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SYNCHRONIZING RANDOM AUTOMATA ON A 4-LETTER ALPHABET
Yu. I. Zaks* and E. S. Skvortsov* UDC 519 713 4

The paper deals with the synchronization of a random automaton that is sampled uniformly at random from the set
of all automata with n states and m letters We show that for m = 4, the probability that a random automaton is
synchronizing is larger than a positive constant Bibliography: 9 titles

1 INTRODUCTION AND THE MAIN RESULT

Let A = (Q,%,0) be a (deterministic finite) automaton, where @) is a finite set of states, ¥ is a finite input
alphabet, and 6 : Q x ¥ — @ is a transition function that defines the action of letters from ¥ on states from
) This action can be naturally extended to an action of words over the alphabet ¥; the result of applying a
word w to a state q € @) is denoted by quw:

q if w is the empty word,
w =
4 d(quw’,a) if w=w'a for a word w' and aletter a € X

A word w is called a reset word for an automaton A if it sends all states of this automaton to the same state,
ie, quw = qow for any q;1,q2 € @ An automaton A is called synchronizing if it has a reset word

Synchronizing automata have many applications in different areas: robotics, testing of systems and protocols,
symbolic dynamics, etc (see the surveys [4,6,9]) There is a number of interesting open problems concerning
them, one of which is to obtain a bound on the length of the shortest reset word in terms of the number of states
of the automaton The best currently known upper bound for an automaton with n states, equal to (n® —n)/6,
was obtained by Pin [5] in 1983 The conjecture, suggested by Cerny in the mid 1960s, that this length does not
exceed (n — 1)? is proved for some special classes of automata, but remains an open problem in the general case

In practice, slowly synchronizing automata, i e , automata with the shortest reset word of length ©(n?), are
exceptionally rare ! From the viewpoint of practical applications of synchronizing automata, it is of importance
to study the behavior of the shortest reset word on the average The results of numerical experiments (see,
e g, [7]) show that it differs substantially from the behavior in extreme cases, which is traditionally the main
focus of study in papers on synchronizing automata

In what follows, by a random variable we mean a discrete random variable, without explicitly mentioning this

Now we give a rigorous definition of a random automaton and formulate the questions about its synchronization
properties we are interested in

Consider a set of states ) and an alphabet ¥ Pick a transition function § uniformly at random from the
set of totally defined functions {6 : @ x ¥ — @} The obtained triple (@), %,0) determines a random finite
deterministic automaton It is worth mentioning that a random automaton can be constructed as follows: for
each state ¢ € Q and each letter a € 3, pick ¢’ = 6(q, a) uniformly at random from @ By “picking uniformly at
random” we mean that every object can be picked with equal probability

We consider the following problems

(1) What size of the input alphabet guarantees that almost all automata over an alphabet of this size are
synchronizing, and what is the most probable length of the shortest reset word for such automata? (By
“almost all automata” we mean a fraction of automata that tends to 1 as n — oo We will also say that
an assertion satisfied for almost all objects holds “with high probability ")

(2) What size of the input alphabet guarantees that almost all automata over an alphabet of this size are
synchronizing and satisfy the Cerny conjecture?

(3) What size of the input alphabet guarantees that a random automaton over an alphabet of this size is
synchronizing with finite probability? (By “finite” probability we mean a probability bounded from
below by a positive constant as n— oo )
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In [8], we gave partial answers to the first two questions for automata with n states and m(n) letters (the
number of letters depends on the number of states) In this paper, we address the third question and show that
a random automaton with the alphabet size independent of the number of states is synchronizing with finite
probability Our main result is the following theorem

Theorem 1. There ezists a constant pg > 0 such that for every positive integer n, the random automaton
A=(Q,X%,0) with |Q| =n and || = 4 is synchronizing with probability greater than py

