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RISK MODELS WITH STOCHASTIC PREMIUM AND
RUIN PROBABILITY ESTIMATION

G. Temnov1

We investigate the risk model called the random premiums model that generalizes the classical risk process.
Within this model, the total claim amount process is the same as in the classical model while the premium
income, unlike the classical case, is considered to be a stochastic process. A representation of the ruin proba-
bility for the random premiums risk process (i.e. the analog of the Beekman convolution formula) is derived.
Some aspects of numerical estimation of the ruin probability are investigated. The Cramér–Lundberg theory is
generalized for the random premiums model and results obtained by the other authors are surveyed. Prospects
for application of the investigated model in practical problems of financial mathematics are discussed.

1. Introduction

1.1. Basic notation

In this paper we deal with some mathematical models of collective risk theory. A typical model describes the
dynamics of the reserve (or surplus) of an insurance company. Though, as we will discuss further, some of the
models considered and investigated here can be used for the description of some other financial structures (apart
from insurance business), we will, for uniformity, reason in terms of insurance.

Any insurance company is established in order to decrease the risk of its clients and to help them to avoid
inconvenient consequences from various accidents occurring at random times by means of covering their claims.
In turn, clients should pay premiums to the insurance company in order to cover its liability and create the desired
reserve.

Suppose an insurance company is established with a certain initial capital z � 0, the total premium arriving
from its clients over the time interval [0, t] is equal to I(t) and the total amount of money paid by the company
to its clients until t is D(t). Then the surplus process can be defined as

R(t) = z + I(t)−D(t). (1)

Everywhere in this paper we will assume that D(t) is a random process; if N(t) is the total number of claims
occurred during [0, t] and the size of ith claim is Zi then D(t) =

∑
i�N(t) Zi.

The difference Q(t) = I(t)−D(t) is called the random safety loading of the company. Let us define the relative
safety loading as follows:

ρ = lim
t→∞

E[I(t)−D(t)]

ED(t)
, (2)

provided that the limit above exists.

We will say that the risk process R(t) satisfies the positive safety loading (PSL) condition, if ρ > 0. Unless
otherwise specified, everywhere we assume that the PSL condition holds.

Let us define the ruin probability as a function of initial capital z:

Ψ(z) = P

(

inf
t>0

R(t) < 0 |R(0) = z

)

,

and the ruin of the insurance company is an event that occurs when the safety loading Q(t) becomes less then
(−z). The survival probability is then

Φ(z) = 1−Ψ(z).
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1.2. The classical risk process

The classical risk process that we consider first is one of the most commonly used and well-studied models in
the collective risk theory. It can be defined by the following balance equation for the surplus process

Rcl(t) = z + ct−
N1(t)∑

j=1

Xj , t � 0, (3)

where c > 0 is the constant premium rate; {Xj}j�1 is a sequence of independent identically distributed random
variables (i.i.d.r.v.) having the common distribution function (d.f.) FX(x) with the expectation E(Xj) = aX and
defining the sizes of claims; N1(t) is a homogeneous Poisson process of intensity λ1 independent of r.v.’s {Xj}j�1

that determines a number of claims that occur within [0, t].
The relative safety loading takes the form

ρcl =
c

λ1aX
− 1. (4)

It is assumed that the classical risk process (3) satisfies the PSL condition ρcl > 0, so that λ1aX < c.
It is known that for the classical risk process the Beekman convolution formula for the ruin probability holds

(its deduction can be found in many sources, e.g., [17]):

Ψcl(z) =

(

1− λ1aX
c

) ∞∑

k=0

(
λ1aX
c

)k

(1− F̃ ∗k
X (z)), (5)

where

F̃X(x) =
1

aX

x∫

0

(1 − FX(y))dy, x � 0, (6)

and F̃X(x) = 0 if x < 0; F̃ ∗k
X (x) stands for the k-fold Stieltjes convolution of the d.f. F̃X : F̃ ∗k

X (x) = (F̃
∗(k−1)
X ∗

∗ F̃X)(x), k � 1; F̃ ∗0
X is a d.f. with a single step at 0. Note that F̃X(0) = 0 and

Ψcl(0) =
λ1aX
c

. (7)

2. Risk process with random premium

2.1. Risk process with random premium as a generalization of the classical model

In this section we proceed to the description of the model that can be considered as a radical extension of the
classical risk model. We describe the basic results obtained in [24].

