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We obtain new presentations for solutions and coefficients of some equations of

mathematical physics which are used for studying multidimensional inverse problems.
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Representations of solutions and coefficients of differential equations are well presented in the

literature. In particular, the following topics are discussed: construction of functional-invariant

solutions to the hyperbolic equation [1], analytic representations of solutions and coefficients

of the parabolic equation [2], representation of solutions and coefficients of the Sturm–Liouville

equation with application to inverse problems of scattering theory, construction of harmonic and

other potentials for computing solutions (velocity) and coefficients (pressure) of the gas dynamic

equations etc.

In this paper, we propose new representations of solutions and coefficients of parabolic equa-

tions. Such representations are partially used for studying multidimensional inverse problems.

1 Representation of Solutions and Coefficients
of Parabolic Equations

A solution w(x, y, t) to the heat equation

∂w

∂t
=
∂2w

∂x2
+
∂2w

∂y2
− q(y)w

admits the representation [3]

w =
1

2
√
πt
e−x2/4t

∞∫

0

e−λtϕ(y, λ)dσ(λ),
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where ϕ(y, λ) is such that

−∂
2ϕ

∂y2
+ q(y)ϕ = λϕ.

This representation was used to solve the inverse problem for finding the coefficient q(y).

According to [4], the diffusion equation is represented by the parabolic equation

ρ(x, t)
∂w

∂t
= div (p(x, t)∇w)− q(x, t)w + F (x, t).

Moreover, the heat equation has the form

c(x, t)ρ(x, t)
∂w

∂t
= div (k(x, t)∇w) + F (x, t),

where w is the temperature, ρ is the density, c is the heat capacity, k is the heat conductivity,

and F is the source function. The parabolic diffusion equation with transfer taken into account

and applications can be found in [5]:

∂w

∂t
= V1

∂w

∂x
+ V2

∂w

∂y
+ V3

∂w

∂z
+

∂

∂z

(
γ
∂w

∂z

)
+ μ

(
∂2w

∂x2
+
∂2w

∂y2

)
+ F (x, y, z, t).

An interesting interpretation of solutions and coefficients of the parabolic equation is given

in [6]. Thus, for the equation

∂w

∂t
= div (k(x, y)∇w)− q(x, y), (x, y) ∈ D ⊂ R

2, t > 0,

the solution w(x, y, t) and coefficients k(x, y), q(x, y) are interpreted as follows: w(x, y, t) is the

goods cost, k(x, y) is the the goods conductivity coefficient, and q(x, y) is the difference between

demand and supply.

We denote by Fj(z, p), j = 1, 2, the fundamental system of solutions to the following linear

second order ordinary differential equation with parameter 0 � p <∞:

F
′′
(z) + b(z)F

′
(z) + (pa(z) + c(z))F (z) = 0,

where c(z), b(z), and a(z) are meromorphic functions. Let aij(x), aj(x), i, j = 1, 2, . . . , n,

x = (x1, . . . , xn) be fixed continuously differentiable functions in D ⊂ R
n, n � 1, and let ψ(x)

be a solution to the linear equation

Lψ ≡
n∑

i,j=1

aij(x)
∂2ψ

∂xi∂xj
+

n∑
j=1

aj(x)
∂ψ

∂xj
= 0.

We introduce a function ϕ(x) by the equality

ψ(x) =

ϕ(x)∫

0

exp

(
−

s∫

0

b(z)dz

)
ds

assuming that such a function exists [7]. The function ϕ(x) satisfies the nonlinear equation [7]

n∑
i,j=1

aij(x)
∂2ϕ

∂xi∂xj
+

n∑
j=1

aj(x)
∂ϕ

∂xj
= b(ϕ(x))

n∑
i,j=1

aij(x)
∂ϕ

∂xi

∂ϕ

∂xj
.
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We denote by Q(p), R(p), p ∈ R, integrable functions that are rapidly decreasing at infinity (for

example, smooth and compactly supported functions).

Lemma 1. The functions w(x, t), λ(x), and μ(x) defined by

w(x, t) =

∞∫

0

[Q(p)F1(ϕ(x), p) +R(p)F2(ϕ(x), p)] e
−ptdp,

λ(x) = a(ϕ(x))
n∑

i,j=1

aij(x)
∂ϕ

∂xi

∂ϕ

∂xj
,

μ(x) = c(ϕ(x))

n∑
i,j=1

aij(x)
∂ϕ

∂xi

∂ϕ

∂xj

satisfy the first order evolution equation

λ(x)
∂w

∂t
=

n∑
i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑
j=1

aj(x)
∂w

∂xj
+ μ(x)w.