Note that experimental results suggest that in fact a much stronger assertion holds: the random automaton
A =(Q,%,5) with |Q| = n and |X| > 2 is synchronizing with probability that tends to 1 as n — oo However,
at the moment, Theorem 1 is the best result we can prove

2 THE PROOF OF THE MAIN RESULT

First we prove the following technical lemma

Lemma 1. Let X be a random variable taking values in the interval [0,1] Then

E (X)
P(X>E(X)/2) >
(X2BX)/22, “p
Proof Let ¢ be a constant such that 0 < ¢ < 1 In the definition of the expectation of X, we estimate the values
of X that do not exceed ¢ by ¢, and the values of X that exceed ¢, by 1 This yields the following inequality:

E(X)<P(X<c)+(1-P(X <0)),

or
1-E(X)
P(X<e¢)<
(x=os !B,
or
E(X)-c
P(X>c¢) >
(X 20)2 1-c
Taking ¢ equal to E (X) /2, we complete the proof O

Let u, v be a pair of states of the random automaton A = (Q, X, d) For this pair, we define a process RoomBA
whose aim is to find a word w = a1 - - - a; such that uvw = vw

At the first step of the process, we pick a letter a; € ¥ at random and jump from uy = u to u; = ugay
and from vg = v to vi = vpa; If u; = vy, then the process halts and outputs the word w = a;; otherwise it
continues

At the mth step, we find ourselves in states u,,—; and v,,—1 (We may have already visited one or both of
them at previous steps ) Choose a letter a,, that has not yet been applied to at least one of the states u;,—1
or v,—1 If we can choose such a letter, then we use it to jump from the states u,,—; and v,,—1 to the states
U, = Wy,_1a, and v, = v,,_1a, respectively, as at the first step We say that this is a key jump of the process
If u,, = v, then the process halts and outputs the word w = a1a2  a,,; otherwise it continues

If we cannot choose such a letter (which means that we have already applied all letters of the alphabet to
each of the states w,,_1, v;,—1), then we do the following Perform a breadth first search for a state to which at
least one letter has not been applied and which can be reached from the states u,,—; and v,,_; simultaneously
If it cannot find such a state, our process fails Otherwise we have found a state that can be reached, say, from
the state u,,—; via a word z € ¥* Jump from u,,_; and v,,—1 to u,, = w,,—1z and v, = v,,,_12, respectively,
and continue the process This part of the process will be called the search for a word z

Note that the process ROOMBA is similar to the process VAcUUM from [8], the only difference being in the
rule for choosing a letter or a word for the next step A formal description of the process ROOMBA is given in
Fig 1

Observe a number of useful properties of the process ROOMBA applied to an automaton on a two letter
alphabet

Proposition 1. Let A = (Q,X,9) be a random automaton with |Q| = n and |X| =2 Then the process ROOMBA
applied to any pair of states u,v € Q) outputs a word w after a key jump with probability 1/n
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INpUT: A random automaton A = (Q,%,d) and a pair of states u € Q,v € @
Outrput: Fatlure or a word w = a;  aj such that uw = vw
METHOD:
let A, C Y, weX*
set Ay =0 forallqe Q,w=c¢
while uw # vw
if Ay NAyy # X, then the key jump
choose a € ¥\ (Ayyw NAyy)
set Ay = Auw U{a}, Avy = Ay U {a}
set w = wa
otherwise
search for a word z
set w = wz
output w

Fig 1 The process ROOMBA

Proof By the definition of a key jump, it involves a letter a; that has not been applied to at least one of the
states u;_1 or v;_1, say u;—; Hence we pick a state u; uniformly at random from @, and it will coincide with
a given state v; with probability 1/n O

Proposition 2. There exists a constant ¢; > 0 such that for an arbitrary random automaton A = (Q, X, 9) with
|Q] = n and || = 2, the process ROOMBA applied to any pair of states u,v € Q performs a key jump at least
cin times with high probability, unless it outputs a word w earlier