Assume that the premium is no longer a linear function but a stochastic process in the form of the random
sum. So the balance equation for a surplus process for such a model can be written as follows:

R(t) = z +

N2(t)∑

i=1

Yi −
N1(t)∑

j=1

Xj , t � 0. (8)

The i.i.d.r.v.’s {Xj}j�1 having the common d.f. FX and E(Xj) = aX are the claim sizes; the standard Poisson
process N1(t) with intensity λ1 defines the number of claims. The sequence {Yi}i�1 of i.i.d.r.v.’s, independent of
{Xj}j�1 and N1(t) and having the common d.f. GY with the expectation E(Yi) = bY , are the sizes of premium
payments; the standard Poisson process N2(t) of intensity λ2, also independent of the r.v.’s {Xj}j�1 and of the
process N1(t), defines the number of payments within [0, t].

Let us call the process defined by the balance equation (8) the risk process with random premium or just the
random premium process. First of all, we were interested in obtaining the analytical representation for the ruin
probability as a function of initial capital, i.e. the analog of the Beekman convolution formula.

Let us note that the random premium process was considered by other authors before, namely in [5]. The
investigations in [5] concerned mainly the approximations of the ruin probability for the random premium process
as an extension of the Cramér–Lundberg theory. In [25] we focused on the analytical ruin probability representation
for the common case of random premium process, its numerical estimation and modeling. In this section we
describe mainly the results that reflect the explicit ruin probability representation valid for any z, and in Section
4 we review the Cramér–Lundberg theory for the process (8), including the results of [5].
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2.2. Representation for the ruin probability

The risk process with random premium as well as the classical risk process can be written in the form of a
sequence of random sums of i.i.d.r.v.’s. Namely, let Sn be the surplus of the company at the moment of occurrence
of nth claim. Then the following recursion relation holds:

S0 = z, Sn+1 := Sn + μn+1 −Xn+1, n � 0, (9)

where {μn} is the total amount of premiums arrived between the (n− 1)-th and the n-th claims. For the classical
risk process μn = cθn, where i.i.d.r.v.’s {θn} are interoccurrence times. For the random premium process, {μn}
can be defined by the relation

μn =

N2(l
(1)
n )∑

i=0

Yi −
N2(l

(1)
n−1)∑

i=0

Yi =
∑

i : l
(1)
n <l

(2)
i �l

(1)
n−1

Yi, n � 1, (10)

where {l(1)n } and {l(2)i } are the moments of the claims and payments respectively, l
(1)
0 := l

(2)
0 := 0. Note that for

the random premium process (as in the classical case) the r.v.’s {μn} are independent and identically distributed.
The PSL condition for the random premium process leads to the inequality aX < E(μ1).
Let us introduce some additional variables that will be helpful for the interpretation of the analytical repre-

sentation of the ruin probability. We do not state the whole deduction of this analytical representation here. It
can be found in [24] and [26].

Consider the following random walk:

h0 = 0, hn = ξ1 + · · ·+ ξn, n � 1, (11)

where
ξn = Xn − μn, n � 1. (12)

Denote by W (x) the d.f. corresponding to r.v. ξ1.
Due to the PSL condition and by the strong law of large numbers,

P
(

lim
n−→∞hn = −∞

)
= 1.

Then total maximum of the random walk is

M = sup
n�0

hn, M � 0.

