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THE LEONTOVICH FOCK PARABOLIC EQUATION METHOD IN PROBLEMS OF
SHORT-WAVE DIFFRACTION BY PROLATE BODIES

N. Ya. Kirpichnikova* and M. M. Popov* UDC 5179

Application of the parabolic equation to problems of short wave diffraction by prolate convex bodies in the rotational
symmetry case is considered The wave field is constructed in the Fock domain and in the shaded part of the
body, where creeping waves appear In the problems under consideration, the following two large parameters arise:
M = (kp/2)""® and A = p/f, where k is the wave number, p is the radius of curvature along geodesics (meridians)
and f is the radius of curvature in the transversal direction The first one is the so called Fock parameter, and the
second one A characterizes the prolateness of the body Under the condition A = M>7°, 0 < € < 2, the parabolic
equation method in classical form is valid and describes the wave field in terms of the Airy function and integrals of
it In the case of € = 0, some coefficients in the corresponding recurrent equations become singular and the question
on the solvability of the equations in terms of reqular and smooth functions remains open Bibliography: 9 titles

INTRODUCTION

Recently a number of articles concerning the short wave diffraction by elongated bodies have been published
(see [1,2] and the bibliography therein)

Actually the problem therein is set in a simplified version: the scatterer represents a strictly convex body of
revolution and the incident plane wave propagates along the axis of revolution, i e , an axisymmetric problem is
considered The wave field has been studied in the vicinity of the light shadow boundary (the Fock domain) and
in the shaded part of this zone, where creeping waves appear The body prolateness is characterized by the ratio
of the longitudinal curvature radius of geodesics (meridians), orthogonal to the light shadow boundary on the
surface of the scatterer, to the curvature cross radius of the light shadow boundary Moreover, both curvature
radii are assumed to be large in comparison to the length of the incident wave This suggests the usage of
the parabolic Leontovich Fock equation method In the articles under discussion (see [1,2]), the usage of the
parabolic equation method is indeed declared and the Fock’s scales for local coordinates in the Fock domain are
preserved, but at the same time the proposed equation differs essentially from the Fock’s one

We would like to recall that the method by V. A Fock (see [3]) is based upon the following heuristic propo
sitions:

(a) it is necessary to single out correctly a multiplier that describes the most rapid oscillations of the wave field
In this case, this is exp{iks}, where k is the wave number and s represents the meridian arc length (geodesic),
because the geodesic coincides with the direction of incident wave ray at the point where this ray touches the
light shadow boundary;

(b) after expansion of the equation coefficients in the Fock domain, one needs to choose the asymptotically
most significant summands in the equation;

(c) to choose coordinate scales in such a way that these main summands become of the same order as k — oo
in the parabolic equation obtained

We emphasize that the choice of scales is of fundamental importance, because it determines the scale of
functions where the asymptotics of the solution is constructed, and in a fixed scale of functions no different
asymptotics of the same function and of the solution of the problem considered may exist

In the present paper, a different approach to the problem of short wave diffraction by an elongated body is
proposed At that we also, as in [1], consider an axisymmetric problem of plane wave diffraction by a strictly
convex body of revolution To simplify it, we assume that the wave field satisfies the Helmholtz equation and
the Dirichlet boundary conditions on the scatterer’s surface

The proposed method is based upon the classical parabolic equation approach, but represents a two scale
asymptotic expansion in two independent parameters: Fock’s parameter Mo = (kp(0)/2)'/? and the new one
Ao = p(0)/f(0), which characterizes the oblongness of the scatterer Here, p(0) = po and f(0) are the main
radii of the scatterer surface curvature along the meridian and the equator on the light shadow boundary,
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respectively In this paper, creeping waves, which appear in the shaded part of the surface behind the Fock
domain, are constructed as well

This two scale expansion enables one to obtain formulas for calculating the wave field, in particular, the
current on the surface, for different relations between My and Ag satisfying the condition Ay = M%‘E The
parameter € is contained in the interval 0 < € < 2 Moreover, the classical method of the parabolic Fock equation
is used and the wave field is described in terms of Airy functions and integrals of them However, for ¢ = 0
a considerable rearrangement of operators in the recurrence equations occurs in the Fock domain, as well as in
the domain of creeping waves It turns out that in the Fock domain, the coefficients in the arising recurrence
equations become singular

1 STATEMENT OF THE PROBLEM

We assume that the surface 0¥ of the scatterer X is formed by rotation of a plane convex curve

xz = f(z2), r:\/m2+y2, T =rcosp, y=rsing

around the axis z of the orthogonal coordinate system z, y, z, and the cross section of 0¥ by the plane z = 0
represents an equator and coincides with the light shadow boundary of the incident plane wave U'"¢ = exp(ikz)

The wave field U satisfies the Helmholtz equation and the Dirichlet condition on the surface 0% of the body
of revolution

A+ =0, Ul,y=0 (11)

