
Journal of Mathematical Sciences, Vol. 190, No. 2, April, 2013

DISTRIBUTION OF ROOTS OF MITTAG-LEFFLER FUNCTIONS

A. Yu. Popov and A. M. Sedletskii UDC 517.9

CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Chapter 1. Integral Representations, Asymptotics, and Estimation of Mittag-Leffler Functions 212
1.1. Integral Representations of the Mittag-Leffler function . . . . . . . . . . . . . . . . . . . . 212

1.2. Basic Theorems on Asymptotic Behavior of Mittag-Leffler Functions . . . . . . . . . . . . 218
1.3. Complete Asymptotic Expansion of One Integral . . . . . . . . . . . . . . . . . . . . . . . 221
1.4. Asymptotic Expansions of Mittag-Leffler functions of Order ρ ≥ 3/4 . . . . . . . . . . . . 225
1.5. Asymptotic Expansion of Mittag-Leffler Functions of Order ρ ≤ 3/4 . . . . . . . . . . . . 233

Chapter 2. Asymptotic Properties of Zeros of Mittag-Leffler Functions . . . . . . . . . . . . . 242
2.1. Asymptotic Formulas for Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
2.2. Matching of Asymptotics and Numeration of Zeros . . . . . . . . . . . . . . . . . . . . . . 259

Chapter 3. Problem on the Realness of all Zeros of the Mittag-Leffler Function of Order Less
than 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

3.1. Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
3.2. Meaning of Proofs of Theorems 3.1.1–3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 271

3.3. Absence of Zeros of the Mittag-Leffler Function with Positive Parameter μ in a
Neighborhood of the Point z = 0. Asymptotics of the First Zero of Eρ(z;μ) by the
Parameter ρ→ 0+ Uniform with Respect to μ ∈ (0, 2/ρ] . . . . . . . . . . . . . . . . . . . 273

3.4. Inequalities for the Gamma-Function and Its Derivatives . . . . . . . . . . . . . . . . . . . 279
3.5. Proof of Lemma 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

3.6. Proof of Theorem 3.1.1 in the Case 0.4 ≤ ρ < 0.5 . . . . . . . . . . . . . . . . . . . . . . . 284
3.7. Proof of Theorem 3.1.1 in the Case 0.25 < ρ < 0.4 . . . . . . . . . . . . . . . . . . . . . . 287
3.8. Proof of Theorem 3.1.1 in the Case 1/6 < ρ ≤ 1/4 . . . . . . . . . . . . . . . . . . . . . . 289

3.9. Completion of Proof of Theorem 3.1.1 (Case 0 < ρ ≤ 1/6). Proof of Theorem 3.1.2 . . . . 291
3.10. Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
3.11. Proof of Theorem 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

3.12. Proof of Theorem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Chapter 4. Nonasymptotic Properties of Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.1. Real zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

4.2. Distribution of Roots in Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
4.3. Case ρ = 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
4.4. Absence of Multiple Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4.5. Zeros of the Function E1(z;μ), Incomplete Gamma-Function, and the Error Function . . 349

Chapter 5. Zeros of Laplace Transforms and Degenerate Hypergeometric Function . . . . . . 354
5.1. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
5.2. Zeros of Finite Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

5.3. Zeros of the Confluent Hypergeometric Function . . . . . . . . . . . . . . . . . . . . . . . 364

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics.
Fundamental Directions), Vol. 40, Theory of Functions, 2011.

1072–3374/13/1902–0209 c© 2013 Springer Science+Business Media New York 209



Chapter 6. Real Roots of the Mittag-Leffler Function of Order ρ ∈ (1/2, 1) . . . . . . . . . . . 372
6.1. Statement of the Problem and the Main Results . . . . . . . . . . . . . . . . . . . . . . . 372
6.2. Proof of Theorem 6.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
6.3. Auxiliary Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.4. Existence of Real Roots of the Mittag-Leffler Function for Particular Values of the

Parameter μ > 1/ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
6.5. Proof of Theorem 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
6.6. Proof of Theorem 6.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
6.7. Sketch of the Proof of Theorem 6.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
6.8. Completion of the Proof of Theorem 6.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
6.9. Proof of Assertion (1) of Theorem 6.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

PREFACE

In 1903, in relation to the summation method for power series, Swedish mathematician Mittag-
Leffler [16] introduced the new entire function

E1/ρ(z) =

∞∑

n=0

zn

Γ(1 + nρ)
, ρ > 0,

which is now called the Mittag-Leffler function.
The appearance of this new function did not go unnoticed. It is remarkable that already in first

related publications, many authors were interested in the distribution of its zeros (roots). So, Wiman
(see [44]) proved that for ρ ≥ 2, all zeros are real, negative, and simple. Later, Pólya (see [21]) by a
different method reproved this fact for the case 2 ≤ ρ ∈ N.

Later, the function E1/ρ(z) won new positions in the theory of functions. Along with this, its
definition was modified and generalized by introduction of an additional parameter μ:

Eρ(z;μ) =

∞∑

n=0

zn

Γ(μ+ n/ρ)
, ρ > 0, μ ∈ C; (1)

we also call this function the Mittag-Leffler function; obviously, E1/ρ(z) = Eρ(z; 1). In the literature,
we encounter other names and the notation Eρ(z;μ); for example, the notation E1/ρ(z;μ) and E1/ρ,μ(z)
and the terms “generalized Mittag-Leffler function” and “Mittag-Leffler-type” are used. In the present
work, the function Eρ(z; 1) = E1/ρ(z) is called the classical Mittag-Leffler function.

In our country, interest in the function Eρ(z;μ) was considerably stimulated by the monograph [6]
of Dzhrbashyan. We use the notation (1) introduced by Dzhrbashyan.

Definition (1) immediately implies the formulas

E1(z; 1) = ez, E1(z;−m) = zm+1ez, m ∈ Z+, (2)

E1/2(z; 1) = cosh
√
z, E1/2(z;−(2m− 1)) = zm cosh

√
z, m ∈ N,

E1/2(z; 2) =
(sinh

√
z)√

z
, E1/2(z;−2m) = zm+1/2 sinh

√
z, m ∈ Z+,

E1(z; c) =
Φ(1, c; z)

Γ(c)
, c /∈ −Z+, (3)

where Φ(a, c; z) = F1(a, c; z) is the confluent hypergeometric function. These formulas once more
indicate the breadth of the class of entire function (1).
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In the sequel, we will see that the function Eρ(z;μ), except for the cases (2), has an infinite set of
zeros.

One of the important directions related to functions (1) is the theory of Fourier–Laplace-type
integral transforms with Mittag-Leffler kernels. A certain hint on the possibility of construction of
such transforms is contained in the first of formulas (2). The conceptual analytical part of the theory
is based on asymptotic estimates of functions (1). The current state of this theory is represented in
the most complete form in [6].

Recently, the scope of applications of the function Eρ(z;μ) has been substantially extended. For
example, this function is extensively used in the theory of random processes; we indicate here only
the (most typical) papers [1, 5].

The problem on the distribution of zeros of Mittag-Leffler functions is central to the theory. Studies
in this direction stem from the vastness of the class of entire functions (1), which have a remarkable
asymptotic behavior. It is important that the need for this activity is supported by different aspects
of spectral theory, theory of inverse problems, and approximation theory. Let us discuss this briefly.

The most active “consumer” (one can even say “customer”) of the theory of distribution of zeros of
functions (1) is the branch of spectral theory where the differential operators with fractional derivatives
are considered. This is discussed in detail in the paper [17] of Nakhushev, where the problem of the
number of of real roots of function Eρ(z;μ) for ρ > 1/2 and real μ is discussed.

An interesting connection between inverse problems of special type and distribution of zeros of
the function Eρ(z;μ) for certain values of parameters ρ and μ was established by Tikhonov [41]
whose reports on a special seminar at the mechanical-mathematical department of the Moscow State
University influenced our investigations in this direction.

The second author constructed for the first time, for all 1 ≤ p < ∞, systems of exponents eiλnx,
simultaneously complete and minimal in the spaces Lp on the line with rapidly decreasing weight
(cf. [34]). Under certain conditions on weights, the indices λn of the systems are described as sequences
of zeros of functions (1) (with parameters depending on weights).

Thus, apart from the evident independent importance, the theory of distribution of zeros of Mittag-
Leffler-type functions is quite representatively motivated by important applications in analysis. Our
goal consists in representing the contemporary state of this theory.

In its development, apart form the mentioned authors (see [21, 44]), many mathematicians partici-
pated: Dzhrbashyan and Nersesyan [6] Ostrovsky and Peresyolkova [19]), Pskhu [26], and others. The
authors of the present work have made their own contribution to the problem.

Basically, we consider here the following sequence of problems:

• asymptotic behavior of zeros of Mittag-Leffler functions and a consistent method of enumerating
all zeros;

• the number of real zeros of functions (1) for μ ∈ R;
• the problem, originally considered by Wiman, of describing the set of parameters (ρ, μ), 0 < ρ ≤
1/2, such that all zeros of the functions Eρ(z;μ) are real, negative, and simple, and localization
of zeros;

• the so-called nonasymptotic properties of zeros, for example, their distribution in a given angle,
the multiplicity problem of zeros.

Moreover, we study distributions of zeros of some other entire functions, which are close to functions
(1) in the appropriate sense, namely, the confluent hypergeometric function Φ(a, c; z) (see formula (3))
and the Laplace transforms of compactly supported monotonic functions (the indicated closeness con-
sists of the possibility of representing the function E1(z;μ) for certain values of μ as such a transform).

Chapters 1, 3, and 6 are written by A. Yu. Popov, and Chaps. 2, 4, and 5 by A. M. Sedletskii.
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Chapter 1

INTEGRAL REPRESENTATIONS, ASYMPTOTICS,

AND ESTIMATION OF MITTAG-LEFFLER FUNCTIONS

In Chap. 1, we present theorems on complete asymptotic expansions of the functions Eρ(z;μ) as
z → ∞. Proofs of these theorems are based on integral representations of Mittag-Leffler functions.
We start with these integral representations. We follow [6, Chap. 3] and [7, Chap. 1, Sec. 5 and
Chap. 4, Sec. 4]. Note that in [7], only the classical Mittag-Leffler function was considered. In
theorems on asymptotics of Eρ(z;μ), we repair errors and drawbacks of [6, 7] and present a more
detailed analysis. A characteristic feature of our theorems on asymptotics of Mittag-Leffler functions
is an explicit estimate of the remainder (without O-symbol), which is valid not only for “sufficiently
large” |z| but for all z 	= 0 (occasionally for |z| ≥ 2).

1.1. Integral Representations of the Mittag-Leffler function

We denote by γ(σ, α1, α2), where σ > 0, α1 < 0, and α2 > 0, the contour

P = {ζ = reiϕ, r > 0, ϕ ∈ R}
on the Riemann surface of the argument (it is usually called the Hankel loop) oriented towards the
non-decreasing argument Arg ζ and consisting of the following parts:

(1) the ray Arg ζ = α1, |ζ| ≥ σ,
(2) the arc |ζ| = σ, α1 ≤ Arg ζ ≤ α2,
(3) the ray Arg ζ = α2, |ζ| ≥ σ.

Theorem 1.1.1. For any ρ > 0, μ ∈ C, z ∈ C, σ > |z|ρ, α1 ∈ (−3π/2,−π/2), and α2 ∈ (π/2, 3π/2)
the following relation holds :

Eρ(z;μ) =
1

2πi

∫

γ(σ,α1,α2)

ζ1/ρ−μeζ dζ

ζ1/ρ − z
. (1.1.1)

Remark 1.1.1. If Reμ > 0, then, by the convergence of the corresponding improper integrals, for-
mula (1.1.1) is valid also for α1 = −π/2, α1 = −3π/2, α2 = π/2, α2 = 3π/2.

Before proving the theorem, we recall the following Hankel lemma.

Lemma 1.1.1. For any σ > 0, α1 ∈ (−3π/2,−π/2), and α2 ∈ (π/2, 3π/2), the following identity
holds:

1

Γ(s)
=

1

2πi

∫

γ(σ,α1,α2)

ζ−seζ dζ, s ∈ C. (1.1.2)

Proof. First, we note that integral (1.1.2) is independent of the numbers σ, α1, and α2 in the boundaries
specified in the lemma since there are no singularities of the integrand ζ−seζ on the Riemann surface
P (on the “ordinary” complex plane, for the principal branch of the argument, it is holomorphic on
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C \ (−∞, 0]) and the exponent decreases sufficiently rapidly in the closed angles lying inside the open
domains {

ζ = reiϕ
∣∣∣ r > 0,

π

2
< |ϕ| < 3π

2

}
.

Here and in the sequel, ln(reiϕ), r > 0, means ln r + iϕ; following this, we define noninteger powers
of ζ.

We also note that the integral ∫

γ(σ,α1,α2)

ζ−seζ dζ

is an entire function of the complex variable s. Indeed, it exists for all s ∈ C and has the derivative
∫

γ(σ,α1,α2)

d

ds
(ζ−seζ) dζ = −

∫

γ(σ,α1,α2)

ζ−seζ ln ζ dζ. (1.1.3)

The last assertions is valid due to the uniform convergence with respect to s on any compact in C

of integral (1.1.3). Therefore, by the uniqueness theorem, is suffices to prove identity (1.1.2) only for
s ∈ (0, 1).

We prove (1.1.2) for s ∈ (0, 1), α1 = −π, and α2 = π. If s ∈ (0, 1), we can pass to σ = 0 since

∫

|ζ|=σ

ζ−seζ dζ = O

⎛

⎜⎝
∫

|ζ|=σ

|ζ|−s| dζ|

⎞

⎟⎠ = O(σ1−s) = o(1) (σ → 0+).

Therefore, for s ∈ (0, 1), the integral

I(s) =
1

2πi

∫

γ(σ,−π,π)

ζ−seζ dζ

is equal to the difference of the integrals of ζ−seζ along the lower and upper sides of the cut (−∞, 0],
where integration is performed from −∞ to 0. We obtain

I(s) =
1

2πi

⎛

⎝
0∫

+∞
e−r(re−πi)−sd(−r)−

0∫

+∞
e−r(re−πi)−sd(−r)

⎞

⎠

=
1

2πi

⎛

⎝
+∞∫

0

r−se−re−πisdr −
+∞∫

0

r−se−re−πisdr

⎞

⎠

=
1

π

+∞∫

0

r−se−r

(
eπis − e−πis

2i

)
dr =

sin(πs)

π

+∞∫

0

r−se−r dr =
sin(πs)

π
Γ(1− s). (1.1.4)

Applying the complement formula

sin(πs)

π
=

1

Γ(s)Γ(1− s)
, (1.1.5)

from (1.1.4) we obtain (1.1.2). The lemma is proved.

Proof of Theoremv 1.1.1. By Lemma 1.1.1, for any integer k we have the equality

1

Γ(μ+ k/ρ)
=

1

2πi

∫

γ(σ,α1,α2)

eζ dζ

ζμ+k/ρ
. (1.1.6)
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Multiplying relations (1.1.6) by zk and summing over the index k from 0 to N , where N is an arbitrary
natural number, we obtain the relation

N∑

k=0

zk

Γ(μ+ k/ρ)
=

1

2πi

∫

γ(σ,α1,α2)

eζ

ζμ

(
N∑

k=0

(
z

ζ1/ρ

)k
)
dζ. (1.1.7)

Now in (1.1.7) we pass to the limit as N → ∞. The left-hand side of (1.1.7) converges to Eρ(z;μ).
For any ζ ∈ γ(σ, α1, α2), the sequence of sums under the sign of integral converges to

(1− zζ−1/ρ)−1

since |z| < σ1/ρ ≤ |ζ|1/ρ, and hence the modulus of the common ratio of the geometric progression

(zζ−1/ρ)k is less than 1. We prove that the following representation holds:

Eρ(z;μ) =
1

2πi

∫

γ(σ,α1,α2)

eζ dζ

ζμ(1− zζ−1/ρ)
=

1

2πi

∫

γ(σ,α1,α2)

ζ1/ρ−μeζ dζ

ζ1/ρ − z
,

This passage must be justified. As is known, the pointwise (and even uniform) convergence of a
sequence of entire function fn(ζ) to f(ζ) on a ray 
 ⊂ C does not imply the limit relation

lim
n→∞

∫




fn(ζ) dζ =

∫




f(ζ) dζ, (1.1.8)

even in the case where the function f is summable on 
. By the Lebesgue theorem, relation (1.1.8)
is implied by the existence of a common majorant of the sequence {|fn(ζ)|}n∈N, which is summable
on 
 (see, e.g., [39, Chap. 1]). In our case, we can take the majorant in the following form (here
μ = μ1 + iμ2, μ1, μ2 ∈ R, and ϕ(ζ) = Arg ζ):

exp(Re ζ)

|ζμ|
∞∑

k=0

∣∣∣∣
z

ζ1/ρ

∣∣∣∣
k

=
exp(Re ζ)

|ζ|μ1 exp(−μ2ϕ(ζ))
∞∑

k=0

( |z|
|ζ|1/ρ

)k

=
exp(Re ζ + μ2ϕ(ζ))

|ζ|μ1(1− |z| |ζ|−1/ρ)
≤ |ζ|1/ρ−μ1 exp(Re ζ + 3πμ2/2)

|ζ|1/ρ − |z| . (1.1.9)

It is easy to prove that the majorant on the right-hand side of (1.1.9) is summable on the contour
γ since the exponent of Re ζ decreases on the rays this contour faster than any negative power of
|ζ| and the denominator of the last fraction in (1.1.9) is separated from zero due to the condition
|z|ρ < σ ≤ |ζ|. Therefore, the limit in (1.1.7) is valid and the theorem is completely proved.

For some values of the parameters ρ and μ, we need special integral representations for proofs of
“nonasymptotic” theorems on zeros of Eρ(z;μ).

For ρ > 1 and μ < 1 + 1/ρ, we set

gρ(z; t, μ) =
t sinπμ− z sinπ(μ− 1/ρ)

t2 − 2tz cos(π/ρ) + z2
, (1.1.10)

fρ(z; t, μ) =
e−πiμ

ze−πi/ρ − t
− eπiμ

zeπi/ρ − t
, (1.1.11)

Fρ(z;μ) =
ρ

π

+∞∫

0

gρ(z, t, μ)t
ρ(1−μ) exp(−tρ)dt. (1.1.12)

It is easy to prove the identity

fρ(z; t, μ) = 2igρ(z; t, μ).
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Therefore, in addition to (1.1.12), we have the relation

Fρ(z;μ) =
ρ

2πi

+∞∫

0

fρ(z, t, μ)t
ρ(1−μ) exp(−tρ)dt. (1.1.13)

If arg z = ±π/ρ, then integrals (1.1.12) and (1.1.13) are understood in the sense of principal value.

Theorem 1.1.2. For ρ > 1 and μ < 1 + 1/ρ, the following representations hold :

Eρ(z;μ) = Fρ(z;μ),
π

ρ
< | arg z| ≤ π, (1.1.14)

Eρ(z;μ) = Fρ(z;μ) +
ρ

2
zρ(1−μ) exp (zρ), arg z = ±π

ρ
, (1.1.15)

Eρ(z;μ) = Fρ(z;μ) + ρzρ(1−μ) exp (zρ), | arg z| < π

ρ
. (1.1.16)

Proof. Setting in formula (1.1.1) α1 = −π and α2 = π and changing the variable by the formula

w = ζ1/ρ we obtain the relation

Eρ(z;μ) =
ρ

2πi

∫

γR

wρ(1−μ) exp(wρ)dw

w − z
, (1.1.17)

where γR = γ(R,−π/ρ, π/ρ), R > |z|. If we deform the contour γR by letting R tend to zero, then for
| arg z| > π/ρ, the singularity of the integrand lies to the left of the contour. Therefore, representation
(1.1.17) is valid for any R > 0, not only for |z| < R, if | arg z| > π/ρ. The transition in (1.1.17) to
the value R = 0 is possible only if the integrand is summable on the rays argw = ±π/ρ. This holds
if ρ(1− μ) > −1, i.e., if μ < 1+ 1/ρ. If | arg z| < π/ρ, then, deforming the contour, we meet a pole at

the point w = z and, having bypassed it, we must add the residue, which is equal to ρzρ(1−μ) exp (zρ).
Thus, we obtain the representation

Eρ(z;μ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ

2πi

∫

γ0

wρ(1−μ) exp(wρ)dw

w − z
, | arg z| > π

ρ
,

ρ

2πi

∫

γ0

wρ(1−μ) exp(wρ)dw

w − z
+ ρzρ(1−μ) exp (zρ), | arg z| < π

ρ
.

(1.1.18)

If arg z = ±π
ρ
, then after deformation of the contour the pole falls on γ0 and we must add half of

the residue to the integral by the Sochocki formula.
To complete the proof of theorem 1.1.2 (see (1.1.13)), we need to verify the relation

+∞∫

0

fρ(z; t, μ)t
ρ(1−μ) exp(−tρ)dt =

∫

γ0

wρ(1−μ) exp(wρ)dw

w − z
.
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The contour γ0 is the union of the two rays w = t exp

(
±πi
ρ

)
, 0 < t < +∞. Therefore,

∫

γ0

wρ(1−μ) exp(wρ)dw

w − z
=

0∫

+∞

tρ(1−μ) exp (−πi(1− μ))dt exp
(
−πi

ρ

)

t exp
(
−πi

ρ

)
− z

+

+∞∫

0

tρ(1−μ) exp (πi(1− μ))dt exp
(
πi
ρ

)

t exp
(
πi
ρ

)
− z

=

+∞∫

0

tρ(1−μ) exp (−tρ)
⎛

⎝ eπi(1−μ+1/ρ)

t exp
(
πi
ρ

)
− z

− eπi(μ−1−1/ρ)

t exp
(
−πi

ρ

)
− z

⎞

⎠ dt

=

+∞∫

0

tρ(1−μ) exp (−tρ)
(

e−πiμ

ze−πi/ρ − t
− eπiμ

zeπi/ρ − t

)
dt.

Theorem 1.1.2 is proved.

To examine the behavior of the Mittag-Leffler functions in a neighborhood of the negative part of
the real axis, we need a special formula for Eρ(z;μ), which is useful for ρ ∈ [2/5, 2/3], but we prove it
for ρ ∈ (1/3, 1).

Theorem 1.1.3. For all ρ ∈ (1/3, 1), μ ∈ R, and m ∈ Z+, m ≥ ρμ − 1, the following identity holds
on the right-hand half-plane Re z > 0:

Eρ(−z1/ρ;μ) = 2ρz1−μ exp
(
z cos(πρ)

)
cos
(
z sin(πρ)− πρ(μ− 1)

)

+
m∑

k=1

(−1)k−1z−k/ρ

Γ(μ− k/ρ)
+ Ωm(z; ρ, μ), (1.1.19)

where

Ωm(z; ρ, μ) =
(−1)mz1−μ

π

×
[
I1,m(z; ρ, μ) sin

(
π

(
μ− m+ 1

ρ

))
+ I2,m(z; ρ, μ) sin

(
π

(
μ− m

ρ

))]
, (1.1.20)

I1,m(z; ρ, μ) =

+∞∫

0

t(m+1)/ρ−μe−zt dt

t2/ρ + 2t1/ρ cos(π/ρ) + 1
,

I2,m(z; ρ, μ) =

+∞∫

0

t(m+1)/ρ−μe−zt dt

t1/ρ + 2 cos(π/ρ) + t−1/ρ
.

Proof. It is easy to see that it suffices to verify representation (1.1.19) only for z = x > 0. Indeed, on
both sides of (1.1.19), we have functions that are holomorphic in the open right half-plane. Therefore,
by the uniqueness theorem, they coincide for Re z > 0 if and only if they coincide for (0,+∞).

We represent the function Eρ(−x1/ρ;μ) by formula (1.1.1) setting α1 = −π and α2 = π. We obtain
the relation

Eρ(−x1/ρ;μ) = 1

2πi

∫

γ(σ,−π,π)

ζ1/ρ−μeζ dζ

ζ1/ρ + x1/ρ
, x < σ.
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Inside the Hankel loops γ(σ,−π, π), x < σ, the integrand has exactly two simple poles ζ± =
x exp(±πiρ). All other poles lying on the Riemann surface of argument, namely, {x exp(±(2k +
1)πiρ)}k∈N, lie strictly outside the loop since ρ > 1/3. The sum of the residues of the integrand at
the points ζ± is equal to

lim
ζ→x exp(πiρ)

ζ1/ρ−μeζ(ζ − x exp(πiρ))

ζ1/ρ + x1/ρ
+ lim

ζ→x exp(−πiρ)

ζ1/ρ−μeζ(ζ − x exp(−πiρ))
ζ1/ρ + x1/ρ

= ζ1/ρ−μeζ
∣∣∣
ζ=x exp(πiρ)

· lim
ζ→x exp(πiρ)

ζ − x exp(πiρ)

ζ1/ρ + x1/ρ

+ ζ1/ρ−μeζ
∣∣∣
ζ=x exp(−πiρ)

· lim
ζ→x exp(−πiρ)

ζ − x exp(−πiρ)
ζ1/ρ + x1/ρ

= ρζ1−μeζ
∣∣∣
ζ=x exp(πiρ)

+ ρζ1−μeζ
∣∣∣
ζ=x exp(−πiρ)

= 2ρRe(ζ1−μeζ)
∣∣∣
ζ=x exp(πiρ)

= 2ρRe exp
(
xeπiρ + (1− μ)

(
lnx+ πiρ

))

= 2ρx1−μ exp
(
x cos(πρ)

)
cos
(
x sin(πρ) + (1− μ)πρ

)
. (1.1.21)

Now we integrate along the contour γ(σ′,−π, π), 0 < σ′ < x, having added function (1.1.21) to the
integral:

Eρ(−x1/ρ;μ) = 2ρx1−μ exp(x cos(πρ)) cos(x sin(πρ) + (1− μ)πρ)

+
1

2πi

∫

γ(σ′,−π,π)

ζ1/ρ−μeζ dζ

ζ1/ρ + x1/ρ
. (1.1.22)

We transform the integrand in (1.1.22) by the identity

q

1 + q
=

m∑

k=1

(−1)k−1qk +
(−1)mqm+1

1 + q
, q ∈ C, q 	= −1, m ∈ N. (1.1.23)

We see that for any m ∈ N, the fraction

ζ1/ρ

ζ1/ρ + x1/ρ
=

(ζ/x)1/ρ

1 + (ζ/x)1/ρ

can be written in the form

ζ1/ρ

ζ1/ρ + x1/ρ
=

m∑

k=1

(−1)k−1ζk/ρ

xk/ρ
+

(−1)mζ
m+1
ρ

(1 + (ζ/x)1/ρ)x
m+1

ρ

. (1.1.24)

By (1.1.24) we have

1

2πi

∫

γ(σ′,−π,π)

ζ1/ρ−μeζ dζ

ζ1/ρ + x1/ρ
=

m∑

k=1

(−1)k−1x−k/ρ

2πi

∫

γ(σ′,−π,π)

ζk/ρ−μeζ dζ +Ωm(x, ρ, μ), (1.1.25)

where

Ωm(x; ρ, μ) =
(−1)mx

−m+1
ρ

2πi

∫

γ(σ′,−π,π)

ζ
m+1

ρ
−μ
eζ dζ

1 + (ζ/x)1/ρ
. (1.1.26)

The power of ζ in the numerator of the fraction in integral (1.1.26) is nonnegative owing to the
restriction m ≥ ρμ− 1 imposed in the theorem. Therefore, we can pass to the value σ′ = 0. Then the
Hankel loop becomes the negative part of the real axis traversed first from −∞ to 0 along the lower
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side of the cut (ζ = re−πi) and then from 0 to −∞ along the upper side (ζ = reπi). Changing the
variables in the integrals we obtain

Ωm(x; ρ, μ) =
(−1)mx

−m+1
ρ

2πi

×
+∞∫

0

r
m+1
ρ

−μ
e−r

⎛

⎝
exp
(
πi
(
μ− m+1

ρ

))

1 +
(
r
x

)1/ρ
exp
(
−πi

ρ

) −
exp
(
−πi

(
μ− m+1

ρ

))

1 +
(
r
x

)1/ρ
exp
(
πi
ρ

)

⎞

⎠ dr. (1.1.27)

Further, setting r = xt, we obtain the relation

Ωm(x; ρ, μ) =
(−1)mx1−μ

π

+∞∫

0

t
m+1
ρ

−μ
e−txUm(t; ρ, μ) dt,

where

Um(t; ρ, μ)

=
1

2i

(1 + t1/ρ exp(πiρ )) exp
(
πi
(
μ− m+1

ρ

))
− (1 + t1/ρ exp(−πiρ)) exp

(
πi
(
m+1
ρ − μ

))

1 + 2t1/ρ cos(π/ρ) + t2/ρ

=
sin
(
π
(
μ− m+1

ρ

))
+ t1/ρ sin

(
π
(
μ− m

ρ

))

1 + 2t1/ρ cos(π/ρ) + t2/ρ
. (1.1.28)

This immediately implies the representation of the remainder Ωm(x; ρ, μ) in the form proposed in
Theorem 1.1.3. Relations (1.1.22) and (1.1.25) together with Lemma 1.1.1 yield the form of the

principal part of the representation of Eρ(−z1/ρ;μ). The theorem is proved.

1.2. Basic Theorems on Asymptotic Behavior of Mittag-Leffler Functions

In this section, we present basic results on the asymptotic behavior of Eρ(z;μ) as z → ∞. We omit
proofs; all assertions of this section are consequences of results obtained in Secs. 1.3–1.5 below.

First, we describe the growth of the modulus maximum of Mittag-Leffler functions in terms of order
and type. Recall that the order of an entire function f(z) is defined as the supremum limit

lim sup
R→∞

ln ln

(
max
|z|≤R

|f(z)|
)

lnR
. (1.2.1)

Proposition 1.2.1. The order of the function Eρ(z;μ) is equal to ρ. Moreover, the supremum limit
in (1.2.1) can be replaced by the ordinary limit.

A more subtle characteristic of the growth is the type under the order ρ:

lim sup
R→∞

ln

(
max
|z|≤R

|f(z)|
)

Rρ
. (1.2.2)

Proposition 1.2.2. The type under the order ρ of the function Eρ(z;μ) is equal to 1 for any μ ∈ C,
and the supremum limit in (1.2.2) can be replaced by the ordinary limit.

Propositions 1.2.1 and 1.2.2 are trivial consequences of formulas that express the order and type of
an entire function by the coefficients of its Taylor series (see [14, Chap. 7, Sec. 12]).

We formulate a less obvious result.
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Proposition 1.2.3. For any ρ > 0 and μ ∈ C, the following asymptotics holds :

ln

(
max
|z|≤R

|Eρ(z;μ)|
)

= Rρ +O(lnR).

The constant in O depends on ρ and μ.

The behavior of an ρ-order entire function of normal type1 on rays in the complex plane is charac-
terized by the growth indicatrix:

Hρ(f, θ) = lim
R→+∞

ln |f(Reiθ)|
Rρ

, −π < θ ≤ π.

Proposition 1.2.4. For any μ ∈ C, the following relations hold :

Hρ(Eρ(z;μ), θ) = cos(ρθ), −π < θ ≤ π, 0 < ρ ≤ 1

2
,

Hρ(Eρ(z;μ), θ) =

⎧
⎪⎨

⎪⎩

cos(ρθ), |θ| ≤ π

2ρ
,

0,
π

2ρ
< |θ| ≤ π,

,
1

2
< ρ.

The exception in the last relation is the pairs of parameters ρ = 1, μ ∈ Z, μ ≤ 1. Then

E1(z;μ) = z1−μez, H(θ) = cos θ, −π < θ ≤ π.

Propositions 1.2.3 and 1.2.4 can be easily obtained from the following two theorems on the complete
asymptotic expansion of Mittag-Leffler functions. In the sequel, in the definition of noninteger powers
of z in the complex plane (not on the Riemann surface P!) we choose the principal branch of the
argument: arg(reiθ) = θ, −π < θ ≤ π, r > 0.

Theorem 1.2.1. For any ρ > 1/2, μ ∈ C, and m ∈ N, the following asymptotics hold.

If | arg z| ≤ min(π,
π

ρ
), then

Eρ(z;μ) = ρzρ(1−μ) exp(zρ)−
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1) (1.2.3)

as z → ∞.
If ρ > 1 and

π

ρ
≤ | arg z| ≤ π, then

Eρ(z;μ) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1) (1.2.4)

as z → ∞.

Remark 1.2.1. For ρ ∈ (1/2, 1], formula (1.2.3) is valid for | arg z| ≤ π, i.e., on the whole plane. The
first term has a discontinuity on the ray (−∞, 0)m but this does not lead to a contradiction since in

any angle α ≤ | arg z| ≤ π, α >
π

2ρ
, the modulus of the function ρzρ(1−μ) exp(zρ) tends to zero (as

r → +∞) faster than any negative power of r. In particular, on the negative part of the real axis, for
any ρ > 1/2 and μ ∈ C, we have the relation

Eρ(z;μ) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1), z ∈ R, z → −∞. (1.2.5)

1This means “of finite and positive type under the order ρ.”
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Theorem 1.2.2. For any ρ ≤ 1/2, μ ∈ C, and m ∈ N, the following asymptotics holds :

Eρ(z;μ) = ρ
∑

| arg z+2πn|≤ 3π
4ρ

(zρe2πinρ)1−μ exp(zρe2πinρ)

−
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1), z → ∞. (1.2.6)

We discuss Theorems 1.2.1 and 1.2.2.
Theorem 1.2.1 is an improvement of a well-known result of Dzhrbashyan (see [6, Chap. 3, p. 134]).

Dzhrbashyan proved asymptotics (1.2.3) in the angles | arg z| ≤ α, where α is an arbitrary number
from the interval (π/(2ρ),min(π/ρ, π)); in the complements of these angles, asymptotics (1.2.4) is
valid. It is unclear why Dzhrbashyan did not consider the value α = π/ρ. We set

α = min

(
π,
π

ρ

)
(1.2.7)

and thus exclude from the statement of the theorem an unnecessary parameter. However, a thoughtful
reader can ask why the value of α chosen in (1.2.7) is better than, say, α1 = min(π, 3π/(4ρ)). Only
the remainder of the asymptotics depends on the choice of α. In Theorems 1.4.1–1.5.1, we give an
explicit estimate of this remainder (without O-symbols). If anyone, having taken a different setting of
the parameter α, gets a better estimate, we accept his/her choice of α as more successful. Meanwhile,
we are of the opinion that formula (1.2.7) is the most reasonable.

Theorem 1.2.2 is a correction of an erroneous result of Nersesyan [6, Lemma 3.6, p. 137]. This result
is as follows: If 0 < ρ ≤ 1/2, then for any integer m ≥ 1, the following asymptotic formula as |z| → ∞
holds:

Eρ(z;μ) = ρ
∑

| arg z+2πn|≤ π
2ρ

(zρe2πinρ)1−μ exp(zρe2πiρ)−
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1); (1.2.8)

the first sum is taken over the values of n = 0, ±1, ±2, . . . , for which | arg z + 2πn| ≤ π/(2ρ).
Is not easy to detect an error in this statement. Formulas (1.2.6) and (1.2.8) differ only by a

small detail. In (1.2.6), the sum is taken over the values of n ∈ Z for which | arg z + 2πn| ≤ 3π/(4ρ)
(not π/(2ρ)). Thus, in (1.2.8), compared with (1.2.6), several terms are missed, and hence asymptotics
(1.2.8) is valid on any ray in C emanating from the point z = 0, but it is invalid as z → ∞!