Note that
Φ(x) = P(sup

n�0
hn � x) = P(M � x), (13)

where Φ(x) is the survival probability for the process (8).
The random variable

τ = inf{n : hn > 0} (14)

is called the first strict ladder epoch (or simply ladder epoch) for the random walk (11) and hτ is called the first
strict ladder height (or simply ladder height). As hn → −∞, it is possible that

q = P(τ = ∞) > 0, (15)

that is, τ is a non-proper r.v. Denote
Fh(x) = P(hτ � x | τ < ∞). (16)

Then, as shown in [24], we have a chain of three expressions for the ruin probability for the random premium
process:

Ψ(z) = 1− Φ(z) = q
∞∑

k=0

(1− q)k(1− F ∗k
h (z)), (17)



Risk Models with Stochastic Premium and Ruin Probability Estimation 87

where

ln
1

1− (1− q)f̂h(s)
=

∞∑

n=1

1

n

∞∫

0+

eisxdWn∗(x), (18)

and

W (x) =
1

1 + λ2/λ1

∞∑

k=0

(
λ2/λ1

1 + λ2/λ1

)k

FX(x) ∗G∗k
Y (x), GY (x) = 1−GY (−x− 0). (19)

In (18) f̂(s) denotes a Fourier–Stieltjes transform for the probabilistic distribution function Fh(x):

f̂h(s) =

∞∫

−∞
eixsdFh(x), (20)

i.e., f̂h(s) is a characteristic function (ch.f.) for a d.f. Fh(x). (Further we shall use the symbol ̂ to denote
characteristic functions.)

The following equalities, corresponding to the r.v. μn (given by (10)), will be used in what follows:

E(μ1) = E(Y1)λ2/λ1, (21)

E(μ2
1) = (λ2/λ1)E(Y

2
1 ) + 2 (λ2/λ1)

2
(E(Y1))

2, (22)

D(μ1) = (λ2/λ1)E(Y
2
1 ) + (λ2/λ1)

2
(E(Y1))

2. (23)

For the classical model:
E(μcl

1 ) = c/λ1, (24)

E((μcl
1 )

2) = 2 (c/λ1)
2
. (25)

The PSL condition for the random premium process can then be written in the form

aXλ1 < bY λ2, (26)

and the relative safety loading is

ρ =
λ2bY
λ1aX

− 1. (27)

3. Algorithms for the numerical estimation of the ruin probability

3.1. Ruin probability for the classical risk process: description of the calculation scheme

Let us turn again to the classical risk process and discuss in brief aspects of numerical estimation of the
ruin probability within the framework of the classical model. Developing an applicable algorithm for numerical
estimation of the ruin probability is an important task in applications of collective risk theory.

A number of works have studied the problem of estimating the ruin probability for the process (3). Namely,
in [8] there was proposed a nonparametric estimate for the classical risk process ruin probability built on an sample
of the claim size values with the assumption that the sample consists of a nonrandom number of values. In [4]
a method for calculating of the ruin probability with the use of a sample of random number of claim values was
proposed and the asymptotic properties of the proposed estimate were investigated.

Here we present a method allowing us to obtain an estimate of the ruin probability and requiring a minimal
number of calculation operations.

Calculation of the ruin probability by the direct usage of the Beekman formula (5) is quite a laborious procedure
due to the presence of the k-fold convolution function in the right part of (5). As far as we know, all the schemes for
estimation of the ruin probabilities described in famous works use the direct calculation of the k-fold convolution
of the claims distribution function. The algorithm that we describe below is based on the Fourier method that
allows us to simplify substantially the calculation as the direct evaluation of the k-fold convolution is replaced by
far more simple calculations.
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Suppose that the parameters c, aX and λ1 are known. Assume that one has a random sample X1, X2, . . . , XN ,
where N � 1 is a number that is actually a realization of the Poisson process N1(t). Due to the Beekman formula
(5),

Ψcl(z) = 1−
(

1− λ1aX
c

)

Ψ(z), (28)

where

Ψ(z) =

∞∑

k=0

(
λ1aX
c

)k

F̃ ∗k
X (z), (29)

and hence estimation of the ruin probability is reduced to the calculation of the function Ψ(z).
The basic principle of the proposed algorithm is in the application of the Fourier transformation to both parts

of relation (29), which allows to reduce the whole procedure of evaluation of the function Ψ(z) to the calculation
of the expression