Proof First we show that an arbitrary subset of states from @ of size less than n/e has an outgoing edge with
high probability For a fixed set of states of size m with m < n/e, the probability that it has no outgoing edge
is (m/n)*™ The total number of such sets of size m is () < (’;ne)m It follows from the Boole inequality (for
brevity, the trivial estimate that bounds the probability of the union of events by the sum of their probabilities
will be called the Boole inequality) that the probability that there exists a set of size m without outgoing edges

is less than
m\2m rne\m me\™m
) G) =00) =0
n m n n—oo

Summing over all such m, we see that all sets of size less than ¢;n for some constant ¢; with 0 < ¢; < 1/e have
an outgoing edge with high probability It easily follows that from every state q € ) one can reach at least c;n
states with high probability Moreover, the constant ¢; depends neither on the type of the automaton, nor on
the number of its states

Thus the breadth first search for a word z at some step of the process ROOMBA will perform at least cin
steps, unless it successfully outputs the answer earlier By the finiteness of all objects, for the process as a whole
there are two possibilities: either at a certain moment it performs the required number of steps in the search, or
it outputs a word w earlier

Observe that, by the definition of the search, the paths from u,,_; and v,,_; marked by the word z include
only edges that have been used earlier The fact that we encounter an unknown edge means that we could
complete the search with a shorter word z Thus we use an edge for the first time only in a key jump

The fact that the search started at some state u; has performed c;n steps means that in the automaton there
are 2c1n edges we have already examined All these edges have been once used for the first time, i e , a key jump
has been performed at least ¢;n times O

The established properties allow us to prove the following lemma

Lemma 2. There exist constants pyg > 0 and cog > 0 such that for every positive integer n and every random
automaton A = (Q,X,d) with |Q| = n and X = {a, b}, the probability of the event

{(u,v) € Q% | 3w uw = vw}|

2 > Co

n
is greater than po In other words, a finite fraction of pairs of states in the random automaton can be synchronized
with finite probability
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Proof Let us take a pair of states (u,v) € @ x @ and try to synchronize it by the process RoomBA By
Proposition 2, a key jump will be performed at least ¢in times for a constant ¢;, unless the process successfully
outputs the answer earlier By Proposition 1, each key jump leads to synchronization with probability 1/n The
key jumps are independent, so that, applying the Boole inequality over all key jumps, we see that a pair of states
can be synchronized with probability bounded from below by a constant ¢,

Therefore, the expectation of the random variable

{(u,v) € Q x Q| FJw uw = vw}|
is greater than can? Applying Lemma 1 to the random variable
w,v) €Q X Q| Jw uw = vw}|
n2
completes the proof O

ol

Proof of Theorem 1 Let ¥ = {a,b,d, f} By Lemma 2, with a finite probability py there exists a subset T' C
Q x @ such that |T| > con® and every pair of states from 7' can be synchronized by a word w; over the alphabet
{a,b} We will show that for every pair of states not from 7', there exists a path from it to a pair of states from
T

Consider an arbitrary pair of states u,v € @ \ T In the proof of Proposition 2 we showed that the number
of states that can be reached from a fixed state with high probability is not less than c3n for some constant cg
Then, starting from the state u and using words over the alphabet {d, f}, we can reach at least c3n states for
some constant cg Visit all these states by a breadth first search, simultaneously making the same jumps from
the state v. We will thus obtain c3n pairs of states, including at least “3" distinct ones The probability that a
set of “" random pairs is disjoint with 7" is bounded from above by (1 — ¢0)"/?, which tends to 0 as n — oo
Denote by wy the word in the alphabet {d, f} that corresponds to the path leading from u, v to a pair from T

Applying the Boole inequality over all pairs of states, we see that with finite probability each pair of states of
the automaton will be synchronized either by the word w; or by the word wew; As is well known [3], if every
pair of states of an automaton can be synchronized, then the automaton is synchronizing O
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