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COMPLEXITY OF COMPUTATION IN FINITE FIELDS

S. B. Gashkov and I. S. Sergeev UDC 512.624

Abstract. We give a review of some works on the complexity of implementation of arithmetic operations
in finite fields by Boolean circuits.

Introduction

Efficient implementation of arithmetic in finite fields is of primary importance for cryptography,
coding theory, digital signal processing, etc. (see, e.g., [2, 3, 24, 26, 27, 29, 30, 83, 103, 104]). In this survey,
we consider only Boolean circuits for arithmetic operations in finite fields. Another term is bit-parallel
circuits. Boolean circuits for multiplication and inversion in finite fields are implemented physically
on chips and are tailored for particular applications. These circuits are usually called multipliers and
invertors. In practice, the main interest lies in fields of characteristic 2, but some fields of odd characteristic
are also involved. In the latter case elements of a field are coded by binary strings. Boolean circuits are
composed from Boolean two-input cells (or gates) AND, NAND, OR, NOR, XOR, XNOR, connected by
wires. The depth of a given circuit is the length of the longest directed path, connecting a primary input
and an output of the circuit. The complexity of a given circuit (in other words, the size of a circuit) is the
number of cells in it. This notion is very close to the notion of bit complexity of computation (program).
All necessary definitions may be found in [50, 99, 138]. Minimization of the depth and the complexity of
circuits is a central and practically important problem in complexity theory.

In practice, often the so-called circuits with memory (i.e., finite automata) are exploited. Numerous
papers deal with the implementation of finite field arithmetic on such circuits. This subject needs a special
review and is not included in the survey.

In some theoretical papers on computer arithmetic, Turing machines are used as a computational
model. They function via reading and overwriting information stored on a tape by a read/write head (i.e.
as an automaton). Various types of Turing machines are known: multitape, pointer, with memory, etc.
As far as this concept is mainly of theoretical interest, it is also omitted in the review.

A computer program is a popular model to implement finite field arithmetic. If a program does not
include cycles and conditional jumps, it appears in fact to be a nonbranching program. The latter notion
can be formalized in such a manner that it will turn out to be identical with the notion of circuit. The
execution time of the program can be roughly estimated by the complexity of the corresponding circuit.
To be more accurate, one must keep in mind that the execution time of different primitive operations
on a computer differs. Further in the review, some results concerning program implementation are also
mentioned, though it can be the subject of an individual review.

A field of order q is denoted by GF (q). Elements of GF (qn) may be represented by polynomials over
GF (q) of degree at most n − 1. If elements of GF (qn) are represented in the standard basis

Bα = {α0, α1, . . . , αn−1}
(the element α ∈ GF (qn) is called the generator of Bα), then multiplication in Bα amounts to polynomial
multiplication modulo an irreducible polynomial g(x) over GF (q) such that g(α) = 0. If the conjugate
elements α, αq, αq2

, . . . , αqn−1
are linearly independent over GF (q), then they form a basis

Bα =
{
αq0

, αq1
, . . . , αqn−1}

,

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 4, pp. 95–131, 2011/12.

1072–3374/13/1915–0661 c© 2013 Springer Science+Business Media New York 661



which is called a normal basis with generator α. (Theoretical background on finite fields may be found
in [83, 96].) The complexity of implementation of multiplication and inversion in GF (q) are denoted
by M

(
GF (q)

)
and I

(
GF (q)

)
, respectively. We also introduce the notation DM

(
GF (q)

)
and DI

(
GF (q)

)
,

respectively, for the depth of the operations.
Similar notation is used for other operations. Sometimes it is convenient to consider calculations

over a subfield GF (p). For corresponding complexity and depth measures we use the same notation with
superscript (p) like M(p)

(
GF (q)

)
or D(p)

I

(
GF (q)

)
.

1. Integer Arithmetic

Circuits implementing elementary numeric operations (namely, operations modulo p, where p is prime)
are used as building blocks for circuits implementing operations in finite fields (of order pn). This is why
we discuss also some issues related to implementation of integer arithmetic.

1.1. Addition. At first sight it may be striking, but even the problem of synthesis of efficient (in one or
another sense) circuits for addition or subtraction is not trivial. Various circuits are described in books
and papers on computer arithmetic. We list some theoretical results below.

The complexity of addition (subtraction) of n-bit numbers (corresponding circuits are usually called
adders or subtractors) is known to be A(n) = 5n − 3, due to N. P. Red’kin [118]. Such circuits are easy
to build but the lower bound proof is rather complicated (in [118], the tight complexity of an adder built
from conjunctions, disjunctions and negations is also found).

The problem of minimization of the depth of an adder appears to be complicated even in con-
structing aspect. A method due to V. M. Khrapchenko [89] allows one to build an adder of depth

log n +
√(

2 + o(1)
)
log n (here and further on “log” denotes binary logarithm); the complexity of this

circuit can be reduced to
(
8 + o(1)

)
n [62]. In practice, when n is no more than several thousands, other

methods result in better circuits.
Some techniques for building such adders are presented in [62] (including a ternary method due to

M. I. Grinchuk with depth bound 1.262 log n + 2.05).
Recently Grinchuk invented an adder with depth log n+ log log n+6 [76]. This adder is also the best

known for small values of n.
Khrapchenko [91] at 2007 proved the following lower bound for the depth of an adder (built of AND,

OR, and NOT cells):
log n +

(
1 − o(1)

)
log log log n.

1.2. Multiplication. Numeric multiplication is evidently a more complex operation than addition. The
reader can find a comprehensive analysis of theoretical aspects of implementation of multiplication in [20].
In the present paper, we briefly consider both practical and theoretical aspects.

The complexity of multiplication of n-bit numbers is denoted by M(n). It is well known that the
complexity of a standard multiplier is 6n2 − 8n + O(1) (clearly, one should use binary, not decimal,
version of the algorithm).

It is less evident that a standard multiplier can be constructed so that its depth is reduced to O(log n)
(using a method proposed independently by G. K. Stolyarov [130], A. Avizienis [7], Yu. P. Ofman [86],
and C. Wallace [137]).

Minimization of the depth of a standard multiplier is one of the extensively studied problems of com-
puter science. Essential results related to the problem have been established by V. M. Khrapchenko [90].
A trick from [48] allows one to reduce the multiplier complexity to 5.5n2 − 6.5n.

To the best of our knowledge, the best current asymptotic upper bound is 4.44 log n + O(1) (see
[77, 116, 117]). A more practical method leads to the depth estimate 5 log n + 5 [127]. This method also
provides a benefit in terms of complexity.

The earliest method of reducing the complexity of an integer multiplier is due to A. A. Karat-
suba [86] (at that time he was a post-graduate student of Moscow State University; the problem was set
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by A. N. Kolmogorov). He made an interesting historical review on fast arithmetic algorithms in [85].
The recursive complexity estimate of Karatsuba’s integer multiplier is

M(2n) ≤ 3M(n) + 52n − 9.

The upper bound for n = 2s is1

M(n) ≤ 1463
54

· nlog 3 − 52n + 4.5.

Karatsuba’s multiplier has lower size than a standard one for n ≥ 17. But its depth is O(log2 n). Similarly
to the case of a standard multiplier, the depth of Karatsuba’s multiplier can be reduced to O(log n)
(see, e.g., [138]). In [43], a somewhat better construction was presented,2 but in any case multiplicative
constants in estimates for depth and complexity are exceedingly large for practical applications (the depth
of Karatsuba’s multiplier can be further reduced to

(
10 + o(1)

)
log n, causing a further increase of the

multiplicative constant in the complexity estimate [127]).
An asymptotically better multiplier was constructed by A. L. Toom [134] (at that time he was

a student of Moscow State University; his scientific adviser was O. B. Lupanov). Constants in Toom’s
estimate were subsequently refined; S. Cook in his thesis [46] adapted the method to Turing machines;
A. Schönhage developed a modular method with a similar complexity estimate (the reader can find a more
detailed review in [93]).

Toom’s multiplier was improved by A. Schönhage and V. Strassen [123] (see also [70]). The com-
plexity of the last multiplier is O(n log n log log n), and the depth is O(log n) (more precisely, a bound(
9 + o(1)

)
log n can be achieved [127]). It was also claimed in [123] that the same complexity estimate is

valid for Turing machine multiplication.
The best known multiplier can be constructed by M. Fürer’s method [58] (2007); its complexity is

n log n2log∗ n,

but its depth is O(log n log∗ n) (worse than in Schönhage–Strassen’s method). Here log∗ n is a very slowly
growing function defined by ⌊

log . . . log︸ ︷︷ ︸
log∗ n

n
⌋

= 1.