∞∑

k=0

(
λ1aX
c

)k
̂̃
f
k

X(s). (30)

After applying the inverse Fourier transformation to (30), we will have the desired estimate of the function
Ψ(z). Thus, the expression to be evaluated is

Ψ(z) =

∞∫

−∞

∞∑

k=0

(
λ1aX
c

)k

e−izt

⎡

⎣

∞∫

0

eitudF̃X(u)

⎤

⎦

k

dt. (31)

Considering this calculational scheme we believe that it must be applicable to cases where the only information
available to an analyst is the random sample of claim size values (and the analytical explicit form of the function
FX might be unknown).

So assume that we have a sample X1, X2, . . . , XN obtained from the observation. Using it and operating
with some numerical methods we can simulate the random sample X̃1, X̃2, . . . , X̃N of the values having the d.f.
F̃X(x) = 1

aX

∫ x

0
(1− FX(x))dx.

Then, using the operation of filtration, the necessity of which will be made obvious below, we can obtain the
smoothed sample Z1, Z2, . . . , ZN in such a way that the generated random variables Zi have the d.f.

FH(x) =

∞∫

0

H(x− u)dF̃X(u) = (F̃X ∗H)(x),

where H(x) is a smoothing function. For the modeling we used the d.f. with the density

h(x) =
1

2πσ

sin2 (x/2σ)

(x/2σ)
2 (σ is a smoothing parameter). (32)

The use of the smoothing procedure has a practical meaning for the evaluation of the inverse Fourier transformation
to the function (30). The Fourier image of a function (32) is equal to 0 outside the limited interval (see, e.g., [20]
or [10]), so that

ĥ(s) =

{
1− σ · | s| , for | s| < 1/σ,

0 , for | s| � 1/σ.
(33)

This allows us to bound the arguments domain of the function

f̂H(s) =
̂̃
fX(s) · ĥ(s). (34)

Therefore, the further calculation of the inverse Fourier image of a bounded function is a correct procedure. Note
that the function FH(x) comes closer to F̃X(x) as the parameter σ decreases. As we need to estimate the accuracy

of the ruin probability calculation, we are interested in the dependence of the distance between FH and F̃X on
the parameter σ. Using the well-known probabilistic Lévy metric [19], we find the following inequality (see [25]
for details):

sup
x

|FH(x)− F̃X(x) | � √
σ

(
1

π
+ 2e ln

1√
σ

)

. (35)
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Thus, one can state that the choice of the parameter σ has to be made with respect to two opposite conditions.
The first is that the larger is σ, the narrower is the arguments domain for the function f̂H . On the other hand, as
σ increases, the distance between F̃X(x) and FH(x) increases. The first condition determines the correctness of

our computations (the accuracy of inverse Fourier transformation of the f̂H(s)); the second limits the correctness

of substitution of the function F̃X by a close smoothed function. Applying the proposed algorithm to the random
samples modeled in the described way, we were able to trace the change of accuracy of calculations with the change
in the parameter σ.

A more detailed description of the computational scheme can be found in [25]. That work also contains a
survey of some numerical results of calculation of the probability of ruin for the classical risk process.

3.2. Analyzing the accuracy of calculations

The total error of the calculation of ruin probability with the algorithm outlined above consists of errors arising
at the following stages:

• the construction of the empirical distribution function FH based on the initial random sample of the claim
values X1, . . . , XN ;

• evaluation of the Fourier image of FH with the FFT procedure;

• calculation of [ψ̂n] and evaluation of the inverse Fourier transform from [ψ̂n] (also with FFT) and the ruin
probability [Ψk].

Moreover, the deviation between F̃X and FH = F̃X ∗H also contributes to the total error.
If we analyze carefully the errors that arise at each stage of the calculation scheme, then we finally arrive at

the following inequality for the total error RΨ of the ruin probability computation:

RΨ � 1

π

[

Xmax

(
C1

(N − 1)2
+

C2

(K − 1)!