We consider the wave field close to 9% in the Fock domain and in the shaded part, where creeping waves appear
On the surface of the body, we take the orthogonal net of main curvature lines meridians and parallels; in the
vicinity of the body, the length n along the outer normal n is added to them The length along the meridians is
denoted by s and is counted starting from the equator The connection between s and z is determined by the
relation

s= [Vit e (12)
0

For the unit vector of the outer normal n, the following expression is valid:
n=(1+(f'(2)*) " *(cospe, +sinpe, — f'(z)e.), (13)

where e, e,, e represent the unit vectors of the corresponding Cartesian coordinate system and ¢ is the azimuth
angle The coordinate system s, n, ¢ is orthogonal and regular in the considered domain; the square of the length
element dS? has the form

dS? = hids* + dn® + hidgoz,

where the Lamé coefficients h, and h, are described by the formulas

L PGy om
M e T (14)
hy = f

O+ s (pe)y

We note that in formulas (1 4), the coordinate z is regarded as a function of s obtained by inverting rela
tion (1 2), and the function p(s) serves as the meridian curvature radius at the point s We are interested in an

axisymmetric solution of problem (1 1), ie, in the solution for which the condition ou = 0 is fulfilled In this

dp
case, the answer is sought in the form
U = exp(iks)W (s, n),
where the multiplier exp(iks) describes the main oscillations of the wave field and W is called the attenuation
function The equation for W can be represented in the form
) ) 2
[(A+E*)e™* W] = estg{ 41/3[4 (AW + BW)} =0, (15)
0
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where g = (4M3)/p? and the operators A and B are equal to

. ow  *wW ,  O'W ow Olnh oW Odlnh
_ 1.2 _ 32 . —2 A —2 s s
AW =k*(1—h,°)W + (2zk Py + 92 )hs + o2 (sz+ Py )hs s + o on (16)
1 df 1 /. ow Ohy, OW
BW = he [ds hs (ZkW * Os ) * on On ] (17

We emphasize that the operator A corresponds to the two dimensional problem of diffraction by the curve in
the cross section ¢ = const and the operator B includes all specificity of the three dimensional initial problem
and is of principal interest Concerning the two dimensional problem, book [3] contains a detailed construction
of the principal asymptotic term, and in books [4, 5] the reader will find a mathematically clear and justified
procedure of calculating subsequent terms

In constructing a solution, we need to obtain explicit analytic formulas for three successive asymptotic terms,
which leads, unfortunately, to quite cumbersome calculations

We would like to note that the mathematical validity of this scheme follows from the fact that the short
wave asymptotics of the diffraction problem by a strictly convex body is mathematically justified on the whole
(see [6 8])

2 INCIDENT WAVE FIELD IN THE FOCK DOMAIN

The Fock domain, according to V. M Babich’s terminology, is an “embryo” Knowing the wave field in this
domain, one can construct the wave field asymptotics in the vicinity of the limit ray and in the shaded part of
the scatterer In this case, this zone represents a circular domain close to the light shadow boundary (near the
equator), where the coordinates s and n are considered small

Further, one should expand the coefficients in Eq (1 5) in powers of s and n and then pass to scaled (stretched)
variables ¢ and v:

> k/3s  Mos L 21323 2nM}

- , = , 21
20~ o a .

where pg is the curvature radius of geodesics (meridians) on the light shadow boundary (equator),ie, for s =0,

kpo\1/3 . : .
9 ) is denoted, with respect to which the

asymptotic expansion is carried out The inverse formulas for s and n are given in the form

sS=p ’ n:poV
'M,’ 2 M3

and by My the large dimensionless Fock parameter My = (

(22)

Let us dwell on several key points, which allow us to simplify calculations to some extend

(1) The Lamé coefficients (1 4) are viewed as functions of the geodesic length s, which demands the inversion
of function (1 2) In the Fock domain, we need to expand them in powers of z and s, respectively, i e ,

N N
s = Zanz”+0(zN+1), z= Zﬂnsn‘FO(sNH) (23)

n=1 n=1

The coefficients «,, are easily obtained from formula (1 2), while the 3, are expressed in terms of «, by
inverting the series for s To calculate three terms of the wave field asymptotics in relations (2 3), we should
take N =5 It is obvious that @; = 53 = 1 and, what is of importance in the sequel, as = 2 = 0 Relation
(1 2) also implies that

dz 1
ds /14 (f'(2(5)))?

and therefore h, can be introduced in the form

dz

ho(s,m) = £(() + ',

which is convenient for calculations
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(2) The Lamé coefficient hs may be regarded as given in the form hs = 1+ , where p(s) is the geodesic

n
p(s)
curvature radius at the point s Then, the coefficients of the expansion of p~!(s) in powers of s can be expressed
in terms of derivatives of f(z(s)) with the help of the relation

)
p(s)  [L+(f'(2(5)°]/?
So, for example, from formula (2 5) and relation (2 3) we get

7 1 1"t d ]-
(0)=0, f&=7f(0)=- P = foe(0) = -
fz( ) s f/‘ fzz( ) p07 f,, fzzz( ) dSp 5:07

(25)

(3) Now we turn to the incident plane wave U = exp(ikz) We shall need its expansion in the local coordinates
s and n in the Fock domain in order to construct the reflected (diffracted) wave U”, in view of boundary
condition (1 1) on the surface 0¥ of the scatterer The derivation of it is based on a formula that describes the
connection between the coordinate z and the coordinates s and n:

_ !
S (CO
V14 [f(2())
where e, is the unit vector of the axis z of the initial Cartesian coordinates Expanding the right hand side in
powers of s, we get