We prove this by a simple example. Consider the function

E1/4(w
4, 1) =

∞∑

k=0

w4

(4k)!
=

1

4
(ew + e−w + eiw + e−iw). (1.2.9)

If we accept formula (1.2.8), then, taking into account the relation exp(πin/2) = in, we have

E1/4(z, 1) =
1

4

∑

| arg z+2πn|≤2π

exp( 4
√
z in) +O

(
1

|z|
)
, z → ∞. (1.2.10)

Now we consider the curve

K = {z ∈ C | z = (x− i)4, x ≥ 3}.
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It easy to see that the curve K lies inside the angle −π/2 < arg z < 0. Therefore, in (1.2.10) we must
take the values n = 0 and n = 1 for z ∈ K. Hence from (1.2.10) we obtain2

E1/4

(
(x− i)4, 1

)
=

1

4

(
ex−i + ei(x−i)

)
+O(x−4), x→ +∞. (1.2.11)

Subtracting asymptotics (1.2.11) from (1.2.9) for w = x− i we obtain the relation

1

4

(
e−x+i + e−i(x−i)

)
= O(x−4), x→ +∞,

and hence

e−1−ix = O(x−4 + e−x) = o(1), x→ +∞.

The last relation is contradictory. This means that formula (1.2.10) (and hence (1.2.8)) is invalid.
Coverage of this by Evgrafov (see [7, Chap. 4, Sec.4]) is incomplete. He considered only the

classical Mittag-Leffler function (μ = 1) and presented an analog of formula (1.2.6) with the condition
| arg z+2πn| ≤ π/(2ρ)+η and a restriction of the range of the summation index |n| ≤ [1/ρ]. However,
Evgrafov wrote nothing about η except that it is positive and did not present a proof of asymptotics.

By virtue of the presence of such defects in the presentation of asymptotics of Mittag-Leffler func-
tions of order ρ < 1/2, even in works of well-known scientists, we found ourselves obliged to give the
correct result with the maximal detailed proof (see below Secs. 1.3 and 1.5) and the explicit estimate
of remainders without O-symbols.

In concluding this section, we note another feature of our approach. We prove Theorem 1.2.1 only
for ρ ≥ 3/4 and Theorem 1.2.2 for ρ ≤ 3/4. It turns out that Theorem 1.2.2 is valid not only for
ρ ≤ 1/2, but also Theorems 1.2.1 and 1.2.2 are equivalent for ρ ∈ (1/2, 3/4]. The reason lies in the
absence of uniformity of asymptotics (1.2.4) with respect to the parameter ρ ∈ (1/2, 3/4]. Adding, by
formula (1.2.6) another term into the asymptotics of Eρ(z;μ) in the angle | arg(−z)| ≤ 3π/(4ρ) − π,
we restore the uniformity of the asymptotics with respect to ρ. This improvement will play a crucial
role in the study of real zeros of Eρ(z;μ) for ρ ∈ (1/2, 2/3] and μ ∈ R.

1.3. Complete Asymptotic Expansion of One Integral

This section is of “ technical nature”: we obtain an asymptotics of the integral

Jρ(z, μ, α1, α2) =
1

2πi

∫

γ(σ,α1,α2)

ζ1/ρ−μeζ dζ

ζ1/ρ − z
, (1.3.1)

where z, μ ∈ C, ρ > 0, 0 < σ < |z|ρ, α1 ∈ (−3π/2,−π/2), and α2 ∈ (π/2, 3π/2). This integral
naturally arises in the theory of Mittag-Leffler functions since it differs from their representing integral
(see Theorem 1.1.1) by the value of the parameter σ of the Hankel loop by which integration is carried
out; here σ is less (and not greater) than |z|ρ, as in (1.1.1). We assume that z does not lie on the rays


j = {r exp(iαj/ρ) | r ≥ 0}, j = 1, 2, (1.3.2)

and in this case, integral (1.3.1) is independent of the choice of σ ∈ (0, |z|ρ). The function
Jρ(z, μ, α1, α2) is an analytic function of the variable z in open angles that are formed after the
removal from C of rays (1.3.2). We denote by 
(z) the ray emanating from the origin 0 and passing

2By the choice of the branch of argument in the z-plane (see p. 219 before the statement of Theorem 1.2.1), we have

the relation
4
√
z4 = z if | arg z| < π/4.
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through the point z and by δ(z) the value of the minimal angle between the rays 
(z) and 
j . Finally,
we set

κ(z) =

{
sin−1 δ(z), 0 < δ(z) ≤ π/2,

1, π/2 < δ(z),

A = max

(∣∣∣∣
1

cosα1

∣∣∣∣ ,
∣∣∣∣

1

cosα2

∣∣∣∣

)
, α = max(|α1|, α2).

The following lemma on the complete asymptotic expansion of the integral Jρ in the domain C \
(
1 ∪ 
2) is the central result of this section.

Lemma 1.3.1. For any ρ > 0, μ ∈ C, α1 ∈ (−3π/2,−π/2), α2 ∈ (π/2, 3π/2), m ∈ N, and z ∈
C \ (
1 ∪ 
2), the following relation holds :

Jρ(z, μ, α1, α2) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+Rm(z, ρ, μ, α1, α2),

where the remainder admits the estimate

|Rm(z, ρ, μ, α1, α2)| ≤ κ(z)Ab+1Γ(b+ 1)(eα1 Imμ + eα2 Imμ)

2π|z|m+1
(1.3.3)

if b =
m+ 1

ρ
− Reμ ≥ 0. If b < 0, then for |z| ≥ 2 we have the relation

|Rm(z, ρ, μ, α1, α2)| ≤ (eα1 Imμ + eα2 Imμ)

π|z|m+1

⎛

⎝κ(z)A

2
+

α2∫

α1

ecosϕ dϕ

⎞

⎠ . (1.3.4)

Remark 1.3.1. Note that estimate (1.3.3) is valid not only for “sufficiently large” |z|, but also for all
z ∈ C \ (
1 ∪ 
2). Thus, we have obtained not only an asymptotics of Jρ(z, μ, α1, α2) as z → ∞, but
also two-sided estimates of these integrals. Clearly, these estimates are applicable for |z| ≥ 1, and the
greater |z|, the more exact these estimates.

Remark 1.3.2. It is easy to see that for μ ∈ R, inequalities (1.3.3) and (1.3.4) are simplified. For
example,

|Rm(z, ρ, μ, α1, α2)| ≤ κ(z)Ab+1Γ(b+ 1)

π|z|m+1
, if b =

m+ 1

ρ
− μ ≥ 0. (1.3.5)

Proof of Lemma 1.3.1. Similarly to (1.1.23), we have the relation

1

1− q
=

m∑

k=1

qk +
qm

1− q
, q ∈ C, q 	= 1, m ∈ N. (1.3.6)

Setting in (1.3.6) q = ζ1/ρ/z (q 	= 1 due to the condition z /∈ (
1 ∪ 
2)), we obtain

1

z
· 1

1− ζ1/ρ/z
=

1

z

⎛

⎝
m−1∑

k=0

(
ζ1/ρ

z

)k

+
ζm/ρ

zm(1− ζ1/ρ/z)

⎞

⎠

or, equivalently,

1

ζ1/ρ − z
= −

m∑

k=1

ζ(k−1)/ρ

zk
+

ζm/ρ

zm(ζ1/ρ − z)
. (1.3.7)
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From (1.3.7) we obtain the representation (for brevity, we denote the contour γ(σ, α1, α2) by γ)

∫

γ

ζ1/ρ−μeζ

ζ1/ρ − z
dζ = −

m∑

k=1

z−k

∫

γ

ζk/ρ−μeζ dζ + z−m

∫

γ

ζ
m+1
ρ

−μ
eζ

ζ1/ρ − z
dζ.

By Lemma 1.1.1, we have
1

2πi

∫

γ

ζk/ρ−μeζ dζ =
1

Γ(μ− k/ρ)
.

This and (1.3.1) imply the following expression for the integral Jρ(z, μ, α1, α2):

Jρ(z, μ, α1, α2) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+
z−m

2πi

∫

γ

ζ
m+1
ρ

−μ
eζ

ζ1/ρ − z
dζ. (1.3.8)

The principal part of the asymptotic expansion is found. Now we estimate the remainder

Rm(z, ρ, μ, α1, α2) =
z−m

2πi

∫

γ

ζ
m+1

ρ
−μ
eζ

ζ1/ρ − z
dζ.

We estimate from above the modulus of the integrand on the three parts of the contour γ = γ(σ, α1, α2):
the two rays and the arc. For all ζ ∈ P and s ∈ C, the following relation holds:

|ζs| = |ζ|Re s exp(−(Arg ζ)Iμs).

Therefore, taking into account the notation b =
m+ 1

ρ
− Reμ introduced in the lemma, we obtain

∣∣∣ζ
m+1
ρ

−μ
∣∣∣ = |ζ|b exp(ϕ Imμ), ϕ = Arg ζ. (1.3.9)

It is also easy to verify that for any x > 0 we have

min
r≥0

|re±iδ − x| =
{ x

sin δ
, 0 < δ ≤ π/2,

x, π/2 < δ ≤ π.

This and the definition of κ(z) stated before the formulation of the lemma immediately imply the
estimate

|ζ1/ρ − z|−1 ≤ κ(z)

|z| , Arg ζ = α1, Arg ζ = α2. (1.3.10)

The inequality

|ζ1/ρ − z|−1 ≤ (|z| − σ1/ρ)−1, |ζ| = σ, 0 < σ < |z|ρ, (1.3.11)

is obvious. From (1.3.9) and (1.3.11) we obtain that for σ > 0, the integrand on the arc

{ζ ∈ P | |ζ| = σ, α1 ≤ Arg ζ ≤ ζ2}
is O(σb) for any fixed z ∈ C(
1 ∪ 
2) (the constant in O depends on z, ρ, μ, α1, and α2). Therefore,
the integral over this arc is O(σb+1) = o(1) (σ → 0) for b > −1. By the arbitrariness of σ ∈ (0, |z|ρ),
we can pass (in the case where b > −1) to the limit value σ = 0 and integrate in (1.3.1) over the union
of the rays {Arg ζ = α1} ∪ {Arg ζ = α2}. We perform this for b ≥ 0.

Thus, for b ≥ 0 we have the relation

Rm(z, ρ, μ, α1, α2) =
z−m

2πi

∫

γ(0,α1,α2)

ζ
m+1
ρ

−μ
eζ

ζ1/ρ − z
dζ. (1.3.12)
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From (1.3.12), (1.3.9), and (1.3.10) we obtain

|Rm(z, ρ, μ, α1, α2) ≤ |z|−m

2π

∫

γ(0,α1,α2)

|ζ m+1
ρ

−μ| exp(Re ζ)|dζ|
|ζ1/ρ − z| dζ

≤ κ(z)

2π|z|m+1

∫

γ(0,α1,α2)

|ζ m+1
ρ

−μ| exp(Re ζ) |dζ|

=
κ(z)

2π|z|m+1

⎛

⎝
+∞∫

0

eα1 Imμ rber cosα1 dr +

+∞∫

0

eα2 Imμ rber cosα2 dr

⎞

⎠ . (1.3.13)

By the inclusions α1 ∈ (−3π/2,−π/2) and α2 ∈ (π/2, 3π/2), the numbers cosα1 and cosα2 are
negative. Therefore,

+∞∫

0

rber cosαj dr =
Γ(b+ 1)

| cosαj |b+1
≤ Ab+1Γ(b+ 1), j = 1, 2 (1.3.14)

(recall the notation A = max(| cosα1|−1, | cosα2|−1). Relations (1.3.13) and (1.3.14) lead to esti-
mate (1.3.3).

Now let b < 0. In this case, we consider only values |z| ≥ 2 and we set σ = 1. On the contour
γ(1, α1, α2), the parameter r varies on the rays ζ = reiαj , j = 1, 2, from 1 to +∞, and the integral over
the arc ζ = eiϕ, α1 ≤ ϕ1 ≤ α2, appears. Therefore, taking into account inequalities (1.3.9)–(1.3.11),
we obtain the inequality

|Rm(z, ρ, μ, α1, α2)| ≤ κ(z)

2π|z|m+1

(
eα1 Imμ

+∞∫

1

rber cosα1 dr

+ eα2 Imμ

+∞∫

1

rber cosα2 dr

)
+

1

2π(|z| − 1)|z|m
α2∫

α1

eϕ Imμ+cosϕ dϕ.

Since b < 0, we bound rb by unity from above for r ≥ 1 and calculate the integrals

+∞∫

1

er cosαj dr =
ecosαj

| cosαj | ≤ A, j = 1, 2.

Then we arrive at the inequality

|Rm(z, ρ, μ, α1, α2)|

≤ κ(z)A(eα1 Imμ + eα2 Imμ)

2π|z|m+1
+

max(eα1 Imμ, eα2 Imμ)
α2∫
α1

exp(cosϕ) dϕ

π|z|m+1

≤ (eα1 Imμ + eα2 Imμ)

π|z|m+1

⎛

⎝κ(z)A

2
+

α2∫

α1

ecosϕ dϕ

⎞

⎠ .

Lemma 1.3.1 is completely proved.
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Remark 1.3.3. As a rule, the case b ≥ 0 is more interesting than the case b < 0 since we can arrive
at it setting m ≥ ρμ − 1. In view of this fact, we estimated the remainder for b ≥ 0 more carefully,
and in the case b < 0 we made a slight roughening that allowed us to simplify the proof.

In conclusion of this section, we note that we need the integrals Jρ(z, μ, α1, α2) since they appear
in the study of Mittag-Leffler functions. In the sequel, we choose α1 and α2 appropriately depending
on the parameter ρ and the argument of the variable z. As for the “abstract theoretic” problem on
the asymptotic expansion of Jρ(z, μ, α1, α2) for z → ∞ in the domain C \ (
1 ∪ 
2), we can make the
following remarks based on Lemma 1.3.1.

1. In any closed angle L lying inside any of open angles formed by the union of the rays 
1 ∪ 
2, the
function δ(z) is nonzero and hence

sup
z∈L

κ(z) = C(L) < +∞. (1.3.15)

Then Lemma 1.3.1 implies the complete asymptotic expansion

Jρ(z, μ, α1, α2) ∼ −
∞∑

k=1

z−k

Γ(μ− k/ρ)
, z ∈ L, z → ∞, (1.3.16)

in the sense of the formulas

Jρ(z, μ, α1, α2) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+O(|z|−m−1), z ∈ L, z → ∞, (1.3.17)

for any m ∈ N.

2. In fact, Lemma 1.3.1 allows one to prove formulas (1.3.16) and (1.3.17) for a wider class of
domains, for example, for “inner parts” of hyperbolas whose asymptotes are the rays 
1 and 
2 or
domains bounded by curves each of whose point z is located at a distance not less than C|z|−p from

1 ∪ 
2 (here C and p are fixed positive constants). Then κ(z) = O(|z|p+1) (z → ∞, z ∈ G) and,
taking in the asymptotic series m+ p+ 1 terms, we obtain (1.3.17).

1.4. Asymptotic Expansions of Mittag-Leffler functions of Order ρ ≥ 3/4

We denote by Lρ, ρ > 1, the angle

Lρ = {z ∈ C | z 	= 0, | arg z| ≤ π/ρ}.
Theorem 1.4.1. For any ρ > 1, μ ∈ C, and m ∈ N, the following asymptotics hold.

(1) If z ∈ Lρ, then

Eρ(z;μ) = ρzρ(1−μ) exp(zρ)−
m∑

k=1

z−k

Γ(μ− k/ρ)
+R[1]

m (z; ρ, μ). (1.4.1)

The remainder R
[1]
m admits the estimate

|R[1]
m (z; ρ, μ)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b+2
2 Γ(b+ 1)ρ exp

(
5π
4 | Imμ|)

π|z|m+1
, if b =

m+ 1

ρ
− Reμ ≥ 0,

(6 + 2ρ/π) exp
(
5π
4 | Imμ|)

|z|m+1
, if b < 0.

(1.4.2)

The first of estimates (1.4.2) is valid for all z ∈ Lρ and the second under the additional condition
|z| ≥ 2.
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(2) If z ∈ C \ Lρ, z 	= 0, then

Eρ(z;μ) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+R[2]

m (z; ρ, μ). (1.4.3)

The remainder R
[2]
m admits the estimate

|R[2]
m (z; ρ, μ)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b+2
2 Γ(b+ 1)ρ exp

(
3π
4 | Imμ|)

π|z|m+1
, if b ≥ 0,

(6 + 2ρ/π) exp
(
3π
4 | Imμ|)

|z|m+1
, if b < 0.

(1.4.4)

The first of estimates (1.4.4) is valid for all z ∈ C \ Lρ and the second under the additional
condition |z| ≥ 2.

Proof. First, we consider the case where z ∈ Lρ and Im z ≥ 0 (the case where Im z < 0 is examined
similarly). Apply Theorem 1.1.1 setting α1 = −3π/4 and α2 = 5π/4. On the Riemann surface P of
the variable ζ, the integrand has only simple poles

ζn = zρ exp(2πinρ), n ∈ Z. (1.4.5)

The residues of the function ζ1/ρ−μeζ(ζ1/ρ − z)−1 at these points are equal to

Res

(
ζ1/ρ−μeζ

ζ1/ρ − z

)∣∣∣∣
ζ=ζn

= lim
ζ→ζn

ζ1/ρ−μeζ(ζ − ζn)

ζ1/ρ − z
= ζ1/ρ−μ

n eζn lim
ζ→ζn

ζ − ζn

ζ1/ρ − z

= ζ1/ρ−μ
n eζn lim

ζ→ζn

1
1
ρζ

1/ρ−1
= ρζ1−μ

n eζn . (1.4.6)

By the restriction

0 ≤ arg z ≤ π/ρ ⇐⇒ 0 ≤ arg zρ ≤ π, (1.4.7)

only one pole ζ0 of the poles (1.4.5) lies on the part of the Riemann surface

{ζ ∈ P | −3π/4 ≤ Arg ζ ≤ 5π/4}
containing the integration contour γ(σ, −3π/4, 5π/4). Indeed, (1.4.7) implies that

Arg ζ1 = 2πρ+ arg zρ ≥ 2πρ ≥ 2π, Arg ζ−1 = −2πρ+ arg zρ ≤ π − 2πρ < π − 2π = −π.
Therefore, by Theorem 1.1.1 and the residue theorem, we have the relation

Eρ(z;μ) =
1

2πi

∫

γ(σ,− 3π
4
, 5π
4
)

ζ1/ρ−μeζ dζ

ζ

1

ρ − z

Res

(
ζ1/ρ−μeζ

ζ1/ρ − z

)∣∣∣∣
ζ=zρ

+
1

2πi

∫

γ(σ′,− 3π
4
, 5π
4
)

ζ1/ρ−μeζ dζ

ζ1/ρ − z
, 0 < σ′ < |z|ρ. (1.4.8)

From (1.4.8), (1.4.6), and (1.3.1) we obtain the representation

Eρ(z;μ) = ρzρ(1−μ) exp(zρ) + Jρ

(
z;μ,−3π

4
,
5π

4

)
.
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The relation obtained and Lemma 1.3.1 immediately imply representation (1.4.1), in which we must
estimate the remainder. The corresponding estimates have been proved in Lemma 1.3.1 in the general
case. To apply them in this situation, we must calculate or estimate from above the constants A,

I =

α2∫

α1

exp(cosϕ) dϕ =

5π/4∫

−3π/4

exp(cosϕ) dϕ,

and

κ = sup{κ(z) | z ∈ Lρ, Im z ≥ 0}.
We have

A = max
(| cos−1(−3π/4)|, ‖ cos−1(5π/4)|) =

√
2, (1.4.9)

I =

π∫

−π

exp(cosϕ) dϕ = 2

π/2∫

−π/2

cosh(cosϕ) dϕ < 2

π/2∫

−π/2

(1 + cos2 ϕ) dϕ = 3π. (1.4.10)

To calculate the constant κ, we first find the minimum of the angular distance between z ∈ Lρ,
Im z ≥ 0, and the rays


1 =

{
r exp

(
− 3πi

4ρ

)
, r > 0

}
, 
2 =

{
r exp

(5πi
4ρ

)
, r > 0

}
.

Among the intersection points of the angle Lρ with the upper half-plane, the closest to the ray 
1 (in
the sense of the angular distance) can be either the points R+, for which the angle is equal to 3π/(4ρ),
or the points of the ray {

r exp

(
πi

ρ

)
, r > 0

}
,

for which the angle is equal to
(
π − π

ρ

)
+

(
π − 3π

4ρ

)
= 2π − 7π

4ρ
>
π

4
.

Similar angular distances for the ray 
2 are equal to

2π − 5π

4ρ
> 2π − 5π

4
≥ 3π

4ρ
,

5π

4ρ
− π

ρ
=

π

4ρ
,

respectively. Therefore, for all z ∈ Lρ ∩ {Im z ≥ 0}, the angle δ(z) is not less than π/(4ρ) and

κ ≤ 1

sin(
π

4ρ
)
=

4ρ

π
· t

sin t
,

where t = π/(4ρ). Since the function t/sin t increases on (0, π/4] and is equal to π/
√
8 at the point

t = π/4, we have

κ ≤ ρ
√
2. (1.4.11)

From (1.4.9) and (1.4.11) and the estimates of the remainder from Lemma 1.1.1 we immediately obtain
inequalities (1.4.2). For the case Im z < 0, we must set α1 = −5π/4 and α2 = 3π/4 and use the same
arguments. The first part of Theorem 1.4.1 is proved.

Now we prove the second part of the theorem. Now

z = reiθ, r > 0,
π

ρ
≤ |θ| ≤ π.
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We apply the integral representation (1.1.1) with α1 = −3π/4 and α2 = 3π/4. For the considered
values of z, the angle

−3π

4
≤ Arg ζ ≤ 3π

4
(1.4.12)

does not contain poles of the integrand since under condition (1.4.12), the variable ζ1/ρ takes its values
in the angle L3ρ/4 ⊂ Lρ. Therefore, we can arbitrarily change the parameter σ of the Hankel loop
γ(σ,−3π/4, 3π/4) in integral (1.1.1). Taking σ ∈ (0, |z|ρ), we obtain the representation

Eρ(z;μ) = Jρ

(
z;μ,−3π

4
,
3π

4

)
, z ∈ C \ Lρ, z 	= 0.

The asymptotic formula for the integral Jρ proved in Lemma 1.3.1 yields expansion (1.4.3) and

estimates (1.4.4) since here, as in the first part of the theorem, A =
√
2 and κ ≤ ρ

√
2. The last

inequality follows from the fact that

sup
{
δ(z)

∣∣∣ z ∈ C \ Lρ, z 	= 0
}
=

π

4ρ

(the definition of δ(z) is stated before Lemma 1.3.1). An improvement in inequality (1.4.4) compared
with (1.4.2) is due to the exact relation

exp

(
−3π

4
Imμ

)
+ exp

(
3π

4
Imμ

)
= 2 cosh

(
5π

4
Imμ

)
,

which we used instead of the estimate

exp

(
−3π

4
Imμ

)
+ exp

(
5π

4
Imμ

)
≤ 2 exp

(
5π

4
| Imμ|

)

in the first part of the theorem. Theorem 1.4.1 is completely proved.

Theorem 1.4.2. For any ρ ∈ [3/4, 1], μ ∈ C, m ∈ N, and z ∈ C, z 	= 0, the following relation holds :

Eρ(z;μ) = ρzρ(1−μ) exp(zρ)−
m∑

k=1

z−k

Γ(μ− k/ρ)
+Rm(z; ρ, μ), (1.4.13)

in which the remainder Rm admits the estimate

|Rm(z; ρ, μ)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b+2
2 Γ(b+ 1) exp(5π4 | Imμ|)

|z|m+1
, if b =

m+ 1

ρ
− Reμ ≥ 0,

8|z|−m−1 exp

(
5π

4
| Imμ|

)
, if b < 0.

(1.4.14)

The second estimate in (1.4.14) is valid under the additional condition |z| ≥ 2.

Remark 1.4.1. The first term of asymptotics (1.4.13) is discontinuous on the ray (−∞, 0), but this
does not leads to a contradiction since in the angle 5π/6 ≤ | arg z| ≤ π it tends to zero as |z| → +∞
faster than any negative power of |z| and goes to the remainder.

Remark 1.4.2. Representation (1.4.13) with the remainder

Rm(z; ρ, μ) ≤ C(ρ, μ,m)(|z|−m−1), |z| → ∞,

is valid for all ρ ∈ (1/2, 1]; this was proved by Dzhrbashyan (see [6]), who was not interested in the
dependence of the function C(ρ, μ,m) on the parameters ρ and μ. We restrict ourselves to the case
ρ ∈ [3/4, 1] since for C(ρ, μ,m) we cannot obtain an upper estimate better than exp(C1/(ρ − 0.5)),
C1 > 0, when ρ tends to 1/2. For ρ < 3/4, it is better to use another asymptotics, which will be
introduced in the following section.
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Proof of Theorem 1.4.2. We prove Theorem 1.4.2 for z lying in the upper half-plane. We use the
integral representation (1.1.1) of the Mittag-Leffler function taking α1 = −2π/3 and α2 = 5π/4. If
Im z < 0, then we take α1 = −5π/4 and α2 = 2π/3; in other respects, we operate similarly, up to the
symmetry with respect to R.

It is easy to verify that in the angle on the Riemann surface P made by the rays of the chosen loop,
there are no poles of the integrand except for ζ0 = zρ. Indeed,

Arg ζ1 = Arg zρ + 2πρ ≥ 2πρ ≥ 2π · 3
4

=
3π

2
>

5π

4
,

Arg ζ−1 = Arg zρ − 2πρ ≤ πρ− 2πρ = −πρ ≤ −3π

4
< −2π

3
.

Therefore, adding the residue at the point ζ0 (we have calculated this residue in the proof of the
previous theorem), we pass to integration along the loops γ (σ,−2π/3, 5π/4), where 0 < σ < |z|ρ.
Therefore, we obtain the representation

Eρ(z;μ) = ρzρ(1−μ) exp(zρ) + Jρ

(
z, μ,−2π

3
,
5π

4

)
. (1.4.15)

Relation (1.4.15) and Lemma 1.3.1 yield (1.4.13), and estimate (1.4.14) is obtained after calculating
A and κ = sup{κ(z) | Im z ≥ 0}. In this case,

A = max
(| cos(−2π/3)|−1, | cos(5π/4)|−1

)
= 2. (1.4.16)

The minimal angle between the points of the upper half-plane and the rays
{
r exp

(
5πi

4ρ

)
, r > 0

}
,

{
r exp

(
−2πi

3ρ

)
, r > 0

}

is equal to

min

(
5π

4ρ
− π, 2π − 5π

4ρ
, π − 2π

3ρ

)
. (1.4.17)

Function (1.4.17) on the segment 3/4 ≤ ρ ≤ 1 attains the minimal value π/9. Therefore,

κ ≤ 1

sin(π/9)
< π. (1.4.18)

From (1.4.18), (1.4.16), (1.3.3), and (1.3.4) we obtain inequality (1.4.14). Theorem 1.4.2 is proved..

Of special interest are Mittag-Leffler functions of order ρ = 1:

E1(z;μ) =

∞∑

k=0

zk

Γ(μ+ k)
=

1

Γ(μ)

∞∑

k=0

zk

(μ)k
, (1.4.19)

where

(μ)k =
k−1∏

j=0

(μ+ j), k ∈ N, (μ)0 = 1.

They are not generalized hypergeometric functions

pFq(z;α1, α2, . . . , αp;β1, β2, . . . , βq) =
∞∑

k=0

zk

k!
·

p∏
j=1

(αj)k

p∏
j=1

(βj)k

. (1.4.20)

Indeed, from (1.4.19) and (1.4.20) we see that

E1(z;μ) =
1

Γ(μ)
1F1(z; 1;μ).
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Mittag-Leffler functions of order 1 are closely related to the incomplete gamma-function

γ(λ, x) =

x∫

0

tλ−1e−t dt

due to the identity

E1(z;μ) =
1

Γ(μ− 1)

1∫

0

(1− t)μ−2ezt dt, Reμ > 1, z ∈ C, (1.4.21)

which can be easily proved:

1

Γ(μ− 1)

1∫

0

(1− t)μ−2ezt dt =
∞∑

k=0

zk

k!Γ(μ− 1)

1∫

0

(1− t)μ−2tk dt

=
∞∑

k=0

zk

k!Γ(μ− 1)
B(μ− 1, k + 1) =

∞∑

k=0

zk

k!Γ(μ− 1)

Γ(μ− 1)Γ(k + 1)

Γ(μ+ k)

=
∞∑

k=0

zk

Γ(μ+ k)
= E1(z, μ).

From (1.4.21) we obtain

E1(z;μ+ 1) =
1

Γ(μ)

1∫

0

(1− t)μ−1ezt dt =
1

Γ(μ)

1∫

0

τμ−1ez(1−τ) dτ

=
ez

Γ(μ)

1∫

0

τμ−1e−τz dz =
ez

zμΓ(μ)

z∫

0

uμ−1e−u du,

i.e.,

γ(μ, z) = zμΓ(μ)e−zE1(z;μ+ 1). (1.4.22)

Thus, the question on zeros of the incomplete gamma-function in the complex plane is equivalent to
the question on zeros of a Mittag-Leffler function of order 1.

Note that the functions E1(z;m), m ∈ Z, are elementary:

E1(z;m) = z1−mez, m ≤ 1, m ∈ Z, (1.4.23)

E1(z;m) = z1−mez −
m−1∑

k=1

z−k

Γ(m− k)
, m ≥ 2, m ∈ Z. (1.4.24)

Formula (1.4.24) seems invalid since its right-hand side has a singularity at the point z = 0. However,
this is a removable singularity; for example,

E1(z; 2) =
ez − 1

z
, E1(z; 3) =

ez − 1− z

z2
, E1(z; 4) =

ez − 1− z − z2/2

z3
, etc.

Identities (1.4.23) and (1.4.24) can be proved by calculating the coefficients of power series for both
sides.

In the following theorem, we present an asymptotics of E1(z;μ) for ρ = 1 outside the negative part
of the real axis with a substantially more exact (outside a small neighborhood of (−∞, 0]) estimate
of the remainder than in (1.4.14). It is especially useful if the parameter μ is sufficiently close to an
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integer number. Further, we show that this estimate is very close to unimprovable; moreover, this
estimate is closer to the best possible the farther the point z is from (−∞, 0].

We denote by d(z) the distance from the point z to the ray (−∞, 0]:

d(z) =

{
| Im z|, Re z ≤ 0,

|z|, Re z > 0.

Theorem 1.4.3. For any μ ∈ C, m ∈ N, m ≥ Reμ−2, and z /∈ (−∞, 0], the following representation
holds:

E1(z;μ) = z1−μez −
m∑

k=1

z−k

Γ(μ− k)
+Rm(z;μ); (1.4.25)

here the remainder has the form

Rm(z;μ) =
(−1)m sin(πμ)

πzm+1

⎛

⎝Γ(m+ 2− μ)−
+∞∫

0

rm+2−μe−r

r + z
dr

⎞

⎠ (1.4.26)

and admits the following estimate:

|Rm(z;μ)| ≤ | sinπμ|Γ(b+ 1)

π|z|m+1

(
1 +

b+ 1

d(z)

)
, (1.4.27)

where b = m+ 1− Reμ.

Proof. By Theorem 1.1.1,

E1(z;μ) =
1

2πi

∫

γ(σ,−π,π)

ζ1−μeζ dζ

ζ − z
, |z| < σ.

Now we can forget about the Riemann surface P and assume that the integration variable ζ belongs
to the complex plane with the cut C \ (−∞, 0]. The integrand has a unique singularity (encompassed
by the contour) on C\ (−∞, 0], namely, a simple pole at the point ζ = z, with residue equal to z1−μez.
Therefore, we can bypass this pole by taking the integral over the loop γ(σ′,−π, π) with parameter
σ′ < |z| and, adding the residue, obtain the representation

E1(z;μ) = z1−μez +
1

2πi

∫

γ(σ′,−π,π)

ζ1−μeζ dζ

ζ − z
(1.4.28)

(for definiteness, we can set σ′ = |z|/2). Further, we use the identity

1

ζ − z
= −

m+1∑

k=1

ζk−1

zk
+

ζm+1

zm+1(ζ − z)
. (1.4.29)

From (1.4.28) and (1.4.29) we obtain the relation

E1(z;μ) = z1−μez −
m+1∑

k=1

z−k

2πi

∫

γ(σ′,−π,π)

ζk−μeζ dζ +
z−m−1

2πi

∫

γ(σ′,−π,π)

ζm+2−μeζ dζ

ζ − z
,

which, together with Lemma 1.1.1 yields

E1(z;μ) = z1−μez −
m+1∑

k=1

z−k

Γ(μ− k)
+
z−m−1

2πi

∫

γ(σ′,−π,π)

ζm+2−μeζ

ζ − z
dζ.

231



Introducing the notation

Rm(z;μ) =
z−m−1

Γ(μ−m− 1)
+
z−m−1

2πi

∫

γ(σ′,−π,π)

ζm+2−μeζ dζ

ζ − z
dζ,

we can rewrite the last relation in the following form:

E1(z;μ) = z1−μez −
m∑

k=1

z−k

Γ(μ− k)
+Rm(z;μ).

Thus, representation (1.4.25) is proved. Now we show that the remainder Rm(z;μ) has the form
(1.4.26) and admits estimate (1.4.27).

We transform Rm(z;μ). First, we apply identity (1.1.5):

1

Γ(μ−m− 1)
=

sinπ(μ−m− 1)

π
Γ(m+ 2− μ).

Further, we pass from integration over γ(σ,−π, π) to integration over γ(0,−π, π), i.e., over the union
of the lower and upper sides of the cut (−∞, 0] (this is possible since m+ 2− Reμ ≥ 0). We obtain
the relation

Rm(z;μ) =
(−1)m sin(πμ)Γ(m+ 2− μ)

πzm+1

+
z−m−1

2πi

⎛

⎝
+∞∫

0

(−r)m+2(re−πi)−μe−r d(−r)
−r − z

+

+∞∫

0

(−r)m+2(reπi)−μe−r d(−r)
−r − z

⎞

⎠

=
(−1)m sin(πμ)Γ(m+ 2− μ)

πzm+1
− z−m−1(−1)m

2πi

⎛

⎝
+∞∫

0

rm+2−μeπiμ−r dr

r + z
− rm+2−μe−πiμ−r dr

r + z
−
⎞

⎠

=
(−1)m sin(πμ)

πzm+1

⎛

⎝Γ(m+ 2)−
+∞∫

0

rm+2−μe−r dr

r + z

⎞

⎠ . (1.4.30)

Relation (1.4.26) is proved. Now we obtain estimate (1.4.27). Since |r + z| ≥ d(z) for all r > 0, we
have the relation ∣∣∣∣∣∣

+∞∫

0

rm+2−μe−r dr

r + z

∣∣∣∣∣∣
≤ 1

d(z)

+∞∫

0

rm+2−Reμe−rdr =
Γ(m+ 3− Reμ)

d(z)
. (1.4.31)

Recalling the notation b = m+ 1−Reμ, we obtain from (1.4.30) and (1.4.31)3

|Rm(z;μ)| ≤ | sin(πμ)|
π|z|m+1

(
Γ(b+ 1) +

1

d(z)
Γ(b+ 2)

)
=

| sin(πμ)|Γ(b+ 1)

π|z|m+1

(
1 +

b+ 1

d(z)

)
.

The theorem is proved.

Estimate (1.4.27) is quite exact. We show that if it can be improved for real μ, this is only due to

the factor 1 +
b+ 1

d(z)
. Indeed, the asymptotic expansion of the function E1(z;μ) as z → ∞ proved in

Theorem 1.4.3 implies

Rm(z;μ) ∼ 1

Γ(μ−m− 1)zm+1
.