Example 1. Let F1(y, p) and F2(y, p) be the fundamental system of solutions to the Sturm–

Liouville equation F
′′
(y) = (c(y)− p)F (y) with parameter p � 0, and let u(x) �= 0, x ∈ D ⊂ R

n

be a harmonic function such that ∇u(x) �= 0. Then the function

w(x, t) =

∞∫

0

[Q(p)F1(u(x), p) +R(p)F2(u(x), p)] e
−ptdp

satisfies the parabolic equation

∂w

∂t
=

1

|∇u|2Δw − c(u)w.

For nonlinear equations the following assertion holds.

Lemma 2. Suppose that

1) y ∈ R, t0 � t � t1, x = (x1, . . . , xn) ∈ D, z = (z1, . . . , zm) ∈ R
m,

2) ϕ = ϕ(x, t) and ψ = ψ(x, t) �= 0 are twice continuously differentiable functions such that

β |∇ρ|2 ∂ϕ
∂t

+ αΔϕ = 0,

β |∇ρ|2 ∂ψ
∂t

+ αΔψ = 0, ρ =
ϕ

ψ
,

3) F (y, t) = (F1, . . . , Fm) and a(y, z) = (a1, . . . , am) are twice continuously differentiable

vector-valued functions such that

β
∂F

∂t
+ α

∂2F

∂y2
= a(y, F (y, t)).

Then the vector-valued function w(x, t) = ψ(x, t)F (ρ(x, t), t) is a solution to the system

β |∇ρ|2 ∂w
∂t

+ αΔw = ψ |∇ρ|2 a(ρ,w/ψ).
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If F is independent of t, then the following assertion holds.

Lemma 3. Suppose that y ∈ R, t0 � t � t1, x = (x1, . . . , xn) ∈ D ⊂ R
n, u = u(x, t),

F = (F1, . . . , Fm)(y), a = (a1, . . . , am)(y, z), z = (z1, . . . , zm) ∈ R
m. If

α
∂2F

∂y2
= a(y, F (y)),

β
∂u

∂t
+ αΔu = 0

for some, generally speaking, complex constants α and β, then the vector-valued function w(x, t)

= F (u(x, t)) is a solution to the system

β
∂w

∂t
+ αΔw = |∇u|2a(u(x, t), w).

Example 2. If β = i�, α = �
2/(2m0),

∂F

∂t
= 0, and ψ = 1, then we obtain, generally

speaking, the nonlinear Schródinger equations

i�
∂w

∂t
+

�
2

2m0
Δw = |∇ϕ|2a(ϕ(x, t), w).

Lemma 4. Suppose that

1) V (x, t), x = (x1, . . . , xn) ∈ D, t ∈ R, is an arbitrary twice differentiable function such

that ∇V �= 0,

2) B and C are constants such that B − CV (x, t) �= 0,

3) F (y, t) is an arbitrary solution to the equation

∂F

∂t
=
∂2F

∂y2
, y ∈ R.

Then the functions w(x, t), k(x, t), Ai(x, t), i = 1, . . . , n, defined by

w(x, t) =
1

B − CV (x, t)
F (V (x, t), t), (1)

k(x, t) =
1

|∇V (x, t)|2 , (2)

Ai(x, t) = Ai
0(x, t)−

1

|∇V (x, t)|2
(

2C

B − CV (x, t)
+

ΔV (x, t)

|∇V (x, t)|2 − ∂V

∂t

)
∂V

∂xi
,

satisfy the equation

∂w

∂t
= k(x, t)Δw +

n∑
i=1

Ai ∂w

∂xi
,

where Ai
0(x, t), i = 1, . . . , n, are functions such that

n∑
i=1

Ai
0

∂V

∂xi
= 0.
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Remark 1. To the solution w(x, t) we can add any solution w̃(x, t) to the equation with

the same coefficients, i.e.,

w(x, t) =
1

B − CV (x, t)
F (V (x, t), t) + w̃(x, t).

Such a procedure is often required in order to satisfy initial-boundary conditions.

Corollary 1. Let the assumptions of Lemma 4 be satisfied, and let Ai
0(x, t) = 0, i = 1, . . . , n.

Then

∂w

∂t
=

1

|∇V (x, t)|2Δw − 1

|∇V (x, t)|2
(

2C

B − CV (x, t)
+

ΔV

|∇V (x, t)|2 − ∂V

∂t

) n∑
i=1

∂w

∂xi

∂V

∂xi
,

where w(x, t) is defined by (1).