)

+
C3

(K − 1)2
+

1

K

]

· ln 1

σ
√
σ
+

+ C4

√
σ +

√
σ

(
1

π
+ 2e ln

1√
σ

)

+
C5

(K − 1)2
, (36)

where Xmax is the largest element of the initial random sample X1, X2, . . . , XN , N is the volume of this random
sample, and K is the number of dots in the Fourier transform operation, which we apply in the algorithm
calculating values (34).

3.3. Ruin probability for the random premium process

The problem of numerical estimation of the ruin probability for the random premium process is also of sufficient
importance; moreover, in this case it becomes far more difficult that in the classical one. Like the problem of
evaluation of the ruin probability for the classical risk process, in this case one has to deal with the k-fold
convolution of the d.f. series, and here we have the chain of three formulas with the convolutions — (17), (18),
and (19) — unlike the classical case. To reduce the computation procedure, we used again the method based on
the Fourier transform. Say, instead of direct calculation of the expression (18) for the computation of W , it is
appropriate to calculate at first its ch.f.

ŵ(s) =
f̂X(s)

1 + λ2

λ1
(1 − ĝY (−s))

, (37)

and then to get W (x) by using the inverse Fourier transformation.
In the same way, applying the Fourier transform to (17), we get

φ̂n =
q

1− (1− q)f̂
(n)
h

. (38)

Let us outline briefly the basic stages of the whole calculation scheme for the ruin probability:

• calculation of the arrays [f̂n] and [ĝn] by the FFT procedure;
• evaluation of [ŵr

n] and the application of the inverse FFT procedure for the calculation of the values of W
and W ∗r;

• estimation of the series (18) and calculation of the values of ch.f. f̂h;
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• Computation of the survival estimate array [Φ̃k] (and the corresponding ruin probability [Ψ̃k]) by application
of the inverse FFT after the evaluation of [φn] with (38).

From the argument stated in [25], the total computational error that arises in the use of the described algorithm
can be estimated by the inequalities

RΦ � 1

π
R

̂fh
ln(T1

√
T1) +

C6

π

1√
T1

+ 2e
lnT1

T1
+

C7

(K − 1)2
, (39)

and

R
̂fh

� R4 +R
(r)
5 � 1

π

C1

(K − 1)2
r ln(T

√
T ) +

C3

π

1√
T

+ 2e
lnT

T
+

C4

(K − 1)2
+

C5

r + 1
, (40)

where Ci are positive constants, K is the number of dots in the Fourier transform, r is the number of elements in
the row in the right part of (18), taken for the calculations, and T and T1 are the scale parameters of the Zolotarev
inequality [27]. Note that the main indicator of the calculation error is the index r defining the number of terms
of the series (18), which we use for its estimate (neglecting the residual of the series).

We had an opportunity to test the algorithm for numerical estimation of the ruin probability for the random
income process within the framework of the practical problem. In Section 5 we will outline that problem and
present numerical results.

4. Cramér–Lundberg theory for models with random premiums

As we mentioned above, another approach to the problem of the investigation of the risk model with random
premiums was made by A. Boykov in [5]. That work was devoted mainly to the estimation of upper bounds for
the ruin probability for the random premiums risk process (as well as for its further generalizations), i.e., the
analog of the classical Cramér–Lundberg theory.

4.1. Extension of Cramér–Lundberg theory to the random premium process

Now let us consider again the risk process with random premiums in its standard form

R(t) = z +

N2(t)∑

i=1

Yi −
N1(t)∑

j=1

Xj , t � 0. (41)

Again FX and GY are the distribution functions of the sizes of claims and premiums respectively; aX and bY are
the values of corresponding means.

Let us turn to the martingale theory again and consider the results that extend the Cramér-Lundberg theory
to the case of the random premium process and its further generalizations.