3As in (1.4.31), we use the inequality |Γ(w)| ≤ Γ(Rew), Rew > 0, for an upper estimate of the modulus of the

Γ-function.
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This equivalence is valid if μ is not an integer not greater than m+1. In the opposite case, by (1.4.24),
we have the relation Rm(z, μ) = 0. Since

1

Γ(μ−m− 1)
=

sin(πμ)(−1)mΓ(m+ 2− μ)

π
,

we obtain for μ ∈ R

Rm(z;μ) ∼ (−1)m sin(πμ)Γ(b+ 1)

πzm+1
, z → ∞. (1.4.32)

Therefore, if we want to replace equivalence (1.4.32) by an estimate valid for all z /∈ (−∞, 0], we get

the factor 1 +
b+ 1

d(z)
in the estimate.

1.5. Asymptotic Expansion of Mittag-Leffler Functions of Order ρ ≤ 3/4

Theorem 1.5.1. For any ρ ≤ 3/4, μ ∈ C, and m ∈ N, the following representation holds:

Eρ(z;μ) = ρ
∑

| arg z+2πn|≤ 3π
4ρ

(zρe2πinρ)1−μ exp(zρe2πinρ)−
m∑

k=1

z−k

Γ(μ− k/ρ)
+Rm(z, ρ, μ), z 	= 0. (1.5.1)

The remainder admits the estimate

|Rm(z; ρ, μ)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b+2
2 Γ(b+ 3/2) exp

(
5π
4 | Imμ|)

|z|m+1
, if b =

m+ 1

ρ
− Reμ ≥ 0,

7.1|z|−m−1 exp

(
5π

4
| Imμ|

)
, if b < 0.

(1.5.2)

The first of estimates (1.5.2) is valid for all z 	= 0 and the second for |z| ≥ 2.

Proof. We choose the parameters α1 and α2 defining the Hankel loop in the integral representation
(1.1.1) depending on θ = arg z. The problem is to find numbers

α1 ∈
[
−5π

4
,−3π

4

]
, α2 ∈

[
3π

4
,
5π

4

]
(1.5.3)

such that the angles between the rays {r exp(iθ) | r > 0} and {r exp(iα1/ρ) | r > 0} and between the
rays {r exp(iθ) | r > 0} and {r exp(iα2/ρ) | r > 0} will be as large as possible. These angles are equal
to

min
p∈Z

∣∣∣∣θ + 2πp− αj

ρ

∣∣∣∣ , j = 1, 2. (1.5.4)

To solve this problem, we use the following simple fact. If the β runs over a segment 
 of the real axis,
|
| ≤ 2π, then

max
β∈


min
p∈Z

|2πp− β| = |
|
2

(1.5.5)

(we denote by |
| the length of the segment 
). The proof of relation (1.5.5) is left to the reader. Since

in Eqs. (1.5.4) the variable θ − αj/ρ, due to (1.5.3), runs 4 over a segment of length
π

2ρ
≥ 2π

3
for 0 <

ρ ≤ 3/4, we see that there exist numbers α1(θ) and α2(θ) satisfying inclusions (1.5.3) such that angles
(1.5.4) are not less than π/3. Thus, we conclude that for the chosen Hankel loop γ(σ, α1(θ), α2(θ)),
we have the following inequality for κ(z) (see its definition before Lemma 1.3.1):

κ(z) ≤ 1

sin(π/3)
=

2√
3
. (1.5.6)

4Here θ and p are fixed and αj vary within the limits indicated in (1.5.3).
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From (1.5.3) we also obtain that

A = max(| cosα1|−1, | cosα2|−1) ≤
√
2. (1.5.7)

Here the integrand in the angle of the Riemann surface of the argument α1 ≤ Arg ζ ≤ α2 may have
sufficiently many poles {ζn}n∈N that were indicated in (1.4.4). We denote by A(z, ρ) the set of all
integers n for which the inclusion Arg ζn ∈ [α1, α2] holds. Obviously, this set is finite and

n ∈ A(z, ρ) ⇐⇒ α1(θ)

ρ
≤ θ + 2πn ≤ α2(θ)

ρ
. (1.5.8)

We transform integral (1.1.1) moving the contour behind the poles and adding the residues at these
poles (they were calculated in (1.4.6). We obtain the relation

Eρ(z;μ) = ρ
∑

n∈A(z,ρ)

(zρe2πinρ)1−μ exp(zρe2πinρ) + Jρ(z, μ, α1(θ), α2(θ)). (1.5.9)

By Lemma 1.3.1 and estimates (1.5.3), (1.5.6), and (1.5.7), we have

Jρ(z;μ, α1(θ), α2(θ)) = −
m∑

k=1

z−k

Γ(μ− k/ρ)
+ Um(z; ρ, μ), (1.5.10)

where

|Um(z; ρ, μ)| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
b+2
2 Γ(b+ 1) exp

(
5π
4 | Imμ|)

π|z|m+1
, if b =

m+ 1

ρ
− Reμ ≥ 0,

6|z|−m−1 exp

(
5π

4
| Imμ|

)
, if b < 0.

(1.5.11)

We explain the appearance of the factor 6 in the second estimate (1.5.11). We apply Lemma 1.3.1
and the inequality

eα1 Imμ + eα2 Imμ ≤ eα| Imμ|, α = max(|α1|, |α2|).
For b < 0, we obtain the estimate

|Um(z; ρ, μ)| ≤ 2

π

⎛

⎝κ(z)A

2
+

α2∫

α1

ecos θ dθ

⎞

⎠ |z|−m−1eα| Imμ| ≤ C|z|−m−1eα|IMμ|. (1.5.12)

In our case, α ≤ 5π/4, by (1.5.6) and (1.5.7), we have the inequality κ(z)A/2 ≤ √2/3. Therefore,
inequality (1.5.12) is valid if we take

C =
2

π

⎛

⎜⎝
√

2

3
+

5π
4∫

− 5π
4

ecos θ dθ

⎞

⎟⎠ < 6.

To complete the proof of the theorem, we pass from the sum
∑

n∈A(z,ρ)

in (1.5.9) to the sum
∑

|θ+2πn|≤ 3π
4ρ

.

By (1.5.3) and (1.5.8), the set A(z, ρ) contains all values of n ∈ N for which |θ + 2πn| ≤ 3π/(4ρ) and
can also contain n satisfying the inequality

3π

4ρ
< |θ + 2πn| ≤ 5π

4ρ
. (1.5.13)

Therefore, if we pass from one sum to the other, we see that the error does not exceed

Vm(z; ρ, μ) = ρ
∑

3π
4ρ

<|θ+2πn|≤ 5π
4ρ

∣∣∣
(
zρe2πinρ

)1−μ
exp
(
zρe2πinρ

)∣∣∣ (1.5.14)
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and hence the remainder Rm(z; ρ, μ) in (1.5.1) admits the estimate

|Rm(z; ρ, μ)| ≤ |Um(z; ρ, μ)|+ Vm(z; ρ, μ). (1.5.15)

Now we estimate VmR from above. The number of terms in sum (1.5.14) (i.e., the number of
integers n satisfying (1.5.13)) does not exceed

2

(
1

2π

[
5π

4ρ
− 3π

4ρ

]
+ 1

)
≤ 2

(
1

4ρ
+ 1

)
≤ 2 +

1

2ρ
.

Therefore, taking into account the relation zρ = |z|ρ exp(iθρ), we obtain the inequality

Vm ≤ (0.5 + 2ρ)|z|ρ(1−Reμ) max
3π
4ρ

<|θ+2πn|≤ 5π
4ρ

∣∣∣ exp
(
(2πn+ θ)iρ(1− μ) + |z|ρe(2πn+θ)iρ

)∣∣∣. (1.5.16)

Using the obvious relations

| expw| = exp(Re w), w ∈ C, 0.5 + 2ρ ≤ 2, 0 < ρ ≤ 0.75,

we obtain from (1.5.16)

Vm(z, ρ, μ) ≤ 2|z|ρ(1−Reμ) max
3π
4ρ

<|θ+2πn|≤ 5π
4ρ

∣∣∣ exp
(
(2πn+ θ)ρ Imμ+ |z|ρ cos((2πn+ θ)ρ)

)∣∣∣. (1.5.17)

Owing to (1.5.13) we have the inequality

cos(2πn+ θ)ρ ≤ −1/
√
2, (2πn+ θ)ρ Imμ ≤ 5π

4
| Imμ|.

Therefore, from (1.5.17) we obtain

Vm(z; ρ, μ) ≤ 2|z|ρ(1−Reμ) exp

(
5π

4
| Imμ| − |z|ρ√

2

)

= 2|z|−m−1 exp

(
5π

4
| Imμ|

)
· |z|ρ

(
|z|m+1−ρReμ exp

(
−|z|ρ√

2

))

= 2|z|−m−1 exp

(
5π

4
| Imμ|

)
tb+1 exp

(
− t√

2

)
, (1.5.18)

where

t = |z|ρ, b =
m+ 1

ρ
− Reμ.

For b ≥ 0, Eq. (1.5.18) implies

Vm(z, ρ, μ) ≤ 2M(b) exp
(
5π
4 | Imμ|)

|z|m+1
, (1.5.19)

where

M(b) = max
t≥0

tb+1 exp

(
− t√

2

)
= 2

b+1
2 (b+ 1)b+1e−b−1.

By the inequality5

aae−a ≤ 2Γ(a+ 0.5)√
π e

< 0.45Γ(a+ 0.5) ∀a ≥ 1

we have the inequality

2M(b) ≤ 0.9 · 2 b+1
2 Γ(b+ 3/2). (1.5.20)

5The inequality

aae−a√π e ≤ 2Γ(a+ 0.5) ⇐⇒ H(a) ≡ a ln a− a− ln Γ(a+ 0.5) + ln(
√
π e/2) ≤ 0

is proved as follows: H(1) = 0, H ′(a) = ln a−Ψ(a+ 0.5) < 0 (see Chap. 3, Sec. 3.4 below).
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From (1.5.19) and (1.5.20) we finally obtain the inequality

Vm(z; ρ, μ) ≤ 0.9Γ(b+ 3/2)2
b+1
2 exp

(
5π
4 | Imμ|)

|z|m+1
, b ≥ 0. (1.5.21)

For b < 0, we consider only values of z for which |z| ≥ 2 and hence t ≥ 1. Therefore, tb ≤ 1 and
(1.5.18) implies

Vm(z; ρ, μ) ≤ 2|z|−m−1 exp

(
5π| Imμ|

4

)
·max

t≥1
t exp

(
− t√

2

)

=
2
√
2

e
|z|−m−1 exp

(
5π| Imμ|

4

)
< 1.1|z|−m−1 exp

(
5π| Imμ|

4

)
. (1.5.22)

From (1.5.22), the second inequality (1.5.11), and (1.5.15) we immediately obtain the second inequal-
ity (1.5.2).

To deduce the first inequality (1.5.2) from (1.5.15), (1.5.11), and (1.5.21), it suffices to verify the
relation

Γ(b+ 1)

π
+

0.9Γ(b+ 3/2)√
2

≤ Γ(b+ 3/2) ∀b ≥ 0,

which can be rewritten in the following equivalent form:

Γ(b+ 1)

Γ(b+ 3/2)
· 1
π
+

0.9√
2
≤ 1 ∀b ≥ 0. (1.5.23)

Since the logarithmic derivative of the gamma-function increases, the ratio Γ(b + 1)/Γ(b + 3/2)
decreases and hence

Γ(b+ 1)/Γ(b+ 3/2) ≤ Γ(1)/Γ(3/2) = 2/
√
π ∀b ≥ 0.

This shows that to complete the proof of (1.5.23), it remains to verify the numeric inequality

2π−3/2 + 0.9 · 2−1/2 < 1. Theorem 1.5.1 is proved.

In the following theorem, we obtain a substantially more exact estimate than in Theorem 1.5.1, of
the remainder in the asymptotic representation of the Mittag-Leffler function in the left half-plane in
the case where the parameter is close to 1/2 and the ratio |z/x| is close to 1.

Theorem 1.5.2. For any ρ ∈ [2/5, 2/3], μ ∈ R, m ∈ Z+, m ≥ ρμ − 1, and z ∈ C, Re z > 0, the
following representation holds:

Eρ(−z1/ρ;μ) = 2ρz1−μ exp(z cosπρ) cos
(
z sin(πρ)− πρ(μ− 1)

)

+
m∑

k=1

(−1)k−1z−k/ρ

Γ(μ− k/ρ)
+ Ωm(z; ρ, μ), (1.5.24)

in which the remainder admits the following estimate (x = Re z):

|Ωm(z; ρ, μ)| ≤
(|z|/x)1−μΓ

(
1− μ+ m+1

ρ

)

πx
m+1
ρ

(
∣∣ sin

(
π(μ− m+1

ρ )
)∣∣+

| sin(π(μ− m
ρ ))|

4 cos2( π
2ρ)

)
. (1.5.25)

If the numbers sin

(
π

(
μ− m+ 1

ρ

))
and sin

(
π

(
μ− m

ρ

))
have opposite signs, then for z = x > 0

the following inequality holds :

|Ωm(z; ρ, μ)| ≤
Γ
(
1− μ+ m+1

ρ

)

πx
m+1

ρ

max

(∣∣∣sin
(
π(μ− m+1

ρ )
)∣∣∣ ,

| sin (π(μ− m
ρ )
)|

4 cos2( π
2ρ)

)
. (1.5.26)
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Proof. Representation (1.5.24) was obtained in Theorem 1.1.3, where we have obtained a formula for
the remainder Ωm through the integrals I1,m and I2,m. To obtain an upper estimate for the moduli of
these integrals, we first deduce lower estimates for the denominators (note that they are positive) of
the integrands.

We have the inequalities

t1/ρ + 2 cos
π

ρ
+ t−1/ρ ≥ 2 + 2 cos

π

ρ
= 4 cos2

π

2ρ
,

1 + 2t1/ρ cos
π

ρ
+ 2t2/ρ ≥ 1.

(1.5.27)

In the last inequality, we have used the nonnegativeness of cos(π/ρ) for ρ ∈ [2/5, 2/3]. From (1.5.27)
we obtain

|I1,m(z; ρ, μ)| ≤
+∞∫

0

|tm+1
ρ

−μ
ezt| dt =

+∞∫

0

t
m+1
ρ

−μ
e−xt dt = x

μ−1−m+1
ρ Γ

(
1− μ+

m+ 1

ρ

)
(1.5.28)

and

|I2,m(z; ρ, μ)| ≤ 1

4
cos−2

(
π

2ρ

) +∞∫

0

t
m+1

ρ
−μ
e−xt dt

=
1

4
cos−2

(
π

2ρ

)
x
μ−1−m+1

ρ Γ

(
1− μ+

m+ 1

ρ

)
. (1.5.29)

From (1.5.28), (1.5.29), and (1.1.20) we immediately obtain (1.5.25). To prove inequality (1.5.26), we
note that the integrals Ij,m(z, ρ, μ) are positive if x > 0 and for the sum as1+ bs2, where a > 0, b > 0,
and sgn s1 = − sgn s2, the following estimate is valid:

|as1 + bs2| ≤ max(a|s1|, b|s2|). (1.5.30)

From (1.5.28)–(1.5.30) we obtain (1.5.26). The theorem is proved.

Theorem 1.5.3. For any ρ ∈ [2/5, 2/3], μ ≤ 1/ρ, and x > 0, the following representation holds:

xμ−1Eρ(−x1/ρ;μ) = 2ρ exp (x cos(πρ)) cos(z sin(πρ)− πρ(μ− 1)) + ω(x; ρ, μ), (1.5.31)

where the remainder ω admits the estimates

|ω(x; ρ, μ)| < 0.48x−sΓ(s), s = 1 +
1

ρ
− μ, (1.5.32)

|ω(x; ρ, 1)| < Γ(1/ρ)

πx1/ρ
, sgnω(x; ρ, 1) =

⎧
⎪⎨

⎪⎩

1,
2

5
≤ ρ <

1

2
,

−1,
1

2
< ρ ≤ 2

3
,

(1.5.33)

|ω(x; ρ, μ)| <
(
3

2
min(μ, 1− μ) +

1

ρ
− 2

)
x−sΓ(s), 0 < μ < 1,

2

5
≤ ρ <

1

2
, (1.5.34)

|ω(x; ρ, μ)| <
(
1

ρ
− 2

)
x−2, x ≥ 1

ρ
,

2

5
≤ ρ <

1

2
, 1 < μ ≤ 1

ρ
− 1, (1.5.35)

∣∣∣∣ω
(
x; ρ,

1

ρ

)∣∣∣∣ ≤
| sin(π/ρ)|

2πx
. (1.5.36)

Proof. We set m = 0 in Theorem 1.5.2 and use the fact that

4 cos2
(
π

2ρ

)
≥ 2.
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From (1.5.25) we obtain the inequality

|ω(x; ρ, μ)| < Γ(s)

πxs

(∣∣∣∣sinπ
(
μ− 1

ρ

)∣∣∣∣+
| sin(πμ)|

2

)
. (1.5.37)

From (1.5.37) we immediately obtain (1.5.36) since s = 1 in the case where μ = 1/ρ. Setting μ = 1
in (1.5.37), we obtain (1.5.33). From (1.1.20) we also see that

sgnω(x; ρ, 1) = sgn sin(π/ρ).

Since the moduli of sines are not greater than 1, we have from (1.5.37) the inequality

|ω(x; ρ, μ)| ≤ (1.5/π)x−sΓ(s) < 0.48x−sΓ(s),

which yields (1.5.32). Applying the inequality
∣∣∣∣sinπ

(
μ− 1

ρ

)∣∣∣∣ ≤ |sin (πμ)|+
∣∣∣∣sin
(
π

ρ

)∣∣∣∣ ,

we obtain from (1.5.37) for 0 < μ < 1 and 0.4 < ρ < 0.5 the inequality

|ω(x; ρ, μ)| < Γ(s)

πxs

(
3

2
sinπμ+ sin

π

ρ

)
<

Γ(s)

xs

(
3

2
min(μ, 1− μ) +

1

ρ
− 2

)
.

Inequality (1.5.34) is proved.
In the case where

2

5
≤ ρ <

1

2
, 1 < μ ≤ 1

ρ
− 1,

the numbers sin(πμ) and sinπ (μ− 1/ρ) have opposite signs:

sin(πμ) < 0, −3

2
≤ 1− 1

ρ
< μ− 1

ρ
≤ −1;

this implies

sinπ

(
μ− 1

ρ

)
≥ 0,

and the modulus of each of these sines is not greater than sinπ(1/ρ − 2). Therefore, by (1.5.26), we
have the inequality

|ω(x; ρ, μ)| ≤ Γ(s)

πxs
sin

(
π

(
1

ρ
− 2

))
<

(
1

ρ
− 2

)
x−sΓ(s).

Now we note that 2 ≤ s ≤ 1/ρ and the function g(s) = x−sΓ(s) decreases on this segment for x ≥ 1/ρ
since (ln g(s))′ = ψ(s) − lnx < 0 (recall that ψ(s) < ln s for s > 0). Therefore, g(s) ≤ g(2), and we
arrive at (1.5.35). The theorem is completely proved.

In the final theorem of Chap. 1 we obtain an estimate of the remainder in the asymptotic expan-
sion (1.5.1) for z ∈ R, z < 0, in the particular case where m = 0, 0 < ρ ≤ 2/5, and 0 < μ ≤ 1/ρ.
The obtained estimate of the remainder is worse than in Theorem 1.5.1 for large |z| but is better for
“non-large” values of |z|, which is convenient in some applications.

Theorem 1.5.4. For any ρ ∈ (0, 2/5], μ ∈ (0, 1/ρ], and x > 0, the following representation holds:

Eρ(−x1/ρ;μ) = Sρ(x, μ) + ωρ(x, μ), (1.5.38)

where

Sρ(x, μ) = 2ρx1−μ

N(ρ)∑

k=1

exp
(
x cos

(
(2k− 1)πρ

))
cos
(
x sin

(
(2k− 1)πρ

)
+(2k− 1)πρ(1−μ)

)
, (1.5.39)
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and

N(ρ) =

[
1

2ρ

]
, |ωρ(x, μ)| ≤ 0.74x−μ ∀x > 0.

Proof. By (1.1.1), for z = −x1/ρ we have

Eρ(−x1/ρ;μ) = 1

2πi

∫

γ(σ,−α,α)

ζ1/ρ−μeζ dζ

ζ1/ρ + x1/ρ
, (1.5.40)

where σ > x and α is an arbitrary number from the interval (π/2, 3π/2). We take

α = α(ρ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

5πρ

2
,

4

15
≤ ρ <

2

5
,

8πρ

3
,

1

4
< ρ <

4

15
,

2πρN(ρ), 0 < ρ ≤ 1

4
.

(1.5.41)

Then on the rays {ζ = r exp(±iα) | r > 0} the integrand

Fρ(z, ζ, μ) =
ζ1/ρ−μeζ

ζ1/ρ + x1/ρ
(1.5.42)

does not have singularities and α is contained in the semi-interval (π/2, π]. Taking into account the
definition of N(ρ) and (1.5.41), we easily verify the inequality

(2N(ρ)− 1)πρ < α(ρ) < (2N(ρ) + 1)πρ.

Therefore, in the angle | arg ζ| < α(ρ), the function F (ζ) has as singularities only simple poles at the
points

xk = x exp
(
(2k − 1)πiρ

)
, x̄k = x exp

(− (2k − 1)πiρ
)
, k ∈ N, k ≤ N(ρ). (1.5.43)

We transform integral (1.5.40) passing to integration over the loop γ(σ′,−α, α), 0 < σ′ < x, and
adding the residues at the points (1.5.43):

Eρ(−x1/ρ;μ) = 1

2πi

∫

γ(σ,−α,α)

ζ1/ρ−μeζ dζ

ζ1/ρ + x1/ρ
+

N(ρ)∑

k=1

(ResFρ(x, ζ, μ)|ζ=xk
+ResFρ(x, ζ, μ)|ζ=x̄k

) . (1.5.44)

Since, due to the inclusion μ ∈ R, the function F is such that

Fρ(x, ζ̄, μ) = F̄ρ(x, ζ, μ) ∀ζ ∈ C \ (−∞, 0], (1.5.45)

the sum of its residues at two complex conjugate points x exp(±(2k− 1)πiρ) is equal to twice the real
part of the residue at one of these points. Therefore, we obtain

ResF (ζ)|ζ=xk
+ResF (ζ)|ζ=x̄k

= 2Re lim
ζ→xk

ζ1/ρ−μeζ(ζ − x exp((2k − 1)πiρ))

ζ1/ρ + x1/ρ

= 3ρRe(ζ1−μeζ)|ζ=x exp((2k−1)πiρ) = 2ρRe
(
x1−μ exp((2k − 1)πiρ(1− μ)) exp(x exp(2k − 1)πiρ)

)

= 2ρx1−μRe exp
(
xe(2k−1)πiρ + πiρ(1− μ)(2k − 1)

)

= 2ρx1−μ exp
(
x cos((2k − 1)πρ)

)
cos
(
x sin((2k − 1)πρ) + (2k − 1)πρ(1− μ)

)
. (1.5.46)

(in the calculation of the limit we apply the L’Hôpital–Bernoulli rule).
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Substituting the values of the sums of two conjugate residues (1.5.45) in (1.5.44), we obtain

Eρ(−x1/ρ;μ) = 1

2πi

∫

γ(σ′,−α,α)

Fρ(x, ζ, μ) dζ + Sρ(x, μ),

where the function Sρ(x, μ) is defined in (1.5.39) and the function Fρ(x, ζ, μ) is defined in (1.5.42).
We have obtained representation (1.5.38) in which

ωρ(x, μ) =
1

2πi

∫

γ(σ′,−α,α)

Fρ(x, ζ, μ) dζ, 0 < σ′ < x. (1.5.47)

Since the function Fρ(x, ζ, μ) is bounded with respect to the variable ζ in the disk with cut
{
ζ ∈ C

∣∣∣∣ 0 < |ζ| < x

2
, −π < arg ζ < π

}

(we have used the condition 0 < μ ≤ 1/ρ), we can pass to the value σ′ = 0 in (1.5.47). The loop
γ(0,−α, α) is the union of the rays 
±α (
θ = {reiθ | r > 0}). Using this fact and property (1.5.45),
we find

|ωρ(x, μ)| ≤ 1

π

∫


α

|Fρ(x, ζ, μ)| |dζ| = 1

π

+∞∫

0

r1/ρ−μer cosα dr

|r1/ρeiα/ρ + x1/ρ| .

Performing the change of variable r = xt in the integral, we obtain the inequality

|ωρ(x, μ)| ≤ x1−μIρ(x, μ)

π
, (1.5.48)

where

Iρ(x, μ) =

+∞∫

0

t1/ρ−μ exp(xt cosα) dt

|1 + t1/ρeiα/ρ| .

In correspondence with (1.5.41), we consider the following three intervals of values of ρ.

1.
4

15
≤ ρ <

2

5
. Then

α =
5πρ

2
, cosα ≤ −1

2
, exp

iα

ρ
= i.

Therefore,

Iρ(x, μ) =

+∞∫

0

t1/ρ−μ exp(xt cosα)

|1 + it1/ρ| dt ≤
+∞∫

0

t1/ρ−μ exp(−xt/2)
|1 + it1/ρ| dt. (1.5.49)

By the inequality

1

|1 + it1/ρ| ≤
{
1, 0 < t ≤ 1,

t−1/ρ, 1 ≤ t,

from (1.5.49) we obtain the inequality

Iρ(x, μ) ≤
1∫

0

t1/ρ−μ exp

(
−xt

2

)
dt+

+∞∫

1

t−μ exp

(
−xt

2

)
dt.
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Since 0 < μ ≤ 1/ρ, in each of the integrals, the power of t before the exponent is not greater than 1.
This implies the estimate

Iρ(x, μ) ≤
1∫

0

exp

(
−xt

2

)
dt+

+∞∫

1

exp

(
−xt

2

)
dt =

+∞∫

1

exp

(
−xt

2

)
dt =

2

x
. (1.5.50)

From (1.5.50) and (1.5.48) we obtain the inequality

|ωρ(x, μ)| ≤ 2

π
x−μ < 0.65x−μ ∀ρ ∈

[
4

15
,
2

5

]
, ∀x > 0. (1.5.51)

2.
1

4
< ρ <

4

15
. In this case,

α =
8πρ

3
, cosα ≤ −1

2
, exp

iα

ρ
= e2πi/3 =

−1 + i
√
3

2
,

∣∣∣∣1 + t1/ρ exp
iα

r

∣∣∣∣ =
√
1− t1/ρ + t2/ρ.

Therefore,

Iρ(x, μ) =

+∞∫

0

t1/ρ−μ exp (xt cosα)dt√
1− t1/ρ + t2/ρ

≤
+∞∫

0

t1/ρ−μ exp (−xt/2)dt√
1− t1/ρ + t2/ρ

. (1.5.52)

By the inequality

1− t1/ρ + t2/ρ ≤
{
2/
√
3, 0 < t < 1,

(2/
√
3)t−1/ρ, t ≥ 1,

from (1.5.52) we obtain the inequality

Iρ(x, μ) ≤ 2√
3

1∫

0

t1/ρ−μ exp

(
−xt

2

)
dt+

2√
3

1∫

0

t−μ exp

(
−xt

2

)
dt

≤ 2√
3

1∫

0

exp

(
−xt

2

)
dt+

2√
3

+∞∫

1

exp

(
−xt

2

)
dt =

2√
3

+∞∫

0

exp

(
−xt

2

)
dt =

4

x
√
3
. (1.5.53)

From (1.5.53) and (1.5.48) we obtain the inequality

∣∣ωρ(x, μ)
∣∣ ≤ 4x−μ

π
√
3
< 0.74x−μ, x > 0, ρ ∈

(
1

4
,
4

15

)
. (1.5.54)

3. 0 < ρ ≤ 1

4
. In this case

α(ρ) = 2πρ

[
1

2ρ

]
= π − 2πρ

{
1

2ρ

}
∈
(
2π

3
, π

]
,

and hence cosα < −1/2 (it is easy to verify that the function t{1/t} for t ∈ (0, 1/2] takes values on
the semi-interval [0, 1/3)). By the choice of α(ρ), we have the relation exp (iα/ρ) = 1. Therefore,

Iρ(x, μ) ≤
+∞∫

0

t1/ρ−μ exp
(−xt

2

)
dt

1 + t1/ρ
≤

1∫

0

t1/ρ−μ exp

(
−xt

2

)
dt

+∞∫

1

t−μ exp

(
−xt

2

)
dt ≤

+∞∫

0

exp

(
−xt

2

)
dt =

2

x
. (1.5.55)
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From (1.5.55) and (1.5.48) we obtain the inequality

∣∣ωρ(x, μ)
∣∣ ≤ 2

π
x−μ, x > 0, 0 < ρ ≤ 1

4
. (1.5.56)

From (1.5.51), (1.5.54), and (1.5.56) we conclude that in all the cases considered, the estimate
∣∣ωρ(x, μ)

∣∣ < 0.74x−μ

is valid. The theorem is proved.

Chapter 2

ASYMPTOTIC PROPERTIES OF ZEROS

OF MITTAG-LEFFLER FUNCTIONS

2.1. Asymptotic Formulas for Zeros

The definition

Eρ(z;μ) =
∞∑

n=0

zn

Γ(μ+ n/ρ)
, ρ > 0, μ ∈ C,

of the function Eρ(z;μ) implies the following formulas:

E1(z; 1) = ez, E1(z;−m) = zm+1ez, m ∈ Z+, (2.1.1)

E1/2(z; 1) = cosh
√
z, E1/2(z; 2) =

sinh
√
z√

z
, E1/2(z; 3) =

cosh
√
z − 1√
z

, (2.1.2)

E1/2(z;−2m) = zm+1/2 sinh
√
z, m ∈ Z+; E1/2(z;−(2m− 1)) = zm cosh

√
z, m ∈ N. (2.1.3)

Therefore, the function E1(z;−m), m ∈ Z+, has a unique zero z = 0 of multiplicity m+ 1, and the
function E1(z; 1) does not have zeros. In the sequel, we see that, except for these two cases, the
function Eρ(z;μ) has an infinite set of zeros, and zeros of the function E1/2(z; 3) are described by the
formula

zn = −(2πn)2, n ∈ N, (2.1.4)

and have multiplicity 2. This is the unique case of an infinite number of multiple zeros of the func-
tion Eρ(z;μ).

We introduce the following constants:

cμ =
1

ρΓ(μ− 1/ρ)
, dμ =

1

ρΓ(μ− 2/ρ)
, τμ = 1 + ρ(1− μ), if μ 	= 1

ρ
− l, l ∈ Z+, (2.1.5)

cμ =
1

ρΓ(μ− 2/ρ)
, dμ =

1

ρΓ(μ− 3/ρ)
, τμ = 2 + ρ(1− μ), if μ =

1

ρ
− l, l ∈ Z+,

1

ρ
/∈ N.

(2.1.6)

By construction, cμ 	= 0 for the considered values of ρ and μ. Pairs of the parameters ρ and μ missing
in (2.1.5) and (2.1.6) are said to be exceptional. They are as follows:

1

ρ
∈ N, μ =

1

ρ
− l, l ∈ Z+.

Formulas (2.1.1)–(2.1.3) yield the complete set of functions Eρ(z;μ) corresponding to the exceptional
values of the parameters ρ and μ, where ρ = 1 and ρ = 1/2. Since zeros of the functions (2.1.1)–(2.1.3)
can be written in the explicit form, we cannot consider such pairs of parameters.

242



Unless otherwise stated, for the power and logarithmic functions we choose their principal values
in the half-plane with the cut along the negative real semi-axis.

In this section, we obtain asymptotic formulas for zeros zn of the function Eρ(z;μ). The cases

ρ >
1

2
, ρ =

1

2
, Reμ > 3, ρ =

1

2
, Reμ < 3, ρ =

1

2
, Reμ = 3, ρ <

1

2
are considered separately.

1. By formula (2.1.1), considering the case ρ = 1, we exclude the values μ = 1, 0,−1,−2, . . ..

Theorem 2.1.1. Let

(1) ρ > 1/2, and μ ∈ C, where μ 	= 1, 0,−1,−2, . . . for ρ = 1, or
(2) ρ = 1/2 and Reμ > 3.

Then all sufficiently large (in modulus) zeros zn of the function Eρ(z;μ) are simple and the following
asymptotic formula holds:

zρn = 2πin− τμ
ρ

ln 2πin+ ln cμ +
dμ/cμ

(2πin)1/ρ
+

(
τμ
ρ

)2 ln 2πin

2πin
− τμ

ρ

ln cμ
2πin

+ αn, (2.1.7)

as n→ ±∞, where

αn = O

(
ln |n|

|n|1+1/ρ

)
+O

(
1

|n|2/ρ
)
+O

(
ln2 |n|
n2

)
, if ρ > 1/2, (2.1.8)

αn =
e±iπμ

c2μ(2πin)
−4τμ

+O

(
1

|n|−8τμ

)
+O

(
ln |n|

|n|1−4τμ

)
+O

(
ln2 |n|
n2

)
, if ρ = 1/2. (2.1.9)

For fixed δ ∈ (0, π/2) and R > 0, we introduce the sets

Z = Zδ,R = (z : | arg z| < π − δ, |z| > R),

W =Wδ,R = (w : | argw| < π − 2δ|w| > 2R).

Lemma 2.1.1. Let A ∈ C and δ ∈ (0, π/2). If R > 0 is sufficiently large, then the equation

z −A ln z = w, w ∈W,

has a unique root z = z(w) on the set Z. This root is simple and admits the asymptotic formula

z = w +A lnw +A2 lnw

w
+O

(
ln2w

w2

)
, w → ∞.

Proof. First, we prove that the function

w = z −A ln z (2.1.10)

for all sufficiently large R defines a univalent mapping of the “sector”

SR = (z : |z| > R, −π < α < arg z < β < π, β − α < π).

Assume the contrary, i.e., assume that there exist arbitrarily large R and points z1, z2 ∈ SR such
that

w1 = w(z1) = w(z2) = w2.

Since R can be arbitrarily large, we can assume that the segment [z1, z2] lies in SR. Then

z2 − z1 = A(ln z2 − ln z1) = A

z2∫

z1

dz

z
,

|z2 − z1| ≤ |A||z2 − z1| 1

min(|z1|, |z2|) ≤ A

R
|z2 − z1|,
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and taking R > |A|, we arrive at a contradiction. We have proved that the mapping of the “sector”
is univalent.

If w1 = w2, then, in particular,

argw1 = argw2. (2.1.11)

Let R be such that

|A|
∣∣∣∣
ln z

z

∣∣∣∣ <
1

2
, |z| > R.

Then

−π
6
< arg

(
1−A

ln z

z

)
<
π

6

and, therefore, if |z1|, |z2| > R, then

argwj = arg zj + arg

(
1−A

ln zj
zj

)
∈
(
arg zj − π

6
, arg zj +

π

6

)
, j = 1, 2.

By (2.1.11) this implies that

| arg z1 − arg z2| < π

3
,

i.e., the points z1 and z2 lie in the “sector” of aperture less than π/3. As we have proved on the first
step, the mapping of the sector is univalent and the relation w1 = w2 is impossible.

Thus, we have proved that for sufficiently large R > 0, function (2.1.10) defines a univalent mapping
of the set Z onto its image w(Z). Therefore, the inverse function z = z(w) for (2.1.10) with values in
the set Z is defined on w(Z), i.e., the equation

z −A ln z = w, w ∈ w(Z),

has a unique root z = z(w) on the set Z. Since

w′(z) 	= 0 for R > |A|,
the function z(w) is differentiable on w(Z) and

z′(w) =
1

w′(z)
	= 0, w ∈ w(Z).