53 ns) <3/)634 ”32/’6) (as5 an3>
2EsH T2 T + - 2 |+ - +O(s%, nst 27
( 35 o 41p3 21p2 5p8 3103 ( ) (27)

Henceforth in all formulas related to the Fock domain, functions of s are calculated at the point s = 0:
p(s)’szo = po, p/(s)’szo = p67 and ,0//(3)|s:0 = p/O/
The coefficients a and S equal
" 2 1" 2
a=4popy —11py" +1, B =popy —2py +1 (28)
Passing in the expansion (2 7) from s, n to scaled (stretched) coordinates o, v, we discover that all summands
enclosed in parentheses are of the same order with respect the wave number k, and the order of each subsequent
parenthesis is obtained from the previous one by multiplying by k~'/3 This gives rise to the following expansion
for the attenuation function W€ of the incident plane wave:
Uine — gtksyyrine Winc — Z Winck—m/3 (2 9)
) m )

m=0

z=z(s) +n(n,e;) = z(s) (26)

where Win¢ = Winc pinc and pinc represent polynomials in o and v Note that expansion (2 9) can be represented
as an asymptotic series in negative powers of the large dimensionless Fock parameter Mo = (kpo/ 2)1/ 3 To this
end it is required to employ explicit formulas for the coefficients 3,, ¢ = 3,4,5, , and for the derivatives of the
function f(z) with respect to z at z = 0, following from Eq (2 5)

In the present article, three terms of the asymptotic expansion of the form (2 9) for the incident and reflected
waves are calculated Not to overload the paper with too cumbersome formulas, we omit numerous intermediate
computations, replacing them by verbal comments on their derivation We hope that such an approach will not
make this article less readable

The principal summand in (2 9) has the simple form

Wi (0, 1) = exp {i(m/ _ ”;)} - ;ﬂ 7 ¢7C0(C — v)d, (2 10)

where v(¢ — v) is the real valued Airy function in the Fock definition, because the polynomial Pi*¢ turns out to
be equal to one The second summand in the expansion of the incident wave is a bit more complicated, because

) 2 1/3 /
Plln(::?:< ) p0(0'4—20'21/)
Po 4

The polynomial Pi"¢ already contains o® and v* and is cumbersome; however it is easily reconstructed in
expanding exp(ikz) with regard to formula (2 7)
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We mention a technical point important in the sequel In the scaled coordinates ¢ and v, the problem of
constructing the reflected wave in the Fock domain is to be solved in the half plane {—co0 < o < o0, v > 0}
For this reason, it is convenient to separate ¢ in the form of the Fourier transform, as is represented in relation
(2 10) Such a transform is carried out on the basis of the following formal relation:

(—io)™ exp {i(m/ - ”; ) } = \/17r 7 €io (;j;nv(f — )¢ (2 11)

For the mathematical justification of this relation and normalization of the integrals, we refer to book [5]
Using the Airy equation v”(t) = tv(t), relation (2 11) can be rewritten in the form

o3

ioyesn {i(ov = )} = . [ Rl )+ Q€ - (212)

where the polynomials P,, and @,, in ¢ and v quickly become more complicated with increase of m
Thus, for Wit¢(g,v) we obtain the formula

inc - 2 L p6 r io¢ 2 2 _ / _
wite) =i 2) A [ el - - 4 awic - ) (213)

where v'(¢ — v) is the derivative of v(t) with respect to the argument ¢

Now the third term W3"° and subsequent ones of the incident wave expansion in the Fock domain gain the
following structure (see (2 12)) For example, the summand at m = 2 in expansion (2 9) is represented in the
form

| LN T
wpsow) = (2) [ e mc s )+ Qul (¢ - mldc (214)
Here, the polynomials P (¢, ) and Q2(§7, v) are as follows:
Pr= =)= G4 3= )+ 1A= ) (€= )+ ()
Qe = 20— 0P +iluC =) = P 32+ 30(C ) 47

and the coefficients «, [ are determined by relations (2 8)
The formulas for Wr¢(o,v), m = 0, 1,2, give an idea of the analytic structure of the reflected field

3 THE FocK DOMAIN CONSTRUCTION OF THE REFLECTED WAVE

We build the reflected wave U™ = e#s1¥rf in the form of an asymptotic series in powers k~™/3
m=0,1,2, , similarly to series (2 9):

wref — Z W;ffk—m/3 (3 1)
m=0

The first step consists of the derivation of a system of recurrence equations for successive calculation of the
coefficients W of the attenuation function W™ Upon expanding the coefficients of the initial Helmholtz
equation in powers of s, n and passing to scaled variables o, v (see (2 1)), the result can be written in the form

(A + k,2)eilcsW _ eiksg Z k,(fm)/3LmW =0, (3 2)
m=0
where a common multiplier g equals g = (4M¢)/(p?), and the L,,,, m = 0,1,2, , represent differential operators

in o and v (of the first and second order), which contain polynomials in ¢ and v as multipliers As m increases,
the explicit formulas for operators become noticeably more complicated and their derivation demands though
simple but unwieldy calculations In the sequel we shall give their explicit form for m = 0,1,2 Substituting into
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(3 2) the expansion (3 1) for the attenuation function W' and equating the coefficients at identical powers of k
to zero, we obtain the sought recurrence system