In [47], a modular version of Fürer’s algorithm was posed.
Evidently, neither of the last two multipliers can find applications in cryptography, due to large

multiplicative constants in the estimates. Some ways for speeding up program implementation of Schön-
hage–Strassen’s algorithm were considered in detail in [74].

Pollard’s multiplier [103,109] seems to have more chances for finding practical applications, but also
could not be used in cryptography. It was noted by Ya. V. Vegner that the complexity of Pollard’s
multiplier is less than Karatsuba’s one only for n > 222. In that paper, the bounds 30 634n log n + 393n
for the complexity and 349 log n + 50 for the depth of Pollard’s circuit were claimed under the restriction
n < 201 326 604.

Asymptotic efficiency (and practical inefficiency) of all the above methods (except Karatsuba’s and
Toom’s ones) relies on multiple implementation of Fast Discrete Fourier Transforms (either under the
complex field or under Fermat residue rings).

From the practical point of view, Toom’s method is the best known. Using Toom’s method, A. A. Bur-
tzev has built a multiplier with recursive estimate of complexity

M(4n) ≤ 7M(n) + 662n + 1085,

1The bound given in [86] is M(n) = O(nlog 3). Constants in the above and below formulas were obtained by A. A. Burtzev
in his degree work.

2The benefit of this construction was confirmed by V. V. Baev in his degree work.
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which leads, for n = 4s, s ≥ 4, to the upper complexity bound

M(n) ≤ 402.5nlog4 7 − 662
3

n − 1085
6

.

In particular, M(1024) ≤ 1 279 651. Karatsuba’s method gives a worse bound in this case. With the use
of technique from [43], the depth of Toom’s multiplier can be reduced to O(n log n).

1.3. Division. The “school” division method allows one to build a circuit for division of a 2n-bit number
by an n-bit one of complexity O(n2) and depth O(n log n). Best of the analogous circuits known in
computer arithmetic have the same complexity, but depth O(n).

Efficient implementation of division (including depth minimization) seems to be an even more compli-
cated problem than multiplication. However, it can be reduced to multiplication via the Newton–Raphson
method.

The reduction was accomplished in [46] (see also [61,93]). The complexity of Cook’s circuit is asymp-
totically five times greater than that of a multiplier, and the depth is O(log2 n). However, if n is small,
then school division circuits have less complexity and slightly more depth.

The method of [119] allows one to reduce it to O(log n log log n). The size is of the same order as for
O(log n)-depth multipliers in both cases. Employing Fürer’s technique leads to a circuit with somewhat
higher estimated depth.

In [19], a circuit for division of depth O(log n) and complexity O(n5) was produced. In [80], division
circuits of depth O(ε−2 log n) and complexity O(n1+ε) for any positive parameter ε were constructed.

However, all proposed methods except for the first one seem to be of academic interest only.

1.4. Prime Field Arithmetic. Arithmetic in a finite field of prime order p is just the integer arithmetic
modulo p. The complexity of multiplication modulo any natural p is not greater than 3M(log p)+O(log p).
To get this estimate one can perform the usual multiplication, then calculate the remainder of division of
the �2 log p�-bit product by the �log p�-bit number p. The latter operation may be implemented by the
so-called Barret’s method [16] (see also [61, 104]). It is very likely that this method originates from the
papers [46,131]. For some particular moduli like p = 2n ± c, c = O(log n), the above complexity estimate
may be improved to M(log p) + O(log p).

The complexity of addition (or subtraction) modulo an n-bit number p can be estimated as 2A(n) +
O(1). For Mersenne primes p = 2n − 1 this bound can be reduced to A

(
GF (p)

)
= 7n − 5. The depth in

the last case is the same up to O(1) as the depth of integer addition-subtraction. The same depth bound
holds also for a Fermat prime p = 2n + 1; the complexity in this case is A

(
GF (p)

)
= 9n + O(1).

Multiplication by 2k in the Mersenne prime field for any integer k amounts to the cyclic shift, which
costs nothing in terms of circuit complexity. The complexity of multiplication by integer C, where C mod p
can be represented as a sum of l(C) powers of two, can be estimated as M(C, p) ≤ (l(C) − 1)A

(
GF (p)

)
.

For instance, M(17, p) ≤ A
(
GF (p)

)
.

Analogously for multiplication by 2k in Fermat prime field the following complexity and depth esti-
mates can be obtained:

M(2k, p) ≤ 5A(GF (p))
9

+ O(1),

DM(2k, p) =
(
1 + o(1)

)
log n ≤ 2 log n.

In the general case of multiplication by C, the complexity estimate takes the form

M(C, p) ≤ (l(C) − 1)A
(
GF (p)

)
+

(
5n + O(1)

)
l(C).

For instance, M(3, p) ≤ 14A
(
GF (p)

)
/9 + O(1).

The estimates 6n2−n+O(1) and 4.44 log n+O(1) are known for complexity and depth of a standard
multiplier modulo a Mersenne prime p. In the Fermat case, analogous estimates are 6n2 + 11n + O(1)
and 4.44 log n + O(1).

664



2. Multiplication in General Finite Fields

Let Mq,f (n) be the total number of operations over GF (q) (or the complexity over GF (q)) required
for multiplication of polynomials modulo f , deg f = n. Similarly one can define multiplicative complexity
mq,f (n) and additive complexity aq,f (n) (i.e., the number of multiplicative and additive operations over
GF (q), respectively). Then

M
(
GF (qn)

) ≤ Mq,f (n)M
(
GF (q)

)

for any irreducible polynomial f(x) over GF (q). To be more precise,

M
(
GF (qn)

) ≤ mq,f (n)M
(
GF (q)

)
+ aq,f (n)A

(
GF (q)

)
.

We also use the notation Mq(n) for the complexity over GF (q) of multiplication of polynomials of degree
less than n. Analogously mq(n) and aq(n) denote multiplicative and additive complexity.

Strassen’s method [131] (see also [70]) implies that for any f

mq,f (n) ≤ 3mq(n), aq,f (n) ≤ 3aq + O(n).

In [61], another algorithm with the same complexity estimate was proposed. The algorithm is a polynomial
analogue of Barret’s algorithm (as well as Barret’s algorithm is its numeric analogue). If f(x) is a sum of
k monomials, then

Mq,f (n) ≤ Mq(n) + (2k + 1)n,

and if q = 2 then
M2,f (n) ≤ M2(n) + kn.

It is a well-known hypothesis that one can always choose an irreducible polynomial f with k ≤ 5. There-
fore,

Mq,f (n) ≤ Mq(n)
(
1 + o(1)

)
.

In [122] (see also [70]), it is proved that the estimates

mq(n) = O(n log n), aq(n) = O(n log n log log n)

can be achieved simultaneously. In [41], a multiplicative constant in this estimate was refined. But both
methods seem not to be applicable in cryptography or coding theory for the reason that this constant is
too large.

It is known (see, e.g., [109]) that in the case 2n−1 ≤ q the multiplicative complexity of multiplication
in GF (qn) is 2n− 1. The main idea of the upper bound was proposed by A. L. Toom [134] and the proof
of the lower bound is due to S. Winograd (see, e.g., [24]).

It was shown by the Chudnovsky brothers [45] that in the general case the multiplicative complexity
is O(n) as well. More accurate estimates were obtained in [128]. However, as it is known now, both papers
contain shortcomings in the proofs. One can find correct proofs and improved estimates in several papers
by Ballet et al. (see paper [15] and the references therein). On the other hand, the additive complexity
of these methods is not that low. Therefore, the above methods seem to have no practical applications.

2.1. Polynomial Multiplication. First, consider the case of binary polynomial multiplication. The
complexity and depth estimates of the “school” method are

M(n) = n2 + (n − 1)2, DM(n) = 1 + �log2 n�.
For n ≈ 1000 one has M(n) ≈ 2 000 000, D(n) = 11.

The recursive complexity estimates for Karatsuba’s method look as follows:

M(2n) ≤ 3M(n) + 7n − 3, M(2n + 1) ≤ 2M(n + 1) + M(n) + 7n − 1,

implying for n = 2k, k ≥ 3, the following relations:

M(n) ≤ 103
18

3k − 7n +
3
2
, DM(n) ≤ 3k − 3.