Example 3. In the identity of Corollary 1, we put n = 1,

F (y, t) =
1√
πt

exp(−(y − y0)
2/(4t)),

B = 1, C = 0, and V (x, t) = a(t)x + b(t), where a(t) and b(t) are continuously differentiable

functions, a(t) �= 0. Then we obtain relations similar to the Kolmogorov formulas [2]:

w(x, t) = F (V (x, t), t) =
1√
πt

exp

(
−(x− P (t))2

Q(t)

)
,

∂w

∂t
= C(t)

∂2w

∂x2
+ (A(t)x+B(t))

∂w

∂x
,

where

Q(t) = 4ta2(t), P (t) =
b(t)− y0
a(t)

, C(t) =
1

a2(t)
, A(t) =

a′(t)
a(t)

, B(t) =
b′(t)
a(t)

.

Corollary 2. Let the assumptions of Corollary 1 be satisfied, and let V (x, t) be a solution

to the equation
2C

B − CV
+

ΔV

|∇V |2 − ∂V

∂t
= 0.

Then the function w(x, t) defined by (1) satisfies the equation

∂w

∂t
=

1

|∇V (x, t)|2Δw

which takes the following form in the case n = 1:

∂V

∂t
=

2C

B − CV (x)
+
∂2V

∂x2

/(
∂V

∂x

)2

.

If T (t) and X(x) are defined by the equalities

T (t) = ± 1

(C1 − 2αCt)1/2
,

∫
exp

( α

2X2

)
dX = C2x+ C3,

where α, C1, C2, and C3 are constants, then the function

V =
B

C
− 1

CT (t)X(x)

is a solution to this equation.
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Lemma 5. Let the assumptions of Lemma 4 be satisfied, and let V (x, t) be a solution to the

equation

∂V

∂t
=

ΔV

|∇V |2 +
2C

B − CV
− 2

|∇V |4
n∑

i,j=1

∂2V

∂xi∂xj

∂V

∂xi

∂V

∂xj
. (3)

Then the function w(x, t) defined by (1) satisfies the divergence form equation

∂w

∂t
= div (k(x, t)∇w) ,

where the coefficient k(x, t) is defined by (2).

In the case n = 1, Equation (3) takes the form

∂V

∂t
=

2C

B − CV (x)
− ∂2V

∂x2

/(
∂V

∂x

)2

.

If T (t) and X(x) are defined by the equalities

T (t) = ± (6αC2t+ C1

)3/2
,

∫
exp

(
3α

2
X2/3

)
dX = C2x+ C3,

where α, C1, C2, and C3 are constants, then the function V = 1
C (B− 3

√
T (t)X(x)) is a solution.

Consider the differential operator

L =

n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
i

bi(x, t)
∂

∂xi
+ c(x, t),

where x = (x1, . . . , xn), aij(x, t) = aji(x, t), bi(x, t), and c(x, t) are sufficiently smooth functions

of (x, t). Then for the parabolic equation

1

λ2
∂w

∂t
= Lw (4)

the following assertion holds [8, 9].

Lemma 6. Let ϕ(x, t) and ψ(x, t) satisfy the nonlinear system

1

λ2
∂ϕ

∂t
= Lϕ,

1

λ2
∂ψ

∂t
= Lψ,

(5)

where
1

λ2
=

n∑
i,j=1

aij(x, t)
∂

∂xi

(
ϕ

ψ

)
∂

∂xj

(
ϕ

ψ

)
,

and let F (y, t) be an arbitrary solution to the parabolic equation

∂F

∂t
=
∂2F

∂y2
.

Then the function w(x, t) = ψF (ϕ/ψ, t) is a solution to Equation (4).
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Corollary 3. If the coefficients aij, bi, and c of the operator L are independent of t, then the

solution to the nonlinear system (5) are functions ϕ(x) and ψ(x) such that Lϕ = 0 and Lψ = 0.

Moreover, if ϕ(x) �= 0 and ψ(x) �= 0, then

1

λ2
=

n∑
i,j=1

aij(x)
∂

∂xi

(
ϕ

ψ

)
∂

∂xj

(
ϕ

ψ

)
, w(x, t) = ψF

(
ϕ

ψ
, t

)

and, consequently, the search of λ(x) can be conditioned by the boundary data ϕ(x) and ψ(x).

The above formulas can be further generalized, in particular, by simultaneous transformation

of coordinates and solutions [10]–[12]. We give a general scheme.

Lemma 7. Suppose that

1) D ⊂ R
n is a domain with smooth boundary γ = ∂D and ν is the unit normal vector to γ,

2) v(x) is a vector-valued function realizing a diffeomorphism from the domain D onto its

image v(D) ⊂ R
n,

3) u(x) = (uij(x)), i, j = 1, . . . ,m, m � 1, x ∈ D, is a matrix-valued function possessing the

inverse u−1(x) (in the sense of matrix multiplicataion),

4) G(z), z = (z1, . . . , zm), is a vector-valued function realizing a diffeomorphism from R
m

onto itself,

5) w0(x) = (w01(x), . . . , w0m(x)) is a vector-valued function.