In particular, this implies that the root is simple.
The assertion on the uniqueness and simpleness of the root z(w) becomes valid if we (for simplicity)

replace the set w(Z) by an appropriate subset of it. Obviously, W ⊂ w(Z) for sufficiently large R > 0,
and it remains to prove the asymptotic formula for z(w).

Substituting

z = w + r(w)

in Eq. (2.1.10) and noting that r(w) = o(w), w → ∞, we obtain

r(w) = A lnw +A ln

(
1 +

r(w)

w

)
.

Therefore,

r(w) = O(lnw), w → ∞,

and by the Taylor formula we have

r(w) =

(
A lnw +O

(
ln2w

w2

))(
1− A

w

)−1

.

Expanding the function (1 − A/w)−1 in the series by negative powers of w, we obtain the required
asymptotics. The lemma is proved.

244



Proof of Theorem 2.1.1. In the case (1) the proof is based on Theorem 1.2.1:

(1) if ρ > 1/2, then for any s ∈ N

Eρ(z;μ) = ρzρ(1−μ) exp zρ −
s∑

k=1

1

zkΓ(μ− k/ρ)
+O

(
1

zs+1

)
, | arg z| ≤ min

(
π,
π

ρ

)
; (2.1.12)

(2) if ρ > 1, then for any s ∈ N

Eρ(z;μ) = −
s∑

k=1

1

zkΓ(μ− k/ρ)
+O

(
1

zs+1

)
,

π

ρ
≤ | arg z| ≤ π. (2.1.13)

In formulas (2.1.12) and (2.1.13) we set s = 1. If the value of μ is the same as in formula (2.1.5)
and s = 2 for values of μ from formula (2.1.6), then cμ 	= 0, and formulas (2.1.12) and (2.1.13) imply
that for any ε > 0, all sufficiently large (in modulus) zeros zn of the function Eρ(z;μ) lie in the angle
| arg z| < π/2ρ+ ε. For points of this angle, formula (2.1.12) becomes

1

ρ
zsEρ(z;μ) = zτμ exp zρ − cμ − dμ/z +O(1/z2), | arg z| < π/(2ρ) + ε.

Therefore, all zeros of the function Eρ(z;μ) for |z| > r0 can be found from the equation

exp(zρ + τμ ln z) = cμ +
dμ
z

+O

(
1

z2

)
. (2.1.14)

We set

w = zρ +
τμ
ρ

ln zρ. (2.1.15)

Then the left-hand side in (2.1.14) is equal to ew; to rewrite Eq. (2.1.14) with respect to the variable w,
we must express zρ through w using (2.1.15). By Lemma 2.1.1 (we apply its roughened version)

zρ = w +O(lnw).

Therefore,
1

z
=

1

w1/ρ

(
1 +O

(
lnw

w

))
=

1

w1/ρ
+O

(
lnw

w1+1/ρ

)
.

Substituting this in (2.1.14), we obtain the equation

ew = cμ +
dμ

w1/ρ
+O

(
lnw

w1+1/ρ

)
+O

(
1

w2/ρ

)
. (2.1.16)

In particular,

ew = cμ + o(1), w → ∞. (2.1.17)

Since the roots of the function ew − c are simple and are described by formula 2πin+ ln c, n ∈ Z, by
the Rouché theorem, sufficiently large (in modulus) roots wn of Eq. (2.1.17) are simple and can be
described by the formula

wn = 2πin+ ln cμ + εn, εn → 0, n→ ±∞. (2.1.18)

Therefore,
1

wn
=

1

2πin

(
1 +O

(
1

n

))
, lnwn = ln |n|+O(1), n→ ±∞. (2.1.19)

Now, setting w = wn in (2.1.16) and applying formulas (2.1.18) and (2.1.19), we obtain

cμe
εn = cμ +

dμ

(2πin)1/ρ
+O

(
ln |n|

|n|1+1/ρ

)
+O

(
1

|n|2/ρ
)
.

The left-hand side is equal to

cμ + cμεn +O(ε2n);
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therefore,

εn = O(1/n1/ρ)

and hence

εn =
dμ/cμ

(2πin)1/ρ
+O

(
ln |n|

|n|1+1/ρ

)
+O

(
1

|n|2/ρ
)
.

Substituting this in (2.1.18), we have the relation

wn = 2πin+ ln cμ +
dμ/cμ

(2πin)1/ρ
+O

(
ln |n|

|n|1+1/ρ

)
+O

(
1

|n|2/ρ
)
, n→ ±∞, (2.1.20)

lnwn = ln 2πin+
ln cμ
2πin

+O

(
1

|n|1+1/ρ

)
, n→ ±∞. (2.1.21)

Now we return to the points zn, which are the preimages of the points wn under mapping (2.1.15).
Since

| arg zn| < π/2ρ+ ε =: α

and αρ < π, for sufficiently large |w| the condition of Lemma 2.1.1 holds. By this lemma, it follows
from (2.1.15) that

zρn = wn − τμ
ρ

lnwn +

(
τμ
ρ

)2 lnwn

wn
+O

(
ln2wn

w2
n

)
. (2.1.22)

Substituting on the right-hand side of this formula the expressions for wn and lnwn from (2.1.20) and
(2.1.21), we obtain the required formulas (2.1.7) and (2.1.8).

By Lemma 2.1.1, the simpleness of sufficiently large (in modulus) zeros wn of Eq. (2.1.16) implies
the simpleness of all zeros zn of the function Eρ(z;μ) starting from a certain root. For the case (1)
the theorem is proved.

In the case (2) we start from the following formula, which follows from Theorem 1.2.2 and is valid
for all μ ∈ C: for any s ∈ N,

E1/2(z;μ) =
1

2
z(1−μ)/2

(
e
√
z + e∓iπ(1−μ)e−

√
z
)
−

s∑

k=1

1

zkΓ(μ− 2k)
+O

(
1

zs+1

)
, |z| → ∞, (2.1.23)

respectively for 0 ≤ arg z ≤ π and −π ≤ arg z ≤ 0. Setting in this formula s = 1, we obtain the
following equation for sufficiently large (by the modulus) zeros zn:

e
√
z+τμ ln z = cμ +

dμ
z

+O

(
1

z2

)
+ e±iπμe−

√
zzτμ . (2.1.24)

This equation differs from Eq. (2.1.14) for ρ = 1/2 only by the term

e±iπμe−
√
zzτμ

Thus, as for Eq. (2.1.14), we rewrite this equation using the change (2.1.15) and setting ρ = 1/2. The
additional term takes the form

e±iπμe−ww4τμ

(
1 +O

(
lnw

w

))
,

and instead of (2.1.16) we obtain the equation

ew = cμ +
dμ
w2

+O

(
lnw

w3

)
+ e±iπμe−ww4τμ +O

(
lnw

w1−4τμ
e−w

)
. (2.1.25)
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Since Re τμ < 0 and Re
√
z ≥ 0, the last term in (2.1.24) is o(1) as z → ∞. Therefore, the sum of

the last two terms in (2.1.25) is o(1) as w → ∞, i.e., Eq. (2.1.25) has the form (2.1.14). Therefore,
formulas (2.1.18) and (2.1.19) are valid. Substituting them in formula (2.1.25), we obtain the relation

cμεn(1 +O(εn)) =
dμ

(2πin)2
+O

(
ln |n|
|n|3

)
+

e±iπμ

cμ(2πin)−4τμ
(1− εn(1 +O(εn))) +O

(
ln |n|

|n|1−4τμ

)
,

i.e.,

cμεn

(
1 +O

(
1

|n|−4τμ

))
+O(ε2n) =

dμ
(2πin)2

+
e±iπμ

cμ(2πin)−4τμ
+O

(
ln |n|
|n|3

)
+O

(
ln |n|

|n|1−4τμ

)
.

In particular, this implies that

εn = O

(
1

|n|2
)
+O

(
1

|n|−4τμ

)
,

and the previous formula yields

εn =
dμ/cμ
(2πin)2

+
e±iπμ

c2μ(2πin)
−4τμ

+O

(
ln |n|
|n|3

)
+O

(
1

|n|−8τμ

)
+O

(
ln |n|

|n|1−4τμ

)
.

Substituting this in (2.1.18), we obtain the relation

wn = 2πin+ ln cμ +
dμ/cμ
(2πin)2

+
e±iπμ

c2μ(2πin)
−4τμ

+O

(
ln |n|
|n|3

)
+O

(
1

|n|−8τμ

)
+O

(
ln |n|

|n|1−4τμ

)
,

(2.1.26)

lnwn = ln 2πin+
ln cμ
2πin

+O

(
1

|n|3
)
+O

(
1

|n|1−4τμ

)
. (2.1.27)

Now setting in (2.1.22) ρ = 1/2, w = wn, and z = zn and applying formulas (2.1.26) and (2.1.27), we
obtain the required formulas (2.1.7) and (2.1.9). The simpleness of all sufficiently large (in modulus)
zeros follows from the same arguments as those in the case ρ > 1/2. The theorem is proved.

Now we consider the case ρ = 1/2, Reμ < 3, which has the simplest proof.

Theorem 2.1.2. Let Reμ < 3, μ 	= 2 − l, l ∈ Z+. Then all sufficiently large (in modulus) zeros zn
of the function E1/2(z;μ) are simple and the following asymptotic formula holds:

√
zn = iπ

(
n− 1 +

μ

2

)
+ (−1)n

cμe
−i(π/2)μ

2(iπn)2τμ
+O

(
1

n6Re τμ

)
+O

(
1

n1+2Re τμ

)
, n→ +∞, (2.1.28)

where the branch of the function
√
z is defined by the condition 0 ≤ arg z < 2π. If μ is real, then all

sufficiently large (in modulus) zeros are real.

Proof. We can immediately verify that the function

z(1−μ)/2(e
√
z + e−iπ(1−μ)e−

√
z), 0 < arg z < 2π,

for π ≤ arg z < 2π coincides with the function

z(1−μ)/2(e
√
z + eiπ(1−μ)e−

√
z), −π ≤ arg z < 0.

Therefore, formula (2.1.23) can be written in the form

E1/2(z;μ) =
1

2
z(1−μ)/2(e

√
z − eiπμe−

√
z)−

s∑

k=1

1

zkΓ(μ− 2k)
+O

(
1

zs+1

)
, |z| → ∞,
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where 0 ≤ arg z < 2π. Setting here s = 1, we obtain the relation

e−iπμ/2z−(1−μ)/2E1/2(z;μ) = sinh(
√
z − i

π

2
μ)− cμe

−iπμ/2

2zτμ
+O

(
1

z1+Re τμ

)
, |z| → ∞, (2.1.29)

where 0 ≤ arg z < 2π. Since Re τμ > 0 and 0 ≤ arg
√
z < π, by the Rouché theorem we obtain that

all sufficiently large (in modulus) zeros of the function E1/2(z;μ) are simple and

√
zn − i

π

2
μ = iπ(n− 1) + εn, εn → 0, n→ +∞. (2.1.30)

Perhaps this formula would look more natural if it contains n except for n− 1. However, in Sec. 2.2,
the presence of the term “−1” makes the numeration of zeros for ρ ≤ 1/2 more uniform and convenient.
Substituting (2.1.30) on the right-hand side of (2.1.29), we obtain

(−1)n sinh εn =
cμe

−iπμ/2

2(πin)2τμ
+O

(
1

n1+2Re τμ

)
. (2.1.31)

Therefore,

εn = O

(
1

n2Re τμ

)
;

since

sinh εn = εn +O(ε3n),

Eq. (2.1.31) implies that

εn = (−1)n
cμe

−iπμ/2

2(πin)2τμ
+O

(
1

n1+2Re τμ

)
+O

(
1

n6Re τμ

)
.

This and (2.1.30) yield the required formula (2.1.28).
It remains to prove the fact that zeros are real. We have proved above that in any disk Kn of

radius c/n2Re τμ centered at the point iπ(n + μ/2), where n > n1, there exists a unique point of the
form

√
zn. If μ is real, then zeros of the function E1/2(z;μ) as a power series with real coefficients are

symmetric with respect to the real axis. Therefore, if a point zk is not real, then the disk Kn contains
at least two points of the form

√
zk, a contradiction. Theorem 2.1.2 is proved.

2. The case where ρ = 1/2 and Reμ = 3 is most peculiar. Zeros of the function E1/2(z; 3) are
defined by the explicit formula (2.1.4). Therefore, we examine the behavior of zeros of the function

E1/2(z; 3 + iβ), 0 	= β ∈ R. (2.1.32)

First, we recall some facts about the inverse Joukowsky (Zhukovsky) function

w = w(z) = z +
√
z2 − 1. (2.1.33)

In the domain G = C\ ((−∞,−1]∪ [1,+∞)), function (2.1.33) splits into two single-valued analytic
branches w±(z) that conformally map the domain G on the upper and lower half-planes Im z ≷ 0,
respectively. For x ∈ R, |x| > 1, we set w+(x) = w+(x+ i0).

We choose a branch of the logarithm lnw such that −π < argw ≤ π. Since w+w− = 1, we have

lnw−(z) = − lnw+(z). (2.1.34)

If x ∈ R, |x| > 1, then w+(x+ i0)w+(x− i0) = 1 and hence

lnw+(x) = ln+(x+ i0) = − lnw+(x− i0), x ∈ R, |x| > 1. (2.1.35)

Consider the function inverse to the hyperbolic cosine:

Arch z = Log
(
z +
√
z2 − 1

)
= Logw(z), z ∈ G.
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By (2.1.34), any value of the multi-valued function Arch z in G has the form

ln
(
z +
√
z2 − 1

)+
+ 2πis+ or − ln

(
z +
√
z2 − 1

)+
+ 2πis−, (2.1.36)

where s± ∈ Z. Here and in what follows,
(
z +
√
z2 − 1

)+
= w+(z).

For brevity, we introduce the following notation for 0 	= β ∈ R:

γ = γ(β) =
1

Γ(1 + iβ)
, ρ1 = ρ1(β) = |γ|+

√
|γ|2 − 1, ρ2 = ρ2(β) = |γ|+

√
|γ|2 + 1, (2.1.37)

δn = δn(β) = ln
(
γeiβ ln 2πn +

√
(γeiβ ln 2πn)2 − 1

)+
; (2.1.38)

in (2.1.37), we take the arithmetic value of root. By the complement formula

|γ|2 = 1

Γ(1 + iβ)Γ(1− iβ)
=

1

iβΓ(iβ)Γ(1− iβ)
=

sinπiβ

πiβ
=

sinhπβ

πβ
> 1; (2.1.39)

in particular, this implies that ρ2 > ρ1 > 1. Further, since δn is a value of the function lnw+ at some
point, we have

0 ≤ Im δn ≤ π.

We say that a sequence ζn is asymptotically distributed in a semi-strip a ≤ Re ζ ≤ b, Im ζ > 0, if
for any ε > 0, there exists R > 0 such that

Im ζn > R =⇒ a− ε ≤ Re ζn ≤ b+ ε.

In Theorem 2.1.3, we take the same single-valued branch of the function
√
z as in Theorem 2.1.2.

Theorem 2.1.3. (1) The set of multiple zeros of function (2.1.32) is no more than finite.
(2) Zeros zn of function (2.1.32) form two sequences z+n , n > n+, and z−n , n > n−, such that

√
z±n = 2πin− πβ

2
± δn +O

(
1

n

)
, n→ +∞. (2.1.40)

(3) The points ζn =
√
zn are asymptotically distributed in the semi-strips

ln ρ1 ≤
∣∣∣∣Re ζ +

πβ

2

∣∣∣∣ ≤ ln ρ2, Im ζ > 0. (2.1.41)

(4) Each point of the segment [0, π] is a limit point for the sequence Im δn and each point of the
segments

[
ln ρ1, ln ρ2

]
and

[
ln(1/ρ2), ln(1/ρ1)

]
is a limit point of the sequence Re δn.

(5) There exist R = R(β) > 0 and N = N(β) ∈ N such that the disks

|ζ − iπn| < R, n > N,

do not contain the points ζk =
√
zk.

Lemma 2.1.2 (see [34, Sec. 2.3]). Let a function g(z) be analytic in some open rectangle π and con-
tinuous on its closure and do not vanish. Let

0 < m ≤ |g(z)| ≤M < +∞, z ∈ ∂π.

If zi ∈ π and dist(zi, ∂π) ≥ δ > 0, i = 1, 2, then
∣∣ arg g(z1)− arg g(z2)

∣∣ ≤ C(δ,m,M).

Lemma 2.1.3 (see [34, Sec. 2.3]). Let a function F (ζ) be analytic and bounded in a semi-strip
|Re ζ| ≤ H, Im ζ > 0, and let |F (ζ)| be separated from zero on some half-line Re ζ = h ∈ (0, H),
Im ζ > 0. Then the following assertions hold :
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(1) The number of zeros of the function F (ζ) (counted up to their multiplicities)in the rectangle
|Re ζ| ≤ h, t ≤ Im ζ ≤ t+ 1 is bounded for t > 1;

(2) |F (ζ)| is separated from zero outside small disks of the same radii centered at zeros of F (ζ),
|Re ζ| ≤ h, Im ζ > 1.

Proof of Theorem 2.1.3. First, we prove the following property of zeros zn of function (2.1.32):
√
zn = iπn+Δn, Δn = O(1), n→ +∞; (2.1.42)

here, the sequence
√
zn is assumed to be simple, i.e., several elements of sequence (2.1.42) with different

numbers correspond to any possible multiple zero of the function E1/2(z;μ).

Since Reμ = 3, we have Re τμ = 0 and hence |zτμn | � 1. Therefore, formula (2.1.29) shows that,
having set ζ =

√
z, we must examine roots ζn =

√
zn of the equation

F (ζ) := sinh

(
ζ − iπμ

2

)
+O(1), Im ζ > 0.

Obviously, for sufficiently large h > 0, the function F (ζ) satisfies the conditions of Lemma 2.1.3 with
H = h + 1, and all zeros ζn of the function F (ζ) from the upper half-plane lie in the semi-strip
|Re ζ| < h, Im ζ > 0. We fix a > 0 such that the horizontal line Im ζ = a does not contain zeros of
the function F (ζ) and denote by n(r) the number of zeros of the function F (ζ) in the rectangle

π(r) =
(
ζ : |Re ζ| < h, a < Im ζ < r

)
.

By Lemma 2.1.3, there exist a sequence rk → +∞, k → +∞, and a number ε > 0 such that

(1) rk+1 − rk = O(1),
(2) n(rk+1)− n(rk) = O(1),
(3) 0 < m ≤ |F (ζ)| ≤ M < +∞ in the rectangle |Re ζ| ≤ h + 1, | Im ζ − rk| ≤ ε, where m and M

are independent of k.

By Lemma 2.1.2, we obtain from (3) that on the segment |Re ζ| ≤ h, Im ζ = rk we have that the
increment of the argument has an asymptotic

ΔargF (ζ) = O(1)

uniformly with respect to k. We prove that

ΔargF (ζ) = 2rk +O(1), k → ∞, ζ ∈ ∂π(rk), (2.1.43)

when bypassing the rectangle π(rk).
Introduce the notation d = −iπμ/2. For Re ζ > 0, we have the relation

2F (ζ) = eζ+d(1 + ε(ζ)), ε(ζ) = O(e−ξ), ζ = ξ + iη;

therefore, |ε(ζ)| < 1/2 on the straight line Re ζ = h for sufficiently large h > 0. Hence

ΔargF (ζ) = Δarg eiη+d+h +O(1) = rk +O(1)

on the segment Re ζ = h, a ≤ Im ζ ≤ rk. This relation is proved similarly for the increment of the
argument of F (ζ) on the segment Re ζ = −h, a ≤ Im ζ ≤ rk bypassed downward. Since ΔargF (ζ) on
the segment |Re ζ| ≤ h, Im ζ = a is constant and on the segment |Re ζ| ≤ h, Im ζ = rk is O(1), we
have proved (2.1.43).

By the principle of the argument, from (2.1.43) we have

n(rk) =
rk
π

+O(1), rk → ∞.

Together with the properties (1) and (2) this yields the relation

n(r) =
r

π
+O(1), r → ∞. (2.1.44)
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Let n be a sufficiently large number. Setting r = Im ζn, we obtain from (2.1.44)

n =
Im ζn
π

+O(1) =⇒ Im ζn = πn+O(1).

Since |Re ζn| ≤ h < +∞ and ζn =
√
zn, we obtain the required relation (2.1.42).

(1) We use formula (2.1.29). Since now μ = 3 + iβ, 0 	= β ∈ R, by formulas (2.1.5) and (2.1.6) we
have

cμ = 2γ, τμ = − iβ
2
,

and for large (in modulus) zeros of function (2.1.32) we have the equation

cosh

(√
z +

πβ

2

)
= γziβ/2eπβ/2 +O

(
1

z

)
, z → ∞. (2.1.45)

Substitute z = zn in this relation. Since, by (2.1.42),

ziβ/2n = (iπn+Δn)
iβ = eiβ ln(iπn+Δn) = eiβ ln iπn

(
1 +O

(
1

n

))
= e−πβ/2eiβ lnπn +O

(
1

n

)
, (2.1.46)

we obtain

cosh

(√
zn +

πβ

2

)
= γeiβ lnπn +O

(
1

n

)
, n→ +∞. (2.1.47)

The formula

ρEρ(z;μ− 1) = ρ(μ− 1)Eρ(z;μ) + zE′
ρ(z;μ) (2.1.48)

implies that a multiple zero of the function (2.1.32) is a zero of the function E1/2(z; 2 + iβ). By
Theorem 2.1.2, zeros of the function E1/2(z; 2 + iβ) have an asymptotics

√
zn = iπ

(
n+

2 + iβ

2

)
+O

(
1

n

)
= iπ(n+ 1)− πβ

2
+O

(
1

n

)
, n→ +∞. (2.1.49)

Therefore, if the function (2.1.32) has an infinite number of multiple zeros, then some sequence of
indices satisfies property (2.1.49). Then the corresponding limit point of the modulus of the left-hand
side in (2.1.47) is equal to cos 0 = 1, whereas the limit of the modulus of the right-hand side is equal
to |γ| > 1 (see (2.1.39)); a contradiction. Assertion (1) is proved.

(2) Taking into account formula (2.1.42), we write the sequence of zeros of function (2.1.32) and
the union of two sequences z+n , n > n+, and z−n , n > n−, and hence

√
z±n = 2πin+Δ±

n , n > n±, (2.1.50)

and Δ±
n = O(1). As in the case of (2.1.42), we assume that the sequences

√
z±n are simple, i.e., to

any possible multiple zero, several elements of (2.1.50) either with different numbers or with opposite

signs correspond. Substituting the expression for
√
z =

√
z±n from (2.1.50) in formula (2.1.45) and

taking into account that now (similarly to (2.1.46))

(z±n )
iβ/2 = e−πβ/2eiβ ln 2πn +O(1/n),

we have

cosh(Δ±
n + πβ/2) = γeiβ ln 2πn +O(1/n), n→ +∞.

Therefore,

Δ±
n +

πβ

2
= Arch

(
γeiβ ln 2πn +O

(
1

n

))
= Logw(γeiβ ln 2πn) +O

(
1

n

)
.
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Of all values of the multi-valued function on the right-hand side for fixed n, only two are appropriate
for us. By (2.1.36), we have the relation

Δ±
n = −πβ

2
± lnw+(γeiβ ln 2πn) + 2πis±n +O

(
1

n

)
, (2.1.51)

where s+n and s−n are integers. It remains to prove that s±n = 0.
To emphasize the dependence on β, we write

z±n = z±n (β), Δ±
n = Δ±

n (β), s±n = s±n (β).

Take ε ∈ (0, π). The terms O(1/z) and O(1/n) in formulas (2.1.29) and (2.1.46) are uniform with
respect to the parameters μ and β from bounded sets, respectively. If we fix a > 0, then there exists
N1 ∈ N such that the last term in formula (2.1.51) satisfies the

|O(1/n)| < ε/2, n > N1, β ∈ [−a, a]. (2.1.52)

We fix such N1.
We also fix a sufficiently large N2 ∈ N and introduce the notation

K(z0; r) =
(
z : |z − z0| < r

)
, P =

(
z : 2πN1 + π < |z| < 2πN2 − π, Im z > 0

)
.

Then

E1/2(z
2; 3 + iβ) → E1/2(z

2; 3) =
cosh z − 1

z
, β → 0,

uniformly on P . Zeros of the right-hand sides lying in the semiring P have the form 2πin, N1 < n < N2,
and all of them are double. By the Hurwitz theorem, there exists δ1 > 0 such that the disk K(2πin; ε)
contains exactly two zeros of the function E1/2(z

2; 3 + iβ) under the condition

β ∈ Uδ1(0) =
(
β : 0 < |β| < δ1

)
, N1 < n < N2.

But zeros of the function E1/2(z
2; 3 + iβ) are the points (2.1.50).

Since lnw+(z) → 0 as z → 1, there exists δ2 ∈ (0, δ1] such that
∣∣∣∣−
πβ

2
± lnw+

(
γ(β)eiβ ln 2πn

)∣∣∣∣ <
ε

2
, β ∈ Uδ2(0), N1 < n < N2. (2.1.53)

Therefore, if in (2.1.51) we set s±n (β) = 0 for β ∈ Uδ2(0), then by (2.1.50)–(2.1.53) we have
√
z±n (β) ∈ K(2πin; ε), N1 < n < N2.

This means that for β ∈ Uδ2(0), N1 < n < N2, formula (2.1.51) is valid for s±n = 0.
The convergence

Eρ(z;μ) → Eρ(z;μ0), μ→ μ0,

is uniform in any disk; hence by the Hurwitz theorem we deduce the continuous dependence of
√
z±n (β)

on β. By (2.1.50), the dependence Δ±
n (β) on β is also continuous. The first two terms on the right-hand

side of (2.1.51) are continuous functions of β; therefore, the sum of the last terms in (2.1.51)

2πis±n (β) +O(1/n) =: A±
n (β)

is a continuous function of β for fixed n. By the above and (2.1.52), there exists δ ∈ (0, δ2] such that

|A±
n | <

ε

2
<
π

2
, β ∈ Uδ(0), N1 < n < N2. (2.1.54)

However, if s±n (β) 	= 0, i.e., |s±n (β)| ≥ 1, then

|A±
n (β)| > 2π − ε/2 > (3/2)π,
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which contradicts (2.1.54) and the continuity of the function A±
n (β). Therefore, s±n (β) = 0,

−a ≤ β ≤ a, N1 < n < N2.
On the real half-lines (−∞,−1) and (1,+∞), the function lnw+(z) is continuous only by the set

Im z ≥ 0. Therefore, we must clarify our reasoning related to the continuity if for some 0 	= β0 ∈ [−a, a],
N1 < n < N2, the point tn(β0), where

tn(β) = γ(β)eiβ ln 2πn, (2.1.55)

lies on one of these half-lines.
Introduce the sets U± by the conditions

β ∈ U+ (U−) ⇐⇒ Im tn(β) ≥ 0 (< 0).

Then the function {
lnw+(tn(β)), β ∈ U+,

− lnw+(tn(β)), β ∈ U−,

by formula (2.1.35), is continuous at the point β0. Therefore (see (2.1.51)), if for β ∈ U− we change
the roles of Δ+

n and Δ−
n (and s+n and s−n , respectively), then all the above reasoning based on the

continuity remains valid.
Since we can take N2 arbitrarily large, s±n (β) = 0, n > N1, β ∈ [−a, a]. However, a > 0 in our

reasoning is arbitrary. Therefore, formula (2.1.51) with s±n = 0 is valid for all 0 	= β ∈ R. Taking into
account notation (2.1.38) and formula (2.1.50), we see that assertion (2) is proved.

(3) Consider ellipses symmetric with respect to coordinate axes; we assume that the point of ellipses
lying on the real axis belong to the upper semi-ellipses.

Let ρ > 1 and

aρ =
1

2

(
ρ+

1

ρ

)
, bρ =

1

2

(
ρ− 1

ρ

)
. (2.1.56)

The function w+(z) maps the upper (lower) semi-ellipse with semi-axes aρ and bρ on the semicircle
|w| = ρ, Imw ≥ 0 (respectively, |w| = 1/ρ, Imw > 0).

Let Cβ be the circle |z| = |γ(β)| > 1 and C+
β and C−

β be its upper and lower semi-circles. Let lβ
and Lβ be ellipses with semi-axes (2.1.56) such that lβ is inscribed in Cβ and Lβ is circumscribed

about Cβ . Let l
+
β and l−β (respectively, L+

β and L−
β ) be the upper and lower semi-ellipses of the ellipse

lβ (respectively, Lβ). Let a be the first semi-axis of the ellipse lβ and b be the second semi-axis of the
ellipse Lβ , i.e., a = b = |γ(β)|. Then, taking into account (2.1.56), we conclude that the image of the

upper semi-ellips l+β (respectively, L+
β ) under the mapping w+(z) is the upper semi-circle |w| = ρ1 > 1,

Imw ≥ 0 (respectively, |w| = ρ2 > 1, Imw ≥ 0), where

1

2

(
ρ1 +

1

ρ1

)
= |γ(β)| = 1

2

(
ρ2 − 1

ρ2

)
.

Solving these quadratic equations and taking into account the fact that ρ1, ρ2 > 1, we obtain formu-
las (2.1.37) for ρ1 and ρ2. Finally, the image of the semi-circle C+

β is a curve lying in the semi-ring

ρ1 ≤ |w| ≤ ρ2, Imw ≥ 0, i.e.,

z ∈ C+
β =⇒ ρ1 ≤ |w+(z)| ≤ ρ2, Imw+(z) ≥ 0. (2.1.57)

Arguing similarly for the lower semi-ellipses l−β and L−
β , we obtain

z ∈ C−
β =⇒ 1

ρ2
≤ |w+(z)| ≤ 1

ρ1
, Imw+(z) > 0. (2.1.58)
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By formula (2.1.38), we have δn = lnw+(z), where z ∈ Cβ . Therefore, applying (2.1.57) and (2.1.58),
we obtain the relation

|Re δn| = |Re lnw+(z)| = | ln |w+(z)|| ∈ [ln ρ1, ln ρ2].

This and formula (2.1.40) prove assertion (3).
(4) We denote by K+

β the image of the semi-circle C+
β under the mapping w+(z). We know that

the curve K+
β lies in the semi-ring ρ1 ≤ |w| ≤ ρ2, Imw ≥ 0, starts at the point ρ1, passes through the

point iρ2, and ends at the point −ρ1. Therefore,
(1) for any θ ∈ (0, π), there exists a point w = Reiθ ∈ K+

β ;

(2) for any ρ ∈ (ρ1, ρ2), there exists a point w = ρeiϕ ∈ K+
β .

Let z ∈ C+
β be the preimage of the point w ∈ K+

β , Imw > 0, U(w) be a circular neighborhood

of the point w, and U(z) be the preimage of U(w), i.e., U(z) is a neighborhood of the point z. We
assume that the neighborhood U(w) is so small that it lies in the open upper half-plane. Then the
neighborhood U(z) also possesses this property.

Since ln 2πn → +∞ as n → ∞, the point tn ∈ C+
β (see (2.1.55)) performs an infinite number of

half-turns. Since ln 2π(n + 1) − ln 2πn → 0 as n → ∞, we see that U(z) contains infinitely many
pairwise distinct points tn of the semi-circle C+

β . Therefore, U(w) contains infinitely many pairwise

distinct points w+
n = w+(tn), n ∈ T ⊂ N. From this point, we consider the sequences Im δn and Re δn

separately.
Let θ ∈ (0, π) be fixed and w = Reiθ be the corresponding point on K+

β (see (1)). We prove that

the points argw+
n , n ∈ T , are pairwise distinct. Indeed, if the points w+

n and w+
m have the same

arguments, then they lie on the same ray in the upper half-plane ematating from the origin. The
Joukowsky function maps this ray either in the ray arg z = π/2 (if θ = π/2) or in one of the branches
(left or right) of a hyperbola symmetric with respect to the coordinate axes. But the semi-circle
C+
β does not contain any pair or points that belong to one of these sets. We have proved that the

points argw+
n , n ∈ T , are pairwise distinct. Since the points w+

n lie in U(w), the corresponding (real)
neighborhood of the point θ contains an infinite set of points argw+

n . By the arbitrariness of U(w)
this means that the point θ is a limit point for the sequence

argw+
n = Im lnw+

n = Im δn.

It remains to recall that θ is an arbitrary point from (0, π) and that the set of limit points is closed.
Assertion (4) for the sequence Im δn is proved.

Let ρ ∈ (ρ1, ρ2) be fixed and w = ρeiϕ be the corresponding point on K+
β (se (2)). We prove

that any triple of points |w+
n |, n ∈ T , contains a pair of distinct points. Indeed, if some three points

w+
n have the same moduli, then these points lie on the same upper semi-circle centered at 0. The

Joukowsky function maps this semi-circle on the upper semi-ellips (which does not coincide with the
semi-circle ). But on C+

β only two points can belong to such a semi-ellipse, i.e., our assumption is

invalid. Therefore, the corresponding (real) neighborhood of the point ρ contains an infinite number
of points |w+

n | and any neighborhood of the point ln ρ contains an infinite number of points

ln |w+
n | = Re lnw+

n = Re δn.

Since ρ ∈ (ρ1, ρ2) is arbitrary and the set of limit points is closed, we have proved that any point of
the segment [ln ρ1, ln ρ2] is a limit point for the sequence Re δn. In our reasoning, we have used the
upper semi-circle C+

β and its image K+
β . Arguing similarly for the lower semi-circle C−

β and its image

K−
β and taking into account (2.1.58), we obtain that any point of the segment [ln(1/ρ2), ln(1/ρ1)] is

also a limit point for the sequence Re δn. Assertion (4) is completely proved.
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(5) We must prove that the sequence Δn is separated from zero (see (2.1.42)). Assume the contrary:
let Δn → 0 for some sequence of indices n = nk → ∞. Passing to the limit as n = nk → ∞ in the
equality for moduli in (2.1.47) and applying (2.1.39), we obtain

cosh
πβ

2
= |γ(β)| =

√
sinhπβ

πβ
.

However, for β 	= 0 this is impossible since for t 	= 0 the following relation holds:

cosh2
t

2
=

1 + cosh t

2
= 1 +

∞∑

n=1

t2n

2(2n)!
> 1 +

∞∑

n=1

t2n

(2n+ 1)!
=

sinh t

t
.

We have proved assertion (5). Theorem 2.1.3 is completely proved.

3. It remains to consider the case where 0 < ρ < 1/2.

Lemma 2.1.4. Let ρ = 1/m, m ∈ N, m ≥ 2. Then

Eρ(z;m) = E1/m(z;m) = ρzρ−1
m−1∑

n=0

e2πinρ exp(zρe2πinρ).

Proof. Since

mE1/m(z;m) =
m−1∑

n=0

E1(z
1/me2πin/m;m)

(see [6]) and

E1(w;m) =
∞∑

k=0

wk

(k +m− 1)!
=

1

wm−1

(
ew −

m−2∑

k=0

wk

k!

)
,

we have

mE1/m(z;m) = z1/m−1
m−1∑

n=0

(
e2πin(1/m−1) exp(z1/me2πin/m)−

m−2∑

k=0

zk/me2πin(k+1−m)/m

k!

)
.

But the expression

m−1∑

n=0

m−2∑

k=0

zk/m

k!
e2πin(k+1−m)/m =

m−2∑

k=0

zk/m

k!

m−1∑

n=0

e2πin(k+1)/m

vanishes since the last sum is zero. Substituting this into the last formula, we obtain the lemma.

