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PHASE TRANSITION MODEL FOR TRAFFIC AT A
JUNCTION

R.M. Colombo1 and M. Garavello2

Consider a junction with n incoming and m outgoing roads. Along each road, the flow of traffic is described
through the continuum model displaying phase transitions introduced by R.M. Colombo (2002). This note
provides a Riemann solver for the resulting Riemann problem at the junction.

1. Introduction

This paper extends the continuum model for traffic introduced in [5] to comprehend junctions. The model
is based on conservation laws and allows for the description of phase transitions. The macroscopic variables are
the density of vehicles and the mean traffic speed or, equivalently, the density and the weighted momentum.
Essentially, below a threshold speed, the flow of traffic is in the congested phase and the model consists of the 2×2
system of conservation laws introduced in [4]. At higher speeds, the traffic is in the free phase and is satisfactorily
described by the classical Lighthill–Whitham and Richards (LWR) model [9,10]. The global well posedness of this
model is proved in [6], while possible source terms are introduced and evaluated in [2]. We refer to these papers
for further details.

In the recent literature, several results were obtained on road or telecommunication networks. We refer in
particular to [3], where the LWR model is considered, and to [8], which is related to the Aw–Rascle model [1]. In
these papers, junctions are modeled so that the presence of a single fully congested outgoing road immediately
saturates the junction and no vehicle may pass through it. On the contrary, here we postulate that the flow through
a junction vanishes only in two situations: either all the outgoing roads are fully congested, or the incoming roads
are empty. The approach used in [7] with reference to telecommunication networks is similar to the one followed
here along outgoing roads. However, a typical feature of traffic flows at junction is the presence of precedences.
Here, they enter in the definition of the solution to Riemann problem along the roads entering the junction.

Assume n roads enter a junction and m roads exit from it; see Fig. 1. Along each road the traffic density
and speed are initially uniformly constant and their evolution is described by the model [5]. We provide below a
solution to the resulting Riemann problem.

As in [3,7,8], this solution is a necessary preliminary step to the solution of the general Cauchy problem on a
net.

2. The basic model

We briefly recall here the model [5], which we use later to describe the evolution of the traffic flow along each
road. For notational simplicity, in this paragraph we omit the indexes referring to each single road entering the
junction.

Free flow, (ρ, q) ∈ Ωf : Congested flow, (ρ, q) ∈ Ωc :
∂tρ+ ∂x [ρ · v] = 0, ∂tρ+ ∂x [ρ · v] = 0,

∂tq + ∂x [(q −Q) · v] = 0,

v =
(
1− ρ

R

)
· V, v =

(
1− ρ

R

)
· q
ρ .

(2.1)

Here, ρ is the traffic density, v the average vehicle speed, q the weighted linear momentum, and R and V
the maximal vehicle density and speed respectively. Finally, from the traffic point of view, the parameter Q is
characterized by the phenomenon of wide jams; see [5] for further details.
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Fig. 2. The fundamental diagram for (2.1)

The free and the congested phase (see Fig. 2) are respectively defined as

Ωf = {(ρ, q) ∈ [0, R]× [0,+∞[ : vf (ρ) � Vf , q = ρ · V }
Ωc =

{
(ρ, q) ∈ [0, R]× [0,+∞[ : vc(ρ, q) � Vc,

q −Q

ρ
∈
[
Q− −Q

R
,
Q+ −Q

R

]}
.

Here, Vf and Vc are the threshold speeds, i.e., above Vf the flow is free, while below Vc the flow is congested.
Following [5, 6], throughout the present note we assume that the various parameters are strictly positive and
satisfy

V > Vf > Vc, Q
+ � Q � Q−,

Q+ −Q

RV
< 1, and Vf =

V −Q+/R

1− (Q+ −Q)/(RV )
, (2.2)

Finally, we recall the condition (
1−Q+

RV

)
·
(

Q+

Q− 1

)
< 1, (2.3)

that ensures that all 1–Lax waves have negative speed; see [6, Proposition 2.3].

3. The Riemann problem at a junction

Consider a crossing with n incoming roads where, say, x ∈ ]−∞, 0], and m outgoing roads, where x ∈ [0,+∞[.
We assume that the system (2.1) describes the evolution of traffic flow on each incoming road and on each outgoing
road. Note that we allow the road parameters to be different among the different roads. Therefore, we refer below
to Ωi or Ωj for the state space of the ith incoming or jth outgoing road, to Ri or Rj for the maximal density
along the ith incoming or jth outgoing road, and so on.