In particular, for n = 1024 we have M(n) ≤ 330 725, D(n) ≤ 27.
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Using Schönhage’s [122] FFT method, a circuit for cyclic convolution with complexity Z(2187) ≤
428 351 and depth DZ(2187) ≤ 46, or a circuit with bounds Z(2187) ≤ 430 537 and DZ(2187) ≤ 34 can
be constructed. As a corollary we have

M(1024) ≤ M(1093) ≤ 430 537, DM(1024) ≤ DM(1093) ≤ 34.

In this case, Karatsuba’s multiplier is more efficient.
On the other hand, Karatsuba’s method for convolution allows one to build circuits with

Z(2048) ≤ 998 216, DZ(2048) ≤ 30.

In this case, the FFT method is preferable.
Another example: multiplication modulo x1458 +x729 +1 can be implemented using the FFT method

with complexity 273 850 and depth 33. In this case, Karatsuba’s method again comes into play.
So, the point where Schönhage’s multiplier becomes advantage over Karatsuba’s one lies somewhere

after n = 1000.
In [21], one can find accurate estimates of the complexity of the multipliers of binary polynomials of

small degrees based on the methods of Karatsuba and Toom.
There also exists D. Cantor’s method [40] for polynomial multiplication over finite fields. The asymp-

totic complexity of this method is slightly greater than the FFT method (e.g., O(n log1.59 n) for multi-
plication over GF (2) and O(n log2 n) for multiplication over any finite field), but for some medium-sized
fields Cantor’s method may be preferable. In [69], a modification of Cantor’s method and some applica-
tions to polynomial factorization were considered. An improved version of the algorithm was proposed
by Gao and Mateer (see [102]).

Cantor’s method can be viewed as some refinement of Toom’s method. For interpolation it exploits as
nodes elements of affine subspaces over GF (2) of appropriate extension field GF (2n). Here the polynomial
whose roots are the above nodes has few nonzero coefficients. So the interpolation polynomial is easy
to calculate. Certainly, it is more efficient to choose the roots of the binomial xn − 1 as nodes. This
is equivalent to using a Discrete Fourier Transform (DFT) of order n. To implement an n-point FFT,
one requires O(n log n) operations in the minimal field GF (2m) containing all nth roots of unity. It is
clear that 2m > n. Therefore, the complexity of multiplication in the field GF (2m) (the best known
Schönhage’s method is used) is greater than Ω

(
log n(log log n)(log log log n)

)
. Hence the total complexity

of multiplication of n-degree polynomials over GF (2) following the above way can be bounded as

Ω
(
n log2 n(log log n)(log log log n)

)
.

This bound is not easy to achieve following this way, because n must divide 2m − 1, which prevents it
from having the form 2k, which is convenient to perform DFT fast, and rarely allows one to have the
form 3k or 5k. Nevertheless, sometimes this bound is achievable. Following the method from [60], consider
n = 2p−1, where q = 2p−1 is a Mersenne prime. For multiplication of n-degree polynomials over GF (2) it
is sufficient to multiply these polynomials as polynomials with integer coefficients 0, 1. The last operation
may be performed as the multiplication of polynomials over GF (q) with the use of a 2n-point FFT over
GF (q2). It is known that (2n/2 + 3n/2i)2 ∈ GF (q2) is a 2nth root of unity, where i ∈ GF (q2) is the root
of the irreducible polynomial x2 +1 over GF (q). As was proved in [60], a 2n-point FFT over GF (q2) may
be computed using (3/2)n log n + O(n) multiplications and 6n log n + O(n) additions in the field GF (q).3

From [60, formula (3)] it follows that

mq(n) ≤ 9
2
n log n + O(n), aq(n) ≤ 18n log n + O(n),

3In [60], the formula for a primitive 8th root of unity was printed incorrectly. The proper one is ε = 2−(p+1)/4(1 + i).
Also the number of additions required for the computation of an n-point FFT was given inaccurately. The right number is
3n log n.
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whence the complexity of multiplication of n-degree polynomials over GF (2) is

M2(n) = aq(n)A
(
GF (q)

)
+ mq(n)M

(
GF (q)

)
=

9
2
M(p)n log n + O(np log n) = O

(
(p log p log log p)n log n

)
.

Note that the multiplicative constant in the above estimate is rather large owing to the large constant
in the estimate of M(p). The number n has a special form (for other n the constant would be even
larger). Moreover, it is still an open question whether the set of Mersenne numbers is infinite. Let p = 17,
q = 217 − 1, n ≈ 216. Then

M2(n) ≈ 27 · n log3(2n) = 21617327.

This bound is close to the complexity of standard school method of multiplication. Hence, the given
method of multiplication is better than the standard method only if n is greater than 70 000.

Program implementation of the above method seems to be more challenging. As follows from [60],
the multiplication of polynomials of degree n < 2p−1 over GF (q), where q = 2p − 1 is a Mersenne prime,
may be performed by (9/2)n log n + 58n + 1 operations in GF (q2) (in [60] the last bound was printed
incorrectly). If multiplication and addition tables for GF (q2) are stored in a computer memory (it is
enough to keep only the table of volume (n−1)q2 ≤ q3/2 for multiplication on nth roots of unity, because
each of n general multiplications may be performed using 6 operations modulo q), then for q = 127 the
given method of multiplication for 63-degree polynomials uses almost the same time as the school method.
However, to multiply polynomials of higher degrees, one should increase the field order (and consequently
the size of computer memory).

After having read this, the reader can appreciate Schönhage’s trick [122]. Schönhage’s technique
for polynomial multiplication involves FFT in the ring GF (2)[X]/(xn + 1) and leads to the complexity
bound O(n log n log log n). Strangely enough, this estimate is still not so widely known: the authors know
several papers with similar of weaker results in which [122] is not cited. For instance, in [136] a later
paper followed (and DFT is used for division instead of using Strassen’s trick mentioned above, which
seems unknown to the author of [136]).

Various aspects of program implementations of multiplication of polynomials over both binary and
any field GF (p), including algorithms based on methods of Karatsuba, Toom, Schönhage, and D. Cantor,
are discussed in [9, 30, 32, 79, 104, 110]. In [56], there was suggested one more algorithm for program
multiplication modulo an irreducible trinomial based on multiplication of a Toeplitz matrix by vector. It
is not clear whether the algorithm [56] is faster than the algorithms [79], since the work [79] was not cited
in [56] (though the authors of both papers work in the same institute).

2.2. Multiplication in Standard Bases. Various architectures of multipliers for standard bases were
proposed in [54,78,101]. Generally, the complexity and depth of these multipliers are estimated as O(n2)
and O(log n), respectively.

In [4], it was shown that sometimes using a standard basis with irreducible polynomials of maximum
weight, i.e., polynomials of the form

1 + x + · · · + xm−1 + xm+1 + · · · + xn,

offers a benefit.
A close idea was used in [49]. More exactly, it was suggested that, instead of a given irreducible

polynomial, one takes a trinomial divisible by this polynomial and then perform multiplication modulo
this trinomial (in this case the field is embedded into the ring modulo the trinomial). Also in [49] were
given corresponding tables of such trinomials. It is also stated that sometimes this trick is more efficient
than using irreducible pentanomials. To get it, the trinomial is to be chosen in such a way that its middle
term has a degree not less than a half of the leading term’s degree. This can always be done, because the
tables for any trinomial include its reciprocal.

A similar idea, but using xn − 1 instead of a trinomial, was suggested in some works about the
so-called redundant bases. One more possibility of speeding up modular multiplication is based on the
Montgomery method (see, for example, references in [30]).

667



Multipliers of asymptotic complexity O(nlog 3) can be constructed following Karatsuba’s method.
Some aspects of application of Karatsuba’s method to multiplication in GF (2n) are discussed in [111,113].

For example, multiplication in GF (21024), when an irreducible polynomial is taken to be

x1024 + x19 + x6 + x + 1,

can be implemented by a circuit with

M
(
GF (21024)

) ≤ 356 865, DM

(
GF (21024)

) ≤ 31.