Lemma 1. Let the value ν exists, such that

E exp (ν(X1 − μ1)) =

∞∫

−∞
eνudW (u) = 1. (42)

Then any of the two following conditions are equivalent to (42):

λ1(Ee
νX1 − 1) + λ2(Ee

−νY1 − 1) = 0, (43)

(1− q)E exp (ν · hτ | τ < ∞) = (1− q)

∞∫

0

eνudFh(u) = 1. (44)

In the theorem stated below, the basic result of [5] is formulated. We contribute to this result, so that the
statements 1 and 2 of Theorem 1 are the results of [5], and the third one was obtained in [25].

Theorem 1. For the random premium process (41) the following statements are valid:

1. The survival probability corresponding to (41) satisfies the integral equation

(λ1 + λ2)Φ(z) = λ1

z∫

0

Φ(z − u)dFX(u) + λ2

∞∫

0

Φ(z + v)dGY (v). (45)
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2. Let ν be a positive solution of the equation

∞∫

0

eνudFh(u) =
1

1− q
. (46)

Then Ψ(z) � e−νz.
3. If, in addition,

a∗h =

∞∫

0

xeνxdFh(x) < ∞. (47)

then
Ψ(z) ∼ e−νzkν , z → ∞, (48)

where
kν =

q

(1 − q)ν · a∗h
. (49)

If a∗h = ∞, then lim
z→∞Ψ(z)eνz = 0.

Some corollaries immediately follow from this basic theorem; they are also presented in [5].

Corollary 1. The following assertions are true:

1. If P(Yj = 1) = P(Xi = 1) = 1, then

Ψ(z) = Ψ([z]) = 1−
(
λ2

λ1

)[z]

,

where [z] denotes the integer part of z.
2. If P(Xi � x) = 1− eaXx and P(Yj � y) = 1− ebY y, then

Ψ(z) =
(aX + bY )λ1

(λ1 + λ2)aX
e

λ1bY −λ2aX
λ1+λ2

z.

Corollary 2. If FX(x) = 1 − e−aXx, then Eq. (45) has at most one solution in the class of functions f(x)
bounded on the semiaxis [0,+∞) and such that

lim
x−→∞ f(x) = 1.

Let, in addition, the adjustment coefficient ν exists. Than the solution of Eq. (45) has the form

Ψ(z) =
aX − ν

aX
e−νz.

4.2. Risk model with investment

Let us turn now to another interesting extension of the basic model with random premium: risk process
with investment. The model of the classical risk process with investment in the stock market was investigated
in [12] from the viewpoint of the Cramér–Lundberg theory. The basic idea of this extended model is taking into
account the possibility for the insurance company to invest its earnings in a stock or market index. In the present
paragraph we generalize the basic results of [12] with respect to the random premiums.

So we consider the famous Black–Scholes model and assume that the insurance company with random premiums
described by (8) may invest in a stock or market index St described by the geometric Brownian motion

dS(t) = S(t)(μdt+ σdW (t)), (50)

where μ, σ ∈ R are fixed constants and W (t) is a standard Wiener process.
First we consider the case where the model does not account for interest in the reserve, i.e. the insurance

company may only invest in a bond with zero interest rate.
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If at time t the company has wealth R̃(t) and invests an amount K(t) of money in the stock and the remaining

reserve R̃(t)−K(t) in the bond (which in the present model yields no interest), its wealth process R̃ can be written
as

R̃(t,K) = z +

N2(t)∑

i=1

Yi −
N1(t)∑

j=1

Xj +

(
K

S
· S

)

(t) = R(t) + (K ·Wμ,σ)(t), (51)

where Wμ,σ(t) = μt + σW (t) (generalized Wiener process with drift μ and volatility σ) and (K · Wμ,σ) denotes
stochastic integral of the process K with respect to the process Wμ,σ (see, e.g. [22]).

The ruin probability and the time of ruin are defined as usual and they depend on the strategy in this model:

Ψ̃(z,K) = P

(

inf
t>0

R̃(t,K) < 0 |R(0) = z

)

,

Tz(K) = inf{t : R̃(t,K) < 0}.
We will denote by F = (Ft)t�0 the filtration generated by processes R̃ and S.