The interplay of roads at the crossing is modeled through the preferences among the outgoing roads of driver
and the order of precedence among the incoming roads.
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The strictly positive parameters θ1, . . . , θm, normalized so that
∑m

j=1 θ
j = 1, describe the drivers’ preferences.

More precisely, let F be the total through-flow at the crossing. If the capacity of the jth road allows for it, θjF
is the flow entering the jth road.

On the other hand, the indexing of the incoming road gives the order of precedence, in the sense that the
first vehicles that cross the junction are those coming from the first road. If the capacity of the outgoing roads is
sufficiently large, then also the vehicles coming from road 2 may cross the junction, then those coming from road
3, and so on.

By Riemann problem at this junction we mean the Cauchy problem consisting of n+m models (2.1) defined
for (t, x) ∈ [0,+∞[× ]−∞, 0] and for (t, x) ∈ [0,+∞[ × [0,+∞[, (each with its own parameters), equipped with
initial data in the corresponding state space Ωi or Ω

j . More precisely:

∂tρi + ∂x [ρivi(ρi, qi)] = 0, (ρi, qi) ∈ Ωi,f , x < 0,

∂t

[
ρi
qi

]
+ ∂x

[
ρivi(ρi, qi)

(qi −Qi)vi(ρi, qi)

]
= 0, (ρi, qi) ∈ Ωi,c, x < 0,

∂tρ
j + ∂x

[
ρjvj(ρj , qj)

]
= 0, (ρj , qj) ∈ Ωj

f , x > 0, (3.1)

∂t

[
ρj

qj

]
+ ∂x

[
ρjvj(ρj , qj)

(qj −Qj)vj(ρj , qj)

]
= 0, (ρj , qj) ∈ Ωj

c, x > 0,

(ρi, qi)(0, x) = (ρ̄i, q̄i), x < 0,
(ρj , qj)(0, x) = (ρ̄j , q̄j), x > 0,

where (ρ̄i, q̄i) ∈ Ωi, (ρ̄
j , q̄j) ∈ Ωj and we set

vi(ρi, qi) =

{(
1− ρi

R

) · Vi, (ρi, qi) ∈ Ωi,f ,(
1− ρi

R

) · (qi/ρi), (ρi, qi) ∈ Ωi,c ,
(3.2)

and vj is defined similarly. A natural space for the solution to Riemann problems consists of BV perturbation of
a given Riemann data, equipped with the L1 distance. In other words, for any state ū = (ρ̄, q̄) we define

Xi(ū) = BV (]−∞, 0] ; Ωi) ∩
(
ū+ L1

(
]−∞, 0] ;R2

))
Xj(ū) = BV ([0,+∞[ ; Ωi) ∩

(
ū+ L1

(
[0,+∞[ ;R2

))

Definition 3.1. Fix the end states ūi ∈ Ωi and ūj ∈ Ωj for i = 1, . . . , n and j = 1, . . . ,m. By weak solution
to (3.1), we mean a set of self-similar functions

(ρj , qj) ∈ C0 ([0,+∞[ ;Xi(ūi)) , (ρj , qj) ∈ C0
(
[0,+∞[ ;Xj(ūj)

)
,

such that:

1) (ρi, qi) is a weak entropic solution to (2.1)i for x ∈ ]−∞, 0[;

2) (ρj , qj) is a weak entropic solution to (2.1)j for x ∈ ]0,+∞[;

3) for all t ∈ ]0,+∞[,

lim
x→0−

n∑
i=1

ρi(t, x) v (ρi(t, x), qi(t, x)) = lim
x→0+

m∑
j=1

ρj(t, x) v
(
ρj(t, x), qj(t, x)

)
.

By self-similar we mean that for i ∈ {1, . . . , n},
(ρi, qi)(t, x) = (ρi, qi)(λt, λx)

for every λ > 0, t > 0 and x < 0 and for j ∈ {1, . . . ,m},
(ρj , qj)(t, x) = (ρj , qj)(λt, λx)

for every λ > 0, t > 0 and x > 0.
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Note that condition 3 in Definition 3.1 ensures the conservation of vehicles at the junction.
We adapt the standard definition of Riemann solver to the present situation.
Definition 3.2. A Riemann solver for (3.1) is a map R defined on all states

∏n
i=1 Ωi ×

∏m
j=1 Ω

j that to

any n-tuple of pairs (ρ̄i, q̄i) ∈ Ωi and to any m-tuple of pairs (ρj , qj) ∈ Ωj associates a weak solution to (3.1)
computed at time t = 1.