We assume that F (y, t) = (F1, . . . , Fm) solve the evolution equation

∂F

∂t
= L(F ), y ∈ D ⊂ R

n, t � 0,

with the initial condition

F |t=0 = u−1(v−1(y))G(w0(v
−1(y))), y ∈ D,

where L is a nonlinear operator. Then the implicit solution w(x, t) to the equation

G(w(x, t)) = u(x)F (v(x), t) (6)

satisfies the evolution equation
∂w

∂t
= BG(w)

and the initial condition

w|t=0 = w0(x), x ∈ D,

where

BG(w) =

(
∂G

∂w

)−1

u(x)L(u−1(x)G(w));

here,
∂G

∂w
is the Jacobi matrix of the mapping G(w). Moreover, if

w|γ = α(s, t),
∂w

∂ν

∣∣∣
γ
= β(s, t), u|γ = 1,

∂u

∂ν

∣∣∣
γ
= 0, v|γ = x,

∂v

∂ν

∣∣∣
γ
= ν, (7)

then

F |γ = G(α(s, t)),
∂F

∂ν

∣∣∣
γ
=
∂G

∂α
β(s, t).
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We note that if G(z) = z, then the boundary data α(s, t), β(s, t) for w(x, t) and F (y, t)

coincide, which is important in applications; moreover, if we additionally suppose that the

leading part of the operator BG is selfadjoint or the coefficients at lower order derivatives in the

operator vanishes, then u(x) and y = v(x) satisfy a differential equation (cf. Example 4).

For the first example, we consider the transformed Poisson formula with an essential arbi-

trariness, which can be used in the inverse and some other problems.

Example 4. Let m = 1 in Lemma 7, and let F (y, t) be a solution to the parabolic equation

∂F

∂t
= ΔF.

Then

ũ(y) =
1

u(V −1(y))
, y ∈ R

n, aij(x) =

n∑
k=1

∂V −1
i

∂yk

∂V −1
j

∂yk

∣∣∣∣∣
y=V (x)

,

aj(x) =
1

ũ(y)

[ n∑
k=1

2
∂ũ

∂yk

∂V −1
j

∂yk
+ ũ(y)ΔV −1

j

]∣∣∣∣∣
y=V (x)

, a(x) =
1

ũ(y)
Δũ

∣∣∣∣
y=V (x)

,

w(x, t) = G−1

(
u(x)

πn/2

∫

Rn

G(w0(V
−1(V (x) + 2ξα

√
t)))

u(V −1(V (x) + 2ξα
√
t))

e−ξ2dξ

)
,

∂w

∂t
=

n∑
i,j=1

aij(x)
∂2w

∂xi∂xj
+

n∑
i,j=1

aij(x)
∂w

∂xi

∂w

∂xj

G′′(w)
G′(w)

+
n∑

j=1

aj(x)
∂w

∂xj
+ a(x)

G(w)

G′(w)
,

w
∣∣∣
t=0

= w0(x), x ∈ R
n.

In the case u(x) = 1, G(z) = z, and V (x) = x, we obtain the Poisson formula. We emphasize

some interesting combinations of direct and inverse mappings in the formula for w(x, t).

Remark 2. If it is known that aj(x) = 0 and a(x) = 0, then we obtain the following

differential relations for V (x) and u(x):

Δũ(y) = 0, ũ(y) =
1

u(V −1(y))
, y ∈ R

n,

2

n∑
k=1

∂ũ

∂yk

∂V −1
j

∂yk
+ ũ(y)ΔV −1

j = 0, j = 1, . . . , n,

which can be used for computing aij(x) in some particular inverse problems, possibly, with (7).

An interesting example of the general scheme of Lemma 7 is obtained by using formulas for

the solution to the Cauchy problem for the parabolic equation with variable coefficients.

Example 5. Following [13], we consider the equation

∂F

∂t
= ΔμF, (8)
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where F = F (y, t), y = (y1, . . . , yn) ∈ R
n, t ∈ R, Δμ is the second order differential operator

defined by

Δμ =
1− |y|2

4

(
(1− |y|2)

n∑
j=1

∂2

∂y2j
− 2μ

n∑
j=1

yj
∂

∂yj
+ μ(2− n− μ)

)
,

where |y|2 = y21 + . . . + y2n. If μ = 2−n, then Δ2−n is the Laplace–Beltrami operator associated

with the metric
4|dy|2

(1− |y|2)2 , where |dy|2 = dy21 + . . . + dy2n.