Lemma 2.1.5. Let ρ = 1/m, m ∈ N, m ≥ 2, s ∈ Z+. Then

Eρ(z;m− s) = ρzρ−1+sρ
m−1∑

n=0

e2πinρ(1+s) exp(zρe2πinρ). (2.1.59)

Proof. We prove the lemma by induction. For s = 0, formula (2.1.59) is the assertion of Lemma 2.1.4.
We show that the inductive hypothesis for an index s implies its validity for the index s+ 1.

From (2.1.59) it follow that

zE′
ρ(z;m− s) = ρ(ρ− 1 + sρ)zρ−1+sρ

m−1∑

n=0

e2πinρ(1+s) exp(zρe2πinρ)

+ ρ2z2ρ−1+sρ
m−1∑

n=0

e2πinρ(2+s) exp(zρe2πinρ).
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We substitute this and (2.1.59) on the right-hand side of the formula

ρEρ(z;μ− 1) = ρ(μ− 1)Eρ(z;μ) + zE′
ρ(z;μ)

(see [6]) setting here μ = m− s. Since ρ = 1/m, we have proved the lemma.

Remark 2.1.1. Formula (2.1.59) can be written in the form

Eρ(z;μ) = ρzρ(1−μ)
m−1∑

n=0

e2πinρ(1−μ) exp(zρe2πinρ), ρ =
1

m
, μ = m− s. (2.1.60)

It is valid for any branch of the function zρ since the right-hand side of (2.1.60) is invariant under the
change of arg z by arg z + 2π.

Theorem 2.1.4. Let 0 < ρ < 1/2. Then all sufficiently large (in modulus) zeros zn of the function
Eρ(z;μ) are simple and can be described by the asymptotic formula

zn = −
(

π

sinπρ

(
n− 1

2
+ ρ(μ− 1)

)
+ αn

)1/ρ

, n→ +∞, (2.1.61)

where

(1) in the case of exclusive pairs ρ, μ we have

αn = O
(
e−πn(cosπρ−cos 3πρ)/ sinπρ

)
;

(2) if 1/4 < ρ < 1/2, then

αn = O
(
n−Re τμ/ρe−πn cotπρ

)
;

(3) if ρ ≤ 1/4, then

αn = e−πn cotπρ
(
O
(
eπn cos 3πρ/ sinπρ

)
+O
(
n−Re τμ/ρ)

)
.

If μ is real, then all sufficiently large (in modulus) zeros are real.

Proof. First, we consider exclusive pairs ρ, μ, i.e.,

ρ = 1/m, m ∈ N, m ≥ 3, μ = m− s, s ∈ Z+.

We set w = zρe−iπρ; then to the whole plane 0 ≤ arg z < 2π corresponds the sector −πρ ≤ argw < πρ,
and by (2.1.60) we must examine the asymptotics of zeros of the quasi-polynomial

P (w) =
m−1∑

n=0

e2πinρ(1−μ) exp(we(2n+1)πiρ).

In this sum, we consider the terms with n = 0 and n = m− 1 (in the sector specified, they play the
key role):

P (w) = exp(weiπρ) + e−i(1−μ)2πρ exp(we−iπρ) + α(w), (2.1.62)

α(w) =
m−2∑

n=1

dn exp(λnw), λn = e(2n+1)iπρ.

We have the relation

∣∣α(w)
∣∣ =
∣∣∣∣∣

m−2∑

n=1

dn exp
(
weiπρ(2n+1)

)
∣∣∣∣∣ = O

(
exp
(
Rew cos 3πρ− Imw sin 3πρ

))
(2.1.63)
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in the sector | argw| ≤ πρ, since in this sector the growth of the quasi-polynomial α(w) is determined
by the right-hand side of the points exp(iπρ(2n+1)), i.e., by the points with indices n = 1,m− 2; for
these points ∣∣∣exp

(
weiπρ(2n+1)

)∣∣∣ = O
(
exp
(
Rew cos 3πρ− Imw sin 3πρ

))
.

On the set 0 < ε ≤ argw ≤ πρ (−πρ ≤ argw ≤ −ε) in formula (2.1.62), the second (respectively,
first) term dominates. It grows exponentially on this set, and hence the quasi-polynomial P (w) grows
exponentially in these sectors. Therefore, for arbitrarily small ε > 0, all zeros of the function Eρ(z;μ)
belonging to the set | argw| ≤ πρ, perhaps, except for a finite number, lie in the sector

| argw| < ε. (2.1.64)

From (2.1.62) and (2.1.63) we see that if θ = argw ∈ (−ε, ε), then

P (w) = exp
(
weiπρ

)
+ e−i(1−μ)2πρ exp

(
we−iπρ

)
+O
(
eRew

(
cos 3πρ−tan θ sin 3πρ

))

= 2ew cosπρ−iπρ(1−μ) cos
(
w sinπρ+ πρ(1− μ)

)
+O
(
eRew

(
cos 3πρ−tan θ sin 3πρ

))
.

If ε is sufficiently small, then

cosπρ− cos 3πρ− tan ε| sin 3πρ| > 0;

therefore, for zeros wn of the quasi-polynomial P (w) in the sector (2.1.64) we have the equation

cos
(
w sinπρ+ πρ(1− μ)

)
= o(1), Rew → +∞, (2.1.65)

where o(1) is

O
(
exp
(− Rew(cosπρ− cos 3πρ+ tan θ sin 3πρ)

))
.

Equation (2.1.65) shows that | Imwn| ≤ h < +∞ for all n. But then Rew tan θ = O(1) for w = wn

and hence the term o(1) in (3.7.4) is

O
(
exp
(− Rew(cosπρ− cos 3πρ)

))
. (2.1.66)

Setting t = w sinπρ+ πρ(1− μ), we rewrite Eq. (2.1.65) in the form

cos t = O

(
exp

(
−cosπρ− cos 3πρ

sinπρ
Re t

))
.

Obviously, all sufficiently large (in modulus) roots tn of this equation in the right-hand half-plane are
simple and are described by the asymptotic formula

tn = πn+
π

2
+O

(
exp

(
−πncosπρ− cos 3πρ

sinπρ

))
, n→ +∞.

Zeros zn of the function Eρ(z;μ) are preimages of the points tn under the mapping

t = zρe−iπρ sinπρ+ πρ(1− μ).

Together with the previous formula this yields formula (2.1.61) for exclusive pairs ρ, μ and the estimate
of the remainder from assertion (1).

Now we consider the general (i.e., nonexclusive) case. We use Theorem 1.2.2: if 0 < ρ ≤ 1/2, then

Eρ(z;μ) = ρzρ(1−μ)
∑

| arg z+2πn|≤3π/4ρ

e2πinρ(1−μ) exp(zρe2πinρ) +O

(
1

z

)
, |z| → ∞. (2.1.67)

Formula (2.1.67) is valid for any single-valued branch of the power function since the replacement
of θ = arg z by θ + 2π leads to the decreasing by 1 of the index n, i.e., to the renumbering of indices.
It is convenient to assume that 0 ≤ arg z < 2π.
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We set again w = zρe−iπρ. Let wn be the images of zeros zn of the function Eρ(z;μ) under this
mapping. Then (2.1.67) shows that wn are zeros of the function

P (w) +O

(
1

wRe τμ/ρ

)
(2.1.68)

in the sector −πρ ≤ argw < πρ, where

P (w) =
∑

| argw+(2n+1)πρ|≤3π/4

e2πinρ(1−μ) exp(we(2n+1)πiρ). (2.1.69)

Consider the sector (2.1.64) assuming that ε is sufficiently small. Since ρ < 1/2, formula (2.1.69)
necessarily contains points w with indices n = 0 and n = −1.

We denote by N the maximal index in formula (2.1.69). We have the inequality

3π

4
≥ ∣∣(2N + 1)πρ− argw

∣∣ > (2N + 1)πρ− ε,

(2N + 1)πρ <
3π

4
+ ε. (2.1.70)

Therefore, points

λn = e(2n+1)iπρ

with nonnegative indices lie on the arc |w| = 1, 0 ≤ argw < 3π/4 + ε. Similarly, points λn with
negative indices lie on the arc |w| = 1, −3π/4− ε < argw ≤ 0. Therefore, among the exponents λn of
the quasi-polynomial

P (w) =
∑

n

hne
λnw, hn = e2πinρ(1−μ) 	= 0, λn = e(2n+1)iπρ,

the points

λ0 = eiπρ, λ−1 = e−iπρ,

have the maximal real parts.
From (2.1.70) follows that if ρ > 1/4 and ε is sufficiently small, then N = 0. By analogy, the

minimal index n in formula (2.1.69) is n = −1, i.e., if ρ > 1/4, then formula (2.1.69) contains only
indices n = 0 and n = −1.

We have denoted function (2.1.69) by the same symbol as function (2.1.62) not accidentally. In
(2.1.69), in contrast to (2.1.62), the set of indices n varies depending on w, but the set of collections
of such indices is finite when | argw| ≤ πρ, and hence these function behave similarly.

Indeed, if 0 < ε ≤ argw ≤ πρ (−πρ ≤ argw ≤ −ε), then the term with index n = −1 (respectively,
n = 0) dominates in (2.1.69). Therefore, on this set function (2.1.69) (and, therefore, (2.1.68)) grows
exponentially. Hence zeros of function (2.1.68) lying in the sector | argw| ≤ πρ, perhaps, except for a
finite number, actually belong to the set (2.1.64).

After this remark, we can repeat the reasoning of the exclusive case. The unique change is as
follows: If we write P (w) in the form (2.1.62), then α(w) consists of the last expression from (2.1.68)
and the terms of (2.1.69) corresponding to the most right-hand points eλnw, i.e., to (possible) points
with indices n = 1 and n = −2. Therefore, the form of the right-hand side o(1) in Eq. (2.1.65) is
slightly different from that in Eq. (2.1.66). However, formula (2.1.61) is valid in all cases, and we must
only observe how this change affects the behavior of the remainder αn.

Let 1/4 < ρ < 1/2. Then, as we have seen, Eq. (2.1.69) contains only points with n = 0 and
n = −1. Therefore, α(w) is reduced to the last expression in (2.1.68), and hence the right-hand side
of (2.1.65) has the form

O
(
|w|−Re τμ/ρe−Rew cosπρ

)
.

Finally, we obtain the estimate of the remainder from assertion (2).
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If ρ ≤ 1/4, then we must take into account points λn, n = 1, n = −2. Therefore, the right-hand
side in (2.1.65) is the sum of expression (2.1.66) and

e−w cosπρO
(
w−Re τμ/ρ

)
.

Then we obtain the estimate of the remainder from assertion (3).
In all cases, the simpleness of sufficiently large (in modulus) zeros of the function Eρ(z;μ) follows

from the simpleness of roots of Eq. (2.1.65) for Rew > R0.
The fact that all sufficiently large (in modulus) zeros are real for real μ is proved as in Theorem 2.1.2.

Theorem 2.1.4 is completely proved.

Apparently, Dzhrbashyan and Nersesyan first began to study asymptotics of zeros of Mittag-Leffler
function (see [6]). Their results are restricted by various constraints imposed on the parameters ρ and
μ, for example, ρ ≥ 1/2. In [29], for all ρ > 0 and μ ∈ C, except for the case where ρ = 1/2 and
Reμ 	= 3, asymptotic formulas for zeros were obtained with accuracy to an infinitesimal term whose
order had, however, been estimated; in particular, Theorem 2.1.4 is contained in [29]. Improved
formulas from Theorems 2.1.1 and 2.1.2, in which the first terms of asymptotics are presented, are
published here for the first time. Theorem 2.1.3 relating to the exclusive case ρ = 1/2, Reμ = 3 was
proved in [36].

2.2. Matching of Asymptotics and Numeration of Zeros

Formula for zeros zn of the function Eρ(z;μ) obtained in the previous section are asymptotic; they
describe the behavior of zeros outside a disk of sufficiently large radius but do not yield information on
the number of zeros inside this disk. Obviously, the problem on the number of such zeros is equivalent
to the problem on matching of asymptotics and the numeration of all zeros.

Definition. Let Z = (zn) be the set of all zeros of an entire function F (z) and let the following
asymptotic formula hold:

zn = ϕ(n) + o(1), n→ ±∞ (or n→ +∞), (2.2.1)

where ϕ(n) → ∞. We say that asymptotics (2.2.1) is matched with the numeration of all zeros of the
function F (z) by the index set T if there exists a bijection T ↔ Z preserving asymptotics (2.2.1).

Note that we assume that to any zero λ of multiplicity m in Z, elements zs+1 = . . . = zs+m = λ
with different numbers correspond.

We explain this definition by the examples of the functions F (z) = sin z and F (z) = (sin z)/z.
Their zeros have the same asymptotics

zn = πn+ o(1), n→ ±∞.

In the first case, this asymptotics is matched with the numeration of all zeros by the index set Z, but
in the second case by the index set Z\{0}.

In this section, we find index sets T used for matching of the asymptotic formulas of Theorem 2.1.1,
2.1.2, and 2.1.4 with the numeration of all zeros of the function Eρ(z;μ). The following assertions
hold.

Theorem 2.2.1. (1) If

ρ >
1

2
, μ 	= 1

ρ
− l, l ∈ Z+ or ρ =

1

2
, Reμ > 3,

then the asymptotic formula (2.1.7) is matched with the numeration of all zeros of the function
Eρ(z, μ) by the index set Z\{0}.
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(2) If

ρ >
1

2
, ρ 	= 1, μ =

1

ρ
− l, l ∈ Z+,

then the asymptotic formula (2.1.7) is matched with the numeration of all zeros of the function
Eρ(z, μ) by the index set Z\{0}\{1}.

Theorem 2.2.2. (1) If

ρ =
1

2
, Reμ < 3, μ 	= 2− l, l ∈ Z+,

then the asymptotic formula (2.1.28) is matched with the numeration of all zeros of the function
Eρ(z;μ) by the index set N.

(2) If

ρ <
1

2
,

then the asymptotic formula (2.1.61) is matched with the numeration of all zeros of the function
Eρ(z;μ) by the index set N.

For example, consider the function

E1(z; 2) =
ez − 1

z
.

Here cμ = 1 and τμ = 0 and by Theorem 2.1.1, the asymptotics of zeros of this function has the form

zn = 2πni+ o(1), n→ ±∞.

Theorem 2.2.1 asserts that the asymptotics is matched with the numeration of all zeros by the index
set Z\{0}. On the other hand, we have exact expressions for zeros:

zn = 2πni, n ∈ Z\{0}.
Proof. If a point z = 0 is a zero of the function Eρ(z, μ) of multiplicity m, then we pass to the function

F (z) =

(
z − 1

z

)m

Eρ(z;μ), F (0) 	= 0.

The proofs of Theorems 2.2.1 and 2.2.2 are based on the Jensen formula
r∫

0

n(t)

t
dt =

1

2π

π∫

−π

ln |F (reiθ)|dθ − ln |F (0)|, (2.2.2)

where n(t) is the number of zeros of a function F (z) in the disk |z| < r, which, obviously, coincides
for r > 1 with the number of zeros of the function Eρ(z;μ).

2.2.1. Estimate for the integral of the logarithm of the modulus.

Case ρ > 1/2. We use formulas (2.1.12) and (2.1.13), which are uniform in the corresponding sectors
with respect to θ = arg z. In these formulas, we set s = 1 for μ 	= 1/ρ − l, k ∈ Z+ and s = 2 for
μ = 1/ρ− l.

Let r0 be sufficiently large. Then the set of points satisfying the conditions

Re
(
zρ + τμ ln z

)− ln |cμ| = 1, |z| ≥ r0,

consists of two infinite curves starting at some points M+ and N+ of the circle |z| = r0, and the union
of this set with the right-hand arc M+N+ of the circle |z| = r0 is an infinite curve, which we denote
by γ+. Similarly, we denote by γ− the curve obtained as the union of points satisfying the condition

Re
(
zρ + τμ ln z

)− ln |cμ| = −1, |z| ≥ r0,
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with some left-hand arc M−N− of the circle |z| = r0. Both curves γ± are asymptotically situated
along the rays arg z = ±π/(2ρ).

We denote by P+ the set of points lying to the right of γ+ and by P− the set of points lying to the
left of γ−. Let P be the closure of the set of points lying between γ+ and γ− with the removed disk
|z| ≤ r0. The set P+ (respectively, P−) is a right-hand (respectively, left-hand) curvilinear half-plane
and P is a curvilinear strip lying between them with the removed disk |z| ≤ r0. We have

C \ (z : |z| ≤ r0
)
= P+ ∪ P− ∪ P

and the relations

P− =
(
z : r = |z| > r0, Re

(
zρ + τμ ln z

)− ln |cμ| < −1
)
,

P+ =
(
z : r > r0, Re

(
zρ + τμ ln z

)− ln |cμ| > 1
)
,

P =
(
z : r > r0, −1 ≤ Re

(
zρ + τμ ln z

)− ln |cμ| ≤ 1
)
.

Let ρ > 1. If z ∈ P− and π/ρ ≤ | arg z| ≤ π, then by formula (2.1.13)

zsEρ(z;μ) ⇒ −ρcμ, r → ∞,
π

ρ
≤ | arg z| ≤ π. (2.2.3)

If z ∈ P− and | arg z| ≤ π/ρ, then the definition of the set P− and formula (2.1.12) imply that
∣∣∣∣
1

ρ
zsEρ(z;μ)

∣∣∣∣ ≤
|cμ|
e

+ |cμ|+O

(
1

r

)
≤M <∞, r > r0, (2.2.4)

∣∣∣∣
1

ρ
zsEρ(z;μ)

∣∣∣∣ ≥ |cμ| − |cμ|
e

+O

(
1

r

)
≥ m > 0, r > r0. (2.2.5)

From (2.2.3), (2.2.4), and (2.2.5) we obtain

|zsEρ(z;μ)| � 1, r > r0, z ∈ P−. (2.2.6)

If 1/2 < ρ ≤ 1, then the reasoning related to formula (2.2.3) fails and formulas (2.2.4) and (2.2.5)
are valid for | arg z| ≤ π, and we again arrive at estimate (2.2.6).

Let z ∈ P+. Then by formula (2.1.12)

exp
(
Re
(
zρ + τμ ln z

))− |cμ|+O

(
1

r

)

≤
∣∣∣∣
1

ρ
zsEρ(z;μ)

∣∣∣∣ ≤ exp
(
Re
(
zρ + τμ ln z

))
+ |cμ|+O

(
1

r

)
. (2.2.7)

By the definition of the set P+

|cμ| ≤ 1

e
exp
(
Re
(
zρ + τμ ln z

))
, z ∈ P+. (2.2.8)

Substituting (2.2.8) in (2.2.7), we obtain the estimate

|zsEρ(z;μ)| � exp
(
Re
(
zρ + τμ ln z

))
, r > r0, z ∈ P+. (2.2.9)

It remains to consider the set P . Under mapping (2.1.15) it transforms to a set, which, for large
|w|, coincides with the vertical strip

γ− ≤ Rew ≤ γ+, γ± = ln |cμ| ± 1.

Obviously, for sufficiently large |z|, mapping (2.1.15) is univalent. We consider the image e(w) of the
function (1/ρ)zsEρ(z;μ) under this mapping. By formula (2.1.12),

e(w) = ew − cμ + o(1) =: ϕ(w) + o(1), γ− ≤ Rew ≤ γ+, | Imw| → ∞. (2.2.10)
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The function ϕ(w) is 2πi-periodic and continuous. Therefore,

0 < c(δ) ≤ |ϕ(w)| ≤M <∞
for γ− ≤ Rew ≤ γ+, | Imw| > r0, and outside small disks of radius δ centered at zeros of the function
ϕ(w). This and relation (2.2.10) imply the estimate

0 < m ≤ |e(w)| ≤M <∞, γ− ≤ Rew ≤ γ+, | Imw| > r0, (2.2.11)

outside small disks of radius δ centered at zeros wn of the function e(w), which have the form

wn = 2πni+ ln cμ + o(1).

Taking sufficiently small δ and returning to the variable z, owing to (2.2.11) we conclude that there
exist circles |z| = rk → ∞ such that on their intersection with the set P estimate (2.2.6) is valid, i.e.,

|zsEρ(z;μ)| � 1, z ∈ P, |z| = rk → ∞. (2.2.12)

Estimates (2.2.6), (2.2.9), and (2.2.12) show that on appropriate circles, the following estimates hold:

ln
∣∣Eρ(z;μ)

∣∣ = Re zρ + (Re τμ − s) ln r +O(1), z ∈ P+, |z| = rk → ∞, (2.2.13)

ln
∣∣Eρ(z;μ)

∣∣ = −s ln r +O(1), z ∈ P− ∪ P, |z| = rk → ∞. (2.2.14)

Using these estimates, we examine the behavior of the integral

I(r) =
1

2π

π∫

−π

ln
∣∣Eρ(re

iθ;μ)
∣∣dθ, r = rk → ∞.

We denote by α±(r) the arguments of points that restrict an arc of the circle |z| = r lying in the set
P+, α−(r) < 0 < α+(r). From the definition of the set P+ it follows that both terms ±α±(r) have the
form

π

2ρ
+O

(
ln r

rρ

)
=: α(r). (2.2.15)

We represent the integral I(r) by the sum of the integrals Ij , j = 1, 2, 3, 4, which are taken over the
intervals

(0, α+(r)), (α−(r), 0), (α+(r), π) ∈ (−π, α−(r)),
respectively. To estimate I1 and I2 we use formula (2.2.13), but for estimate I3 and I4 we have formula
(2.2.14). Taking into account (2.2.15) we obtain the relation

I3 =
1

2π

π∫

α(r)

(O(1)− s ln r)dθ = O(1)− s

2π
(π − α(r)) ln r = s

(
1

4ρ
− 1

2

)
ln r +O(1).

A similar estimate is valid for I4. Further, since by (2.2.15)

sin ρα(r) = cos

(
O

(
ln r

rρ

))
= 1 +O

(
ln2 r

r2ρ

)
,

we have

I1 =
1

2π

α(r)∫

0

(
rρ cos ρθ + (Re τμ − s) ln r +O(1)

)
dθ

=
rρ

2πρ
sin ρα(r) +

α(r)

2π
(Re τμ − s) ln r +O(1)

=
rρ

2πρ
+

1

4ρ
(Re τμ − s) ln r +O(1)
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and a similar estimate for I2. Joining the estimate for Ij , we obtain an intermediate result for the
case ρ > 1/2:

1

2π

π∫

−π

ln |Eρ(re
iθ;μ)|dθ = rρ

πρ
+

(
Re τμ
2ρ

− s

)
ln r +O(1), r = rk → ∞. (2.2.16)

Case ρ = 1/2, Reμ > 3. The constants cμ and τμ are calculated by formulas (2.1.5); we have the
inequality Re τμ < 0. Let r0 be sufficiently large. Consider the sets

P+ =
(
z : r > r0, Re

(√
z + τμ ln z

)− ln |cμ| ≥ 1
)
,

P =
(
z : r > r0, Re

(√
z + τμ ln z

)− ln |cμ| < 1
)
.

Obviously,

C \ (z : |z| ≤ r0) = P+ ∪ P.
Let 0 ≤ arg z ≤ π. By formula (2.1.23),

2zE1/2(z;μ) = exp
(√
z + τμ ln z

)
+ e−iπ(1−μ)zτμe−

√
z − cμ +O

(
1

r

)

= exp(
√
z + τμ ln z)− cμ + o(1), r → ∞. (2.2.17)

If 0 ≤ arg z ≤ π, z ∈ P+, then inequality (2.2.8) holds with ρ = 1/2. This inequality and (2.2.17)
imply estimate (2.2.9) with ρ = 1/2 and s = 1.

Consider mapping (2.1.15) with ρ = 1/2. The image of the domain P ∩ (z : Im z > 0) under this
mapping for sufficiently large | Imw| coincides with an expanding curvilinear strip (we denote it by V ),
which is bounded by the vertical straight line

Rew = 1 + ln |cμ| =: b

from the right and by the curve

w = i
(√
r + (Im τμ) ln r

)
+ (Re τμ) ln r + c, r > r0.

From (2.2.17) follows that the image e(w) of the function 2zEρ(z;μ) under the mapping considered
has the form (2.2.10). We fix a < 0 such that

|ew| = exp(Rew) ≤ |cμ|/2 for Rew < a.

Introduce the semi-strip

V+ =
(
w : a < Rew < b, Imw > r0

)
,

and let V− = V \V+. By the choice of a and Eq. (2.2.10), we see that

|e(w)| ≥ |cμ|/2 + o(1) ≥ m > 0, w ∈ V−, Imw > r0.

If w ∈ V+, then, using the periodicity of the function ew, we conclude that the lower estimate
|e(w)| ≥ m > 0 is also valid for points w ∈ V+ lying outside small disks Kn(δ) of radius δ centered at
zeros of the function e(w). Thus,

|e(w)| ≥ c(δ) > 0, w ∈ V, w /∈ ∪Kn(δ), r > r0.

The upper estimate |e(w)| ≤ M < ∞ for w ∈ V immediately follows from (2.2.10) and the definition
of the set V . Therefore,

|e(w)| � 1, w ∈ V, w /∈ ∪Kn(δ), r > r0.

Taking sufficiently small δ and returning on the z-plane, we conclude that there exists a sequence
rk → ∞ such that estimate (2.2.12) holds with ρ = 1/2 and s = 1.
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Estimates (2.2.9) and (2.2.12) (with ρ = 1/2 and s = 1) are proved for 0 ≤ arg z ≤ π. They can also
be similarly proved for −π ≤ arg z ≤ 0. Therefore, these estimates with s = 1 are valid for the case
ρ = 1/2, Reμ > 3 without restriction on arg z. Finally, in the case where ρ = 1/2 and Reμ > 3 we
arrive at estimates (2.2.13) and (2.2.14); moreover, in (2.2.14) the set P− is absent now. Repeating the
reasoning following (2.2.14), with formal replacement of ρ by 1/2 and s by 1, we obtain the following
estimate of type (2.2.16):

1

2π

π∫

−π

ln |E1/2(re
iθ;μ)|dθ = 2

π

√
r + (Re τμ − 1) ln r +O(1), r = rk → ∞. (2.2.18)

Cases ρ = 1/2, Reμ < 3 and ρ < 1/2. Now we apply formula (2.1.67) and Lemma 2.2.1 (see below)
on the behavior of the quasi-polynomial

R(w) =

m∑

j=1

hje
γjw, hj 	= 0, (2.2.19)

where γj are vertices of some convex polygon G numbered in order of its positive bypass. We set
γm+1 = γ1. Denote by k(ϕ) the support function of the polygon G, i.e.,

k(ϕ) = sup
(
Re(we−iϕ) : w ∈ G

)
.

Lemma 2.2.1 (see [27]). (1) The sequence Λ of zeros of quasi-polynomial (2.2.19) has the form

Λ = Λ1 ∪ . . . ∪ Λm,

where the sequence Λj is asymptotically distributed along the ray

argw =
π

2
− arg(γj+1 − γj)

by the law of arithmetic progression, j = 1, . . . ,m.
(2) Outside small disks of the same radii centered at zeros of the function R(w), the following

estimate holds:

|R(w)| � exp(k(− argw)|w|).
We continue the proof of the theorem. Let | arg z| ≤ π. Then sum (2.1.67) necessarily contains the

index n = 0. Setting w = zρ, | argw| ≤ πρ, we write this sum in the form

Q(w) =
∑

| argw+2πnρ|≤3π/4

hn exp(we
2πinρ), hn = e2πinρ(1−μ). (2.2.20)

According to the summing in (2.2.20), the sector | argw| ≤ πρ is divided into a finite number of
sectors Sj without common interior points so that to any sector Sj in (2.2.20) its own index set Ij
corresponds. For any j, the points exp(2πinρ), n ∈ Ij , are the vertices of some convex polygon Gj (it
may degenerate into a segment) one of whose vertices is the point 1. Let Qj be the quasi-polynomial
corresponding to this polygon, i.e., the part of the sum in (2.2.20) corresponding to indices n ∈ Ij .
Let kj(ϕ) be the support function of the polygon Gj . Then by Lemma 2.2.1

|Qj(w)| � exp(kj(− argw)|w|), w ∈ Sj , w /∈ Dj(δ), (2.2.21)

where Dj in the union of small disks of radius δ centered at zeros of the function Qj(w). However,
Qj(w) = Q(w) in the sector Sj . Further, the point 1 is a vertex of the polygon Gj ; therefore, its
support function kj(ϕ) in the sector | argw| ≤ πρ coincides with the support function of the point 1,
i.e., kj(ϕ) = cosϕ, |ϕ| ≤ πρ, for all j. Since the set of numbers j is finite, relation (2.2.21) implies
that outside

⋃
Dj(δ) we have

|Q(w)| � exp(|w| cosϕ), |ϕ| = | argw| ≤ πρ. (2.2.22)
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By Lemma 2.2.1, the sector | argw| ≤ πρ can contain only parts of those small disks from
⋃
Dj

whose centers are asymptotically distributed along a finite numbers of rays by the law of arithmetic
progression. This implies that for sufficiently small δ, we can be sure that estimate (2.2.22) is valid
on parts of appropriate circles |w| = Rk → ∞ lying in the sector | argw| ≤ πρ. Therefore, if |θ| =
| arg z| ≤ π, then

|Q(zρ)| � exp(|z|ρ cos ρθ), |z| = rk = R
1/ρ
k → ∞. (2.2.23)

We write formula (2.1.67) in the form

zρ(μ−1)Eρ(z;μ) = ρQ(zρ) +O

(
1

r1+ρ(1−Reμ)

)
. (2.2.24)

If ρ < 1/2, then cos ρθ ≥ cosπρ > 0 and (2.2.23) implies that on the right-hand side of (2.2.24) the
first term dominates. If ρ = 1/2, then cos ρθ ≥ 0 and |Q(zρ)| ≥ m > 0. But Reμ < 3 and hence the
last term in (2.2.24) is o(1) as r → ∞; therefore, in the case where ρ = 1/2 and Reμ < 3, the first
term on the right-hand side of (2.2.24) dominates. Finally, we have the relation

|Eρ(z;μ)| � rρ(1−Reμ) exp(rρ cos ρ θ), |z| = r = rk → ∞.

From this we obtain that

1

2π

π∫

−π

ln |Eρ(re
iθ;μ)|dθ = rρ

πρ
sinπρ+ ρ(1− Reμ) ln r +O(1), r = rk → ∞. (2.2.25)

2.2.2. Estimate of the average density of a positive sequence.

Lemma 2.2.2. Let a positive sequence (zn)
+∞
n=m have the form

zn = (an+ b lnn+ d+ o(1))1/ρ, n→ +∞, (2.2.26)

where a, ρ > 0, b, d ∈ R, and let n(t) denote the number of points of this sequence in an interval (0, t).
Then, as r → +∞, the following relation holds :

N(r) :=

r∫

0

n(t)

t
dt =

rρ

aρ
− bρ

2a
ln2 r +

(
1

2
−m− d

a
+
b

a
ln a

)
ln r + o(ln r).

Proof. We fix ε > 0. Introduce the sequences x+n and x−n by the formulas

x±n = an+ b lnn+ d± ε, n = k, k + 1, . . . ,

where k ∈ N is chosen so large that the term o(1) in (2.2.26) satisfies the inequality |o(1)| < ε, n ≥ k,
and the sequence x−n is positive and increasing. Let n±(t) be the number of points x±n in the interval
(0, t). Since the number of points zn in the interval (0, t) is equal to the number of points zρn in the
interval (0, tρ), we have

k −m+ n+(t
ρ) ≤ n(t) ≤ k −m+ n−(tρ), t > x+k ,

and hence for all sufficiently large r, the following inequality holds:

M1 + (k −m) ln r +

r∫

x+
k

n+(t
ρ)

t
dt ≤ N(r) ≤M2 + (k −m) ln r +

r∫

x−
k

n−(tρ)
t

dt. (2.2.27)

Further, since

n±(t) = n− k + 1, t ∈ (x±n , x
±
n+1),

for

N = max(n : (x−n )
1/ρ ≤ r)
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we have the relation

ρ

r∫

x±
k

n±(tρ)
t

dt = ρ
N∑

n=k

(n− k + 1)

(x±
n+1)

1/ρ∫

(x±
n )1/ρ

dt

t
+O(1)

=

N∑

n=k

(n− k + 1) ln
x±n+1

x±n
+O(1)

=
N∑

n=k

(n− k + 1) ln

(
1 +

a+ b ln(1 + 1/n)

an+ b lnn+ d± ε

)
+O(1)

=
N∑

n=k

(n− k + 1)

(
a+ b ln(1 + 1/n)

an+ b lnn+ d± ε
− 1

2

(
a+ b ln(1 + 1/n)

an+ b lnn+ d± ε

)2
)

+O(1).

On the right-hand side, we replace ln(1 + 1/n) by 1/n and 0 in the first and second fractions, respec-
tively. Taylor’s formula shows that in this case we change the right-hand side by a quantity bounded
with respect to N . Therefore,

ρ

r∫

x±
k

n±(tρ)
t

dt =
N∑

n=k

(
an− a(k − 1) + b

an+ b lnn+ d± ε
− 1

2

a2n

(an+ b lnn+ d± ε)2

)
+O(1)

=
N∑

n=k

(
1− b lnn

an+ b lnn+ d± ε
+
b− a(k − 1)− d∓ ε

an+ b lnn+ d± ε

)
− 1

2
lnN +O(1)

= N − b

2a
ln2N +

(
b− a(k − 1)− d∓ ε

a
− 1

2

)
lnN +O(1). (2.2.28)

Now we express N through r using the definition of N and the explicit form of the sequence x−n :
N is the maximal index n for which an+ b lnn+ d− ε ≤ rρ. Obviously,

N =
rρ

a
− bρ

a
ln r +O(1),

and hence

lnN = ρ ln r − ln a+ o(1),

ln2N = ρ2 ln2 r − 2ρ ln a ln r + o(ln r).

Substituting these expressions for N , lnN , and ln2N in (2.2.28) and then the obtained expressions in
(2.2.27), we see that the integral N(r) is contained between the values

rρ

aρ
− bρ

2a
ln2 r +

(
1

2
−m+

±ε− d

a
+
b

a
ln a

)
ln r + o(ln r), r → ∞.

Since ε can be chosen arbitrarily small, this implies the required asymptotics. Lemma 2.2.2 is proved.

Let the conditions of Theorem 2.2.1 hold. By Theorem 2.1.1, the sequence Z of zeros zn of the
function F (z) defined in the beginning of the proof can be represented in the form

Z = Z+ ∪ Z−, Z+ ∩ Z− = ∅, Z+ = (zn)
+∞
n=m, Z− = (zn)

−∞
n=−1,
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where m is an integer. If |n| is sufficiently large, then Im zn ≷ 0 respectively for zn ∈ Z±. Both
sequences

|Z+| = (|zn|)+∞
n=m, |Z−| = (|zn|)−∞

n=−1

are positive.
By (2.1.7)

Im zρn = 2πn− 1

ρ
(Im τμ) ln 2π|n| − π

2ρ
(Re τμ) signn+ arg cμ + o(1),

Re zn = a1 ln 2π|n|+ a2 signn+ a3 + o(1),

where aj are some constants. Therefore,

|zρn| = | Im zρn|+ o(1),

and hence

|zn|ρ =

∣∣∣∣2πn− 1

ρ
(Im τμ) ln |n|+ arg cμ − π

2ρ
(Re τμ) signn− 1

ρ
(Im τμ) ln 2π + o(1)

∣∣∣∣ .