The set K of admissible strategies K is defined as

K :=

⎧
⎨

⎩
K = (K(t))t�0 : K is predictable and adapted to F and P

⎡

⎣

t∫

0

K2(s)ds < ∞
⎤

⎦ = 1, t ∈ [0,∞]

⎫
⎬

⎭
. (52)

Note that K ∈ K is necessary and sufficient for the stochastic integral (K ·Wμ,σ) w.r.t. the generalized Wiener
process appearing in (51) to exist.

Furthermore, the following value can be defined:

Ψ∗(z) := inf
K∈K

Ψ̃(z,K).

If this infimum is defined for a certain strategy K∗, it can be called an optimal strategy with respect to the initial
capital z.

The following part of this paragraph briefly outlines the results of the extension of the Cramér–Lundberg
theory on the model (51). We follow the results obtained in [12] for the case of a classical risk process with
investment and we generalize these results to the random premiums model.

The main result is summarized in the following theorem.

Theorem 2. For the model (51), assume that σ �= 0. Then the minimal ruin probability Ψ∗(z), investing in
a stock market, can be bounded from above by

Ψ∗(z) � e−ν̃z , (53)

where 0 < ν̃ < ∞ is the positive solution of the equation

λ1(Ee
rX1 − 1) + λ2(Ee

−rY1 − 1) =
μ2

2σ2
. (54)

The statement of this theorem is actually a consequence of the following one.

Theorem 3. Let μ �= 0, σ �= 0. For the constant investment strategy K̂ ≡ μ/ν̃σ2, the ruin probability can be
bounded from above by (for all z ∈ R+)

Ψ̃(z, K̃) � e−ν̃z. (55)

Remark 1. Statements of Theorems 2 and 3 stay true even when the PSL condition aXλ1 < bY λ2 does not
hold. If aXλ1 < bY λ2, that is, if the Lundberg coefficient ν exists, we have that ν̃ > ν if μ �= 0, so that one
obtains a sharper bound for Ψ∗(z) due to the Theorem 2. Dropping the assumption aXλ1 < bY λ2, for μ �= 0, we
still obtain ν̃ > 0, that is, the exponential decay of the minimal ruin probability takes place.

Remark 2. It can be shown that a constant investment strategy obtained above possesses the properties of
asymptotic optimality asymptotic uniqueness.

Proofs of the theorems and a detailed discussion can be found in [26].
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5. Example of the practical application of random premium model: problem of estimation of debt
losses risk

As we have already mentioned, the model with random premiums considered above, as well as its modifications,
imply the possibility of application of the model not only to an insurance company, but also to other financial
structures (moreover, such applications of random premiums models are even more natural). Let us consider an
example, described by the following practical situation. Imagine a commercial company that provides services
to its clients; for lucidity, let us suppose that these are telecommunication services. Due to the specificity of the
business, financial settlement with clients is organized on a credit basis, i.e., invoices for the provided services are
sent to the clients at the end of every account month. Invoices have to be paid off within a fixed period after their
settlement (usually, several working days). As in every company with this kind of rules of payment, there should
exist a system of debt control, which checks the timeliness of payment of invoices. Suppose that the basic rule
that governs such a payment control system is that in cases where delay in payment is more than a predetermined
number of working days, the company blocks the services for such a client until the moment of payment of the
debt. Besides the amount of the debt, the client should pay also the service amount for the period when he was
out of service (though the services were blocked, resources were maintained during the entire period, and the
company bore expenses) with respect to the chosen tariff, and also some fixed penalty amount, which we denote
by p.

With respect to the described scheme, it is natural to consider the following problem, which might be important
for managers of the company: find the maximal possible loss of the company’s profit due to the blocked services
debt flow?

After a moment of reflection, one can come to the conclusion that the described situation and the task of the
supremum of the cumulative debt loss flow estimation relate to the risk model with random premiums and to the
problem of ruin probability estimation. Moreover, if certain assumptions concerning the blocked amounts and
“unblocked amounts” hold, then the described problem reduces exactly to the ruin probability for the random
premium process estimation.

