x˛.t/ D 0; (2.23)

where ˛ > 0 is the ratio of odd positive integers, a; q 2 C.Œt
0

;1/;RC/; is nonoscillatory if and only if there
exist a number T � t

0

and a function v 2 C1.ŒT;1/;R/ satisfying the inequality

v
0
.t/C ˛a�1=˛.t/.v.t//.1C˛/=˛ C q.t/  0; on ŒT;1/:
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In what follows, we compare the oscillatory behavior of Eq. (1.1) with the second-order half-linear equations
of type (2.23). There are numerous results concerning the oscillation of Eq. (2.23) (see, e.g., [1, 3–5, 17, 18, 20,
21]), which include Hille and Nehari types, Philos type, etc.

Theorem 2.2. Let .H
1

/; .H
2

/; and (1.3) hold. Assume that the equation

✓
r.t/

t2˛
.x

0
.t//˛

◆0

C q.t/

✓
k
1

⌧2.t/

2t2

◆
˛

x˛.t/ D 0 (2.24)

is oscillatory for some constant k
1

2 .0; 1/; the equation

x
00
.t/C x.t/

1Z

t

2

4 1

r.#/

1Z

#

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

d# D 0 (2.25)

is oscillatory, the equation

0

@

0

@
1Z

t

R.s/ ds

1

A
�˛

.x
0
.t//˛

1

A

0

C q.t/x˛.t/ D 0 (2.26)

is oscillatory, and the equation

⇣
r.t/.x

0
.t//˛

⌘0
C q.t/

✓
k
2

2
⌧2.t/

◆
˛

x˛.t/ D 0 (2.27)

is oscillatory for some constant k
2

2 .0; 1/: Then every solution of (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1, we get (2.9), (2.11), (2.17), and (2.22). If we set ⇢.t/ D 1

in (2.9), then we get

!
0
.t/C ˛kt2

2.r.t//
1
˛

!
˛C1
˛ .t/C q.t/

✓
⌧2.t/

t2

◆
˛

 0

for every constant k 2 .0; 1/: Thus, we can see that equation (2.24) is nonoscillatory for every constant k
1

2
.0; 1/; which is a contradiction. If we now set ✓.t/ D 1 in (2.11), then we find

⇠
0
.t/C ⇠2.t/C

1Z

t

2

4 1

r.#/

1Z

#

q.s/

✓
⌧2.s/

s2

◆
˛

ds

3

5

1
˛

d#  0:

Hence, equation (2.25) is nonoscillatory, which is a contradiction. Thus, it follows from (2.17) that

'
0
.t/C ˛'

˛C1
˛ .t/

1Z

t

R.s/ ds C q.t/  0:
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Therefore, we conclude that equation (2.26) is nonoscillatory, which is a contradiction. From (2.22), we get

�
0
.t/C ˛

�
˛C1
˛ .t/

r
1
˛ .t/

C q.t/

✓
k

2
⌧2.t/

◆
˛

 0

for every constant k 2 .0; 1/: Hence, we can see that equation (2.27) is nonoscillatory for every constant k
2

2
.0; 1/; which is a contradiction.

Theorem 2.2 is proved.

It is well known (see [18]) that if

1Z

t0

1

a.t/
dt D 1; and lim inf

t!1

0

@
tZ

t0

1

a.s/
ds

1

A
1Z

t

q.s/ ds >
1

4
;

then equation (2.23) with ˛ D 1 is oscillatory. It is also well known (see [20], Theorem 3.3) that if

1Z

t0

1

a.t/
dt < 1; and lim inf

t!1

0

@
1Z

t

1

a.s/
ds

1

A
�1 1Z

t

0

@
1Z

s

1

a.v/
dv

1

A
2

q.s/ ds >
1

4
;

then equation (2.23) with ˛ D 1 is oscillatory.
Based on the above results and Theorem 2.2, we can easily obtain the following Hille and Nehari type oscilla-

tion criteria for (1.1) with ˛ D 1:

Theorem 2.3. Let ˛ D 1; .H
1

/; .H
2

/; and (1.3) hold. Assume that

1Z

t0

t2

r.t/
dt D 1; and lim inf

t!1

0

@
tZ

t0

s2

r.s/
ds

1

A
1Z

t

q.s/
⌧2.s/

s2
ds >

1

2k
1

for some constant k
1

2 .0; 1/;

lim inf
t!1 t

1Z

t

1Z

⌘

1

r.#/

1Z

#

q.s/
⌧2.s/

s2
ds d# d⌘ >

1

4
; (2.28)

1Z

t0

1Z

t

R.s/ ds dt D 1; and lim inf
t!1

0

@
tZ

t0

1Z

s

R.v/ dv ds

1

A
1Z

t

q.s/ ds >
1

4
;

and

lim inf
t!1

0

@
1Z

t

1

r.s/
ds

1

A
�1 1Z

t

0

@
1Z

s

1

r.v/
dv

1

A
2

q.s/⌧2.s/ ds >
1

2k
2

(2.29)
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for some constant k
2

2 .0; 1/: Then every solution of Eq. (1.1) with ˛ D 1 is oscillatory.

Theorem 2.4. Let ˛ D 1; .H
1

/; .H
2

/; (1.3), and (2.28) hold. Assume that

1Z

t0

t2

r.t/
dt < 1;

lim inf
t!1

0

@
1Z

t

s2

r.s/
ds

1

A
�1 1Z

t

0

@
1Z

s

v2

r.v/
dv

1

A
2

q.s/
⌧2.s/

s2
ds >

1

2k
1

for some constant k
1

2 .0; 1/;

1Z

t0

1Z

t

R.s/ ds dt < 1;

lim inf
t!1

0

@
1Z

t

1Z

s

R.v/ dv ds

1

A
�1 1Z

t

0

@
1Z

s

1Z

u

R.v/ dv du

1

A
2

q.s/ ds >
1

4
;

and (2.29) holds for some constant k
2

2 .0; 1/: Then every solution of (1.1) with ˛ D 1 is oscillatory.

3. Examples

In this section, we present two examples to illustrate our main results.

Example 3.1. Consider a differential equation

⇣
t5x

000
.t/
⌘0

C ˇtx.t/ D 0; t � 1; (3.1)

where ˇ > 0 is a constant. Let

˛ D 1; r.t/ D t5; q.t/ D ˇt; ⌧.t/ D t:

Thus, we get

R.t/ D 1

4t4
;

1Z

s

R.v/ dv D 1

12s3
;

1Z

s

1Z

u

R.v/ dv du D 1

24s2
:

If we now set ⇢.t/ D ✓.t/ D 1; then we conclude that (2.1) and (2.2) are satisfied. As a result of calculations,
we see that (2.3) and (2.4) hold for ˇ > 12: Hence, by Theorem 2.1, every solution of Eq. (3.1) is oscillatory for
ˇ > 12 . However, the results of [22] cannot confirm this conclusion.
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Example 3.2. Consider a delay differential equation

⇣
etx

000
.t/
⌘0

C 2
p
10 etCarcsin

p
10

10 x

 
t � arcsin

p
10

10

!
D 0; t � 1: (3.2)

It is easy to see that every solution of (3.2) is oscillatory due to Theorem 2.1. One of these solutions is
x.t/ D et sin t: However, it follows from [22] (Corollary 2.1) that (3.2) may have nonoscillatory solutions x

satisfying lim
t!1 x.t/ D 0: Hence, our results supplement and improve the results obtained in [22].
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