Thus, if zn ∈ Z+, then

|zn| =
(
2πn− 1

ρ
(Im τμ) lnn+ arg cμ − π

2ρ
Re τμ − 1

ρ
(Im τμ) ln 2π + o(1)

)1/ρ

, n→ +∞,

and if zn ∈ Z−, then

|z−n| =
(
2πn+

1

ρ
(Im τμ) lnn− arg cμ − π

2ρ
Re τμ +

1

ρ
(Im τμ) ln 2π + o(1)

)1/ρ

, n→ +∞.

Therefore, the sequences |Z+| and |Z−| satisfy the conditions of Lemma 2.2.2, where in both cases
a = 2π and

b = −1

ρ
Im τμ, d = arg cμ − π

2ρ
Re τμ − 1

ρ
(Im τμ) ln 2π,

b =
1

ρ
Im τμ, d = − arg cμ − π

2ρ
Re τμ +

1

ρ
(Im τμ) ln 2π

for the cases of the sequences |Z+| and |Z−|, respectively.; note that in the second case one must set
m = 1. Therefore, if we denote by n±(t) the number of points of the sequence |Z±| in an interval
(0, t), then by Lemma 2.2.2

r∫

0

n+(t) + n−(t)
t

dt =
rρ

πρ
+

(
Re τμ
2ρ

−m

)
ln r + o(ln r), r → ∞. (2.2.29)

But n+(t)+n−(t) is the number of zeros of the function F (z) in the disk |z| < t. Therefore, in Jensen’s
formula (2.2.2) we have n(t) = n+(t) + n−(t). Comparing estimates (2.2.29) and (2.2.16) with this
formula, we see that if ρ > 1/2, then m = s. Recall that

s = 1 for μ 	= 1

ρ
− l; s = 2 for μ =

1

ρ
− l, l ∈ Z+.

Therefore, m = 1 and m = 2, respectively, and the case ρ > 1/2 has been examined.
If ρ = 1/2 and Reμ > 3, we apply formula (2.2.18) instead of formula (2.2.16). But (2.2.18)

coincides with (2.2.16) for ρ = 1/2 and s = 1, and the case ρ = 1/2, Reμ > 3 has also been examined.
Theorem 2.2.1 is proved.
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Now we prove Theorem 2.2.2. By Theorems 2.1.2 and 2.1.4, the sequence Z of zeros zn of the
function F (z) has the form Z = (zn)

+∞
n=m, where m is an integer, and

|zn| =
(

π

sinπρ

(
n− 1

2
+ ρ(Reμ− 1) + o(1)

))1/ρ

, n→ +∞. (2.2.30)

Let n(t) be the number of points zn in a disk |z| < t or, equivalently, the number of points |zn| in the
interval (0, t). Formula (2.2.30) shows that the sequence |Z| satisfies the conditions of Lemma 2.2.2
with

a =
π

sinπρ
, b = 0, d =

π

sinπρ

(
ρ(Reμ− 1)− 1

2

)
.

By Lemma 2.2.2,
r∫

0

n(t)

t
dt =

sinπρ

πρ
rρ − (m− 1 + ρ(Reμ− 1)) ln r + o(ln r), r → ∞. (2.2.31)

On the other hand by Jensen’s formula (2.2.2) and estimate (2.2.25) we have the relation

r∫

0

n(t)

t
dt =

sinπρ

πρ
rρ − ρ(Reμ− 1) ln r +O(1), r = rk → ∞.

Comparing this with (2.2.31), we see that m = 1. Theorem 2.2.2 is proved.

The material of this section is taken from [31].

Chapter 3

PROBLEM ON THE REALNESS OF ALL ZEROS

OF THE MITTAG-LEFFLER FUNCTION

OF ORDER LESS THAN 1/2

3.1. Main Results

In this chapter, we discuss the following problem, interesting from the theoretic standpoint and
important in some applications: Are all zeros of the Mittag-Leffler function of order less than 1/2
real? Results of Chap. 2 shows that in the case ρ ∈ (0, 1/2), μ ∈ R, all zeros of Eρ(z;μ), perhaps
except for a finite number, are real, negative, and simple. So is there an exceptional set of nonreal
zeros or not?

The history of this question is more than a century old. It begins from Wiman’s paper [44], which
asserted that all zeros of the “classical” Mittag-Leffler function Eρ(z; 1) of order ρ < 1/2 are real,
negative, simple, and, being ordered in the sequence {zn = zn(ρ, 1)}n∈N, satisfy the inequalities

−
(

πn

sin(πρ)

)1/ρ

< zn < −
(
π(n− 1)

sin(πρ)

)1/ρ

∀n ∈ N. (3.1.1)

However, [44] does not contain any proof; Wiman only gave some plausible arguments.
Probably, the absence of a proof in [44] motivated Pólya to publish the paper [21]. He proved that

all zeros of Eρ(z; 1) are negative and simple, but only in the case where ρ = 1/N , N ∈ N, N ≥ 2.
This fact suggests the complexity of the problem. If even such a competent analyst was unable to
cope with the problem in full, then, probably, its solution requires a quite nontrivial approach. The
localization problem was not studied by Pólya.
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In [15], Mikusinski formulated a theorem on the alternation of zeros of the functions

E1/N (z; p) and E1/N (z; q), 1 ≤ p < q ≤ N, p, q ∈ N. (3.1.2)

However, strangely enough, Mikusinski did not examine the problem on the realness of all zeros
of E1/N (z; p). Thus, it is unclear whether he had generalized Pólya’s theorem for function (3.1.2) or
tried to prove the alternation of only real zeros (in our opinion, his proof is incomplete).

Then for a long time, the problem on the realness of all zeros of the Mittag-Leffler functions of
order less than 1/2, to our knowledge, was not discussed. Ostrovskii and Peresyolkova have recently
turned to it. In their collaboration [19], the negativeness and simpleness of all zeros of the functions
Eρ(z; 1) and Eρ(z; 2) for all ρ ∈ (0, 1/2]) were proved. It may appear that Wiman’s brain teaser had
been solved in [19], but this is deceptive: the localization problem for zeros and inequalities (3.1.1)
was not even mentioned in [19].

One of the advantages of the paper [19], of course, is the statement of the following problem (here
and elsewhere, we quote other people’s works not literally, but in an equivalent and more convenient
form).

Problem 1. For any ρ ∈ (0, 1/2], find the set Wρ od all positive values of the parameter μ such that
the function Eρ(z;μ) has in C only negative and simply zeros.

Ostrovskii and Peresyolkova [19] had restricted themselves only to positive values of μ. However (see
below), if we define the set Wρ

− replacing in the definition of Wρ the word “positive” by “negative,”
then for any ρ < 1/2 this set will be nonempty. Obviously, other problems can also be stated.

Problem 2. For any ρ ∈ (0, 1/2], find the set W̃ρ of all values of the parameter μ ∈ R such that all
zeros of Eρ(z;μ) lie on R.

Problem 3. For any ρ ∈ (0, 1/2] and m ∈ N, find the set W̃ρ(m) of all μ ∈ R such that the number
of nonreal zeros of the function Eρ(z;μ) is not greater than 2m.

For Problem 1, Ostrovskii and Peresyolkova proved that in the case ρ = 2−k, k ∈ N, the interval
(0, 1 + 1/ρ) lies in Wρ and quickly hypothesized that Wρ = (0, 1 + 1/ρ) for any ρ ∈ (0, 1/2]. This is
actually valid for ρ = 1/2 (for the proof, see [19]), but is invalid for ρ < 1/2: Wρ is wider than the
interval (0, 1 + 1/ρ).

We state the main result of this chapter.

Theorem 3.1.1. For any ρ ∈ (0, 1/2) and μ ∈ (0, 2/ρ− 1], all zeros of the function Eρ(z;μ) in C lie
on (−∞, 0), are simple, and, being ordered into a sequence {zn(ρ, μ)}n∈N, satisfy the inequalities

− ξ
1/ρ
1 (ρ, μ) < z1(ρ, μ) < −Γ(μ+ 1/ρ)

Γ(μ)
,

− ξ1/ρn (ρ, μ) < zn(ρ, μ) < −ξ1/ρn−1(ρ, μ), n ≥ 2,

(3.1.3)

where

ξn(ρ, μ) =
π(n+ ρ(μ− 1))

sin(πρ)
. (3.1.4)

For 0 < ρ ≤ 1/4, the negativeness and simpleness of all zeros of Eρ(z, μ) and inequalities (3.1.3) holds
if 0 < μ ≤ 2/ρ.

Thus, we prove the inclusions

(0, 2/ρ− 1] ⊂ Wρ ∀ρ ∈ (1/4, 1/2), (0, 2/ρ] ⊂ Wρ ∀ρ ∈ (0, 1/4],
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that are stronger than those supposed in [19] (obviously, 1 +
1

ρ
<

2

ρ
− 1 ⇐⇒ 0 < ρ < 1/2) and obtain

two-sided estimates of zeros, which become (3.1.1) for μ = 1. We also add a nontrivial upper estimate
of the first zero (Wiman had not obtained it even in the case μ = 1 examined by him).

In the case ρ ∈ (0, 1/6], for some first zeros we obtain more exact estimates. We set

Rn(ρ, μ) =
Γ(μ+ n/ρ)

Γ(μ+ (n− 1)/ρ)
, n ∈ N. (3.1.5)

Theorem 3.1.2. Let 0 < ρ ≤ 1/6, 0 < μ ≤ 2/ρ. Then for 1 ≤ n ≤ [1/(3ρ)]−1 we have the inequality

−
√
2Rn(ρ, μ) < zn(ρ, μ) < −Rn(ρ, μ). (3.1.6)

The following Lemma 3.1.1 (see below) shows that the inequalities from Theorem 3.1.2 are stronger
than (3.1.3) for the values of n considered.

Lemma 3.1.1. For 0 < ρ ≤ 1/6, 0 < μ ≤ 2/ρ, and 1 ≤ n ≤ [1/(3ρ)] − 1, the following inequalities
hold :

ξ
1/ρ
n−1(ρ, μ) < Rn(ρ, μ) <

√
2Rn(ρ, μ) < ξ1/ρn (ρ, μ). (3.1.7)

If 0 < μ ≤ 1/ρ, then

2Rn(ρ, μ) < ξ1/ρn (ρ, μ).

Indeed, inequalities (3.1.3) and (3.1.6) can be strengthened. In our opinion, efforts in this direction
are useful in cases where such results have applications in other branches of mathematics. Therefore
(see the Introduction), we are interested in Mittag-Leffler functions with values of the parameters
ρ = 1/N , N ∈ N, and μ = 1+1/ρ = N +1. In this case, two-sided estimates of zeros more exact than
(3.1.3) and (3.1.6) are obtained in [23].

Denote zeros of E1/N (z;N + 1) by zn(N) = zn(1/N,N + 1), n ∈ N, and introduce the notation

Rn(N) =
((n+ 1)N)!

(nN)!
, qn(N) =

3Rn(N)

2Rn+1(N)
min(1, Nn−2). (3.1.8)

We know (see Theorem 3.1.1) that zn(N) ∈ R.

Theorem 3.1.3. For any N ∈ N, N ≥ 3, the following relations hold :

zn(N) = −
[(
πn+

π

2
+ αn(N)

)
/ sin

( π
N

)]N
, n ∈ N, n ≥ [N/3], (3.1.9)

where αn(N) ∈ R, |αn(N)| ≤ xn(N),

xn(N) =

⎧
⎪⎨

⎪⎩

exp (−πn cot(π/N)), 3 ≤ N ≤ 6,

exp (−2πn sin(2π/N)), 7 ≤ N ≤ 1400,

1.01 exp (−2πn sin(2π/N)), N > 1400.

(3.1.10)

For N ≥ 6, 1 ≤ n ≤ [N/3]− 1, the following inequalities are valid :

−Rn(N)(1 + qn(N)) < zn(N) < −Rn(N). (3.1.11)

Inequalities (3.1.11) are highly exact: it follows from (3.1.8) that

max
{
qn(N)

∣∣∣ 1 ≤ n ≤ [N/3]− 1, N ≥ 6
}
= q1(6) <

1

15
,

lim
N→∞

max
{
qn(N)

∣∣∣ 1 ≤ n ≤ [N/3]− 1
}
= 0.
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As for two-sided estimates of zeros zn(N), n ≥ [N/3], expressed by relations (3.1.9) and (3.1.10),
the ratio of the lower and upper estimates is equal to

Δn(N) =

⎛

⎝
1 + xn(N)

π(n+1/2)

1− xn(N)
π(n+1/2)

⎞

⎠
N

≤
(
Δ[N/3]

)N ≤ 1.01 ∀N ≥ 3.

It is interesting to obtain, for all values of the parameters 0 < ρ < 1/2 and 0 < μ < 2/ρ− 1, two-sided
estimates of zeros of the functions Eρ(z;μ) such that the maximum of the ratio of the lower and upper
estimates taken over all zeros of a fixed function tends to 1 as ρ→ 0+ and as ρ→ 1/2− 0.

Finally, we note that the estimate

αn(N) =

⎧
⎨

⎩
O
(
exp (−πn cot(π/N))

)
, 3 ≤ N ≤ 6,

O
(
exp (−2πn sin(2π/N))

)
, 7 ≤ N,

for n ≥ n0(N) follows from Theorem 2.1.4. The fact that we succeed in this case in obtaining values
of the constant in O equal to 1 or 1.01 and take n0(N) = [N/3] is nontrivial.

We complete the discussion of the realness problem for all zeros of the Mittag-Leffler function of
order <1/2. By Theorem 3.1.1, for any μ ∈ [0, 2/ρ − 1], all zeros of Eρ(z;μ), 0 < ρ < 1/2, are real
(if μ = 0, then one zero of Eρ(z; 0) is the point z = 0, and all other zeros are negative and simple;
this follows from the identity Eρ(z; 0) = zEρ(z; 1/ρ)). The answer is not completely known for large
values of μ. Satisfactory results are obtained for ρ close to 1/2, but for “small” ρ they are far from
the final.

Theorem 3.1.4. For 0 < ρ < 1/2 and μ ≥ 0.9 + (ρ2 ln 2)−1 − 1/ρ, the function Eρ(z;μ) has zeros
in C\R.
Theorem 3.1.5. For any ρ ∈ (1/3, 1/2) and μ ∈ (1− 1/ρ,−1) and for ρ ∈ (0, 1/3], μ ∈ (−2,−1), all
zeros of the function Eρ(z;μ) are negative and simple.

3.2. Meaning of Proofs of Theorems 3.1.1–3.1.3

Proofs of Theorems 3.1.1–3.1.3 are quite long and cumbersome and contain a lot of calculations.
Hence these proofs without explanation of their sense and indication of main obstructions can be
difficult even for specialists in theory of functions.

The proof of Theorem 3.1.1 is based on the following simple reason. We take a sequence of points

wn = −ξ1/ρn (ρ, μ) (see (3.1.4) above) and prove that at these points the Mittag-Leffler function changes
sign:

sgnEρ(wn;μ) = (−1)n ∀n ∈ N. (3.2.1)

Since in the case μ ∈ R the function Eρ(z;μ) is real-valued on R and

Eρ(0;μ) = 1/Γ(μ) > 0 ∀μ > 0,

we conclude that for any natural number n, the function considered has no less than n distinct zeros on
the interval (wn, 0) ⊂ R. On the other hand, by Theorems 2.1.4 and 2.2.2, for all sufficiently large n,

the function Eρ(z;μ) has exactly n zeros (with account of their multiplicity) in the disk |z| ≤ ξ
1/ρ
n (ρ, μ).

This means that the function has no other zeros except for real and simple roots lying in the intervals
(wn, wn−1), n ≥ 2, (w1, 0) (exactly one zero on each interval). Finally, Corollary 3.3.1 of Lemma 3.3.1
in Sec. 3.3 shows that the function Eρ(z;μ), μ > 0, has no zeros on the ray [−Γ(μ+ 1/ρ)/Γ(μ),+∞).
Thus, if Eqs. (3.2.1) and Lemma 3.3.1 are proved, then Theorem 3.1.1 will also be completely proved.

Wiman argued similarly in [44], but it is unclear whether he know the theorem on the number of
zeros of the Mittag-Leffler function in a sufficiently large disk (though in the considered case μ = 1)
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and how he intended to prove Eqs. (3.2.1), since their proof is the main obstacle. For sufficiently
large n, these equalities immediately follow from asymptotic formulas (1.5.24) and (1.5.39) (see also
the note after Theorem 1.5.3). As x→ +∞, we have the relations

Eρ(−x1/ρ;μ) = 2ρx1−μ exp (x cosπρ) cos
(
x sin(πρ)− πρ(μ− 1)

)

+O
(
x1−μ exp (x cos(3πρ))

)
, 0 < ρ <

1

6
,

E1/6(−x−6;μ) =
1

3
x1−μ exp

(
x
√
3

2

)
cos
(x
2
− πρ(μ− 1)

)
+O

(
x1−μ + x−6

)
,

Eρ(−x1/ρ;μ) = 2ρx1−μ exp (x cosπρ) cos
(
x sin(πρ)− πρ(μ− 1)

)

+O
(
x−1/ρ

)
,

1

6
< ρ <

1

2
.

(3.2.2)

The point ξn are chosen in (3.1.4) so that

cos
(
ξn sin(πρ)− πρ(μ− 1)

)
= (−1)n ∀n ∈ N. (3.2.3)

From (3.2.2) and (3.2.3) we obtain

Eρ(wn;μ) = 2ρξ1−μ
n exp(ξn cosπρ)[(−1)n + o(1)], n→ ∞.

This relation immediately implies (3.2.1) for all sufficiently large n.
As the previous reasoning show, Eqs. (3.2.1) must be proved precisely for all n ∈ N, and this task is

most difficult for n = 1. For this, it is necessary to obtain an explicit estimate of remainders in (3.2.2)
without the O-symbol for x and, which is especially important, this estimate must be uniform (in some
sense) with respect to the parameters ρ and μ in the whole domain of their values. The corresponding
results are contained in Chap. 11; they will used here.

We also note another important fact. Relations (3.2.2) show that the remainder in the asymptotics
of the Mittag-Leffler functions on the negative part of R has a different behavior for 0 < ρ < 1/6 and
for 1/6 < ρ < 1/2. Therefore, these cases must be considered separately in the proof of Theorem 3.1.1;
the borderline value ρ = 1/6 can be joined to any of them: this is not significantly in the problem
considered. However, as ρ tends to 1/2, an unexpected difficulty arises. Since cos(πρ) ≈ 0, the
principal term of the asymptotics (3.2.2)

2ρx1−μ exp
(
cos(πρ)

)
cos
(
x sin(πρ)− πρ(μ− 1)

)

at the points ξn = ξn(ρ, μ) for nonlarge values of n is close to (−1)nξ1−μ
n , and it is not known whether

it dominates the remainder. Therefore, the orders ρ ∈ [0.4, 0.5) are considered in a separate section.
Another substantial obstruction appears when ρ is close to zero; it even leads to modifying the

scheme of proof described at the beginning of this section. By Theorem 1.5.4 of Chap. 1, the first part
of the remainder is equal to the product of 2ρx1−μ and the sum

[1/ρ]∑

k=2

exp
(
x cos(π(2k − 1)ρ)

)
cos
(
x sin(π(2k − 1)ρ)− π(2k − 1)(μ− 1)

)
.

This would seem to be unimportant: for fixed x > 0, the majorants of moduli of these terms

exp
(
x cos(π(2k − 1)ρ)

)
(3.2.4)

decrease approximately as a geometric progression as the number k increases. Indeed, the ratio of the
functions with numbers k + 1 and k in (3.2.4) is equal to

Δk,ρ(x) = exp
[
− 2x sin(πρ) sin(2πkρ)

]
. (3.2.5)
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If the parameter ρ is close to zero, then for any fixed k ∈ N we have

lim
ρ→0+

Δk,ρ(x) = 1 uniformly with respect to 0 ≤ x ≤ o(ρ−2),

and we cannot obtain the required estimate. Thus, in the case where 0 < ρ ≤ 1/6 and 0 < μ ≤ 2/ρ,
Eqs. (3.2.1) can be proved only for n ≥ N1(ρ) = [1/(3ρ)]. If n is less than N1(ρ), one can prove the
changes of sign of Eρ(z;μ) for all ρ ∈ (0, 1/6], μ ∈ (0, 2/ρ] in another sequence of points by another
method. Namely, the following relations are proved (the sequence Rn(ρ, μ) is defined in (3.1.5)):

sgnEρ(−Rn(ρ, μ);μ) = (−1)n−1, 1 ≤ n ≤ N1(ρ), (3.2.6)

sgnEρ(−
√
2Rn(ρ, μ);μ) = (−1)n, 1 ≤ n < N1(ρ). (3.2.7)

These relations and inequalities (3.1.7) prove that on the segment [−ξ1/ρN1(ρ)
(ρ, μ), 0], the function

Eρ(z;μ) has not less than N1(ρ) zeros. It is important that the signs of the function at the points

−RN1(ρ) and −ξ1/ρN1(ρ)
are distinct and ξN1(ρ)−1 < RN1(ρ) < ξN1(ρ) by Lemma 3.1.1. For completeness

of the proof of Theorems 3.1.1 and 3.1.2, we must verify Eq. (3.2.6) for n = N1(ρ); for n = N1(ρ), we
may omit the proof of Eq. (3.2.7).

Using the result on the number of zeros of Eρ(z;μ) in a disk |z| ≤ ξ
1/ρ
n (ρ, μ) obtained above and

relations (3.2.1), which were proved for any n ≥ N1(ρ), we obtain that there is no other zeros except
for real and simple zeros lying in the intervals

(
− ξ1/ρn (ρ, μ), −ξ1/ρn−1(ρ, μ)

)
, n ≥ N1(ρ),

(
−
√
2Rn(ρ, μ), −Rn(ρ, μ)

)
⊂
(
− ξ1/ρn (ρ, μ), −ξ1/ρn−1(ρ, μ)

)
, 1 ≤ n < N1(ρ)

(we assume that ξ0 = 0). Hence the proof of Theorem 3.1.1 for 0 < ρ ≤ 1/6 is complete and, moreover,
Theorem 3.1.2 is also proved.

We also consider the following problem. Are the proofs of Eqs. (3.2.1), (3.2.6), and (3.2.7) substan-
tially easier in the case μ = 1, which was considered by Wiman? For 1/6 < ρ < 1/2, simplification is
essential. We have almost no doubt that for these values of ρ, Wiman knew a complete proof of the
theorem on the realness and simpleness of zeros of Eρ(z; 1) and inequalities (3.1.1). A more difficult
problem is to broaden the interval of values of the parameter μ. For 0 < ρ ≤ 1/6, the elimination of
gaps in Wiman’s proof requires principally new ideas. Hence some simplification in the case μ = 1 is
also present, but it is more “technical” than fundamental: this particular case is less cumbersome.

The proof of Theorem 3.1.3 is based on the same ideas. Since the values of the parameters are more
specific, one can obtain more exact two-sided estimates of all zeros than in Theorems 3.1.1 and 3.1.2.

3.3. Absence of Zeros of the Mittag-Leffler Function
with Positive Parameter μ in a Neighborhood of the Point z = 0.
Asymptotics of the First Zero of Eρ(z;μ) by the Parameter ρ→ 0+

Uniform with Respect to μ ∈ (0, 2/ρ]

Lemma 3.3.1. Let {Ak}∞k=0 be an arbitrary sequence of positive numbers satisfying the following
condition:

Rk = Ak−1/Ak, k ∈ N, do not decrease.

Then the function

F (z) =
∞∑

k=0

Akz
k
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is holomorphic in the disk

|z| < R = lim
k→∞

Rk

(if R = +∞, then F is an entire function) and is positive on the interval (−R1, R). If the sequence
{Rk}∞k=1 is not constant, then F (−R1) > 0.

Proof. Since the sequence Rk is monotonic, it has a limit (finite or infinite). By d’Alembert’s ratio

test, the radius of convergence of the series
∞∑
k=0

Akz
k is equal to R. The positiveness of the function

F (x) on the interval −R1 < x < 0 follows from the fact that the sequence Ak|x|k decreases since

∞∑

n=0

(−1)nun > 0, un ↘ 0, n→ ∞.

The fact that the sequence Ak|x|k decreases is obvious from the inequalities

Ak|xk| < Ak−1|xk−1| ⇐⇒ |x| < Rk, R1 ≤ Rk ∀k ∈ N.

Finally, if R > R1, then the series F (−R1) =
∞∑
k=2

(−1)kAkR
k
1 converges, and the moduli of its terms

decrease. The first term is positive and hence the sum is also positive. The lemma is proved.

Corollary 3.3.1. For any μ > 0 and ρ > 0, the function Eρ(z;μ) is positive on the ray
[−Γ(μ+ 1/ρ)/Γ(μ),+∞).

To prove this corollary, is suffices to verify that the sequence of ratios
{
Γ

(
μ+

k − 1

ρ

)
/Γ

(
μ+

k

ρ

)}∞

k=1

increases or, equivalently, that the second difference

lk(ρ, μ) = lnΓ

(
μ+

k − 1

ρ

)
− 2 ln Γ

(
μ+

k

ρ

)
+ lnΓ

(
μ+

k + 1

ρ

)
(3.3.1)

is positive for any k ∈ N. This follows from the fact that ψ(x) = (ln Γ(x))′ increases on the
ray 0 < x <∞.

Thus, if the realness of all zeros of Eρ(z;μ) has been proved, Corollary 3.3.1 (in the case μ > 0)
yields a nontrivial upper estimate of the first zero. Is it valid that the Mittag-Leffler function with
arbitrary positive parameters (ρ, μ) has no zeros in the disk

|z| ≤ R1(ρ, μ) = Γ

(
μ+

1

ρ

)
/Γ(μ)?

Probably, this is so, but we cannot prove this assertion for all values of the parameters ρ > 0 and
μ > 0. We present one of the results (of course, it can be strengthened).

In the sequel, we denote by ψ the logarithmic derivative of the Γ-function and use the following
expansion:

ψ(z) =
Γ′(z)
Γ(z)

= −γ − 1

z
−

∞∑

n=1

(
1

n+ z
− 1

n

)
, z ∈ C, z 	= 0,−1,−2, . . . , (3.3.2)

where γ is the Euler constant. From (3.3.2) follows the identity

ψ′(z) =
∞∑

k=0

(k + z)−2. (3.3.3)
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Lemma 3.3.2. For any ρ ∈ (0, 1] and μ ∈ (0, 2/ρ] and arbitrary z lying in the disk |z| ≤ R1(ρ, μ),
the real part of the function Eρ(z;μ) is positive:

ReEρ(z;μ) ≥ Γ2(μ+ 1/ρ)

2Γ2(μ)Γ(μ+ 2/ρ)
. (3.3.4)

Proof. In is known that for a function harmonic in a domain D, its maximum and minimum in the
closure of D is attained on the boundary ∂D. Since the real part of an analytic function is harmonic,
it suffices to prove inequality (3.3.4) for z = eiθR1(ρ, μ), −π ≤ θ ≤ π. We have the equality

ReEρ(R1e
iθ;μ)Γ(μ) = 1 + cos θ +

∞∑

k=2

Γk
(
μ+ 1/ρ

)

Γk−1(μ)Γ
(
μ+ k/ρ

) cos kθ. (3.3.5)

We use the following representation of the sum of cosine series (see [2, p. 100]):

a0
2

+
∞∑

k=1

ak cos kθ =
∞∑

k=1

[
(ak−1 − 2ak + ak+1)

k−1∑

m=0

Dm(θ)

]
; (3.3.6)

here

Dm(θ) =
1

2
+

m∑

ν=0

cos(νθ), m ∈ N,

is the Dirichlet kernel, D0(θ) ≡ 1/2. One can specify different conditions for the sequence of coefficients
{ak} sufficient for the convergence of both series in (3.3.6) for certain values of θ and for the coincidence
of their sums. For series (3.3.5), there is no problems; under the condition

∞∑

k=1

k2|ak| < +∞,

which holds in our case, both series in (3.3.6) absolutely converge (for all θ ∈ R) and their sums are
identically equal. As is known,

k−1∑

m=0

Dm(θ) =
1

2

(
sin

kθ

2
cosec

θ

2

)2

≥ 0.

Therefore, for a convex sequence {ak}, we have the relation

ak−1 − 2ak+1 + ak+2 ≥ 0 (∀k ∈ N) =⇒ a0
2

+
∞∑

k=1

ak cos kθ ≥ a0
2

− a1 +
a2
2
. (3.3.7)

In series (3.3.5), we have

a0
2

= a1 = 1, a2 =
Γ2
(
μ+ 1/ρ

)

Γ(μ)Γ
(
μ+ 2/ρ

) . (3.3.8)

Therefore, the inequality of the lemma immediately follows from (3.3.7) and (3.3.8) if for any k ∈ N

the following inequality holds:

Γk
(
μ+ 1/ρ

)

Γk−1(μ)Γ
(
μ+ k/ρ

) − 2
Γk+1

(
μ+ 1/ρ

)

Γk(μ)Γ
(
μ+ (k + 1)/ρ

) +
Γk+2

(
μ+ 1/ρ

)

Γk+1(μ)Γ
(
μ+ (k + 2)/ρ

) ≥ 0. (3.3.9)

In the case k ≥ 2, even a stronger inequality holds:

Γk
(
μ+ 1/ρ

)

Γk−1(μ)Γ
(
μ+ k/ρ

) ≥ 2
Γk+1

(
μ+ 1/ρ

)

Γk(μ)Γ
(
μ+ (k + 1)/ρ

) , (3.3.10)
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or, equivalently,

ln 2 ≤
[
ln Γ

(
μ+

k + 1

ρ

)
− ln Γ

(
μ+

k

ρ

)]
−
[
ln Γ

(
μ+

1

ρ

)
− ln Γ(μ)

]
. (3.3.11)

Prove this inequality. The derivative of the right-hand side of (3.3.11) with respect to the parameter
μ ia equal to

[
ψ

(
μ+

k + 1

ρ

)
− ψ

(
μ+

k

ρ

)]
−
[
ψ

(
μ+

1

ρ

)
− ψ(μ)

]
=

1

ρ

(
ψ′(ξk)− ψ′(ξ0)

)
,

where ξk ∈
(
μ+

k

ρ
, μ+

k + 1

ρ

)
. Since ψ′(t) decreases on the ray 0 < t < +∞, the last expression

is negative. Therefore, the right-hand side of (3.3.11) decreases as the parameter μ increases, and it
suffices to prove the inequality at the extreme right point μ = 2/ρ:

ln 2 ≤
[
ln Γ

(
k + 3

ρ

)
− ln Γ

(
k + 2

ρ

)]
−
[
ln Γ

(
3

ρ

)
− ln Γ

(
2

ρ

)]
. (3.3.12)

Since the function ψ increases, we see that the right-hand side of (3.3.12) increases with increasing k.
Therefore, it suffices to prove (3.3.12) for k = 2, i.e., deduce the inequality

ln 2 ≤ ln Γ(5h)− ln Γ(4h)− ln Γ(3h) + lnΓ(2h) ∀h ≥ 1. (3.3.13)

For h = 1, (3.3.13) becomes an equality. The derivative of the right-hand side of (3.3.13), owing
to (3.3.2), is equal to

5ψ(5h)− 4ψ(4h)− 3ψ(3h) + 2ψ(2h) =
∞∑

k=1

(
4

k + 4h
+

3

k + 3h
− 5

k + 5h
− 2

k + 2h

)

=
∞∑

k=1

2kh(2k + 7h)

(k + 2h)(k + 3h)(k + 4h)(k + 5h)
> 0.

Thus, inequality (3.3.13) and hence inequality (3.3.11) are proved.
It remains to prove inequality (3.3.9) in the case k = 1, namely,

1− 2Γ2
(
μ+ 1/ρ

)

Γ(μ)Γ
(
μ+ 2/ρ

) +
Γ3
(
μ+ 1/ρ

)

Γ2(μ)Γ
(
μ+ 3/ρ

) ≥ 0. (3.3.14)

We introduce the following notation:

h =
1

ρ
, u(μ, h) =

Γ2(μ+ h)

Γ(μ)Γ(μ+ 2h)
, v(μ, h) =

Γ3(μ+ h)

Γ2(μ)Γ(μ+ 3h)
.

The derivative of the left-hand side of (3.3.14) with respect to the parameter μ is equal to

− 2u(μ, h)
∂ lnu(μ, h)

∂μ
+ v(μ, h)

∂ ln v(μ, h)

∂μ

= −2u(μ, h)
[− ψ(μ) + 2ψ(μ+ h)− ψ(μ+ 2h)

]
+ v(μ, h)

[
3ψ(μ+ h)− 2ψ(μ)− ψ(μ+ 3h)

]
.

We prove that the last expression is negative, i.e., we must deduce the inequality

v(μ, h)
[
3ψ(μ+ h)− 2ψ(μ)− ψ(μ+ 3h)

]
< 2u(μ, h)

[− ψ(μ) + 2ψ(μ+ h)− ψ(μ+ 2h)
]
. (3.3.15)

By inequality (3.3.10) proved above (k = 2), we have the inequality

0 < v(μ, h) ≤ u(μ, h)

2
. (3.3.16)
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Both factors in the brackets in (3.3.15) are positive. The positiveness of ψ(μ+ h)− ψ(μ)− ψ(μ+ 2h)
is obvious from the concavity of ψ on (0,+∞); the positiveness of the function 3ψ(μ+ h)− 2ψ(μ)−
ψ(μ+ 3h) is proved as follows:

0 < 3ψ(μ+ h)− 2ψ(μ)− ψ(μ+ 3h) ⇐⇒ ψ(μ+ 3h)− ψ(μ+ h) < 2ψ(μ+ h)− 2ψ(μ)

⇐⇒ 2hψ′(η1) < 2hψ(η2), η1 ∈ (μ+ h, μ+ 3h), η2 ∈ (μ, μ+ h).

The last inequality is obvious since ψ′(t) decreases on the ray 0 < t < +∞.
Thus, we conclude that (3.3.15) follows from the inequality

3ψ(μ+ h)− 2ψ(μ)− ψ(μ+ 3h) < 4
(− ψ(μ) + 2ψ(μ+ h)− ψ(μ+ 2h)

)

⇐⇒ 0 < ψ(μ+ 3h)− 4ψ(μ+ 2h) + 5ψ(μ+ h)− 2ψ(μ), h ≥ 1, 0 < μ ≤ 2h,

which, in its turn, is implied by the expansion

ψ(μ+ 3h)− 4ψ(μ+ 2h) + 5ψ(μ+ h)− 2ψ(μ)

=

∞∑

n=0

(
4

μ+ 2h+ n
+

2

μ+ n
− 5

μ+ h+ n
− 1

μ+ 3h+ n

)

=
∞∑

n=0

2h2(μ+ 3h+ n)

(μ+ n)(μ+ n+ h)(μ+ n+ 2h)(μ+ n+ 3h)
.

Thus, the derivative of the left-hand side of (3.3.14) with respect to the parameter μ is negative.
Therefore, it suffices to prove inequality (3.3.14) only for the maximal value μ = 2/ρ = 2h.

So, we prove that

1− 2Γ2(3h)

Γ(2h)Γ(4h)
+

Γ3(3h)

Γ2(2h)Γ(5h)
≥ 0 ∀h ≥ 1. (3.3.17)

For h = 1, we have an equality. Thus, it suffices to verify the positiveness of the derivative of the
left-hand side of (3.3.17) on the ray 1 < h < +∞. Introduce the notation

u(h) =
Γ2(3h)

Γ(2h)Γ(4h)
, v(h) =

Γ3(3h)

Γ2(2h)Γ(5h)
.

The required derivative is equal to

− 2u(h)
d lnu(h)

dh
+ v(h)

d ln v(h)

dh

− 2u(h)
[
6ψ(3h)− 2ψ(2h)− 4ψ(4h)

]
+ v(h)

[
9ψ(3h)− 4ψ(2h)− 5ψ(5h)

]
.