By Definition 3.1, any weak solution to (3.1) is uniquely determined by its trace at the junction computed at
any positive time.

The notion of weak solution at a junction is not sufficient to single out a unique solution to (3.1). Indeed,
neither Definition 3.1 nor Definition 3.2 are related to any sort of stability requirement or entropy condition.
Consider the case n = m = 1. Then, (3.1) reduces to a standard Riemann problem, and any of its infinitely many
weak solutions is a weak solution to (3.1) in the sense of Definition 3.1.

We first state some lemmas about weak solutions to (3.1).
Lemma 3.1. Consider the Riemann problem (3.1) and fix an i in {1, . . . , n}. Let vi = vi(ρi, qi) as in (3.2).

Then, there exist two continuous functions αi = αi(ρi, qi) and βi = βi(ρi, qi) such that every weak solution to (3.1)
satisfies

lim
x→0−

ρi(1, x) · vi (ρi(1, x), qi(1, x)) ∈ [0, αi(ρi, qi)] ∪ {βi(ρi, qi)} (3.3)

Moreover, for every η ∈ [0, αi(ρi, qi)]∪{βi(ρi, qi)}, there exists a weak solution to the Riemann problem (3.1) such
that

lim
x→0−

ρi(1, x) · v (ρi(1, x), qi(1, x)) = η .

The proof is postponed to Section 4, where the explicit expressions of αi and βi are provided. The analogous
statement for outgoing roads is the following.

Lemma 3.2. Consider the Riemann problem (3.1) and fix a j ∈ {1, . . . ,m}. Then, there exists a continuous
function γj = γj(ρj , qj) such that every weak solution to (3.1) satisfies

lim
x→0+

ρj(1, x) · vj (ρj(1, x), qj(1, x)) ∈ [0, γj(ρj , qj)
]
. (3.4)

Moreover, for every η ∈ [0, γj(ρj , qj)
]
, there exists a weak solution to the Riemann problem (3.1) such that

lim
x→0−

ρi(1, x) · v (ρi(1, x), qi(1, x)) = η .

For i = 1, . . . , n and j = 1, . . . ,m define the sets

Fi(ρi, qi) = [0, αi(ρi, qi)] ∪ {βi(ρi, qi)} ,
F j(ρi, qi) =

[
0, γj(ρj , qj)

]
.

Let
Δout(φ

1, . . . , φm) = inf
λ∈[0,+∞[

‖(φ1, . . . , φm)− λ(θ1, . . . , θm)‖ ,

where ‖ · ‖ stands for the usual Euclidean norm. To select among the infinitely many weak solutions, we adopt
the following constructive procedure.

1. The through-flow at the crossing is

F = max

⎛
⎝
(

n∑
i=1

Fi(ρ̄i, q̄i)

)
∩
⎛
⎝

m∑
j=1

F j(ρ̄j , q̄j)

⎞
⎠
⎞
⎠ ;

here the sum between sets is intended in the sense A+B = {a+ b : a ∈ A, b ∈ B}. Note that this set is not empty,
since it contains at least {0}.

2. Define recursively the incoming flows respecting the precedences as follows:

f̃1 = max (F1(ρ̄1, q̄1) ∩ [0, F ]) ,

f̃i = max

(
Fi(ρ̄i, q̄i) ∩

[
0, F −

i−1∑
l=1

f̃l

])
, i = 2, . . . , n .
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3. Lemma 3.2 ensures the convexity of the set

J =

⎧
⎨
⎩(φ1, . . . , φm) ∈

m∏
j=1

[
0, γj(ρ̄j , q̄j)

]
:

m∑
j=1

φj = F

⎫
⎬
⎭ .

so that the outflows

(f̃1, . . . , f̃m) = argmin
(φ1,...,φm)∈J

Δout(φ
1, . . . , φm)

are uniquely defined.
4. The traces of the solution at the junction are uniquely defined by

{
ρ̃i · vi(ρ̃i, q̃i) = f̃i,

L2(ρ̄i; ρ̃i, q̃i) = q̄i,

{
ρ̃j · vj(ρ̃j , q̃j) = f̃ j ,

L2(ρ̄
j ; ρ̃j , q̃j) = q̄j .

5. The solutions along each road are defined solving the standard Riemann problems consisting of (2.1)i along
incoming roads, respectively (2.1)j along outgoing roads, and initial data

(ρi, qi)(t, 0) =

{
(ρ̄i, q̄i), x < 0,

(ρ̃i, q̃i), x > 0,
respectively,

(ρj , qj)(t, 0) =

{
(ρ̃j , q̃j), x < 0,

(ρ̄j , q̄j), x > 0 .