LoWg*' =0,
LoWi + Liwg* =0, (33)
LoWs*' + LaWi* + LW =0

for successive construction of the functions W Equations (3 3) should be solved simultaneously with the
boundary conditions on the scatterer’s surface at v = 0:

(W Wine)| 0, m=0,1,2, |,

v=0
which follow from the Dirichlet condition in (1 1), and with conditions as v — +oco such that W describes a
wave moving off from the body of revolution These conditions are discussed in full in [3 5]

Let us note that since the incident wave satisfies the Helmholtz equation, the functions Wii¢ automatically
satisfy Eqs (3 3), and this can be used to check the correctness of the calculations

The main feature of Eqs (3 3) in the case of an elongated body, in comparison to the traditional method of
the parabolic Fock equation, consists of the circumstance that the operators L,, contain a new large parameter
Ao = p(0)/f(0) that characterizes the extent of scatterer’s oblongness near the equator We emphasize that the
parameter Ag in our calculations is assumed to be independent of the large Fock parameter My = (kp(0)/2)'/3
and that it is bounded from above, because the body of revolution must be strictly convex and kf(0) > 1 by the
initial assumption Our closest goal is to clarify how the parameter Ag occurs in Eqs (3 3) To this end we turn
to formulas (1 5) (17) As was mentioned, the selected part A in the Helmholtz operator coincides with the 2D
problem of the incident plane wave diffraction by the curve z = f(2), ie, by the body of revolution crossed by
the plane ¢ = const Therefore it does not contain the cross radius of the surface curvature of 9X (does not
contain h,) Consequently, it remains only to determine in what manner the part B of the Helmholtz equation,
defined by formula (1 7), is transformed in the Fock domain

From the explicit formulas (1 4) and (2 4) for the Lamé coefficients h; and h,, we get

Ohy _ dz(s)7 Ohy _ f’(z(s))dz(s) +nd2z(s)
on ds 0s ds ds?

and their expansions in powers of s and n do not contain the curvature cross radius f(0) Obviously, this holds
true for the expansion of h; 2 in powers of s and n as well Thus, all coefficients contained in the brackets of the
operator B expand in the Fock domain only in negative powers of the parameter My In order to implement
that, we pass from s and n to the variables ¢ and v in the brackets and separate out of them a common multiplier
g occurring in formula (3 2) After not complicated calculations we obtain

_1| 1 0hy (. ow Oh, OW | _ po | . ow 1
g [hg 0s il Os * on On | 2M?2 oW+ v +0 M, (34)

Now we turn to the coefficient h,(s,n) By expanding the right hand side in relation (2 4) in powers of s and
passing to the scaled variables ¢ and v, we successively get

82 S3pl 84(/70/7” _ 2/)/2 + 1) 8277,
h = 0 — 0 0 0 _ ) O 5
ol ) =f0) =, Ant 32 31 202 ¥ (s°)
Ao 2 oy a® (o 1 ’2 -3
—JO - ‘ —2pp +1) - oM : 35

where the expression in the brackets represents an expansion in negative integer powers of the Fock parameter
M, Hence we obtain the following expansion for h':

1 Ag \™" . 1 "
mH0 = o) ,;)(_1)%21\2%) -e+0(4p,) 0

We would like to recall that the parameter Ay characterizes the oblongness of the body of revolution close to
the equator Finally, substituting (3 4) and (3 6) into formula (1 7) for the part B of the initial operator, we arrive
at the following structure of the operators L,, relative to the independent additional parameter Ag: it occurs
in the recurrence system (3 3) only in the form of the ratio Ag/M32 and its integer powers, and appears for the
first time only in the third equation of (3 3) Further, as the curvature radius f(0) of the equator decreases, the
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parameter Ag increases and thus in this ratio Ag begins to compensate the influence of the large Fock parameter
Hence it follows that the solution of the recurrence system (3 3) preserves the asymptotic character with respect
to My, provided that

Ao=M3 ", (37)

where € is any positive number from the interval 0 < € < 2 This condition represents a limitation on the
possibility of applying the classical method of the parabolic Fock equation to the problem of diffraction of the
incident field by a strictly convex body of revolution in the vicinity of the light shadow boundary (the Fock
domain)

Note that the possibility of assuming that ¢ = 0 in (3 7) requires an additional investigation

Now we turn to the recurrence system (3 3) the solution of which is the reflected wave In the 3D case,
the algorithm or method of finding it remains the same as in the 2D case We shall briefly give an account
of it, following papers [3 5] and omitting many nontrivial mathematical details, concerning, for example, the
normalization of emerging integrals by deformation of the contour of integration and so on

The first equation LoW¢§* = 0 in (3 3), upon cancellation of the common multiplier g, becomes

o o
(i o0 o2 T V) Wi =0 (38)

Here the variables o and v are separated, and the Airy equation arises for » The solution is taken in the form

—+o0

weet = / €7 Bo(C)un (€ — 1)d, (39)

— 00

where By(¢) is a function, which is arbitrary for the time being, and w; (¢ — v) is the Airy function in the Fock
definition [3] The choice of exactly this function is based on the principle of limit absorption, which consists of
the fact that for a small positive imaginary part of the wave number &, Im k£ > 0, the function w; (( — v) tends to
zero as v — +o0o (see [3]) Moreover, one can also say that formula (3 9) describes the wave moving away from
the scatterer as v — +o0