Therefore, we must prove the inequality

v(h)
[
9ψ(3h)− 4ψ(2h)− 5ψ(5h)

]
> 2u(h)

[
6ψ(3h)− 2ψ(2h)− 4ψ(4h)

]
. (3.3.18)

We have the equalities

6ψ(3h)− 2ψ(2h)− 4ψ(4h) =
∞∑

n=1

(
2

2h+ n
+

4

4h+ n
− 6

3h+ n

)
=

∞∑

n=1

−2nh

(2h+ n)(3h+ n)(4h+ n)
,

9ψ(3h)− 4ψ(2h)− 5ψ(5h) =
∞∑

n=1

(
4

2h+ n
+

5

5h+ n
− 9

3h+ n

)
=

∞∑

n=1

−6nh

(2h+ n)(3h+ n)(5h+ n)
.
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Therefore, inequality (3.3.18) takes the form

v(h)

∞∑

n=1

−6nh

(2h+ n)(3h+ n)(5h+ n)
> u(h)

∞∑

n=1

−4nh

(2h+ n)(3h+ n)(4h+ n)

⇐⇒ 3v(h)
∞∑

n=1

n

(2h+ n)(3h+ n)(5h+ n)
< 2u(h)

∞∑

n=1

n

(2h+ n)(3h+ n)(4h+ n)
.

It remains to prove that 3v(h) < 2u(h) or, equivalently,

3

2
<

Γ(2h)Γ(5h)

Γ(3h)Γ(4h)
∀h ≥ 1. (3.3.19)

For h = 1, (3.3.19) is valid. Therefore, it suffices to verify that the right-hand side of (3.3.19) (or its
logarithm) increases. We have the relations

d

dh

[
ln Γ(5h)− ln Γ(4h)− ln Γ(3h) + ln Γ(2h)

]
= 5ψ(5h)− 4ψ(4h)− 3ψ(3h) + 2ψ(2h)

=
∞∑

n=1

( −5

5h+ n
+

4

4h+ n
+

3

3h+ n
− 2

2h+ n

)
=

∞∑

n=1

2nh(2n+ 7h)

(2h+ n)(3h+ n)(4h+ n)(5h+ n)
> 0,

which was required. The lemma is completely proved.

It is interesting that for “small” values of ρ, Lemma 3.3.2 is almost the best possible in the sense
that in a disk of radius slightly larger than R1(ρ, μ), the function Eρ(z;μ) already has a zero for any
μ ∈ (0, 2/ρ].

Proposition 3.3.1. For any ρ ∈ (0, 1/6] and μ ∈ (0, 2/ρ], the function Eρ(z;μ) has a zero lying in
the interval (

−
(
1 + 2 exp

(
− 1

3ρ

))
R1(ρ, μ),−R1(ρ, μ)

)
.

Theorem 3.1.1, Lemma 3.1.1, and this assertion imply a highly exact asymptotics of the zero of the
Mittag-Leffler function, which is closest to the origin:

z1(ρ, μ) = −Γ(μ+ 1/ρ)

Γ(μ)

[
1 +O

(
exp

(
− 1

3ρ

))]
, ρ→ 0+;

this asymptotics is uniform with respect to μ ∈ (0, 2/ρ] (the constant in O does not exceed 2).

Lemma 3.3.3. Consider the function F from Lemma 3.3.1. If ε > 0 and

R1

R2
≤ ε

(1 + ε)2
,

then

F (−(1 + ε)R1) < 0.

Proof. We have

F
(− (1 + ε)R1

)
= A0 − (1 + ε)A1R1 + (1 + ε)2A2R

2
1 +

+∞∑

k=3

(−1)kAk(1 + ε)kRk
1 .

In the sum
∞∑
k=3

, the moduli of terms decrease since the ratio of any subsequent term to the previous

term is
(1 + ε)R1

Rk
≤ (1 + ε)R1

R2
≤ ε

1 + ε
< 1.
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Therefore, this sign-alternating sum is negative and

F
(− (1 + ε)R1

)
< A0 − (1 + ε)A1R1 + (1 + ε)2A2R

2
1

= A0

(
1− (1 + ε)

A1R1

A0
+ (1 + ε)2

A2R
2
1

A0

)
. (3.3.20)

By the definition of Rk we have
A0

A1
= R1,

A0

A2
= R1R2.

This and (3.3.20) imply that

A−1
0 F
(− (1 + ε)R1

)
< −ε+ (1 + ε)2R1

R2
≤ 0,

which was required. The lemma is proved.

Proof of Proposition 3.3.1. By Lemma 3.3.3, it suffices to verify that if one takes

ε = 2 exp

(
− 1

3ρ

)
,

then for 0 < ρ ≤ 1/6 and 0 < μ ≤ 2/ρ, the inequality

R1

R2
< ε(1 + ε)−2

holds. By Lemma 3.9.1 (see Sec. 3.8 below), we have the inequality

R1

R2
<
ε

2
, 0 < μ ≤ 2

ρ
.

Since for ρ ≤ 1/6, the inequality ε ≤ 2e−2 < 1/3 is valid, we have (1 + ε)−2 > 1/2 and the required
inequality holds. The proposition is proved.

3.4. Inequalities for the Gamma-Function and Its Derivatives

Lemma 3.4.1. The following inequalities hold :
(

1

Γ(x)

)′
> γ, 0 < x < 1,

(
1

Γ(x)

)′
< γ, x > 1.

Remark. The equality (
1

Γ(x)

)′

|x=1

= γ

is valid, but the derivative (1/Γ(x))′ is not monotonic on (0,+∞); the graph of y = 1/Γ(x) has two
inflection points.

Proof of Lemma 3.4.1. By (3.3.2), we have the relations

ψ(x) =
Γ′(x)
Γ(x)

= γ − 1

x
+

∞∑

k=1

(
1

k
− 1

k + x

)
= γ − 1

x
+

∞∑

k=1

(
1

k
− 1

k + 1

)

+
∞∑

k=1

(
1

k + 1
− 1

k + x

)
= γ + 1− 1

x
+

∞∑

k=1

x− 1

(k + 1)(k + x)
= −γ +

∞∑

k=0

x− 1

(k + 1)(k + x)
.

This implies (
1

Γ(x)

)′
= −ψ(x)

Γ(x)
=

1

Γ(x)

(
γ +

∞∑

k=0

1− x

(k + 1)(k + x)

)
.
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Therefore, we must prove the inequalities

γ <
1

Γ(x)

(
γ +

∞∑

k=0

1− x

(k + 1)(k + x)

)
, 0 < x < 1,

1

Γ(x)

(
γ +

∞∑

k=0

1− x

(k + 1)(k + x)

)
< γ, x > 1,

which after simple transformations become

γ
(
Γ(x)− 1

)
<

∞∑

k=0

1− x

(k + 1)(k + x)
, 0 < x < 1,

∞∑

k=0

1− x

(k + 1)(k + x)
< γ
(
Γ(x)− 1

)
, x > 1.

(3.4.1)

Dividing both inequalities (3.4.1) by 1 − x and changing the sign in the second of them, we obtain
that it suffices to prove the inequality

γ
Γ(x)− 1

1− x
<

∞∑

k=0

1

(k + 1)(k + x)
, x ∈ (0, 1) ∪ (1,+∞). (3.4.2)

For x > 2, the left-hand side of (3.4.2) is negative and the inequality is obvious. For 1 < x ≤ 2, the
left-hand side of (3.4.2) is equal to

−γΓ′(ξ) = γψ(ξ)Γ(ξ),

where ξ is some point of the interval (1, 2). Since 0 < Γ(ξ) < 1 for 1 < ξ < 2 and since, owing to the
increase of ψ on R+, we have the inequality

−γψ(ξ) ≤ −γψ(1) = γ2,

we conclude that for x ∈ (1, 2], the left-hand side of (3.4.2) does not exceed γ2, whereas the right-hand
side is not less than ∞∑

k=0

1

(k + 1)(k + 2)
=

∞∑

ν=1

(
1

ν
− 1

ν + 1

)
= 1.

The inequality (3.4.2) for x > 1 is proved. For x ∈ (0, 1), we multiply both sides of (3.4.2) by x and
obtain the equivalent inequality

γ
Γ(x+ 1)− x

1− x
<

∞∑

k=0

x

(k + 1)(k + x)
. (3.4.3)

Clearly, the right-hand side of (3.4.3) is greater than the term of the series with number k = 0, which
is equal to 1. However, by the inequality Γ(t) < 1, 1 < t < 2, the left-hand side of (3.4.3) in not
greater than γ. Inequality (3.4.2) is now proved for x ∈ (0, 1). The proof of lemma is complete.

Lemma 3.4.2. The logarithmic derivative of the Γ-function satisfies the following estimates:

−(2t− 1)−1 + ln t < ψ(t) < ln t ∀t > 1

2
, (3.4.4)

ln t < ψ(t+ 0.5) ∀t > 0. (3.4.5)

Proof. In addition to (3.3.2), the following expansion is valid in C \ (−∞, 0] (see [3, Vol. 1, Chap. 1,
Sec. 1.7]):

ψ(z) = ln z +
∞∑

k=0

[
ln

(
1 +

1

k + z

)
− 1

k + z

]
, (3.4.6)
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in which ln means the principal branch of the logarithm. From (3.4.6) and the well-known relation

0 < u− ln(1 + u) <
u2

2
∀u > 0

we obtain

ln t− 0.5
∞∑

k=0

(k + t)−2 < ψ(t) < ln t ∀t > 0.

Since

a−2 <

a+0.5∫

a−0.5

u−2du ∀a > 0.5, (3.4.7)

we have
∞∑

k=0

(k + t)−2 <

+∞∫

t−0.5

u−2du.

Therefore,

ψ(t) > ln t− 0.5

+∞∫

t−0.5

u−2du = ln t− 0.5

t− 0.5
= ln t− (2t− 1)−1, t > 0.5.

Inequality (3.4.4) is proved. It implies

lim
t→+∞ψ(t)− ln t = 0, lim

t→+∞ψ(t+ 0.5)− ln t = 0.

Thus, to prove (3.4.5), it suffices to verify that the difference g(t) = ψ(t + 0.5) − ln t decreases. By
(3.3.3) we have the equality

g′(t) =
∞∑

k=0

1

(k + t+ 0.5)2
− 1

t
.

Applying inequality (3.4.7) to each term of the series, we obtain the upper estimate

g′(t) <
+∞∫

−0.5

du

(u+ t+ 0.5)2
− 1

t
=

+∞∫

0

dx

(x+ t)2
− 1

t
= 0,

which was required. The lemma is proved.

Lemma 3.4.3. For any fixed x > 0, the function Γ(t)x−t decreases with respect to the variable t on
the interval 0 < t < x.

Proof. We have the equality

d

dt

[
ln
(
Γ(t)x−t

)]
=

d

dt

[
ln Γ(t)− t lnx

]
= ψ(t)− lnx.

By Lemma 3.4.1,

ψ(t)− lnx < ln t− lnx < 0.

The lemma is proved.

Lemma 3.4.4. For any a, b > 0, a < b, the following inequalities hold :

ψ′′(a)
(b− a)3

24
+ (b− a)ψ

(
a+ b

2

)
< ln Γ(b)− ln Γ(a) < (b− a)ψ

(
a+ b

2

)
.
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Proof. By Taylor’s formula with the remainder in the Lagrange form, for any function f ∈ C3[x −
h, x+ h], x, h ∈ R, h > 0, there exist points ξ1 ∈ (x− h, x) and ξ2 ∈ (x, x+ h) such that

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ2),

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ1).

Subtracting the second equality from the first, we obtain the relation

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

6

(
f ′′′(ξ1) + f ′′′(ξ2)

)
. (3.4.8)

From this, taking into account the identities

(
ln Γ(z)

)′
= ψ(z), ψ′′(z) = −2

∞∑

k=0

(k + z)−3,

which imply the increase and negativeness of (ln Γ(z))′′′ on the ray (0,+∞), for f(z) = lnΓ(z) we
obtain the inequalities

ln Γ(x+ h)− ln Γ(x− h) < 2hψ(x),

ln Γ(x+ h)− ln Γ(x− h) > 2hψ(x) +
h3

6
ψ′′(x− h), 0 < h < x.

(3.4.9)

Applying (3.4.9) for x = (a+ b)/2 and h = (b− a)/2, we deduce the assertion of the lemma.

Lemma 3.4.5. For any a, b > 0, a < b, we have the inequality

ln Γ(b)− ln Γ(a)

b− a
< ln

(
a+ b

2

)
. (3.4.10)

If, moreover, 2 ≤ a < b ≤ 2a, then

−2(b− a)2

3(a+ b)2
+ ψ

(
a+ b

2

)
<

ln Γ(b)− ln Γ(a)

b− a
. (3.4.11)

Proof. Inequality (3.4.10) immediately follows from the upper estimates for the difference ln Γ(b) −
ln Γ(a) and the function ψ, which were proved in Lemmas 3.4.4 and 3.4.2. It is easily seen from
Lemma 3.4.4 that to prove (3.4.11), it suffices to verify the estimate

ψ′′(a) = −2
∞∑

k=1

1

(k + a)3
> − 16

(a+ b)2
, 2 ≤ a < b ≤ 2a,

which can be obtained from the inequality
∞∑

k=0

(k + a)−3 <
8

9
a−2.

Prove it. We have the inequality

1

p3
<

p+1/2∫

p−1/2

du

u3
∀p > 1

2
.

Applying these inequalities for p = k + a, k ∈ N, and adding them, we obtain the inequality

∞∑

k=0

(k + a)−3 <

+∞∫

a−1/2

u−3du = 0.5(a− 0.5)−2 ≤ 8

9
a−2, a ≥ 2.
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The lemma is proved.

3.5. Proof of Lemma 3.1.1

Inequalities (3.1.7) ban be written in detail as follows:

ln

(
πρ

sinπρ

)
+ ln

(
n− 1 + ρ(μ− 1)

ρ

)

< ρ

(
ln Γ

(
μ+

n

ρ

)
− ln Γ

(
μ+

n− 1

ρ

))
, 2 ≤ n ≤

[
1

3ρ

]
,

and

δρ ln 2 + ρ

(
ln Γ

(
μ+

n

ρ

)
− ln Γ

(
μ+

n− 1

ρ

))

< ln

(
πρ

sinπρ

)
+ ln

(
n+ ρ(μ− 1)

ρ

)
, 1 ≤ n ≤

[
1

3ρ

]
,

where δ = 1 for 0 < μ ≤ 1/ρ and δ = 0.5 for 1/ρ < μ ≤ 2/ρ. We simplify them replacing by a stronger
inequality using the estimate

0 < ln

(
πρ

sinπρ

)
< 2ρ2, 0 < ρ ≤ 1

2
,

and Lemma 3.4.5 taking

a = μ+
n− 1

ρ
, b = μ+

n

ρ
.

The condition 2 ≤ a ≤ b ≤ 2a of the lemma appearing when we estimate the difference ln Γ(b)− ln Γ(a)
from below holds owing to the restriction n ≥ 2 in the first inequality.

We arrive at the proof of the inequalities

2ρ2 + ln

(
n− 1 + ρ(μ− 1)

ρ

)
<

−1

6ρ2(μ+ (n− 0.5)/ρ)2
+ ψ

(
μ+

n− 0.5

ρ

)
, 2 ≤ n ≤

[
1

3ρ

]
,

and

δρ ln 2 + ln

(
μ+

n− 0.5

ρ

)
< ln

(
n+ ρ(μ− 1)

ρ

)
, 1 ≤ n ≤

[
1

3ρ

]
. (3.5.1)

Applying in (3.5.1) the lower estimate for the function from Lemma 3.4.2 and transferring the loga-
rithms on the right-hand sides of the inequalities, we replace inequalities (3.5.1) by stronger inequalities

2ρ2 +
1

6(ρμ+ n− 0.5)2
+

1

2(μ+ (n− 0.5)/ρ)− 1
< ln

(
ρμ+ n− 0.5

ρμ+ n− 1− ρ

)
, 2 ≤ n ≤

[
1

3ρ

]
,

and

0.7δρ < ln

(
ρμ+ n− ρ

ρμ+ n− 0.5

)
, 1 ≤ n ≤

[
1

3ρ

]
.

Prove these inequalities.
Rewrite these inequalities in a compact form using the notation y = ρμ + n − 0.5. We obtain the

inequalities

2ρ2 +
1

6y2
+

ρ

2y − ρ
< ln

(
y

y − 0.5− ρ

)
, 2 ≤ n ≤

[
1

3ρ

]
, (3.5.2)

0.7δρ < ln

(
y + 0.5− ρ

y

)
, 1 ≤ n ≤

[
1

3ρ

]
. (3.5.3)
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Since the function (y + 0.5 − ρ)/y decreases on the ray 0 < y < +∞, it suffices to prove inequality
(3.5.3) for the maximal value of y, i.e., for

0.35ρ < ln

(
1 +

0.5− ρ

n+ 1.5

)
, n =

[
1

3ρ

]
,

0.7ρ < ln

(
1 +

0.5− ρ

n+ 0.5

)
, n =

[
1

3ρ

]
.

We have the inequalities

0.35nρ ≤ 0.35

3
< 0.12, 0.7nρ <

0.7

3
< 0.24.

On the other hand (we use the fact that ln(1 + t) > 0.9t for 0 < t ≤ 0.2),

n ln

(
1 +

0.5− ρ

n+ 1.5

)
>

0.9n(0.5− ρ)

n+ 1.5
≥ 0.3n

n+ 1.5
≥ 0.6

3.5
> 0.16 > 0.35nρ,

n ln

(
1 +

0.5− ρ

n+ 0.5

)
>

0.9n(0.5− ρ)

n+ 0.5
≥ 0.3n

n+ 0.5
≥ 0.6

2.5
> 0.24 > 0.7nρ.

The inequality is proved.
To prove (3.5.2), we use the lower estimate

ln

(
y

y − 2h

)
>

2h

y − h
, 0 < h <

y

2
,

which follows from (3.4.8) and the positiveness of the third derivative of the logarithm:

ln

(
y

y − 0.5− ρ

)
>

0.5 + ρ

y − 0.25− ρ/2
=

1 + 2ρ

2y − 0.5− ρ
>

1 + 2ρ

2y − ρ
.

After this it remains to prove the inequality

2ρ2 +
1

6y2
<

1 + ρ

2y − ρ
⇐⇒ 2ρ(ρy) +

1

6y
<

1 + ρ

2− ρ/y
.

Since

ρy ≤ ρ

(
1

3ρ
+ 1.5

)
≤ 1

3
+

1

4
=

7

12
, y ≥ 1.5,

we must verify that
7ρ

6
+

1

9
<

1 + ρ

2
, 0 < ρ ≤ 1

6
.

This inequality is valid, and the proof of inequality (3.5.2) is complete. Lemma 3.1.1 is proved.

3.6. Proof of Theorem 3.1.1 in the Case 0.4 ≤ ρ < 0.5

First, we consider the case where μ ∈ (0, 1/ρ]. The reasoning from the beginning of Sec. 3.2 shows
that the problem is reduced to the proof of the relations

Eρ(−ξ1/ρn (ρ, μ);μ) = (−1)n ∀n ∈ N. (3.6.1)

Theorems 1.5.3 and (3.2.3) imply that these equalities follow from the inequalities (we occasionally
omit the arguments ρ and μ of ξn)

1.5ξ−1/ρ
n < 2ρξ1−μ

n exp(ξn cosπρ) ∀n ∈ N.
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Show that for 0.4 ≤ ρ < 0.5, x ≥ ξ1, the function g(ρ) = 2ρ exp(x cosπρ) is greater than 1. Indeed,
g(0.5) = 1,

(
ln g(ρ)

)′
=

1

ρ
− πx sinπρ ≤ 1

ρ
− πξ1 sinπρ =

1

ρ
− π2(1− ρ(μ− 1))

<
1

ρ
− π2(1− ρ) < 2.5− π2

2
< 0.

Therefore, 2ρ exp(ξn cosπρ) > 1 for all n ∈ N, and it suffices to prove the inequality

1.5ξ−1/ρ
n < ξ1−μ

n ⇐⇒ 1.5 < ξ1+1/ρ−μ
n .

Since μ ≤ 1/ρ, we must verify that ξ1 > 1.5. We have the inequalities

ξ1 =
π(1 + ρ(μ− 1))

sinπρ
>
π(1− ρ)

sinπρ
> π(1− ρ) >

π

2
> 1.5,

which was required.
In the case where 1/ρ < μ ≤ 2/ρ, we use the identities (μ = λ+ 1/ρ)

Eρ

(
z;λ+

1

ρ

)
=

1

z

(
Eρ(z;λ)− 1

Γ(λ)

)
,

ξn

(
ρ, λ+

1

ρ

)
= ξn+1(ρ, λ).

(3.6.2)

Relations (3.6.2) and (3.6.1) shows that for μ ∈
(
1

ρ
,
2

ρ
− 1

]
, the problem is reduced to the proof of

the equalities

sgn

[
Eρ(−ξm)1/ρ(ρ, λ);λ)− 1

Γ(λ)

]
= (−1)m ∀m ≥ 2, ∀λ ∈

(
0,

1

ρ
− 1

]
, ∀ρ ∈ [0.4, 0.5).

Appealing to Theorem 1.5.3, we see that it suffices to deduce the inequalities

|ωρ(ξm, λ)|+ 1

Γ(λ)
< 2ρξ1−λ

m exp(ξm cosπρ). (3.6.3)

We start from the values λ ∈ (0, 1]. Substituting in (3.6.3) the estimate of the modulus of the
remainder from Theorem 1.5.3 (see Chap. 1), we reduce the problem to the proof of the inequality

Γ(3.5)ξ−1/ρ
m

(
3

2
min(λ, 1− λ) +

1

ρ
− 2

)
+

1

Γ(λ)
< 2ρξ1−λ

m exp(ξm cosπρ). (3.6.4)

We write a stronger inequality replacing the left-hand side of (3.6.4) by a greater expression and the
right-hand side by a lesser expression using the estimates

Γ(3.5) < 4, ξ−1/ρ
m < ξ−2

2 , ξ1−λ
m ≥ 1, ξ2 > π(2− ρ) cosecπρ.

Namely, we prove that

6ξ−2
2 (1− λ) + 4ξ−2

2

(
1

ρ
− 2

)
+

1

Γ(λ)
< 2ρ exp

(
π(2− ρ) cotπρ

)
.

Again, we replace the inequality by a stronger inequality using the estimates ξ2 ≥ 1.5π (or, equivalently,
ξ−2
2 < 1/20) and et > 1 + t, t > 0. We obtain that it suffices to prove the inequality

0.3(1− λ) + 0.2

(
1

ρ
− 2

)
+

1

Γ(λ)
< 2ρ(1 + 1.5π cotπρ). (3.6.5)
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Lemma 3.3.3 implies that

γ(1− λ) +
1

Γ(λ)
≤ 1, 0 < λ ≤ 1,

and, the more so,

0.3(1− λ) +
1

Γ(λ)
≤ 1, 0 < λ ≤ 1. (3.6.6)

After the change ε = 1/2− ρ, 0 < ε ≤ 0.1, we obtain the estimate

0.2

(
1

ρ
− 2

)
=

0.8ε

1− 2ε
≤ ε, (3.6.7)

2ρ(1 + 1.5π cotπρ) = (1− 2ε)(1 + 1.5π tanπε) > (1− 2ε)(1 + 1.5π2ε)

> (1− 2ε)(1 + 14ε) = 1 + 12ε− 28ε2 > 1 + 9ε. (3.6.8)

From (3.6.6) and (3.6.8) we deduce (3.6.5). Inequalities (3.6.3) in the case 0 < λ ≤ 1 are proved.
For 1 < λ ≤ 1/ρ − 1, by Theorem 1.5.3 (see Chap. 1), the problem is reduced to the proof of the

inequality (
1

ρ
− 2

)
Γ

(
1

ρ

)
ξ−1/ρ
m +

1

Γ(λ)
< 2ρξ1−λ

m exp(ξm cosπρ). (3.6.9)

For the considered values of the parameters λ we have the inequality

ξm(ρ, λ) ≥ ξ2(ρ, λ) =
π(2 + ρ(λ− 1))

sinπρ
>

2π

sinπρ
> 2π. (3.6.10)

Therefore, using Lemmas 3.4.1 and 3.4.2, we obtain the inequalities (δ = 1/ρ− 2)

Γ

(
1

ρ

)
ξ−1/ρ
m ≤ Γ(2)ξ−2

m ≤ ξ−2
2 ,

1

Γ(λ)
< 1 + γ(λ− 1) ≤ 1 + γ

(
1

ρ
− 2

)
= 1 + δγ.

Therefore, inequality (3.6.9) can be replaced by the following stronger inequality:

δ(2π)−2 + 1 + γδ < 2ρξ−δ
m exp(ξm cosπρ). (3.6.11)

The function

x−δ exp(x cosπρ) ≡ exp(−δ lnx+ x sinπε)

increases on the ray x > 2 since (from (3.6.7) it is seen that δ ≤ 5ε)

d

dx
(−δ lnx+ x sinπε) = − δ

x
+ sinπε > −δ

2
+ 3ε > 0.

Therefore (see (3.6.10)), we have the inequality

2ρξ−δ
m exp(ξm cosπρ) ≥ 2ρ exp(−δ ln 6 + 6 sinπε) > 2ρ exp(−1.8δ + 18ε)

≥ 2ρe9ε = (1− 2ε)e9ε > (1− 2ε)(1 + 9ε) = 1 + 7ε− 18ε2 ≥ 1 + 5.2ε.

However, the left-hand side of (3.6.11) does not exceed

1 + 0.62δ ≤ 1 +
0.62 · 4ε
1− 2ε

≤ 1 + 3.1ε.

Inequality (3.6.11) is proved, and the proof of Theorem 3.1.1 for the case 0.4 ≤ ρ < 0.5 is complete.
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3.7. Proof of Theorem 3.1.1 in the Case 0.25 < ρ < 0.4

Arguing as in the previous section and applying Theorem 1.5.4, we see that for the proof of rela-
tions (3.6.1) in the case considered it suffices to verify the inequalities

0.74ξ−μ
n < 2ρξ1−μ

n exp(ξn cosπρ), 0 < μ ≤ 1

ρ
, n ≥ 1, (3.7.1)

0.74ξ−λ
n +

1

Γ(λ)
< 2ρξ1−λ

n exp(ξn cosπρ), 0 < λ ≤ 1

ρ
− 1, n ≥ 2. (3.7.2)

We start from the proof of inequalities (3.7.1). Dividing them by 2ρξ1−μ
n , we obtain the equivalent

inequalities
0.74

2ρξn
< exp(ξn cosπρ), (3.7.3)

which must be proved only for n = 1 owing to the fact that the right-hand side increases, and the
left-hand side decreases, with respect to n. Since

ξ1 = ξ1(ρ, μ) = π
(
1 + ρ(μ− 1)

)
cosec(πρ) > π(1− ρ),

we have

2ρξ1 > 2πρ(1− ρ) >
3π

8
, 0.25 < ρ < 0.4.

Therefore, the left-hand side of (3.7.3) is less than 1. Since the right-hand side of (3.7.3) is obviously
greater than 1, the inequality is valid.

Now we prove inequality (3.7.2). In the case where 0 < λ ≤ 1, the left-hand side of (3.7.2) is less
than 1.74 and the right-hand side is greater than

0.5 exp(ξ2 cosπρ) = 0.5 exp
(
π(2 + ρ(λ− 1)) cotπρ

)

> 0.5 exp
(
π(2− ρ) cotπρ

)
> 0.5 exp

(
1.6π cot(0.4π)

)
> 2.

Consider the values a = λ − 1 ∈ (0, 1/ρ − 2]. Note that the function x−aeτx, τ > 0, increases on the
ray a/τ < x < +∞. We have τ = cosπρ and the inequality

a

cosπρ
< ξ2(ρ, λ) ⇐=

1

ρ
− 2 < 2π cotπρ

holds since
1

ρ
− 2 <

1

2ρ
,

1

4
<

πρ

tanπρ
for 0.25 < ρ < 0.4.

This implies that inequality (3.7.2) must be proved only for n = 2. In this case it has the form

0.74Γ(λ)ξ−λ
2 + 1 < 2ρΓ(λ)ξ1−λ

2 exp(ξ2 cosπρ), 1 < λ ≤ 1

ρ
− 1. (3.7.4)

Since

ξ2 = ξ2(ρ, λ) = π(2 + ρa) cosec(πρ), (3.7.5)

we see that ξ2 > 2π and the left-hand side of (3.7.4) is less than 1+0.74Γ(λ)(2π)−λ, but this function,
by Lemma 3.4.2, decreases with respect to λ (in our case 1 < λ ≤ 3). Therefore, the left-hand side of
(3.7.4) is less than 1 + 0.7/(2π) < 1.12.

To obtain a lower estimate of the right-hand side of (3.7.4), we prove that it decreases with respect
to the parameter λ or, equivalently, that the function

g(a) = lnΓ(a+ 1)− a ln
(
π(2 + ρa) cosecπρ

)
+ π(2 + ρa) cotπρ
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decreases with respect to the variable a on the segment 0 ≤ a ≤ 1

ρ
− 2 < 2. We have the equality

g′(a) = ψ(a+ 1)− ln
(
π(2 + ρa) cosecπρ

)− ρa

2 + ρa
+ πρ cotπρ.

Since

ψ(a+ 1) ≤ ψ

(
1

ρ
− 1

)
< ψ(3) = 1.5− γ < 0.93, πρ cot(πρ) <

π

4
for 0.25 < ρ < 0.4,

we have

g′(a) < 1.72− ln
(
π(2 + ρa) cosecπρ

)
< 1.72− ln(2π) < 0.

Thus, the right-hand side of (3.7.4) is not less than its value at the point λ = 1/ρ − 1. Substituting
the expression (3.7.5) for ξ2, in which a = 1/ρ − 2, in (3.7.4), we see that it remains to prove the
inequality

1.12 < 2ρΓ

(
1

ρ
− 1

)(
π(3− 2ρ)

sinπρ

)2−1/ρ

exp
(
π(3− 2ρ) cotπρ

)
, 0.25 < ρ < 0.4.

Consider the function

F (ρ) = ρΓ

(
1

ρ
− 1

)(
π(3− 2ρ)

sinπρ

)2−1/ρ

exp
(
π(3− 2ρ) cotπρ

)
.

We must prove that F (ρ) > 0.56 for 0.25 < ρ < 0.4. For this, we verify that F (ρ) decreases on this
interval. Using the continuity of this function on the segment 0.25 ≤ ρ ≤ 0.4, we see that the problem
is reduced to the proof of the numerical inequality F (0.4) > 0.56. It is valid (F (0.4) > 1.2), and
Theorem 3.1.1 for the case 0.25 < ρ < 0.4 is proved in this case.

Denote F1(ρ) = lnF (ρ). We have the relation

F ′
1(ρ) =

1

ρ
− 1

ρ2
ψ

(
1

ρ
− 1

)
+

1

ρ2
ln

(
π(3− 2ρ)

sinπρ

)

+

(
1

ρ
− 2

)(
π cotπρ+

1

1.5− ρ

)
− π2(3− 2ρ)

sin2 πρ
− 2π cotπρ.

From this we obtain the following representation for the function Φ(ρ) = ρ2F ′
1(ρ):

Φ(ρ) = ρ(1− 2πρ cotπρ)− ψ

(
1

ρ
− 1

)
+ ln

(
π(3− 2ρ)

sinπρ

)

+ (1− 2ρ)

(
πρ cotπρ+

ρ

1.5− ρ

)
− (3− 2ρ)

(
πρ

sinπρ

)2

.

The function πρ cotπρ decreases on (0, 1/2) and ρ/(1.5 − ρ) increases. Therefore, the following esti-
mates hold:

ρ(1− 2πρ cotπρ) < ρ
(
1− 0.8π cot(0.4π)

)
< 0.19ρ,

(1− 2ρ)

(
πρ cotπρ+

ρ

1.5− ρ

)
<

⎧
⎪⎪⎨

⎪⎪⎩

1

2

(
π

4
+

2

7

)
< 0.536,

1

4
< ρ ≤ 1

3
,

1

3

(
π

3
√
3
+

4

11

)
< 0.324,

1

3
< ρ < 0.4.

Therefore,

Φ(ρ) < A+ ln

(
π(3− 2ρ)

sinπρ

)
− ψ

(
1

ρ
− 1

)
− (3− 2ρ)

(
πρ

sinπρ

)2

, (3.7.6)
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where A = 0.6 for 1/4 < ρ ≤ 1/3 and A = 0.4 for 1/3 < ρ < 0.4. For 1/4 < ρ ≤ 1/3, we have the
inequalities

ln

(
π(3− 2ρ)

sinπρ

)
< ln(2.5π

√
2) < 2.41,

ψ

(
1

ρ
− 1

)
≥ ψ(2) = 1− γ > 0.42,

(3− 2ρ)

(
πρ

sinπρ

)2

>

(
2 +

1

3

)
π2

8
> 2.76.

These numerical estimates and (3.7.6) imply the negativeness of Φ(ρ) on the semi-interval (1/4, 1/3].
For 1/3 < ρ < 0.4, we have the inequalities

ln

(
π(3− 2ρ)

sinπρ

)
< ln

(
2 +

1

3

)
+ lnπ + ln

(
2√
3

)
< 2.14,

(3− 2ρ)

(
πρ

sinπρ

)2

> 2.2 · 4π
2

27
> 3,

and the inequality Φ(ρ) < 0 holds. We have proved that the function F decreases.

3.8. Proof of Theorem 3.1.1 in the Case 1/6 < ρ ≤ 1/4

If ρ ∈ (1/6, 1/4], then by Theorem 1.5.4 the “principal part” of the function Eρ(−x1/ρ, μ) contains
two terms:

2ρx1−μ
[
exp(x cosπρ) cos

(
x sinπρ− πρ(μ− 1)

)
+ exp(x cos 3πρ) cos

(
x sin 3πρ− 3πρ(μ− 1)

)]
.

Therefore, to prove relations (3.2.1), it suffices to deduce the inequalities

0.74ξ−μ
n < 2ρξ1−μ

n

[
exp(ξn cosπρ)− exp(ξn cos 3πρ)

]
, 0 < μ ≤ 1

ρ
, n ≥ 1,

0.74ξ−λ
n +

1

Γ(λ)
< 2ρξ1−λ

n

[
exp(ξn cosπρ)− exp(ξn cos 3πρ)

]
, 0 < λ ≤ 1

ρ
, n ≥ 2.

(3.8.1)

Since

exp(ξn cos 3πρ)

exp(ξn cosπρ)
= exp

(
π
(
n+ ρ(μ− 1)

)cos 3πρ− cosπρ

sinπρ

)

= exp
(
− 2π

(
n+ ρ(μ− 1)

)
sin 2πρ

)
≤ exp

(− 2π(1− ρ) sin 2πρ
) ≤ exp

(− π(1− ρ)
√
3
)

< exp(−0.75π
√
3) < 0.02,

inequalities (3.8.1) can be replaced by the following stronger inequalities:

0.74

2ρξn
< 0.98 exp(ξn cosπρ), (3.8.2)

0.74ξ−λ
n +

1

Γ(λ)
< 1.96ρξ1−λ

n exp(ξn cosπρ). (3.8.3)

From the estimates

2ρξn ≥ 2ρξ1 ≥ 2ρπ(1− ρ) cosec(πρ) > 2(1− ρ) ≥ 1.5

we obtain that
0.74

2ρξn
<

0.74

1.5
< 0.5,

and the right-hand side of (3.8.2) is greater than 0.98. This shows that inequality (3.8.2) is valid.