The next proposition describes the properties of this Riemann solver.

Proposition 3.1. The Riemann Solver R has the following two properties:

1) if (ρ̄i∗ , q̄i∗) = (0, 0), i∗ ∈ {1, . . . , n}, then R provides the same solution in the case the i∗ road does not
exist;

2) if ρ̄j∗ = R, j∗ ∈ {1, . . . ,m}, then R provides the same solution in the case the j∗ road does not exist.

In particular, the flow across the junction may well be nonzero even if some of the outgoing roads are fully
congested.

Proof. Note that if (ρ̄i∗ , q̄i∗) = (0, 0), then αi∗(ρ̄i∗ , q̄i∗) = β(ρ̄i∗ , q̄i∗) = 0, hence Fi∗(ρ̄i∗ , q̄i∗) = {0}, so that

n∑
i=1

Fi(ρ̄i, q̄i) =
∑

i=1,...,n; i�=i∗

Fi(ρ̄i, q̄i) .

This shows that the through-flow F does not change if the i∗ road is suppressed.
Similarly, if ρ̄j∗ = R, then γj∗(ρ̄j , q̄j) = 0, hence F j(ρ̄j , q̄j) = {0} and

m∑
j=1

F j(ρ̄j , q̄j) =
∑

j=1,...,m; j �=j∗

F j(ρ̄j , q̄j) ,

showing that f̃ j∗ = 0, completing the proof.

Remark 3.2. In the case n = m = 1, the Riemann solver R(θ1,...,θm)
(θ1,...,θn)

is not the standard Lax solver. In fact,

given a junction J with one incoming road I1 and one outgoing road I1, consider the Riemann problem with the
initial data (ρ̄1, q̄1) ∈ Ωf and (ρ̄1, q̄1) ∈ Ωc. Assume that:

1) ρ̄1v(ρ̄1, q̄1) < ρ̄1v(ρ̄1, q̄1);

2)
V q∗R

RV −Q1 + q∗
RV −Q1

RV −Q1 + q∗
< ρ̄1v(ρ̄1, q̄1).
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Fig. 3. Notation used in Lemma 3.1.

In this case the previous procedure gives that (ρ̂1, q̂1) = (ρ̄1, q̄1), while the standard Lax solution is given by a
wave of the first family with negative speed and by a wave of the second family with positive speed.

4. Technical proofs

Proof of Lemma 3.1. The index i is fixed throughout this proof, hence it is omitted. Refer to Fig. 2 and
follow the 1-Lax curve exiting (ρ, q). Along this curve, the flow ρv(ρ, q) attains all values in [0, α(ρ, q)]∪{β(ρ, q)} ,
where

α(ρ, q) =

⎧
⎨
⎩
ρ · v(ρ, q), if (ρ, q) ∈ Ωf and ρv � φ ,(
1− RVc

Q+ (q −Q)(R/ρ)

)
RVc, otherwise;

β(ρ, q) =

⎧⎨
⎩
ρ · v(ρ, q), if (ρ, q) ∈ Ωf and ρv � φ ,

Q

V + (Q − q)/ρ

(
1− Q/R

V + (Q− q)/ρ

)
, otherwise.

On the other hand, fix an η ∈ [0, α(ρ, q)] ∪ {β(ρ, q)}. Choose null initial data in all the incoming roads but in
the ith one, where ρi, qi are assigned. In one of the outgoing roads, select an initial datum with flow η and let all
the other outgoing roads, if present, be empty. The obvious weak solution to the resulting Riemann problem has
trace η at the junction.

Proof of Lemma 3.2. Proceed as in the proof of Lemma 3.1. If (ρ, q) ∈ Ωf , then the standard Riemann
problem with any other point of Ωf as left state and (ρ, q) as left state is solved by a wave of positive speed.
Similarly, assume that (ρ, q) ∈ Ωc. Then, any point lying on its 2-Lax curve as well as any point in Ωf with
sufficiently small flow have the same property. Along all these points, the flow attains the values

[
0, γ(ρj, qj)

]
,

where

γ(ρ, q) =

{
(V − Vf ) ·R, if (ρ, q) ∈ Ωf ,
1
2

R
Q+−Q

(
Q+ − 2Q+K +

√
(K +Q+)2 + 4KQ

)
, if (ρ, q) ∈ Ωc,

where we set K =
(

R
ρ − 1

)
q.
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