We recall that the Gauss hypergeometric function is defined by the formula

2F1(a, b, c, s) =
∞∑
k=0

(a)k(b)ks
k

(c)kk!
,

where (a)0 = 1, (a)k = a(a+ 1) . . . (a+ k − 1), k � 1. We define the functions

Φλ(y) = (1− |y|2) 1−μ+iλ
2 2F1

(
n− 1 + iλ

2
,
1− iλ

2
,
n

2
, |y|2

)
,

C(λ) =
21−μ−iλΓ

(
n
2

)
Γ (iλ)

Γ
(
n−1+iλ

2

)
Γ
(
1+iλ
2

) , Cn,μ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n ∈ (2− n, 0),

Γ
(n
2

)
Γ(1− μ)

Γ

(
2− μ

2

)
Γ

(
n− μ

2

) ,

p(t, q) = Cn,μ

∞∫

0

exp

(
−t(1− μ)2 + λ2

4

)
Φλ(q) |C(λ)|−2 dλ.

Then the function

F (y, t) =

∫

Rn

p(t, y − z)F0(z)dz

is a solution to Equation (8) and satisfies the initial condition F |t=0 = F0(y).

By Lemma 6, for F0(y) of the form F0(y) = u−1(v−1(y))G(w0(v
−1(y))) the function w(x, t)

defined by (6) is a solution to the transformed equation

∂w

∂t
= BG(w)

and satisfies the initial condition w|t=0 = w0(x). The arbitrariness of G(y), u(x), and v(x) can

be used in different problems, including inverse ones.

2 Inverse Problems

We begin to study inverse problems with a general scheme of constructing formal solutions

to linear multi-dimensional inverse problems. Similar schemes of constructing solutions are also

presented for nonlinear inverse problems, but with boundary conditions.
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We begin with a multi-dimensional linear inverse problem for the first order evolution equa-

tion with respect to t: find two functions w(x, t), λ(x), x ∈ D ⊂ R
n, t � 0, such that

α
∂w

∂t
= Aw + f(t)λ(x), (9)

w|t=0 = w0(x), x ∈ D, (10)

w|∂D = ϕ(s, t), s ∈ ∂D, t � 0, (11)

∂w

∂ν

∣∣∣∣
∂D

= ψ(s, t), s ∈ ∂D, t � 0, (12)

where A is a linear second order elliptic operator with smooth coefficients, D is a domain in R
n

with smooth boundary ∂D,
∂w

∂ν
is the normal derivative on the boundary ∂D of D, f(t) �= 0 is

continuous, α is a constant, and the continuously differentiable functions w0(x), ϕ(s, t), ψ(s, t)

are known.

Theorem 1. Let w̃(x, t) be a solution to the initial-boundary-value problem

α
∂w̃

∂t
= Aw̃, w̃|t=0 = w0(x), w̃|∂D = ϕ(s, t),

and let μk and uk(x) be eigenvalues and eigenfunctions of the problem

Auk + μkuk = 0, uk|∂D = 0, k = 1, 2, . . . .

If ψ̃(s, t) = ψ(s, t)− ∂w̃(s, t)

∂ν
, s ∈ ∂D, is represented as a formal series

ψ̃(s, t) =
∞∑
k=1

ak
∂uk(s)

∂ν

t∫

0

f(p)e−
μk
α

(t−p)dp,

where ak are constants, then the solution w(x, t), λ(x) for the inverse problem (9)–(12) is rep-

resented by the formal series

w(x, t) =
∞∑
k=1

akuk(x)

t∫

0

f(p)e−
μk
α

(t−p)dp+ w̃(x, t), λ(x) = α
∞∑
k=1

akuk(x).

The assertion of the theorem is directly verified. We describe the construction of the sought

functions w(x, t), λ(x).

I. Solve the first boundary-value problem (look for w̃(x, t)).

II. Find eigenvalues and eigenfunctions of the operator A (look for μk and uk(x)).

III. Construct the functions ψ̃(s, t) = ψ(s, t)− ∂w̃(x, t)

∂ν

∣∣∣∣
x=s∈∂D

.

IV. Compute the constants ak, k = 1, 2, . . ., from the expansion of ψ̃(s, t):

ψ̃(s, t) =

∞∑
k=1

ak
∂uk(s)

∂ν

t∫

0

f(p)e−
μk
α

(t−p)dp,
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which is related to the completeness of the system of functions

∂uk(s)

∂ν

t∫

0

f(p)e−
μk
α

(t−p)dp.