2.3. Multiplication in Normal Bases. Numerous methods for multiplication in normal bases are
known by now, e.g., [25, 28, 72, 83, 100, 120]. Let T = (ti,j) be a matrix whose ith row is the vector of
entries of ααqi ∈ GF (qn) with respect to a normal basis Bα. The number of nonzero entries in the
matrix T is called the complexity of the basis Bα and is denoted C(Bα). If

ξ =
n−1∑

i=0

xiα
qi

, ζ =
n−1∑

j=0

yjα
qj

are some elements of GF (qn), then the product π = ξζ may be computed by the formula

π =
n−1∑

m=0

pmαqm
, pm =

n−1∑

i,j=0

ti−j,m−jxiyj = A
(
Sm(x), Sm(y)

)
,

where Sm(v) is the cyclic shift of a given vector v by m positions, A(u, v) is the bilinear form associated
with the matrix A = (ai,j), with the condition ai,j = ti−j,−j , and indices i − j and −j are handled
modulo n. This Massey–Omura algorithm [100] for multiplication over normal basis B in GF (qn) requires
n(2C(B)+n− 1) operations over the subfield GF (q). In [120], a more efficient algorithm with the bound
n(C(B) + 3n − 2)/2 was proposed. But both these bounds are at best quadratic in n, and cubic in the
worst case.

Alternatively, an idea of transition to the standard basis representation of the field elements may be
exploited. The asymptotically fast polynomial multiplication algorithm with Strassen’s trick for modular
reduction are to be used to implement multiplication in the standard basis.

The usual method for implementation of such transition rests on the fact that transition is a linear
operator over the subfield GF (q). Thus, the transition can be implemented by a circuit of O(n2/ logq n)
complexity and O(log n) depth. This is a corollary to a classical result due to O. B. Lupanov [98, 99].
In [126], circuits for transition between standard and normal bases with complexity O(n1.806) and depth
O(log n) were constructed. (The same estimate for the complexity of single-direction transition had
been proven earlier in [84] with a worse depth bound.) Such transition circuits allow one to perform
multiplication in GF (qn) using O(n1.806) operations over GF (q) in depth O(log n). Exploiting a new
algorithm for the Frobenius operation [87,135], Sergeev [126] estimated the complexity of the method as
O

(
n1.667 +

√
n(n log q)1+o(1)

)
.4 In [126], another construction for transition circuits was proposed, which

implies for any normal basis B that the following estimates hold simultaneously:

M(q)
(
GF (qn)

)
= O(

√
nC(B) + n1.667 + n1.5 log q log n log log n),

D(q)
M

(
GF (qn)

)
= O(

√
n log q log n).

In particular, if B is a low complexity basis, i.e., C(B) = O(n1.167), and q is small enough, i.e.,
log q = o(n0.167), then M(q)

(
GF (qn)

)
= O(n1.667). But multiplicative constants in the estimates above

are pessimistic.
For some special but important cases, better bounds are known. Normal bases in GF (qn) of the

minimal complexity 2n − 1 are called optimal normal bases (ONB). All these bases were enumerated
in [108]. Any ONB belongs to one of three types. ONB of type I exists if and only if n + 1 = p is

4The frequently used constant 1.667 is the exponent of special rectangular matrix multiplication [81].
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a prime number and q is a primitive element modulo p. Type II and III ONB exist if and only if q = 2m,
(m, n) = 1, 2n + 1 = p is a prime, and either 2 is a primitive element modulo p (type II) or n is odd
and −2 is a primitive element modulo p (type III). The type II or III basis is generated by the element
α = ζ + ζ−1, where ζ ∈ GF (q2n), ζp = 1, ζ 
= 1, and coincides with commutation with the basis

{α1, . . . , αn}, αk = ζk + ζ−k, k = 1, . . . , n.

The type II and III bases construction may be generalized for q 
= 2m, but in this case the complexity of
the bases is larger than 2n−1, so they are not optimal, though the bases are of complexity O(n). Various
other kinds of low complexity normal bases with C(B) = O(n) were stated in [6,57,72,124], in particular,
Gaussian normal bases (GNB), which are more general than optimal. Using the method of [59], one can
obtain the following bound for the type-k5 Gauss normal basis:

M
(
GF (qn)

) ≤ (Mq(kn) + 7kn − 8)M
(
GF (q)

)
.

In the particular case of q = k = 2 (which is the ONB case), this result was obtained later in [25]
independently and was patented. For the type I ONB one has

M
(
GF (qn)

) ≤ (Mq(n) + 7n − 8)M
(
GF (q)

)
.

For the type II and III ONB the bounds

M(q)
(
GF (qn)

) ≤ 3Mq(n) + O(qn logq n), M
(
GF (2n)

) ≤ 3M(n) +
3n

2
log n + O(n)

were proved in [28]. The corresponding construction is settled on the circuit for transition from the basis
{α1, . . . , αn} to the basis {α, . . . , αn}, α = α1 = ζ + ζ−1 of complexity O(sn logs n), where q = sm, s is
prime, and depth O(logs n). The factor 3 in the above estimate comes from the Strassen’s inequality

M(q)
(
(GF (qn)

) ≤ 3Mq(n) + O(n).

This relation implies that the complexity of reduction modulo minimal polynomial f of the standard basis
Bα = {1, . . . , αn−1} is estimated by 2Mq(n) + O(n).

Under certain conditions (e.g., f has few nonzero coefficients) the latter bound may be improved. For
example [30], if n = 3 · 2k − 1 and ONB of type II or III exists, then for the complexity and the depth of
multiplication in this basis we have

M
(
GF (2n)

) ≤ M(n) +
7n

2
log n + 7n + O(log n),

DM

(
GF (2n)

) ≤ D(n) + 2 log n + 2 log log n + O(1).

In particular,
M

(
GF (2191)

) ≤ 31 600, D
(
GF (2191)

) ≤ 44.

For comparison, the method of paper [120] implies the bound M
(
GF (2191)

) ≤ 90 916. Another above-men-
tioned estimate

M
(
GF (qn)

) ≤ (Mq(kn) + 7kn − 8)M
(
GF (q)

)

for q = 2 = k, n = 191 with the use of Karatsuba’s method leads to the inequality

M
(
GF (2191)

) ≤ 77 441.

The recently mentioned algorithm [28] for transition between bases {α1, . . . , αn} and {α, . . . , αn}, α =
α1 = ζ + ζ−1 was rediscovered in [73] (2007), and the following estimate was established:

M(q)
(
GF (qn)

) ≤ Mq(n) + O(qn logq n).

5Type-k GNB exists in GF (qn), when kn+1 is prime, and is generated by the element α = ζ + ζγ + · · ·+ ζγk−1
, where ζ

is a primitive root of order kn +1 in GF (qkn) and γ is a primitive root of order k in the residue field Zkn+1, which generates
together with q the multiplicative group Zkn+1 \ {0}.

669



Instead of reduction modulo a minimal polynomial of the basis Bα (as in [28]), the algorithm from [73]
implies linear transform between redundant bases {α, . . . , α2n} and {α1, . . . , α2n}. The complexity of the
transform is O(sn logs n), where q = sm, and the depth is O(logs n), as was shown in [28]. In view of the
equalities

αk+n = ζk+n + ζ−k−n = ζk+n−p + ζp−k−n = ζk−n−1 + ζn+1−k = αn+1−k, k = 1, . . . , n,

the transition to the basis {α1, . . . αn} may be performed with the complexity n and the depth 1. As
a consequence,

M
(
GF (2n)

) ≤ M(n) + 2n log n + 10n, DM

(
GF (2n)

) ≤ D(n) + 2 log n + 4.

Analogous estimates were obtained in [22].

3. Inversion in Finite Fields

The best known asymptotic complexity estimate for inversion in a standard basis of GF (qn) over
GF (q) is O(n log2 n log log n). The corresponding algorithm can be derived from the fast extended Eu-
clidean GCD (greatest common divisor) algorithm.

A fast numeric version of this algorithm was stated by Knuth [92] and was optimized by Schönhage [121]
(the Knuth–Schönhage algorithm can also be viewed as a modern version of the Euclid–Lehmer GCD al-
gorithm; Lehmer’s algorithm can be found in [93]). A polynomial version of this algorithm was published
in [105] (see also [5]) but the algorithm works incorrectly in some cases; the correct algorithm can be
found in [33,70,132]).

Subsequently some modifications were introduced (see, e.g., [106, 129]). Stehle–Zimmermann’s al-
gorithm [129] shows considerable promise for polynomial multiplication over GF (2). In practice, all
the algorithms are implemented in software because of the great depth of the corresponding circuits,
which is O(n) (for numeric version there was constructed a circuit of depth O(n/ log n) and complexity
O(n1+ε) [44]).