The function By(¢) is determined from the boundary condition Wit + Wgef = 0 for v = 0:

L v(Q)

Bo(¢) = —
O = rw©

Therefore WE® is found uniquely The total field in the principal asymptotic approximation in the Fock domain

has the form

v(C)

w1 (0) wy (¢ —v)| d¢ (3 10)

. o 1 .
Uo(s,n) = e**Wy(o,v) = e“”s(Wénc + Wéef) = Jr /e“’C [U(C —v) —
z

Here the contour of integration £ goes along the ray arg( = 2n/3 from infinity to 0 and along the ray
arg ( = —m/3 from zero to infinity

The other equations (3 3) are nonhomogeneous equations, and we need to construct the general solution for
each of them; moreover, the general solution of the homogeneous equation has the form (3 9) with its own
independent function B,,(¢), m = 1,2, A particular solution of the nonhomogeneous equation is found in a
form similar to formula (2 14), but instead of the function v({ — v) and its derivative v’({ — v) it is necessary to
take w1 (¢ — v) and w} (¢ — v) from the same considerations as in the principal term of the reflected wave

In what follows, we shall give explicit formulas for the operators Em, which arise from L, in Eqs (3 3) after
separation of the coordinate o with the help of the Fourier transform by formula (2 11), taking into account
the fact that wq(¢ — v) is substituted for the function v(¢ — ) and the corresponding normalization contour is
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substituted for the contour of integration:

~ 62
To= g, + =0 (311)
- 2\'* 9
Ly = —i v 312
==i(2) vy, (312)
~ 2\%/? popy —2p2 0% 3v? 1, 10 Ayf0 0
L2_(p0> [ 9 l/aCQ— 4 +l/(—4( toow T o <8C+8y>] (313)
Omitting cumbersome calculations, we finally write down formulas for the reflected field in the Fock domain:
1T e 0
wiet (o, v) = — /ewgv w1 (¢ — v)d(; 314
0 ( ) \/ﬂ_i wy (4—) 1(C ) C ( )

13 ., T A
Wi (o,v) = (j) v / B Qu (¢~ v) + PP un(C =)+ (@r + @ )wi (- v)}dC - (315)

— 00

Here the coefficients By, P1(2), Q§1), and Q§0) have the form

[ Ge© 11 2¢wi(Q) @) _ ()
B0~ |~ i * 20 30 ] 7O oy 516
1), 1 ©)/ 2¢ v(()
GO = g0 AQ= <3w%<c> ‘2w1(<>>
Further,
2/3 +oo 4
ref o.v) = 2 / 1 ei0§ w —v (4) l/‘ w '
Wit = (2) “”_Zo {BaOuitc >+[;P2 O |ustc-»
3
; (ZOQ;” (ouﬂ')wa - u)} ac (317)

Henceforth in all formulas related to the Fock domain, the functions p, p’, p” of s are calculated at the point
s =0 In view of the unhandiness of those formulas given below, p, p’, p” occurring in them contain no subscript
Then the polynomial coefficients in v are equal to

@ _ P00 @) _ [ 600" +p%) 1 _p’2§2v(C)}
P2 (C)_ 3211)1((;)7 PZ (C)_ | 24 w%(c—) 1611)1((;) ’

@) _ [P wi(C) () _ [(App" +p"? +4) v(() p“’(}
Py (O—( 0w () ) & “)—[ 10 wi(Q) " 6wi(Q)]’

Oy @) _ [('2=4pp"” = 6) v(Q)  p* ¢

Q270 = 1903y 2 O=1" 0 w6 w%(o}’

W _ [ (P2 pp" +4) Cu(() | 5p? (p’2+3pp”)wi(C)_2p’2<w£2(§)]

@ (O_{ 00 wi(Q T 36 W) o wdQ) 3 wiQ) | (319
o (¢) = {(23p’2+8pp”+2) Co(Q) | 507 ¢ 4p? CwP(Q) | (11p"% + 6pp”) Cwi(C)

2 120 wi(€) T 18 w2(Q) 3 wi(0) 9 w? (C)

Ao (119" +6pp") 1
N ( 2 12 )w%(o}’
0 wi(0) [(23p’2+8pp”+2) ¢Cv'(Q) | (17p"% + 32pp" +8) Cw(() p”"C“U(C)}

By () = —Q, (C)wl(C) + 120 w1 (€) + 120 wi(¢) 32 wi(Q)

The two scaled field expansion in the Fock domain, constructed in such a way, allows us to get approximate
formulas for calculating the wave field, which depend upon the relative power of the two large parameters of the
problem My and Ay This is determined by the value of € in formula (3 7), which depends on exact parameters
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of the initial problem, namely, on k, pg, and f(0) in the vicinity of the light shadow boundary, i e, in the Fock
domain In what follows, we shall give such approximate formulas for the current on the scatterer’s surface for
two values e = 1/2 and e = 1
We would like to recall that the current I on 9% in the problem under consideration is the following quantity:
) L 2M2

Uinc + Uref) —e (Winc + Wref) (3 19)