V. Find the functions w(x, t) and λ(x) according to Theorem 1.

Remark 3. If f(t) = δ(t) is the Dirac function, then ψ̃(s, t) is represented as

ψ̃(s, t) =
1

2

∞∑
k=1

ak
∂uk(s)

∂ν
e−

μk
α

t.

Thus, the question of the completeness of the system of functions
∂uk(s)

∂ν
e−

μk
α

t is determined

by eigenfunctions and eigenvalues of the operator A.

We proceed with nonlinear inverse problems.

If A = Δ, then for some special boundary conditions it is to determine not only the function

λ(x), but also the coefficient k(x). Let us consider the inverse problem for the parabolic equation:

find three functions w(x, t), k(x), and λ(x), x ∈ D ⊂ R
n, t � 0, such that

∂w

∂t
= k(x)Δw + f(t)λ(x), (13)

w|∂D = ϕ(s, t),
∂w

∂ν

∣∣∣∣
∂D

= ψ(s, t), s ∈ ∂D, (14)

w|t=0 = w0(x), x ∈ D, (15)

where the continuously differentiable functions f(t) �= 0, ϕ(s, t), ψ(s, t), w0(x) are known and

D is a domain in R
n with smooth boundary ∂D.

Theorem 2. Assume that the function ϕ(s, t) in the inverse problem (13)–(15) admits the

analytic representation

ϕ(s, t) = F (v0(s), t) + ϕ̃(s, t),

where F (y, t) �= 0 is a solution to the parabolic equation

∂F

∂t
=
∂2F

∂y2
, t � 0, y ∈ R,

v0(s) �= 0 is a continuous function, ϕ̃(s, t) is a fixed differentiable supplement which can vanish,

and let v(x), x ∈ D ⊂ R
n, be a harmonic function such that v|∂D = v0(s) and |∇v| �= 0. If

w̃(x, t) is the solution to the initial-boundary-value problem

∂w̃

∂t
=

1

|∇v(x)|2Δw̃, w̃|t=0 = w0(x)− F (v(x), 0), w̃|∂D = ϕ̃(s, t),

uk(x) and μk are eigenfunctions and eigenvalues of the problem

1

|∇v(x)|2Δuk + μkuk = 0, uk|∂D = 0, k = 1, 2, . . . ,
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and ak, k = 1, 2, . . . , are defined by the equalities

∞∑
k=1

ak
∂uk(s)

∂ν

t∫

0

f(p)e−μk(t−p)dp = ψ(s, t)− ∂w̃(s, t)

∂ν
− ∂F (v0(s), t)

∂y

∂v(s)

∂ν
,

then

w(x, t) = F (v(x), t) + w̃(x, t) +

∞∑
k=1

akuk(x)

t∫

0

f(p)e−μk(t−p)dp,

k(x) =
1

|∇v(x)|2 , λ(x) =
∞∑
k=1

akuk(x).

The proof of this theorem is immediate.

As in the case of linear problems, the construction of solutions to the nonlinear inverse prob-

lem is connected with the classical problems of the theory of differential equations. Moreover,

the solution w(x, t) is represented as the sum of three functions

F (V (x), t), w̃(x, t),

∞∑
k=1

akuk(x)

t∫

0

f(p)e−μk(t−p)dp,

where the first function F (V (x), t) determines the coefficient k(x), the second function w̃(x, t)

is responsible for the arbitrariness in the boundary and initial conditions, whereas the third

function determines the source function. The main question is whether it is possible to obtain

and justify a representation of ϕ(s, t) in the form F (v0(s), t) + ϕ̃(s, t). We only note that,

for example, the functions F (y, t) and v0(s) can be found by using the variational principle

min‖ϕ(s, t)− F (v0(s), t)‖, where ‖ ‖ denotes the norm.

For a more general parabolic equation and a more complicated representation of the trace of

the solution we can consider the inverse problem for three coefficients and the right-hand side,

i.e. it is required to find a solution w(x, t), coefficients ρ(x), k(x), μ(x), and λ(x), x ∈ D ⊂ R
n,

t � 0, of the problem

ρ(x)
∂w

∂t
= div (k(x)∇w) + μ(x)w + λ(x)f(t), x ∈ D, t > 0, (16)

w|t=0 = w0(x), x ∈ D, (17)

w|∂D = ϕ(s, t),
∂w

∂ν

∣∣∣∣
∂D

= ψ(s, t), s ∈ ∂D, t > 0, (18)

where the smooth functions w0(x), ϕ(s, t), ψ(s, t) are known and D is a domain in R
n with

smooth boundary ∂D.