The usual binary GCD algorithm seems to be more efficient for small values of n. Its complexity
is O(n2) (see, e.g., [30, 129]). However, the circuit version has several times greater complexity and the
depth O(n log n). That is why to construct a small depth invertor one must use completely different
approaches.

3.1. Addition Chain Method. A sequence of natural numbers a0 = 1, a1, . . . , am = n in which each
number ai is the sum aj + ak, where j, k < i (indices j and k may coincide), is called an addition chain
for n. The parameter m is called the length of the addition chain. The length of the shortest addition
chain for n is denoted by l(n). Comprehensive study of addition chains including all classical results may
be found in [93].

Put λ(n) = �log n�. It is known that

l(n) = λ(n) +
(
1 + o(1)

) λ(n)
λ(λ(n))

.

The upper bound is due to A. Brauer [31] and a proof of the lower bound is due to P. Erdős [55].
Evidently raising to the nth power using only multiplications corresponds to constructing an addition

chain for n. Fermat’s identity x = xqn
for any x ∈ GF (qn) implies that inversion in GF (qn) is equivalent

to raising to the power qn − 2. This forms the background for the use of addition chains in constructing
invertors.

A. Brauer [31] proposed an appropriate way to build an addition chain for 2n − 1 starting from an
addition chain for n. His method easily extends to the calculation of (qn−1)/(q−1), where multiplications
by q are used instead of doubling steps.

Denote y = x(qn−q)/(q−1). To calculate the inverse fast, one can use the identity x−1 = y(xy)−1,
as proposed in [82]. Clearly, xy ∈ GF (q), as far as (xy)q−1 = xqn−1 = 1. For the computation of
y = (x(qn−1−1)/(q−1))q either Brauer’s method or the Itoh–Tsujii [82] method can be used (actually, the
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latter is just a special case of Brauer’s method). To finish calculations, one must multiply x by y (it
is simpler than in the general case, due to the fact that the product belongs to subfield) and divide by
xy ∈ GF (q). In the case q = 2, one only needs to calculate y = x−1.

A less elegant approach based on the formula

x−1 = x(qn−1−1)qxq−2

was followed in [71].
Let F

(
GF (qn)

)
and DF

(
GF (qn)

)
denote the maximum on m of the complexity and the depth of the

circuit implementing a Frobenius operation x → xqm
in GF (qn), m = 1, . . . , n. In the standard basis, the

Frobenius operation is equivalent to the computation of the polynomial gqm
mod f and may be performed

as a modular composition g(h) mod f , where h = xqm
mod f . Indeed, if

g(x) =
s∑

i=0

aix
i,

then

gqm
(x) =

s∑

i=0

aqm

i xqmi =
s∑

i=0

aix
qmi mod f =

s∑

i=0

aih
i mod f = g(h) mod f.

Let d(n) denote the depth of a shortest addition chain for n. Using the addition chain method and a result
of paper [34], Gashkov and Sergeev [64] constructed a standard basis invertor with complexity and depth

I(q)
(
GF (qn)

) ≤ (l(n − 1) + 1)
(
M(q)

(
GF (qn)

)
+ F(q)

(
GF (qn)

))
+ n = O(n1.667),

D(q)
I

(
GF (qn)

) ≤ (d(n − 1) + 1)
(
D(q)

M

(
GF (qn)

)
+ D(q)

F

(
GF (qn)

))
+ 1 = O(log2 n).

The same scheme of calculations in the case of a normal basis implies the following bounds:

I(q)
(
GF (qn)

) ≤ (l(n − 1) + 1)M(q)
(
GF (qn)

)
+ n = O(n1.806),

D(q)
I

(
GF (qn)

) ≤ (d(n − 1) + 1)D(q)
M

(
GF (qn)

)
+ 1 = O(log2 n),

since the Frobenius operation is simply a cyclic shift of a field element coefficients in the normal basis,
which has zero complexity, and multiplication in any normal basis can be implemented with complexity
O(n1.806) and depth O(log n) [126]. Additive terms n in both complexity bounds and 1 in both depth
bounds can be omitted in the case q = 2.

The complexity of Brent–Kung method may be estimated as O(n1.667). In 2007, Umans [135] proved
that the complexity of modular composition is equal to n1+o(1) if the field GF (q) has characteristic no(1).
(The claim from [87] that the estimate n1+o(1) is also valid in any characteristic seems inapplicable to
implementation by circuits.) Hence it follows that

I(q)
(
GF (qn)

) ≤ (l(n − 1) + 1)
(
M(q)

(
GF (qn)

)
+ F(q)

(
GF (qn)

))
+ n = (n log q)1+o(1)

for the standard base and

I(q)
(
GF (qn)

) ≤ (l(n − 1) + 1)M(q)
(
GF (qn)

)
+ n = O(n1.667)

for a normal base in the case where the characteristic is small, in particular in the case of binary fields.
But this method does not give the bound O(log2 n) for the depth.

The above estimates based on A. Brauer’s (1939) method seem hardly familiar to cryptographers.
Some particular cases of Brauer’s method, like the Itoh–Tsujii method [82] or the TYT-method [133],
are frequently cited and exploited. These methods do not provide optimal complexity (for example, the
method from [133] yields to the general Brauer method for n = 24, 44, 47, . . . ). Using Brauer’s method,
some very recent results can be improved straightforwardly, e.g., the complexity bounds [42] for inversion
in the fields GF (2384) and GF (2480) (see details in [64]).
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To minimize the depth of an invertor we may use a version of the right-to-left binary method (see
[64, 93]). The method allows one to build a minimal depth δ(n) = �log2 n� addition chain for n with the
length λ(n) + ν(n) − 1, where ν(n) is the number of 1’s in the binary representation of n. The length of
such a chain is at most 2λ(n); this bound is tight.

Using a modified Yao’s method [139], an addition chain for n with the depth δ(n) + 1 and asymptot-
ically minimal length

λ(n) +
λ(n)

λ(λ(n))
+

O(λ(n)λ(λ(λ(n))))
(λ(λ(n)))2

was constructed in [64].
Thereby, a standard-basis invertor of complexity

I(q)
(
GF (qn)

) ≤
(

λ(n − 1) +
(
1 + o(1)

) λ(n)
λ(λ(n))

)(
M(q)

(
GF (qn)

)
+ F(q)

(
GF (qn)

))

and depth

D(q)
I

(
GF (qn)

) ≤ (δ(n − 1) + 1)
(
D(q)

M

(
GF (qn)

)
+ D(q)

F

(
GF (qn)

))
+ 1

can be constructed. Analogous bounds for a normal basis take the form

I(q)
(
GF (qn)

) ≤
(

λ(n − 1) +
(
1 + o(1)

) λ(n)
λ(λ(n))

)
M(q)

(
GF (qn)

)
,

D(q)
I

(
GF (qn)

) ≤ (δ(n − 1) + 1)D(q)
M

(
GF (qn)

)
+ 1.

Indeed, for any n ≤ 228 there exists a minimal length chain of depth at most δ(n) + 1. For any
n ≤ 1024 there exists a minimal length chain of depth at most δ(n) + 2.

3.2. Logarithmic Depth Method. The GF (qn) invertors of logarithmic depth (over GF (q)) were
presented in [68, 97] ([97] considers the binary case). The authors did not estimate the complexity and
depth of the circuits more tightly than nO(1) and O(log n), respectively. In fact, the multiplicative
constants involved are rather large. An invertor in GF (2n) of depth

(
6.44 + o(1)

)
log n and complexity

(2/3)n4 + o(n4) was constructed in [125] (the result holds for an arbitrary field basis). In the same paper,
a standard basis invertor with depth O(log n) and complexity O(n1.667) was constructed. The latter result
was extended in [65] to the case of the general field GF (qn). As a corollary, a normal basis invertor of
complexity O(n1.806) and depth O(log n) can be constructed.