I= Bn( n=0 £o ov

For € = 1/2 the principal summand from the part B of the initial operator has order M, 1/ 2, as follows from
formulas (3 4) and (3 6) Therefore, the summands in the aforementioned formulas (3 17) for Wi¢ that contain
the multiplier Ag/M3 must be put just after the principal summand W' of the expansion (3 1), because
the second term of this asymptotic expansion WT® has a higher order of smallness, namely, My L' In this
approximation, we arrive at the following formula for the current:

+o0 +oo
G 2M2 |1 ei¢ 1 A oo [wi2(0) ¢
I~ eths 27700 / d¢ — 0 /eMC[ LN ]d( 320
o {m_ w@ ™ T ayaMz ) O O 7w (320
If we set e = 1, it will be necessary to add to this formula the current obtained from the second term of the

asymptotics of the total field Wi + Wref because Ag/M3 has the same order M ' as the second term of the
asymptotics Differentiating the sum Wim¢ + Wre with respect to v and assuming that v = 0, we get

o .
(W11110+W1ref)
ov v=0
+oo
1 ip(0) ivc [ 2 v(Qw! (€) 5 ¢ 2wy () | 8Cwi*(C)
= sns | C{C w(@) 20O 3000 T 3w s wi0) }dC (321

— 00

and this expression should be added to the right hand side of (3 20)

Let us give some attention to the result following immediately from the previous one The scale of functions
on which the asymptotics is constructed depends on the magnitude of the oblongness of the body of revolution
in the Fock domain, i e, on the relative magnitude of the parameters Ay and My, because summands of order
M, “=0(k~°/?) arise, as well as their integer powers For e = 1, the scale of functions is O(k~™/?), exactly
coinciding with the one that arises in the classical Fock problem

4 WAVE FIELD IN THE SHADED PART OF THE FOCK DOMAIN

We would like to recall that the light shadow boundary on 9% corresponds to s = 0, and for small n, as s
increases the observation point gets into shadowy part close to the scatterer In the local stretched coordinates
o and v, this condition corresponds to o — 400 and bounded v In this case, the wave field can be obtained by
means of residues of the integrals for the total field (see [3,5])

Indeed, the integration path in the expression for the total field in all orders of the asymptotic expansion
can be taken in the form of the contour running along the two rays: one ray from the point —oc to the point
¢ = 0 along the line arg ¢ = 27/3, and the other one moving along the positive semiaxis Re¢ > 0 from ( = 0
to +o0o In the upper half plane Im ¢ > 0, the exponent exp{io(} decreases rapidly for large positive o, because
|exp{io(}| = exp{—cIm(} and it is more convenient to lift the contour of integration to the upper half plane
Here, residues arise at the poles of the integrands, which appear at the roots of the Airy function wy (¢), positioned
on the ray arg( = 7/3 Unfortunately, as the number m increases in the asymptotic series for the solution Wref,
m=0,1,2, , these calculations rapidly become more cumbrous, which is obvious from formulas (3 14) (3 17)
In these formulas, the coefficients By((), Pl(z) (¢), and Pz(j) (0), j=1,2,3,4, of polynomials in v at the functions

wi (¢ —v), as well as the coefficients ng)((), j=0,1, ng) (¢), 5 =0,1,2,3 of polynomials in v at the derivatives
of the functions w} (¢ — v) have increasing powers of the function w; ({) in the denominators, and therefore the
order of poles increases as well We emphasize that the incident field gives no contribution in this domain,
because it does not contain w;(¢) in the denominators

Below we give the results of calculations for three terms of the asymptotic expansion We would like to note
particularly that these formulas are necessary for unique construction of creeping waves arising in the shadowy
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part of the scatterer:

U(s,n) = e** {WO(U, v) + W}C(S;V) ch(;j;”) + O(k‘l)],
10(q
Wolow) = =i2Vm 3 (G = v); (41)
q=1 4
Wi(o,v) _ 2y/mp’ iota v 0% o G oV,
2173 = 1\/;;[) ~ [w?(fq)]g{(ﬂ _03q +Zg+ 4>w1(<q_V)_Z§ wl(Cq_V)}; (42)
g v w(q 4 . )
Walaw) v DI {Bz(a, un =)+ | P0G |un ¢ -v)
j=1
A .
+ 0 (0, ¢ wi (¢ (ZQ (0,6)v ) H(C—v)+ 4°[u—02]w1<<q—u>} (43)
e coefficients Bo q L% = 1,2, n Oa,q, 5 (o, GV, 1 = 1,23, a e Airy
The coefficients Ba(0,¢,), P (0,7, j = 1,2,3,4, and Q7 (0,¢,), QY (0,¢)v!, 1 = 1,2,3, at the A

function and its derivative are polynomials in o, v, {, of respective powers These coefficients are obtained
from the coefficients B2((), Pz(j) (©), 7 =1,2,3,4, and Q;l) (¢),1=0,1,2,3, of formulas (3 17) and (3 18), upon
calculating the residues at the poles of the integrands ie, at the roots of the Airy function w;({) We note that
this correspondence is violated in the coefficient Q , which is part of the coefficient Bs as well, because the
summand containing the multiplier Ag/MZ, was extracted from it (see formula (4 3))