Theorem 3. Assume that the function ϕ(s, t) in the inverse problem (16)–(18) admits the

representation

ϕ(s, t) =

∞∫

0

(Q(p)F1(V0(s), p) +R(p)F2(V0(s), p)) e
−ptdp+ ϕ̃(s, t),
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where the functions Q(p) and R(p) rather rapidly decrease at infinity (for example, compactly

supported), V0(s) is continuous ϕ̃(s, t) is a fixed differentiable addition which can vanish, the

functions F1(z, p) and F2(z, p) form the fundamental system of solutions to the ordinary second

order differential equation

F
′′
(z) + b(z)F

′
(z) + (pa(z) + c(z))F (z) = 0,

so that

a(z) =
∂

∂p

⎛
⎜⎜⎝
∂2F1

∂z2
∂F2

∂z
− ∂2F2

∂z2
∂F1

∂z
∂F1

∂z
F2 − ∂F2

∂z
F1

⎞
⎟⎟⎠ , b(z) = − ∂

∂z

(
∂F1

∂z
F2 − ∂F2

∂z
F1

)
,

c(z) =

∂2F1

∂z2
∂F2

∂z
− ∂2F2

∂z2
∂F1

∂z
∂F1

∂z
F2 − ∂F2

∂z
F1

− p
∂

∂p

⎛
⎜⎜⎝
∂2F1

∂z2
∂F2

∂z
− ∂2F2

∂z2
∂F1

∂z
∂F1

∂z
F2 − ∂F2

∂z
F1

⎞
⎟⎟⎠ ;

moreover, a(z) > 0.

Let V (x) be a harmonic function in D such that V |∂D = V0(s) and ∇V �= 0. We set

ρ(x) = a(V (x))|∇V |2 exp
( V (x)∫

0

b(z)dz

)
, k(x) = exp

( V (x)∫

0

b(z)dz

)
,

μ(x) = c(V (x))|∇V |2 exp
( V (x)∫

0

b(z)dz

)
.

(19)

Let uk(x) and μk, k = 1, 2, . . . be eigenfunctions and eigenvalues of the operator

A =
1

ρ(x)

n∑
j=1

∂

∂xj

(
k(x)

∂

∂xj

)
+
μ(x)

ρ(x)
, Auk + μkuk = 0, uk|∂D = 0.

Suppose that w̃(x, t) is a solution to the first boundary value problem for the equation

∂w̃

∂t
= Aw̃

with the initial and boundary conditions

w̃|t=0 = w0(x)−
∞∫

0

(Q(p)F1(V (x), p) +R(p)F2(V (x), p)) e−ptdp, w̃|∂D = ϕ̃(s, t),

and the constants ak are determined by

ψ̃(s, t) = ψ(s, t)− ∂V (s)

∂ν

∞∫

0

(
Q(p)

∂F1(V0(s), p)

∂z
+R(p)

∂F2(V0(s), p)

∂z

)
e−ptdp

− ∂w̃(s, t)

∂ν
=

n∑
k=1

ak
∂uk(s)

∂ν

t∫

0

b(p)e−μk(t−p)dp.

766



Then the coefficients ρ(x), k(x), and μ(x) are found from the equalities (19) and the functions

w(x, t) =

∞∫

0

(Q(p)F1(V (x), p) +R(p)F2(V (x), p)) e−ptdp+ w̃(x, t)

+

∞∑
k=1

akuk(x)

t∫

0

b(p)e−μk(t−p)dp, λ(x) = ρ(x)

∞∑
k=1

akuk(x)

solve the inverse problem (16)–(18).

Example 6. With the trace ϕ(s, t) of the solution w(x, t) on the boundary ∂D,

ϕ(s, t) =

∞∫

−∞

(
Q(ω) exp(iω 3

√
u0(s))(iω

3
√
u0(s)− 1)

+R(ω) exp(−iω 3
√
u0(s))(iω

3
√
u0(s) + 1)

)
eiωtdω + ϕ̃(s, t),

u0(s) > 0, s ∈ ∂D, we associate the equation

ρ(x)
∂w

∂t
= Δw + λ(x)f(t);

where ρ(x) = 1
9(u(x))

−4/3|∇u|2 and u(x) is a harmonic function such that u|∂D = u0(s), s ∈ ∂D.

Thus, in this case, the problem of finding ρ(x) is reduced to the Dirichlet problem for the

Laplace equation. The remaining functions are found in the same way as in Theorem 3.

If the coefficients and source function in the parabolic equation are independent of time, we

can obtain an additional information for the linear inverse problem.