This method [65] looks like a parallel version of addition chain method. It involves multiple mul-
tiplications. We denote complexity and depth of multiplication of m elements in the field GF (qn) by
MM

(
m, GF (qn)

)
and DMM

(
m, GF (qn)

)
, respectively. Combining ideas from [53, 80, 119], the following

bounds for a multiple multiplication circuit were proved in [65]:

MM(q)
(
m, GF (qn)

)
= O

(
lcm1+εn1+l−3

(log(mn) log log(mn) + l3)
)

D(q)
MM

(
m, GF (qn)

)
= O(l log m + ε−1 log n),

where l is a natural parameter, ε is a positive parameter, and c is a certain constant.
The use of multiple multiplications rests on the following result [65,125]: let m = � r

√
n�, r ∈ N. Then

raising to the power (qn − q)/(q − 1) in GF (qn) can be implemented by a circuit with complexity and
depth

(2r − 1)
(
mF

(
GF (qn)

)
+ MM

(
m, GF (qn)

))
+ (r − 1)M

(
GF (qn)

)
,

2
(
DF

(
GF (qn)

)
+ DMM

(
m, GF (qn)

))
+ DM

(
GF (qn)

)

+ (r − 2) max
{
DF

(
GF (qn)

)
+ DMM

(
m, GF (qn)

)
, DM

(
GF (qn)

)}
,

672



respectively. As before, two more operations are required to finish inversion. Finally, for any r ∈ N

a standard basis invertor with the following complexity and depth estimates can be constructed:

I(q)
(
GF (qn)

)
= O

(
rn1/r(nw + n1,5 log n log log n)

)
, D(q)

I

(
GF (qn)

)
= O(r log n),

where w is somewhat smaller than 1.667. One can set r to be large enough to obtain a logarithmic depth
circuit of complexity O(n1.667).

Better bounds in both standard and normal cases may be obtained if the transition between the bases
is performed fast. Denote by T

(
GF (qn)

)
and DT

(
GF (qn)

)
the complexity and depth of a transition circuit

(bilateral transition is considered). Then, by exploiting the idea that multiplication is faster in standard
bases and Frobenius operation is faster in normal bases, the following bounds for the inversion in either
of the bases could be obtained [65]:

I(q)
(
GF (qn)

)
= O(Rbn1+2/R) + O(R R

√
n)T(q)

(
GF (qn)

)
,

D(q)
I

(
GF (qn)

)
= O

(
R

(
log n + D(q)

T

(
GF (qn)

))
)

,

where b < 2.12 and R is a natural parameter which is either constant or some very slowly growing function
with respect to n. Therefore, if a transition circuit of almost linear complexity and logarithmic depth
exists, then a logarithmic depth invertor of almost linear complexity can be constructed.

For instance, an invertor in type k Gauss normal basis of the field GF (qn) of complexity O(ε−bn1+ε)
and depth O(ε−1 log n), where ε > 0, can be constructed under the condition k = o(log n).

4. Arithmetic in Composite Fields

All the above logarithmic depth circuits outdo addition chain circuits only when n is large enough
(n > 500) but their complexity in that case (even when n ≈ 100) is too high for applications. That is why
for n of order of several hundreds various versions of the addition chain method are used (the Itoh–Tsujii
method as usual). Some depth reduction is possible for composite degree fields of characteristic 2 if
not standard bases but bases evolved from field tower representation are used. It is essential that the
complexity also decreases. It seems that the idea of applying composite fields to minimize depth first
appeared in [82]. Multiple approaches for arithmetic implementation in composite fields were proposed
in [1, 78,107,111,113,114,120].

Combining [28,126], one can prove that if n and m are coprime, then for some normal basis

M(q)
(
GF (qnm)

)
= O

(
nm(m0.806 + n0.806)

)
.

In particular, if n = Ω(m), then

M(q)
(
GF (qN )

)
= O(N1.403), N = nm.

If N is an ε-smooth number, i.e., N = n1 · · ·nm, all ni are coprime, n1 + · · · + nm = O(N ε), then
M(q)

(
GF (qN )

)
= O(N1+0.806ε). But the depth of this circuit is prohibitively high.

4.1. Multiplication and Inversion in Towers of Fields. Tower is a consequence of fields embedded
one into another. In [1], the authors considered a general construction of a field tower, and for multipli-
cation complexity in the corresponding fields GF (2n) they established the estimate O(n log2 n). So the
best possible estimate of straightforward DFT implementation way has to be improved. Obviously, the
authors [1] did not know about work [122], where a better result was obtained.

Towers in [1] look like

GF (q) ⊂ K1 ⊂ · · · ⊂ Kh, Kj = GF (qP1...Pj ), j = 1, . . . , h,

where each prime factor of Pj is either a factor of q−1 or p, which is the characteristic of the field. Moreover,
Pj is an even number if q = 1 mod 4 only. On any floor of such a tower one can choose a basis with
the minimal polynomial being binomial (similar towers were considered independently in [8] and got the
name optimal tower fields). To implement multiplication on each floor, Toom’s method [134] and the FFT
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method (in the latter case primitive roots belong to the previous floors) were used. However, fundamental
formulas [1, p. 227] are questionable for the reason that they rely on the fact that multiplication of an
element from Kj by an element of Kj−2 has the same order of complexity as addition in Kj (indeed, each
of PjPj−1 coordinates is to be multiplied by the element of Kj−2, so the complexity of multiplication is
to be estimated as PjPj−1M(Kj−2)). In the particular case Pj = pj , where p | q − 1, n = Ph, in [1] the
following estimates were proved:

M(q)
(
GF (qn)

)
= O(n1+1/ log p), I(q)

(
GF (qn)

)
= O(n1+1/ log p).

Estimates of multiplication complexity are worse than for Schönhage’s standard basis multipliers, but
the invertor has the same order of complexity and depth not as large as one based on the fast Euclidean
algorithm.

In [37], it was proved that for any ε > 0 and any natural m > 1 one may choose a basis in the field
GF (2n), n = ms, s ≥ sε, in such a way that

M
(
GF (2n)

)
< n1+ε/2, I

(
GF (2n)

)
< n1+ε.

In particular, the following asymptotic complexity bounds for n = 8 · 3k were obtained:

I
(
GF (2n)

)
= O

(
nlog3 5

)
, M

(
GF (2n)

)
= O

(
nlog3 5

)
.

Further, for n = 2 · 3k the following bounds were established:

M
(
GF (2n)

)
< n(log3 n)(log2 log3 n)/2+O(1), I

(
GF (2n)

)
< n(log3 n)(log2 log3 n)/2+O(1).

All the above statements from [37] may be improved at the expense of more accurate estimation of the
complexity of multiplication by constants implied in the FFT algorithm. More exactly, with a suitable
choice of a basis multiplier and invertor in GF (2n), n = ms, s ≥ sm, the following complexity and depth
bounds may be constructed:

M
(
GF (2n)

)
= Om(n log n log log n), I

(
GF (2n)

)
= Om

(
M

(
GF (2n)

))

DM

(
GF (2n)

)
= Om(log n), DI

(
GF (2n)

)
= Om(log2 n).

Sometimes the above bounds may be pointed in a more precise form [66, 67]. For instance, if m = p is
a prime, 2 is a primitive root modulo p (this is exactly the condition of the existence of ONB of type I in
GF (2p−1)), and p2

� 2p−1 − 1 (it is known that the last condition is fair for p < 1012), then for some basis
in GF (2n), n = (p − 1)ps, the equalities

M
(
GF (2n)

)
= O(n log n log log n), I

(
GF (2n)

)
= Op

(
M

(
GF (2n)

))

are valid. In particular, for p = 3

M
(
GF (2n)

)
= 5n log3 n log2 log3 n + O(n log n),

I
(
GF (2n)

)
� 5

2
M

(
GF (2n)

)
, DM

(
GF (2n)

)
� 6

log2 3
log2 n.

The corresponding multiplication method is, in fact, a modification of Schönhage’s algorithm [122] for
multiplication of binary polynomials.

For the tower of fields GF (2n), n = 2k, multiplier and invertor of complexity

M
(
GF (2n)

)
= O(n1.58), I

(
GF (2n)

)
= O(n1.58)

were constructed in [112]. The method implies, for example,

M
(
GF (21024)

) ≤ 357 992, I
(
GF (21024)

) ≤ 538 033.