These assumptions are:

• The loss amount values must be i.i.d.r.v’s and the moments for each service to be blocked must be indepen-
dent and exponentially distributed.
The first condition seems realistic in practice. Usually, the distribution of the separate amounts paid to the
company by its clients can be considered as a probabilistic distribution, not changing much from month to
month in the case of large enough size of the company’s business. So, if one suggests that the chance of a
client missing the time of payment for the service, i.e., to become a debtor, on average does not depend on
the amount paid to the service company, then the distribution of loss amount values must be close to the
common distribution of the amounts paid for services. Specifically, in telecommunications it is natural to
accept such a suggestion, that is, large enterprises using sufficient volume of services have approximately the
same “chance to become a debtor” as small companies with not so large telecommunication services usage.
The second condition seems quite a realistic approximation too; at least the flow of the “blockings”, obviously,
must be a homogeneous process in a usual situation.

• The amounts of the restored payments must also be i.i.d.r.v’s and the moments for these payments must
have an exponential distribution.
This condition also appears quite realistic; the argument above concerning the process of loss amounts
remains true for the restored payments flow as well.

As regards the positive relative safety loading condition essential for the risk models including risk processes
with random premiums? Recall that in the described case there exists a positive addition to values of the recovered
revenue — the penalty value p. The intensities of “blockings” and “unblockings” flows are approximately the same.
Hence the PSL condition must be valid. We must take into account that not all the blocked revenue values are
recovered since some clients never pay their debts and go out of business (here we deal with the so-called bad
debt). But the relative number of such clients is obviously small, so that the penalty p covers these irretrievable
losses on average.

Obviously, this practical task must be concentrated upon the estimation of the loss threshold on some limited
interval of time. Usually, the directors of the company are interested in estimation of such kind of financial values
for the nearest year, with respect to the budgetary planning. However, the estimate of such a value for an infinite
interval of time gives the most pessimistic bound for it, which is usually important in planning.
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Using the described theory for the ruin probability estimation, we investigated the outlined model of the
debt losses from the point of the distribution of the debt flow infimum on the example of a real company. The
graphs of the probability distribution densities of blocked revenue loss amounts, recovered revenue amounts, and
the resulting estimation of the distribution density of the debt flow infimum are presented on Fig. 1. Since
confidentiality prevents us from presenting real values, the absolute values of the initial data and the result are
fictitious, but the relative magnitudes are real. The evaluation of debt losses distribution was made with the help
of the calculation methods described above within the framework of the ruin probability estimation for a random
premium process.

Fig. 1. Problem of maximum debt loss estimation.
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Usually managers are interested in the concrete values characterizing the resulting distribution: the mean
value, Value-at-Risk at a certain level, etc. Once the distribution itself is found, these values are easy to extract.

6. Conclusions

Let us summarize the basic results described in the present article.
The problem facing us in our investigation is to estimate the ruin probability for the random income process

R(t) = z +

N2(t)∑

i=1

Yi −
N1(t)∑

j=1

Xj

and to further develop this model. The analytical representation of the ruin probability for this process is given
by the chain of equations (17)–(19). At first sight, that representation might seem too complicated to be used in
the practical tasks of ruin probability calculation. Nevertheless, we describe an algorithm that can be used for
estimating the ruin probability in practice. The proposed scheme of calculation is based on the Fourier method,
which allows us to reduce sufficiently the complexity of computation. We come to that scheme after considering
the analogous problem of ruin probability estimation for the classical risk process. Estimations of computational
errors produced by the algorithms are given by formulas (36) for the classical model and (39) for the random
income.

Extension of the classical Cramer–Lundberg theory to the case of the random income model is also described.
Here we review and complement the results of other authors.

Practical application of the random income process is discussed on the example of some specific problems of
financial mathematics, apart from the common insurance model. Here we saw that the risk process with random
premium, once appearing as an insurance model, and the theory of ruin probability estimation can be a useful
tool for the solution of some problems of financial mathematics, not necessarily connected with insurance.

Let us also note at this point that models like the random premium process are used in investigations of other
financial problems not connected with risk estimation, such as [1].
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