5 CREEPING WAVES

In constructing creeping waves (see [4,5,9]), it is assumed that, unlike the Fock domain, the arc length
of the geodesic satisfies the condition s = O(1) and the scaled normal v is defined by the relation v(n,s) =
E2/321/3p=1/3 0 where p(s) is the curvature radius of the geodesic at the point s The large parameter M =
(kp(s))*/32=1/3 depends then on the arc length s and, generally speaking, the condition M > 1 leads to the
limitation of the allowable variation interval for s Consequently, we are in the vicinity of the scatterer surface
only with respect to the normal, because it is assumed now that v(n,s) = O(1) as k — o

The solution of the Helmholtz equation is sought in the form

U = exp{iks + ik'*®(s)} > Vin(s,v)k~™"/2, (51)
m=0
where
b =,y [ ) ds 62
0

and the separation constant ¢ proves then to be a root of the Airy function wq, ie, w1(¢) =0 For the sought
functions V; we obtain a recurrence system of equations

LoVo =0, LoVi+L1Vo=0, LoVo+LiVi+LVo=0, , (53)
where £;, j =0,1,2,3, , are differential operators containing the derivatives with respect to s and v Below
we list explicit formulas for the first four of them:

52 NYBip[ 9 Odlnf
£0—8V2+(V—C), Ll_(/)) 2[28s+ Py ], (54)
2\*? (10 3u2 ¢2
= 1+A)) - -
a=(2) Lo (em) =" v 55)
2\ip [((C 0 Olnf Cp alnp Oln f
= — 2 - A
£s (p) 2 [(2 V)( Os * 0s 3,0 Os 0s (56)



In the last equations, the parameter A(s) = p(s)/f(s) arises, which characterizes the oblongness of the
scatterer In our case, this parameter also represents a function with respect to the arc length s of the geodesic
on 0¥ For an elongated body it should be assumed that A(s) > 1

The boundary conditions V,,, = 0 for v = 0 on the surface of the body are added to the system of equations
(5 3) and below an analog of the “radiation” condition is formulated such that V,,, — 0 for complex v tending to
infinity A method for solving the recurrence equations (5 3) was proposed and developed in [5, Chap 3] and [9]
We shall employ this method in our considerations

Similarly to the Fock domain, in solving recurrence equations (5 3) we assume that the parameters M(s)
and A(s) are independent, and approximated formulas for calculating the wave field are proposed based on the
estimation of the relative strength of these large parameters

A considerable role in this is played by the structure of the part B of the Helmholtz operator, because the
part A does not contain the parameter A(s) in our case

The cross radius of the scatterer’s curvature occurs in the part B of the Helmholtz operator via the Lamé
coefficient h, Using relation (24) and substituting v(n,s) = k*/32'/3p=1/3 n for the normal n, we get the
following expression for h:

A(s)v dz) 57)

hy(s,v) = f(z(s)) (1 + 9M2(s) ds

From here it follows that under the condition A(s) = M?7¢(s), 0 < € < 2, analogous to condition (3 7) in the
Fock domain, h;l can be represented in the form of an expansion in powers of

A(s)v dz
2M2(s) ds’

namely,

. 1 mf As)v dz\™
Mo ) = oy 27V (vt o) (58)

Moreover, the recurrence system of equations (5 3) preserves an asymptotic nature as k — oo In the case of
€ = 0, we conclude that 216[(28()5) 4 = O(1) as k — co Expansion (5 8) becomes impossible and in Eqs (5 3) a
radical reorganization of the operators £,, is needed

Now we turn to solving Eqs (53) The solution of the main (homogeneous) equation LoVp = 0 is taken in
the form

Vo,g = Ao(s)wi (g —v),
where w ((; —v) is the Airy function, (; is the root of the Airy function with number ¢, and A (s) is an arbitrary,
for the time being, function of the arc length s of the geodesic line If we begin moving along the normal away
from the boundary 9% (|v| — o0), then for —7 < arg(—v) < —7/3 the function wq({; —») — 0 and, therefore,
it satisfies the “radiation” condition Hence, the function Vy 4 turns out to be a nonzero solution of the Sturm
Liouville homogeneous problem with the Airy operator, the Dirichlet boundary condition for v = 0, and the
“radiation” condition as |v| — oo for any Ag(s)

All the subsequent equations in system (5 3) are nonhomogeneous, for which the homogeneous equation has a
nonzero solution This leads to the introduction of a solvability condition at every step for the Sturm Liouville
nonhomogeneous problems This condition for the next approximation V; , leads to the orthogonality of the
right hand side —£;V} in the equation LoV} + £1Vp = 0 to the solution V4 of the homogeneous equation:

/£1V0 -wl(Cq — I/)dV = 0,
l

where integration proceeds along the ray argr = /3 and the expression £V} , takes the form
dAg dln f(z(s)) 2dlInp(s)

2 A
ds + A ds 3 ds

Upon calculating the corresponding integrals, a transport equation arises for the function Ag(s):

dAg 1dln f(z(s)) 1dlnp(s) B
ds * [2 ds * 6 ds }AO(S) =0

LiVo,g = |: ]wl(Cq_V)+A0Vw/1(<q_V)
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The initial value of Ag(s) for s = 0 should be added to this equation:
2y/mi
A0 = = 27 VH0)4/000
q

It emerges from the matching requirement for creeping waves with a solution for the reflected wave in the
shaded part of the Fock domain The final formula for the principal term of the asymptotics reads