But the depth of the invertor is Ω(log3 n).
Consider ONB {ξ, ξ2, ξ4, ξ8} in GF (24) and select in each floor the element αk ∈ GF (22k+2

) such that

α2
k + αk = ξα1 · · ·αk−1
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(similar bases for k = 1 were considered in [39] in order to implement AES S-boxes). Then consider in the
floor the standard basis {1, αk} or the normal basis {αk, α

2k+1

k }. With the use of the above construction,
asymptotically worse bounds

M
(
GF (2n)

)
= O(nlog 3 log n), I

(
GF (2n)

)
= O(nlog 3 log n), DI

(
GF (2n)

)
= O(log3 n),

may be established. However, S. Zikrin proved that for n ≤ 64 one can construct better multipliers and
invertors than in [111]. For example, he obtained the following estimates:

M
(
GF (216)

) ≤ 382, DM

(
GF (216)

) ≤ 11,

I
(
GF (216)

) ≤ 479, DI

(
GF (216)

) ≤ 26,

M
(
GF (232)

) ≤ 1233, DM

(
GF (232)

) ≤ 13,

I
(
GF (232)

) ≤ 1714, DI

(
GF (232)

) ≤ 48,

M
(
GF (264)

) ≤ 3943, DM

(
GF (264)

) ≤ 18,

I
(
GF (264)

) ≤ 5609, DI

(
GF (264)

) ≤ 75,

M
(
GF (2128)

) ≤ 12 728, DM

(
GF (2128)

) ≤ 24,

I
(
GF (2128)

) ≤ 18 587, DI

(
GF (2128)

) ≤ 114.

One may compare these estimates with those from [111]:

M
(
GF (2128)

) ≤ 12 476, DM

(
GF (2128)

) ≤ 25,

I
(
GF (2128)

) ≤ 18 316, DI

(
GF (2128)

) ≤ 170.

Note that for a standard basis with the irreducible polynomial x128 + x7 + x2 + x + 1 in GF (2128) the
following estimates hold:

M
(
GF (128)

) ≤ 33 042, DM

(
GF (128)

) ≤ 11.

The complexity and depth of Karatsuba’s multiplier in this case are estimated as 12 343 and 18, respec-
tively. However, the estimates for an invertor look like 200 000 and not less than 200.

4.2. Minimization of Inversion Depth in Composite Fields. In this section, we observe some
recursive methods [35, 63] aimed at constructing depth-efficient invertors in composite binary fields for
values of n not more than several hundreds.

Suppose that n is odd, DM

(
GF (2n)

) ≥ DS

(
GF (2n)

)
+ 1, where S

(
GF (2n)

)
is the complexity of

squaring in GF (2n). Applying a method from [107], one can construct invertor and multiplier with the
following recursive bounds on the complexity and the depth:

M
(
GF (22n)

) ≤ 3M
(
GF (2n)

)
+ 4n, DM

(
GF (22n)

) ≤ DM

(
GF (2n)

)
+ 2,

I
(
GF (22n)

) ≤ I
(
GF (2n)

)
+ 3M

(
GF (2n)

)
+ S

(
GF (2n)

)
+ 2n,

DI

(
GF (22n)

) ≤ DI

(
GF (2n)

)
+ 2DM

(
GF (2n)

)
+ 1.

Suppose that (n, 3) = 1, B2 = {α, α2, α4} is the ONB in GF (23), where α3 = α2 + 1, and B1 is any
basis in GF (2n), DM

(
GF (2n)

) ≥ DS

(
GF (2n)

)
+ 2. Then for multiplication in B = B1 ⊗ B2 we have

M
(
GF (23n

) ≤ 6M
(
GF (2n)

)
+ 12n, DM

(
GF (23n)

) ≤ DM

(
GF (2n)

)
+ 3.

Further, for inversion in B we have the following recursions:

I
(
GF (23n)

) ≤ I
(
GF (2n)

)
+ 9M

(
GF (2n)

)
+ 3S

(
GF (2n)

)
+ 8n,

DI

(
GF (23n)

) ≤ DI

(
GF (2n)

)
+ 3DM

(
GF (2n)

)
+ 1.

If B1 is a normal basis, then S
(
GF (2n)

)
= 0.
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If in the field tower GF
((

(2n)2
)2

)
the ONB {α1, α

2
1} and the standard basis {1, α2}, where α2

1+α1 = 1,

α2
2 + α2 = α1, are chosen, then for the complexity and the depth of a multiplier the following relations

hold:
M

(
GF (24n)

) ≤ 9M
(
GF (2n)

)
+ 20n, DM

(
GF (24n)

) ≤ DM

(
GF (2n)

)
+ 4.

If we choose a normal basis in GF (2n), then one can construct an invertor with the following recursive
relations for complexity and depth:

I
(
GF (24n)

) ≤ 14M
(
GF (2n)

)
+ 14n + I

(
GF (2n)

)
,

DI

(
GF (24n)

) ≤ 3DM

(
GF (2n)

)
+ 2 + max

{
DI

(
GF (2n)

)
, 2

}
.

Suppose that (n, 5) = 1, B2 = {α, α2, α4, α8, α16}, where α5 = α4 +α2 +α+1, B1 is any normal basis
in GF (2n), and B = B1 ⊗ B2. Then for the multiplication in the basis B the following relations hold:

M
(
GF (25n)

) ≤ 15M
(
GF (2n)

)
+ 40n, DM

(
GF (25n)

) ≤ DM

(
GF (2n)

)
+ 4,

and for inversion we have

I
(
GF (25n)

) ≤ I
(
GF (2n)

)
+ 91M

(
GF (2n)

)
+ 117n,

DI

(
GF (25n)

) ≤ DI

(
GF (2n)

)
+ 3DM

(
GF (2n)

)
+ 1 + max

{
DM

(
GF (2n)

)
, 6

}
.

The field GF (26n) can be represented as an extension of GF (2n) of degree 6. We choose in GF (26) an
ONB B2 = {α, α2, α4, α8, α16, α32}, where α6 = α5 + α4 + α + 1. Also we choose in GF (2n) an arbitrary
basis B1 and consider the basis B = B1⊗B2 in GF (26n). Suppose that DM

(
GF (2n)

) ≥ DS

(
GF (2n)

)
+2.

Then for multiplication and inversion in B one has

M
(
GF (26n)

) ≤ 21M
(
GF (2n)

)
+ 60n, DM

(
GF (26n)

) ≤ DM

(
GF (2n)

)
+ 4,

I
(
GF (26n)

) ≤ I
(
GF (2n)

)
+ 42M

(
GF (2n)

)
+ 5S

(
GF (2n)

)
+ 65n,

DI

(
GF (26n)

)
= 4DM

(
GF (2n)

)
+ 4 + max

{
DI

(
GF (2n)

)
, 4

}
.

Suppose that (n, 2) = 1, B1 = {α1, α
2
1} ⊗ {1, α2}, where α2

1 + α1 = 1, α2
2 + α2 = α1 and B2 =

B1 ⊗ {1, α3}, where α2
3 + α3 = α1α2, and B is an arbitrary basis in GF (2n). Then for the basis B2 ⊗ B

in GF (28n) the following relations hold:

M
(
GF (28n)

) ≤ 27M
(
GF (2n)

)
+ 80n, DM

(
GF (28n)

) ≤ DM

(
GF (2n)

)
+ 7.

If B is the normal basis, then

I
(
GF (28n)

) ≤ I
(
GF (2n)

)
+ 45M

(
GF (2n)

)
+ 101n,

DI

(
GF (28n)

) ≤ 4DM

(
GF (2n)

)
+ 8 + max

{
DI

(
GF (2n)

)
, 6

}
.

If we choose in GF (24) an ONB B1 = {α, α2, α4, α8}, where α4 = α3 + α2 + α + 1, then in GF (28)
there exists a basis B2 = B1 ⊗ {1, β} such that β2 + β = α. One can choose in GF (2n) a normal basis B
and consider the basis B2 ⊗B in GF (28n). For the chosen basis in GF (28n) the following bounds for the
complexity and the depth are valid:

M
(
GF (28n)

) ≤ 30M
(
GF (2n)

)
+ 82n, DM

(
GF (28n)

) ≤ DM

(
GF (2n)

)
+ 5,

I
(
GF (28n)

) ≤ I
(
GF (2n)

)
+ 52M

(
GF (2n)

)
+ 88n,

DI

(
GF (28n)

) ≤ 4DM

(
GF (2n)

)
+ 6 + max

{
DI

(
GF (2n)

)
, 2

}
.