Lemma 8. Let w(x, t), x ∈ D ⊆ R
n, α � t � β, be a solution to the parabolic equation

ρ(x)
∂w

∂t
=

n∑
i=1

∂

∂xi

(
k(x)

∂w

∂xi

)
+ λ(x), (20)

where the k(x), ρ(x), and λ(x) are independent of t. Then

ρ(x)

(
∂w

∂t

)2

=
n∑

i=1

∂

∂xi

(
k(x)

∂w

∂xi

∂w

∂t

)
− 1

2

∂

∂t

(
k(x)

n∑
i=1

(
∂w

∂xi

)2
)

+
∂

∂t
(λ(x)w) . (21)

Proof. Multiplying Equation (20) by
∂w

∂t
and using the identities

∂

∂xi

(
k(x)

∂w

∂xi

)
∂w

∂t
=

∂

∂xi

(
k(x)

∂w

∂xi

∂w

∂t

)
− 1

2

∂

∂t

(
k(x)

(
∂w

∂xi

)2
)
, i = 1, . . . , n,

we prove the required assertion.

Corollary 4 (uniqueness). Suppose that k(x) > 0, ρ(x) > 0, and

w|∂D = 0, w|t=α = w|t=β = 0. (22)

Then λ(x) = 0 and w(x, t) = 0 for x ∈ D, α � t � β.
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Proof. Integrating the identity (21) and taking into account (22), we find

∫

D

β∫

α

ρ(x)

(
∂w

∂t

)2

dxdt = 0.

We have
∂w

∂t
= 0 since ρ(x) > 0 and w = 0 since w|t=α = 0. Then λ(x) = 0 in view of (20).

Corollary 5 (formula for λ). If w|∂D = ϕ(s), s ∈ ∂D, i.e., ϕ(s) is independent of t and

w|t=α = w|t=β = w0(x), then

λ(x) = −
n∑

i=1

∂

∂xi

(
k(x)

∂w0

∂xi

)
.

Proof. Integrating the identity (21), we obtain the equality

∫

D

β∫

α

ρ(x)

(
∂w

∂t

)2

dxdt = 0.

Since ρ(x) > 0, we have ∂w
∂t = 0, i.e., the solution w(x, t) is independent of t. Substituting t = α

(or t = β) into (20), we obtain the required formula for λ(x).

Now, we consider inverse problems for parabolic equations consisting in finding a solution

and two dependent coefficients. Explicit formulas for solutions are obtained up to a solution to

the Cauchy problem

∂2F

∂y2
=
∂F

∂t
, F |y=0 = α(t),

∂F

∂y

∣∣∣∣
y=0

= β(t).

Thus, the inverse problem for the parabolic selfadjoint equation consists in finding w(x, t), A(x),

and C(x) such that
∂w

∂t
=

∂

∂x

(
A(x)

∂w

∂x

)
+ C(x)w,

w|t=0 = w0(x), w|x=0 = α(t),
∂w

∂x

∣∣∣∣
x=0

= β(t), (23)

where w0(x) > 0, α(t) > 0, β(t) > 0, w0(0) = α(0), w
′
0(0) = β(0) are given twice continuously

differentiable functions for 0 � x <∞, t ∈ R.

Theorem 4. Let F (y, t) be a solution to the Cauchy problem with respect to the variable y :

∂2F

∂y2
=
∂F

∂t
, F |y=0 = α(t),

∂F

∂y

∣∣∣∣
y=0

= β(t),

and let

ϕ(y) =

y∫

0

F 2
0 (p)dp, F0(p) = F (p, 0).
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Then

w(x, t) =
√
V ′(x)F (V (x), t), A(x) =

1

V ′2 , C(x) =
5(V

′′
)2 − 2V

′′′
V

′

4(V ′)4
,

where V (x) = ϕ−1

( x∫

0

w2
0(p)dp

)
.

For the non-selfadjoint equation

∂w

∂t
= A(x)

∂2w

∂x2
+ C(x)w

and the initial-boundary conditions (23) the following assertion holds.

Theorem 5. Let F (y, t) be a solution to the Cauchy problem with respect to the variable y :

∂2F

∂y2
=
∂F

∂t
, F |y=0 = α(t),

∂F

∂y

∣∣∣∣
y=0

= β(t),

and let

ϕ(y) =

y∫

0

dp

F 2
0 (p)

,

where F0(p) = F (p, 0). Then

w(x, t) =
1√
V ′(x)

F (V (x), t), A(x) =
1

V ′2 , C(x) =
2V

′′′
V

′ − 3(V
′′
)2

4(V ′)4
,

where V (x) = ϕ−1

( x∫

0

dp

w2
0(p)

)
.

Similar results for one-dimensional inverse problems for finding three connected coefficients

can be found in [14].
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