Vo.u(s,v) = — 2\/7” \/ \/ —v) (59)

The subsequent terms of the asymptotic expansion for creeping waves are constructed similarly Unfortunately,
the calculations become more cumbersome with each step
The next approximation Vi 4(s,v) to the solution of the problem is found in the form

Vo) = Auto)[oa) +277 (2) Juniy ) 610

The function A;(s) = Ao(s)ai(s) is found from the transport equation, which is a necessary and sufficient
condition for solvability of the nonhomogeneous equation:

ooe™/3

/ [£1V1'%+£2‘/0~V0]d1/:0;

0

y ZC; 2 1/3 8p// 16p/2 1
- - ~la
) =)+ [ o (2) 11T
0

where the initial value of the function a;(0) is obtained by matching the solutions in the penumbra (the Fock
domain) and the shadow part for v = O(1) and equals

2\ /% iph¢?
al(O) B (Po) 4

The third term V3 4(s,v) of the asymptotic expansion of the solution reads

V(o) = { Aoy s, [ZP“ e, - (ZQ sa uile -0} 61

We are interested in the summands of the approximation to the solution that contain the ratio of curvature

moreover,

radii A(s) The polynomial P2(2) equals

2/3
P® = p?y +P<2’VZ+U[Q<2> (i) Ao(s)iA(s)} (512)

The polynomial ng ) is found, and it does not contain the ratio of curvature radii
Then we need to derive and solve a transport equation for As(s) = Ag(s)as(s), ie, for az(s) We give an
equation for as(s), taking into account only summands with the ratio of curvature radii:

ax(s) :042(0)+/S%(pé)>2/3ag;fAds+-~- (513)
0

Let us note the following circumstances In the 3D case, the construction of creeping waves is concerned with
the field of geodesic lines on the scatterer’s surface, coming off the light shadow boundary on 9% in the direction
of the rays belonging to the incident wave In the axisymmetric case under consideration, the field of geodesic
lines coincides, obviously, with meridians on 9% The multiplier \/f(0)/f(2(s)), which turns out to be common
for all terms of the asymptotic expansion, is a characteristic of the geometric spreading of this field of geodesic
lines
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6 CONCLUSIONS

Based upon the analysis of the dependence of the part B of the Helmholtz equation on the parameters M(s)
and A(s), it is ascertained that the wave field, in the axisymmetric diffraction problem under consideration,
can be described in the traditional context of the Leontovich Fock parabolic equation method, provided that
Ao = M7™¢ in the Fock domain and similarly A(s) = M(s)?~¢ in the domain of creeping waves if 0 < ¢ < 2 The
answer is also obtained in terms of Airy functions and integrals of them Moreover, the scale of functions in which
the asymptotic expansion is constructed depends on the parameter €, the magnitude of which is determined by
exact values of the parameters of the initial problem: the wave number k& and the geometric characteristics of
the scatterer’s surface p(s) and f(z(s))

The case € = 0 leads to an additional serious problem, because under this condition the expansions (3 6) and
(5 8) for the Lamé coefficient h;l cannot be used In this case, a significant reorganization of the operators
occurs in the recurrence systems of equations both in the Fock domain and in the domain of creeping waves

So, under the condition
- 2M?
ie,e=0,and as k — oo, we obtain the following expression for the operator Lo in the first of the equations (3 3)
(compare with (3 8)):

=0(1),

0

0w, | 0*W oW , B
LWy =1 Py + o2 + H(o,v) oy + (v —icH(o,v))Wy =0,
where 1
H(o,v) = 0 =

14y —02) (v—02)+1/

Let us pay attention to the fact that the variable coefficient H (o, v) in this equation proves to be singular on
the branches of the parabola v = 02 — 1/, v > 0 The coefficients in all subsequent operators of the recurrence
system (3 3) become singular as well (compare with [1]) However one can make certain that in the Fock domain,
the principal term of the incident field satisfies this singular equation and remains a smooth function with respect
to o and v; this fact indicates, in our opinion, that the method of the Leontovich Fock parabolic equation fails
in this situation

In the case of creeping waves, the equation for the principal term Vj of the asymptotic expansion reads

82V0 %(S) BVO _
ov? =+ (1+wvx(s)) ov 0
where by 3(s) we denote the function of s
_ A(s) dz
#(s) = 2M?2(s) ds

Here, the coefficient at %VVO possesses no singularity However we do not see a way to find out the initial data
for creeping waves without having a solution in the Fock domain
We would like to draw attention to additional difficulties of the diffraction problem on elongated bodies in
general, which arise in using the methods of short wavelength asymptotics Consider, for example, an ellipsoid
of revolution
22 +y? 22
a? b?
elongated along the axis z,i e, for b > a For a fixed wave number k, as b increases, the conditions of applicability
of the ray method for describing the diffraction on the cone’s edges z = £b are violated, because the curvature
radius R of the ellipsoid surface decreases at these points For kR ~ 1, the application of short wave methods
is impossible If, in addition, the angle between the incident wave and the axis z increases, the light shadow
boundary also gets closer to the vertices z = +b, and it becomes unfeasible to apply the parabolic equation
method in the Fock domain
For this reason, in our opinion, the development of a combined method in which the direct numerical methods
are used together with the short wave asymptotics is an urgent problem
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