Let (n, 30) = 1. Then in GF (230n) a normal basis can be chosen and multiplier and invertor can be
constructed to prove the relations

M
(
GF (230n)

) ≤ 315M
(
GF (2n)

)
+ 1140n,

DM

(
GF (230n)

) ≤ DM

(
GF (2n)

)
+ 8,
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Table 1

n I
(
GF (2n)

)
DI

(
GF (2n)

)

10 220 14
12 293 16
15 590 20
16 499 23
20 905 21
24 1 162 24
30 1 925 29
36 4 438 30
40 3 355 30
120 36 230 54
210 88 000 67
330 171 009 71
690 712 655 101

I
(
GF (230n)

) ≤ I
(
GF (2n)

)
+ 566M

(
GF (2n)

)
+ 1537n,

DI

(
GF (230n)

) ≤ 6DM

(
GF (2n)

)
+ 17 + max

{
DI

(
GF (2n)

)
+ max

{
DM

(
GF (2n)

)
, 6

}
, DM

(
GF (2n)

)
+ 8

}
.

Table 1 shows bounds on the depth and complexity of inversion in certain fields of characteristic 2
obtained by the above methods.

5. Arithmetic in Pseudo-Mersenne Fields

A prime number q of the form 2n ± c, where c is small, is called a pseudo-Mersenne prime num-
ber. Mersenne fields were mentioned above. Several techniques for implementing multiplication in
pseudo-Mersenne fields GF (qn), n = 2k, 3k, were proposed in [8, 12], aimed at the application to elliptic
and hyperelliptic curve cryptography (see [11]). Special bases (the so-called optimal tower bases [8, 12])
were used. These bases are a special case of the bases considered in [1].

5.1. Multiplication in Optimal Towers of Pseudo-Mersenne Fields. Improving the results of [8],
Baktir and Sunar [12] constructed multipliers of complexity

M
(
GF (q2k

)
) ≤ 3kM

(
GF (q)

)
+ 5(3k − 2k)A

(
GF (q)

)
+

1
2
(3k − 1)M(α0, q),

M
(
GF (q3k

)
) ≤ 6kM

(
GF (q)

)
+ 5(6k − 3k)A

(
GF (q)

)
+

2
5
(6k − 1)M(α0, q),

where x2 −α0, x3 −α0 are irreducible binomials over GF (q), α0 ∈ GF (q), and M(α0, q) is the complexity
of multiplication by α0 in GF (q). As a consequence,

M
(
GF (q4)

) ≤ 9M
(
GF (q)

)
+ 25A

(
GF (q)

)
+ 4M

(
3, q

)
,

M
(
GF (q8)

) ≤ 27M
(
GF (q)

)
+ 95A

(
GF (q)

)
+ 13M(3, q),

M
(
GF (q32)

) ≤ 243M
(
GF (q)

)
+ 1055A

(
GF (q)

)
+ 121M(3, q).

Some effective applications of similar results in hyperelliptic cryptography were noted in [11]. In [13],
some improvements were proposed for these circuits based on FFT in the case of the Fermat number
q = 216 + 1.
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Independently related results were obtained in [28], namely for q = pn, p = 216 + 1, the following
bound was proved:

M
(
GF (q2k

)
) ≤ 2k+1M

(
GF (q)

)
+ 2k+1(3k + 1)A

(
GF (q)

)
+ (3(2k(k − 1) + 1) + k + 2)M(2s, q).

Using convolution modulo x
(
x2k+1 − 1

)
/(x2 − 1), Burtzev and Gashkov [38] proved that

M
(
GF (q4)

) ≤ 7M
(
GF (q)

)
+ 59A

(
GF (q)

)
+ 3M(3, p),

M
(
GF (q8)

) ≤ 15M
(
GF (q)

)
+ 193A

(
GF (q)

)
+ 7M(3, p),

M
(
GF (q16)

) ≤ 31M
(
GF (q)

)
+ 558A

(
GF (q)

)
+ 15M(3, p),

M
(
GF (q32)

) ≤ 63M
(
GF (q)

)
+ 1525A

(
GF (q)

)
+ 31M(3, p).

Construction of the circuit on which the latter bound was achieved rests on the existence of the primitive
root

√
2 = 24(28 − 1) of order 64 in the field GF (p). As follows from Winograd’s theorem (see, for

example, [24]), multiplicative constants in the terms involving M
(
GF (q)

)
in the above estimates are

minimal.
For q = pn, p = 213 − 1, n = 2k0 · 3k1 · 5k2 · 7k3 · 13k4 , where k0 = 0, 1, the following relations were

proved in [38]:

M
(
GF (q7)

) ≤ 13M
(
GF (q)

)
+ 344A

(
GF (q)

)
+ 6A

(
GF (p)

)
,

M
(
GF (q13)

) ≤ 26M
(
GF (q)

)
+ 1026A

(
GF (q)

)
+ 12A

(
GF (p)

)
.

Also in [38] analogous bounds were proved for q = pn, p = 217−1, n = 2k0 ·3k1 ·5k2 ·17k3 , where k0 = 0, 1:

M
(
GF (q9)

) ≤ 17M
(
GF (q)

)
+ 578A

(
GF (q)

)
+ 6A

(
GF (p)

)
,

M
(
GF (q18)

) ≤ 35M
(
GF (q)

)
+ 1825A

(
GF (q)

)
+ 17A

(
GF (p)

)
.

These results rely on using FFT modulo a Mersenne prime p corresponding to primitive roots ±2 of
order p or 2p. In the last case, FFT is performed by the Good–Thomas method (see [24]). Multiplication
in GF (qn) was implemented using three FFT’s and reduction modulo an irreducible binomial.

The method proposed in [14] requires two FFT’s on average when batch calculation of sufficiently
many multiplications in GF (qn) is performed. This method was called modular multiplication in the
frequency domain since all the operations are performed over Fourier-images of input data. For modular
multiplication, the Montgomery method was used. For example, if the binomial xn − 2 is irreducible over
GF (p), p = 2m − 1, 2n − 1 ≤ m, then the complexity of modular multiplication in the frequency domain
is

mM
(
GF (p)

)
+ (m − 1)M

(
1
m

, p

)
+

(
6m2 − 7m + O(1)

)
A

(
GF (p)

)
.

In the case where 2n − 1 < 2m, the complexity bound

2mM
(
GF (p)

)
+ (m − 1)M

(
1
m

, p

)
+

(
4m2 − 4m + O(1)

)
A

(
GF (p)

)

was obtained. Effective application of these results in elliptic curve cryptography was demonstrated
in [10].

We remark that, instead of Montgomery multiplication, the use of usual modular multiplication is
possible. It implies some simplifications, but the corresponding algorithm for modular multiplication in
the frequency domain requires roughly 2m2 multiplications by 2k more than the algorithm from [14]. This
is important for software implementation but it is not as important for the construction of a circuit.
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6. Multiplication in Fields of Small Characteristic

In recent years, numerous papers on the so-called pairing-based cryptography were published (see,
e.g., [29]). A problem of primary practical importance in this research direction is the efficient implementa-
tion of pairings. In [18], an efficient algorithm was proposed for Tate pairing in some supersingular curves
over fields of characteristic 3. The performance of this algorithm depends on the efficient implementation
of arithmetic in GF (3n). Various approaches to this problem were developed in [23,75,88,115].

In [51,52], a fast algorithm was presented for Tate pairing on the hyperelliptic curve y2 = xp − x + d,
d = ±1, over the field GF (pn). In the case p = 3, this algorithm is more efficient than that of the paper [18].
In [94], some improvements of the Duursma–Lee (DL) algorithm for binary fields were suggested. In fact,
similar improvements are possible in the general case (see, e.g., [29]). Another improvement of the DL
algorithm was suggested in [17].

To implement the DL algorithm for the general case, one needs a circuit for arithmetic in GF (p2pn),
(2p, n) = 1, p = 4k + 3.

For this purpose one can use a multiplier with complexity estimate

M
(
GF (p2pn)

) ≤ (6p − 3)M
(
GF (pn)

)
+ O

(
p2nM

(
GF (p)

))
.

The smallest field of some interest is the field GF (714n), which corresponds to the case p = 7. Efficient
implementation of arithmetic in this field leads to improvements in the method of [95]. The following
complexity and depth estimates for multiplication in GF (714n) were proved in [36]:

M
(
GF (714n)

) ≤ 13M
(
GF (72n)

)
+ 258nA

(
GF (7)

)
,

DM

(
GF (714n)

) ≤ 11DA

(
GF (7)

)
+ DM

(
GF (72n)

)
.

In particular,
M

(
GF (714·31)

) ≤ 698 554.
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