289



We prove inequalities (3.8.3). For 0 < λ ≤ 1, there is no difficulty, as in the previous section: the
left-hand side is less than 1.74, while the right-hand side is greater than 1.9ρ exp(ξ2 cosπρ). But

ξ2 cosπρ ≥ π(2− ρ) cotπρ ≥ π(2− ρ) ≥ 1.75π,

and hence

ρ exp(ξ2 cosπρ) > (1/6) exp(1.75π) > 30

and inequality (3.8.3) is valid.
Consider values a = λ − 1 ∈ (0, 1/ρ− 1]. We rewrite inequality (3.8.3), which must be proved, in

the form

0.74Γ(λ)ξ−λ
n + 1 < 1.96ρΓ(a+ 1)ξ−a

n exp(ξn cosπρ). (3.8.4)

Since the function x−1 exp(x cosπρ) increases on the ray x > a sec(πρ) and the inequalities a ≤ 5 and

ξn ≥ ξ2 > 2π cosec(πρ) > 5 sec(πρ),

hold in the case 1/6 < ρ ≤ 1/4, we obtain that it suffices to prove inequalities (3.8.4) for n = 2. By

Lemma 3.4.2, the function Γ(λ)ξ−λ
2 decreases with respect to the variable λ on the segment 1 ≤ λ ≤ 6,

since for λ ≥ 1 and ρ ≤ 1/4 we have the inequality

ξ2 ≥ 2π cosec(πρ) ≥ 2π
√
2.

Therefore, the left-hand side of (3.8.4) is greater than 1 + 0.74/(2π
√
2) < 1.1. For any fixed ρ ∈

(1/6, 1/4], the right-hand side of (3.8.4) also decreases with respect to the variable a on the segment
0 ≤ a ≤ 5. To prove this based on the explicit formula for ξ2, it suffices to verify that the function

g(a) = lnΓ(a+ 1)− a ln

(
π(2 + ρa)

sinπρ

)
+ π(2 + ρa) cot(πρ).

decreases. We have the equality

g′(a) = ψ(a+ 1)− ln

(
π(2 + ρa)

sinπρ

)
− aρ

2 + aρ
+ πρ cot(πρ). (3.8.5)

Prove that the derivative (3.8.5) is negative. First, we obtain a numerical upper estimate of the
function

t cot t+ ln sin t, t = πρ ∈
(π
6
,
π

4

]
.

This function increases on (0, π/4] and, therefore, does exceed its value π/4 − 0.5 ln 2 < 0.44 at the
point π/4. Thus,

g′(a) < 0.44 + ψ(a+ 1)− ln
(
π(2 + ρa)

)− ρa/(2 + ρa).

For 0 < a ≤ 3 we have the inequality

g′(a) < 0.44 + ψ(4)− ln(2π) = 0.44 +
11

6
− γ − ln(2π) < 0.

For 3 < a ≤ 5, since the function ρa/(2 + ρa) increases with respect to a and ρ and the estimate
ψ(t) < ln t holds, we have the inequality

g′(a) < 0.44+ψ(a+1)−ln
(
π(2+3ρ)

)− 3ρ

(2 + 3ρ)
< 0.44+ψ(6)−ln(2.5π)−0.2 < 0.24+ln

(
6

2.5π

)
< 0.

From this we conclude that the right-hand side of (3.8.4) is not less than its value at the point
a = 1/ρ− 1. It remains to prove the inequality

1.1 < 1.96ρΓ

(
1

ρ

)(
π(3− ρ)

sinπρ

)1−1/ρ

exp
(
π(3− ρ) cotπρ

)
,

1

6
< ρ ≤ 1

4
. (3.8.6)
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Taking the logarithms, we obtain the inequality

ln 1.1 < 0.1 < F (ρ),

where

F (ρ) = ln 1.96 + ln ρ+ lnΓ

(
1

ρ

)
−
(
1

ρ
− 1

)
ln

(
π(3− ρ)

sinπρ

)
+ π(3− ρ) cotπρ.

We have the relation

F

(
1

4

)
= ln(0.49) + ln 6− 3 ln(2.75π

√
2) + 2.75π > 1.

It remains to prove that F (ρ) decreases on the semi-interval (1/6, 1/4]. We calculate the derivative:

F ′(ρ) =
1

ρ
− 1

ρ2
ψ

(
1

ρ

)
+

1

ρ2
ln

(
π(3− ρ)

sinπρ

)
+

(
1

ρ
− 1

)(
1

3− ρ
+ π cotπρ

)
−π cotπρ− (3− ρ)

π2

sin2 πρ
.

We set Φ(ρ) = ρ2f(ρ). Then

Φ(ρ) = ρ− ψ

(
1

ρ

)
+ ln

(
π(3− ρ)

sinπρ

)
+
ρ(1− ρ)

3− ρ
+ (1− 2ρ)πρ cotπρ− (3− ρ)

(
πρ

sinπρ

)2

.

Replacing the functions πρ cotπρ and (1 − ρ)/(3 − ρ) by their upper estimate (identity unit) in the
formula for Φ(ρ), we obtain the inequality

Φ(ρ) < 1− ψ

(
1

ρ

)
+ ln

(
π(3− ρ)

sinπρ

)
− (3− ρ)

(
πρ

sinπρ

)2

. (3.8.7)

Since the function t/ sin t increases on the interval (0, π/2) for 1/6 < ρ < 1/2, the estimate
(

πρ

sinπρ

)2

>
π2

9

holds. Therefore, we have the inequalities
(

πρ

sinπρ

)
(3− ρ) >

2.75π2

9
> 30, ln

(
π(3− ρ)

sinπρ

)
< ln

(
2π

(
3− 1

6

))
< ln 18 < 2.9. (3.8.8)

From (3.8.7) and (3.8.8) we obtain that

Φ(ρ) < 0.9− ψ

(
1

ρ

)
≤ 0.9− ψ(4) < 0,

which was required. Inequality (3.8.6) is proved, and the proof of the realness of all zeros of the
function Eρ(z, μ) for 1/6 < ρ ≤ 1/4 and 0 < μ ≤ 2/ρ is complete.

3.9. Completion of Proof of Theorem 3.1.1 (Case 0 < ρ ≤ 1/6).
Proof of Theorem 3.1.2

As was said in Sec. 3.2, for the proof of Theorems 3.1.1 and 3.1.2 for ρ ∈ (0, 1/6], we must deduce
relations (3.2.1), (3.2.6), and (3.2.7).

First, we prove relations (3.2.1). Owing to Theorem 1.5.4, the problem is reduced to the proof of
inequalities

0.74ξ−μ
n < 2ρξ1−μ

n

⎡

⎢⎣exp(ξn cosπρ)−

[
1
2ρ

]
∑

k=2

exp
(
ξn cos

(
π(2k − 1)ρ

))
⎤

⎥⎦
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for 0 < μ ≤ 1/ρ and n ≥ N1(ρ) and

0.74ξ−λ
n +

1

Γ(λ)
< 2ρξ1−λ

n

⎡

⎢⎣exp(ξn cosπρ)−

[
1
2ρ

]
∑

k=2

exp
(
ξn cos

(
π(2k − 1)ρ

))
⎤

⎥⎦

for 0 < λ ≤ 1/ρ and n ≥ 1 +N1(ρ).
We obtain an upper estimate of the sum of exponents

Sn =

[
1
2ρ

]
∑

k=2

exp
(
ξn cos

(
π(2k − 1)ρ

))
.

The ratio (3.2.5) of functions (3.2.4) with numbers k + 1 and k is equal to

Δk,ρ(x) = exp
(− 2x sinπρ sin 2πkρ

) ≤ exp
(− 2ξN1(ρ) sinπρ sin 2πkρ

)

≤ exp
(− 2π(N1(ρ)− ρ) sin(2πkρ)

) ≤ exp
(− 2π(N1(ρ)− ρ) sin 2πρ

)

≤ exp
(− 8πρ

(
N1(ρ)− ρ

)) ≤ exp
[
− 8πρ

( 1

3ρ
− 1− ρ

)]
≤ exp

(
− 8π

(1
3
− ρ− ρ2

))

≤ exp

(
−8π

(
1

3
− 1

6
− 1

36

))
= exp

(
−10π

9

)
<

1

26
, (3.9.1)

where x ≥ ξN1 . Here we used the following relations:

ξn sinπρ = π
(
n+ ρ(μ− 1)

)
> π(n− ρ),

sin(2πkρ) ≥ min

[
sin 2πρ, sin

(
2π

(
1

2ρ
− 1

)
ρ

)]
= sin 2πρ, 1 ≤ k ≤ 1

2ρ
− 1,

sin(πt) ≥ 2t, 0 ≤ t ≤ 1

2
=⇒ sin(2πρ) ≥ 4ρ, 0 < ρ ≤ 1/4.

It is seen from (3.9.1) that for x ≥ ξN1 , any subsequent function exp
[
x cos

(
π(2k − 1)ρ

)]
is less than

the preceding at least 26 times. This leads to the estimate

Sn <
1

25
exp(ξn cosπρ)

and allows one to proceed to the proof of simpler inequalities

0.74ξ−μ
n < 1.92ρξ1−μ

n exp(ξn cosπρ), 0 < μ ≤ 1

ρ
, n ≥ N1(ρ), (3.9.2)

0.74ξ−λ
n +

1

Γ(λ)
< 1.92ρξ1−λ

n exp(ξn cosπρ), 0 < λ ≤ 1

ρ
, n ≥ 1 +N1(ρ). (3.9.3)

Inequality (3.9.2) is equivalent to the following:

0.74

1.92ρξn
< exp(ξn cosπρ). (3.9.4)

We have the inequality

ρξn =
πρ
(
n+ ρ(μ− 1)

)

sinπρ
> n+ ρ(μ− 1) > n− ρ ≥ 2− ρ > 1, (3.9.5)

since n ≥ N1(ρ) ≥ 2. Therefore, the left-hand side of (3.9.4) is less than 1 and the right-hand side is
obviously greater than 1. Inequality (3.9.2) is proved.
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We prove inequality (3.9.3). For 0 < λ ≤ 1, there is no difficulty: the left-hand side of (3.9.3) is
less than 1.74 and the right-hand side is greater than

1.92ρ exp(ξn cosπρ) > 1.92ρξn cos(πρ) > 1.92(n− ρ) cosπρ ≥ 1.92(2− ρ) cos(π/6) > 2

and the required inequality is proved (we have used the estimates et > t and (3.9.5)).
For 1 < λ ≤ 1/ρ, we rewrite (3.9.3) in the equivalent form

0.74Γ(λ)ξ−λ
n + 1 < 1.92ρΓ(λ)ξ1−λ

n exp(ξn cosπρ).

By Lemma 3.4.2, the function Γ(λ)ξ−λ decreases on the segment 1 ≤ λ ≤ 1/ρ if ξ > 1/ρ. In our case,
ξn ≥ 1/ρ (see (3.9.5)) and, therefore,

Γ(λ)ξ−λ
n ≤ Γ(1)ξ−1

n ≤ ρ

2− ρ
≤ 1/6

2− 1/6
< 0.1.

Thus, we must prove that

0.1 < ln 1.92 + ln ρ+ lnΓ(λ) + (1− λ) ln ξn + ξn cosπρ

or (in a detailed form with account of the inequality ln 1.92 > 0.6)

0 < 0.5 + ln ρ+ lnΓ(a+ 1)− a ln

(
π(n+ aρ)

sinπρ

)
+ π(n+ aρ) cotπρ,

0 < a ≤ 1

ρ
− 1, n ≥ 1 +

[
1

3ρ

]
, 0 < ρ ≤ 1

6
.

(3.9.6)

We verify that the minimum of the right-hand side of (3.9.6) with respect to the variable a is attained
at a = 1/ρ− 1. Fir this, it suffices to prove the negativeness of the derivative

ψ(a+ 1)− ln

(
π(n+ aρ)

sinπρ

)
− aρ

n+ aρ
+ πρ cotπρ < 1 + ψ(a+ 1)− ln

(
π(n+ aρ)

sinπρ

)

< 1 + ln
1

ρ
− ln

πn

sinπρ
= 1 + ln

(
sinπρ

πρ

)
− lnn < 1− lnn < 0;

here we have used the inequalities t cot t < 1 for 0 < t < π/2, ψ(t) < ln t for t > 0, and

n ≥ 1 +

[
1

3ρ

]
≥ 3.

Thus, it remain to prove (3.9.6) for a = 1/ρ− 1, i.e.,

0 < 0.5 + ln ρ+ lnΓ

(
1

ρ

)
−
(
1

ρ
− 1

)
ln

(
π(n+ 1− ρ)

sinπρ

)
+ π(n+ 1− ρ) cotπρ. (3.9.7)

Clearly,

n+ 1− ρ > n >
1

3ρ
.

We show that the right-hand side of (3.9.7) will decrease if we replace n+ 1− ρ by a smaller number
1/(3ρ). For this, we prove that the function

u(t) = πt cotπρ−
(
1

ρ
− 1

)
ln

(
πt

sinπρ

)
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increases on the ray 2 ≤ t < +∞ (containing the ray [1/(3ρ),+∞)). We have the inequality

u′(t) = π cotπρ−
(
1

ρ
− 1

)
1

t
> π cotπρ− 1

ρt
=

1

ρt
(tπρ cotπρ− 1)

>
1

ρt

(
πt

4
− 1

)
≥ 1

ρt

(π
2
− 1
)
> 0.

Thus, (3.9.7) can be replaced by the following stronger inequality and just its proof:

0 < 0.5 + ln ρ+ lnΓ

(
1

ρ

)
−
(
1

ρ
− 1

)
ln

(
π

3ρ sinπρ

)
+

π

3ρ
cotπρ, 0 < ρ ≤ 1

6
. (3.9.8)

For ρ = 1/6, inequality (3.9.8) holds; this can be verified by a direct calculation. Therefore, it suffices
to prove that the function on the right-hand side of (3.9.8) decreases. The derivative of this function
is equal to

1

ρ
− 1

ρ2
ψ

(
1

ρ

)
+

1

ρ2
ln

(
π

3ρ sinπρ

)
+

(
1

ρ
− 1

)(
1

ρ
+

π

tanπρ

)
− π

3

(
cotπρ

ρ2
+

π

ρ sin2 πρ

)
.

Therefore, we must verify that the function

g(ρ) = ρ− ψ

(
1

ρ

)
+ ln

(
π

3ρ sinπρ

)
+ (1− ρ)

(
1 + πρ cotπρ

)
− π

3

(
cotπρ+

πρ

sin2 πρ

)

is negative. To estimate this function, we use inequalities

ψ(t) > ln t− (2t− 1)−1

(see Lemma 3.4.1) and πρ cotπρ < 1. Introducing the notation h(ρ) = π/(3 sinπρ), we obtain

g(ρ) < 2− ρ+

(
2

ρ
− 1

)−1

+ lnh(ρ)− π

3
cotπρ− πρ

sinπρ
h(ρ). (3.9.9)

Using the inequalities πρ/ sinπρ > 1, h(ρ) > 1, and lnh(ρ) < h(ρ)− 1, from (3.9.9) we have

g(ρ) < 1− ρ+
ρ

2− ρ
− π

3
cotπρ < 1− π

3
cotπρ < 0, 0 < ρ ≤ 1

6
.

The proof of relations (3.2.1) for n ≥ [1/(3ρ)
]
is complete.

Prove relations (3.2.6) and (3.2.7).

Lemma 3.9.1. For any ρ > 0, μ ∈ R, and n ∈ N satisfying the condition n + ρμ > 1, the following
inequality holds:

Rn(ρ, μ)

Rn+1(ρ, μ)
< exp

(
− 1

ρ(n+ ρμ)

)
.

Proof. By the definition of Rn(ρ, μ) we have the equality

ln

(
Rn+1(ρ, μ)

Rn(ρ, μ)

)
= lnΓ

(
μ+

n− 1

ρ

)
− 2 ln Γ

(
μ+

n

ρ

)
+ lnΓ

(
μ+

n+ 1

ρ

)
. (3.9.10)

Note that if a real-valued function f is continuous on a segment [x− h, x+ h] (x ∈ R, h > 0), has on

the interval (x−h, x+h) derivatives up to fourth order, and f (4)(t) > 0 for all t ∈ (x−h, x+h), then
f(x+ h)− 2f(x) + f(x− h) > h2f ′′(x). (3.9.11)
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Indeed, applying Taylor’s formula with the remainder in the Lagrange form, we have

f(x+ h) = f(x) + hf(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) +

1

24
h4f (4)(ξ1), ξ1 ∈ (x, x+ h),

f(x− h) = f(x)− hf(x) +
1

2
h2f ′′(x)− 1

6
h3f ′′′(x) +

1

24
h4f (4)(ξ2), ξ2 ∈ (x− h, x).

Adding these equalities and subtracting 2f(x) from the result, we obtain

f(x+ h)− 2f(x) + f(x− h) = h2f ′′(x) +
1

24
h4
(
f (4)(ξ1) + f (4)(ξ2)

)
. (3.9.12)

From (3.9.12) and the positiveness f (4) we immediately obtain (3.9.11). In our case x = n/ρ, h = 1/ρ,
and

f(t) = fμ(t) = lnΓ(μ+ t) ∈ C∞(0,+∞).

We have the relations

f ′′μ(t) = ψ′(μ+ t) =
∞∑

k=0

(k + μ+ t)−2, f (4)μ (t) = 6
∞∑

k=0

(k + μ+ t)−4 > 0 ∀t > 0. (3.9.13)

From (3.9.10), (3.9.11), and (3.9.13) we obtain

ln (Rn+1(ρ, μ)/Rn(ρ, μ)) >
∞∑

k=0

(k + μ+ n/ρ)−2.

This relation together with the estimate

∞∑

k=0

(k + a)−2 >

+∞∫

0

(u+ a)−2du = a−1

leads to the inequality

ln (Rn+1(ρ, μ)/Rn(ρ, μ)) > ρ−2

(
μ+

n

ρ

)−1

= ρ−1(ρμ+ n)−1,

which after exponentiation yields the assertion of Lemma 3.9.1.

For n = 1, relation (3.2.6) is proved in Lemma 3.3.1. We prove (3.2.7). Until the end of this section,
we adopt the notation

Ak =
1

Γ(μ+ k/ρ)
,

so that

Rn =
An−1

An
, Eρ(−x;μ) =

∞∑

k=0

(−1)kAkx
k. (3.9.14)

Also, we omit the arguments ρ and μ in the notation of Ak and Rn.
We have the relation

Eρ(−
√
2R1;μ) = A0 −A1

√
2R1 + 2A1R

2
1 +

∞∑

k=3

(−1)kAk(
√
2R1)

k. (3.9.15)

The last term on the right-hand side of (3.9.15) is negative; this follows from the fact that the sequence
{Ak(

√
2R1)

k}∞k=3 decreases, which is equivalent to the inequality
√
2R1 < Rk, k ≥ 3.
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Prove it. From Lemma 3.9.1, taking into account the fact that {Rk} increases, we obtain the inequality

R1

Rk
<
R1

R2
< exp

(− (ρ(1 + ρμ))−1
)
s.

But we have ρμ ≤ 2 and ρ ≤ 1/6; therefore,

R1

R2
< exp

(− (3ρ)−1
) ≤ e−2 < 0.14, (3.9.16)

and the required inequality is proved.
The negativeness of the sum

∞∑

k=3

(−1)kAk(
√
2R1)

k

implies the estimate

Eρ(−
√
2R1, μ) < A0 −A1

√
2R1 + 2A2R

2
1 = A0 −

√
2A0 + 2A2(A0/A1)

2. (3.9.17)

Multiplying both sides of (3.9.17) by A−1
0 = Γ(μ) and taking into account (3.9.16), we find

Γ(μ)Eρ(−
√
2R1, μ) < 1−

√
2 + 2A0A2A

−2
1 = 1−

√
2 + 2(R1/R2) < 1−

√
2 + 0.28 < 0,

which was required.
Prove (3.2.6) for n = 2. We have the relation

Eρ(−R2, μ) = A0 −A1R2 +A2R
2
2 −A3R

3
2 +A4R

4
2 +

∞∑

k=5

(−1)kAkR
k
2 .

Since the sequence {AkR
k
2}∞k=5 decreases, the sum

∞∑

k=5

(−1)kAkR
k
2

is negative, and since R2 = A1/A2, we have A2R
2
2 −A1R2 = 0. Therefore,

Eρ(−R2, μ) < A0 −A3R
3
2 +A4R

4
2. (3.9.18)

Dividing both sides of inequality (3.9.18) by A3R
3
2, we rewrite it in the equivalent form

A−1
3 R−3

2 Eρ(−R2, μ) < −1 + (A0/A3)R
−3
2 + (A4/A3)R2.

Introduce the notation

B =

(
A0

A3

)
R−3

2 = A0A
−3
1 A3

2A
−1
3 .

The last equality follows from the definition of Ak; moreover, we also see that A3/A4 = R4. Therefore,
we have the relations

A−1
3 R−3

2 Eρ(−R2, μ) < −1 +B +R2/R4,

lnB = lnΓ

(
μ+

3

ρ

)
− 3 ln Γ

(
μ+

2

ρ

)
+ 3 lnΓ

(
μ+

1

ρ

)
− ln Γ(μ).

(3.9.19)

By the intermediate-value theorem applied to the third difference of the function ln Γ(z) at the point
μ with step 1/ρ, for some ξ ∈ (μ, μ+ 3/ρ) we have the equality

lnB = ρ−3ψ′′(ξ) = −2ρ−3
∞∑

k=0

(k + ξ)−3.
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This implies

lnB < −2ρ−3
∞∑

k=0

(
k + μ+

3

ρ

)−3

< −2ρ−3

+∞∫

0

(
t+ μ+

3

ρ

)−3

dt

= −ρ−3

(
μ+

3

ρ

)−2

= −ρ−1(ρμ+ 3)−2. (3.9.20)

By the restrictions ρμ ≤ 2 and ρ ≤ 1/6 from (3.9.20) we obtain the estimate

B < exp

(
− 1

25ρ

)
≤ exp

(
− 6

25

)
< 0.8. (3.9.21)

By Lemma 3.9.1 we have the inequalities

R2

R3
< exp

(− (ρ(2 + ρμ)
)−1

) ≤ exp

(
− 1

4ρ

)
≤ exp(−1.5),

R3

R4
< exp

(− (ρ(3 + ρμ)
)−1

) ≤ exp

(
− 1

5ρ

)
≤ exp(−1.2).

(3.9.22)

Therefore,
R2

R4
=
R2

R3

R3

R4
< exp(−1.5− 1.2) = exp(−2.7) < 0.1.

From this, (3.9.19), and (3.9.21) we obtain the inequality

A−1
3 R−3

2 Eρ(−R2, μ) < −1 + 0.8 + 0.1 < 0,

i.e., Eρ(−R2;μ) < 0, which was required.
Further, we have the equality

Eρ

(−
√
2R2;μ

)
= A0 −

√
2A1R2 + 2A2R

2
2 − 2

√
2A3R

3
2 +

∞∑

k=4

(−1)kAk(
√
2R2)

k.

The sequence {Ak(
√
2R2)

k}∞k=4 decreases since the ratio of its elements with numbers k and k + 1 is

equal to
√
2R2/Rk ≤ √

2R2/R4 and by (3.9.22) is less than 1. Therefore, the sum

∞∑

k=4

(−1)kAk(
√
2R2)

k

is positive and we arrive at the inequality

Eρ(−
√
2R2;μ) > −

√
2A1R2 + 2A2R

2
2 − 2

√
2A3R

3
2. (3.9.23)

Dividing both sides of (3.9.23) by 2A2R
2
2 and using the fact that A1/A2 = R2, A2/A3 = R3, we obtain

the inequality

0.5A−1
2 R−2

2 Eρ(−
√
2R2;μ) > 1− 1√

2
−
√
2
R2

R3
.

In this case, by the restriction n ≤ [1/(3ρ)]−1, the inequality ρ ≤ 1/9 holds. Therefore, by Lemma 3.9.1
with account of (3.9.22) we have the inequality

R2

R3
≤ exp

(
− 1

4ρ

)
≤ exp

(
−9

4

)
< 0.11.

Therefore,

0.5A−1
2 R−2

2 Eρ(−
√
2R2;μ) > 1− 0.61

√
2 > 0.

In the case n = 2, relations (3.2.6) and (3.2.7) are proved.
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Prove (3.2.7) for n ≥ 3. In this case, ρ ≤ 1/9 since only for these values of ρ is the inequality
n ≤ N1(ρ) = [1/(3ρ)] valid. Note (this will be used below) that for 0 < ρ ≤ 1/9, 0 < μ ≤ 2/ρ, and
3 ≤ n ≤ N1(ρ), the following inequality holds:

Rn

Rn+1
<

1

6
. (3.9.24)

Indeed, by Lemma 3.9.1 we have the inequality

Rn

Rn+1
< exp

(− (ρ(n+ ρμ))−1
) ≤ exp

(− (ρ(n+ 2))−1
)
= exp

(− (2ρ+ nρ)−1
)
.

Since nρ ≤ 1/3 and 2ρ ≤ 2/9, we have

Rn

Rn+1
< exp

(
−
(
1

3
+

2

9

)−1
)

= exp(−1.8) < 1/6.

Relation (3.9.24) is proved.
From the power expansion of the Mittag-Leffler function, we obtain the equality

(−1)nEρ(−
√
2Rn, μ) = Sn,0 −An−1

(√
2Rn

)n−1
+An

(√
2Rn

)n −An+1

(√
2Rn

)n+1
+ Sn,1,

where

Sn,0 =
n−2∑

k=0

(−1)k−nAk

(√
2Rn

)k
, Sn,1 =

∞∑

k=n+2

(−1)k−nAk

(√
2Rn

)k
.

We prove that the sums Sn,0 and Sn,1 are positive. Since they are alternating and the terms with

numbers k = n ± 2 are positive, it suffices to prove that the sequence Ak

(√
2Rn

)k
increases for

0 ≤ k ≤ n− 2 and decreases for k ≥ n+ 2. The ratio of the elements of this sequence with numbers
k + 1 and k is equal to

dk =
Ak+1

(√
2Rn

)k+1

Ak

(√
2Rn

)k =
√
2Rn

Ak+1

Ak
=

√
2
Rn

Rk+1
. (3.9.25)

Equality (3.9.25) together with (3.9.24) and the fact proved above that Rk increases imply the esti-
mates

dk >
√
2 > 1, 0 ≤ k ≤ n− 2, dk ≤

√
2
Rn

Rn+1
<

√
2

6
< 1, k ≥ n+ 2,

which prove the required assertion. By the positiveness of the sums Sn,0 and Sn,1 we have the inequality

(−1)nEρ

(−
√
2Rn, μ

)
> −An−1

(√
2Rn

)n−1
+An

(√
2Rn

)n −An+1

(√
2Rn

)n+1
. (3.9.26)

Dividing both sides of (3.9.26) by An

(√
2Rn

)n
and taking into account the relations

An−1

An
= Rn,

An

An+1
= Rn+1,

Rn

Rn+1
<

1

6
,

we obtain

(−1)nA−1
n

(√
2Rn

)−n
Eρ

(−
√
2Rn, μ

)
> 1− 1√

2
−
√
2
Rn

Rn+1
> 1− 1√

2
−

√
2

6
> 0.

Relations (3.2.7) are completely proved.
We introduce the following notation:

unij = Rn+jR
−2
n Rn−j , 1 ≤ j ≤ n− 1, un = un,1. (3.9.27)
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Note that by the concavity of the sequence

lnRn = lnΓ

(
μ+

n

ρ

)
− ln Γ

(
μ+

n− 1

ρ

)

(this follows from the negativeness of ψ′′) we have the inequalities

un,j < 1. (3.9.28)

In what follows, we need the following lemma.

Lemma 3.9.2. For any ρ ≤ 1/9, 0 < μ ≤ 2/ρ, and m ≥ 5, the following inequality holds :

u3m+1 < um.

Proof. By the definition of un and Rn, we have the representation

u3m+1

um
=

(
Rm+2Rm

R2
m+1

)3 R2
m

Rm−1Rm+1
=

(
Am+1

Am+2

)3( Am

Am+1

)−7(Am−1

Am

)5(Am−2

Am−1

)−1

, (3.9.29)

where Ak = 1/Γ(μ+ k/ρ). Taking the logarithm of both sides of (3.9.29) we obtain

ln

(
u3m+1

um

)
= 3 lnΓ

(
μ+

m+ 2

ρ

)
− 10 ln Γ

(
μ+

m+ 1

ρ

)

+ 12 ln Γ

(
μ+

m

ρ

)
− 6 ln Γ

(
μ+

m− 1

ρ

)
+ lnΓ

(
μ+

m− 2

ρ

)
. (3.9.30)

Prove the following assertion. Let h, x ∈ R, h > 0, g be a real-valued, four times continuously
differentiable function on the segment [x − 2h, x + 2h], and g(4) be positive and decrease on this
segment. Then the following inequality holds:

3g (x+ 2h)− 10g (x+ h) + 12g (x)− 6g (x− h) + g (x− 2h)

< 2h3g′′′(x) + h4
(
4

3
g(4)(x) +

2

3
g(4)(x− 2h)

)
. (3.9.31)

Indeed, by Taylor’s formula with the remainder in the Lagrange form, there exist numbers ξ1, η1 ∈
(x, x+ 2h) and ξ2, η2 ∈ (x− 2h, x) such that

g(x+ 2h) = g(x) + 2hg′(x) + 2h2g′′(x) +
4

3
h3g′′′(x) +

2

3
h4g(4)(η1),

g(x+ h) = g(x) + hg′(x) +
1

2
h2g′′(x) +

1

6
h3g′′′(x) +

1

24
h4g(4)(ξ1),

g(x− h) = g(x)− hg′(x) +
1

2
h2g′′(x)− 1

6
h3g′′′(x) +

1

24
h4g(4)(ξ2),

g(x− 2h) = g(x)− 2hg′(x) + 2h2g′′(x)− 4

3
h3g′′′(x) +

2

3
h4g(4)(η2).

(3.9.32)

From (3.9.32) we have

3g(x+ 2h)− 10g(x+ h) + 12g(x)− 6g(x− h) + g(x− 2h)

= 2h3g′′′(x) + h4(2g(4)(η1)− 5

12
g(4)(ξ1)− 1

4
g(4)(ξ2) +

2

3
g(4)(η2)). (3.9.33)

From the upper estimate of the coefficient of h4 in (3.9.33) obtained by using the inequalities

g(4)(η1), g
(4)(ξ1) < g(4)(x), g(4)(η2), g

(4)(ξ2) < g(4)(x+ 2h),

which follow from the fact that g(4) decreases, we arrive at (3.9.31).
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We take g(t) = lnΓ(t), x = μ+m/ρ, and h = 1/ρ. Since g′(t) = ψ(t), the fourth derivative

g(4)(t) = ψ′′′(t) = 6

∞∑

k=0

(k + t)−4

is positive and decreases. Therefore, from (3.9.30) and (3.9.31) we obtain

ln

(
u3m+1

um

)
<

2ψ′′(x)
ρ3

+
1

ρ4

(
4

3
ψ′′′(x) +

2

3
ψ′′′
(
x− 2

ρ

))
.

Using the standard method of estimating the sum of a series by the corresponding integral, we obtain
the inequalities

ψ′′(x) =
∞∑

k=0

−2

(k + x)3
< − 1

x2
∀x > 0, ψ′′′(x) =

∞∑

k=0

6

(k + x)4
<

2

(x− 0.5)3
∀x > 0.5,

ln

(
u3m+1

um

)
< − 2

ρ3x2
+

4

3ρ4

(
2

(x− 0.5)3
+

1

(x− 2/ρ− 0.5)3

)
.

To complete the proof of the lemma, it remains to verify the negativeness of the last expression, i.e.,
to check the inequality

2

(x− 0.5)3
+

1

(x− 2/ρ− 0.5)3
<

3ρ

2x2

⇐⇒ 2

ρ(x− 0.5)

(
x

x− 0.5

)2

+
1

ρ(x− 2/ρ− 0.5)

(
x

x− 2/ρ− 0.5

)2

<
3

2
. (3.9.34)

The function t/(t− a), a > 0, decreases on the ray t > a, and by the condition m ≥ 5, the inequality
x > 5/ρ ≥ 45 holds. Therefore, the following estimates hold:

ρ(x− 0.5) ≥ 5− 1

18
, ρ(x− 2/ρ− 0.5) ≥ 3− 1

18
,

x

x− 0.5
<

90

89
,

x

x− 2/ρ− 0.5
<

5/ρ

3/ρ− 0.5
=

5

3− 0.5ρ
≤ 5

3− 1/18
=

90

53
.

This implies that the left-hand side of (3.9.34) does not exceed

2

5− 1/18

(
90

89

)2

+
1

3− 1/18

(
90

53

)2

=
146197013400

104953669813
<

3

2
.

The lemma is proved.

Complete the proof of Theorems 3.1.1 and 3.1.2, i.e., deduce the equalities (3.2.6) for
3 ≤ n ≤ [1/(3ρ)].

From the power expansion of the Mittag-Leffler function we obtain

Eρ(−Rn, μ) =
n−2∑

k=0

(−1)kAkR
k
n + (−1)n−1

(
An−1R

n−1
n −AnR

n
n

)
+

∞∑

k=n+1

(−1)kAkR
k
n. (3.9.35)

Grouping in (3.9.35) terms with numbers k = n− ν − 1 and k = n+ ν, 1 ≤ ν ≤ n− 1, and taking into
account the equality

An−1R
n−1
n −AnR

n
n = AnR

n−1
n

(
An−1

An
−Rn

)
= 0,

which is valid owing to (3.9.14), we obtain the representation

Eρ(−Rn, μ) = (−1)n+1
n−1∑

ν=1

(−1)ν−1vν(Rn) +
∞∑

k=2n

(−1)kAkR
k
n, (3.9.36)
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where

vν(x) = An+νx
n+ν −An−ν−1x

n−ν−1.

It follows from (3.9.36) that relation (3.2.6) means the positiveness of the sums

n−1∑

ν=1

(−1)ν−1vν(Rn) + (−1)n+1
∞∑

k=2n

(−1)kAkR
k
n. (3.9.37)

Now we prove that the positiveness of sums (3.9.37) follows from the inequalities

0 < vν+1(Rn) < vν(Rn), 1 ≤ ν ≤ n− 2, 3 ≤ n ≤ N1(ρ), (3.9.38)

A2nR
2n
n < vn−1(Rn), 3 ≤ n ≤ N1(ρ). (3.9.39)

Indeed, by (3.9.38), the moduli of terms in the alternating sum

n−1∑

ν=1

(−1)ν−1vν(Rn)

decrease and the first term is positive. Therefore,

n−1∑

ν=1

(−1)ν−1vν(Rn) > 0

for all n ∈ [3, N1(ρ)]. This immediately implies the required assertion for odd n since
∞∑

k=2n

(−1)kAkR
k
n

is also an alternating series which has terms with decreasing moduli and the first term is positive. If
n is even, then

n−2∑

ν=1

(−1)ν−1vν(Rn) > 0, (−1)n+1
∞∑

k=2n+1

(−1)kAkR
k
n > 0

by the above reasoning. Further, by (3.9.39)

(−1)n−2vn−1(Rn) + (−1)3n+1A2nR
2n
n = vn−1(Rn)−A2nR

2n
n > 0,

and we also obtain the positiveness of sum (3.9.37).
Thus, to complete the proof, it remains to deduce inequalities (3.9.38) and (3.9.39). It is seen from

the definition of Ak and Rn and the functions vν(x) that the positiveness of vν(Rn) for any n ∈ R and
1 ≤ ν ≤ n− 1 is equivalent to the concavity of the sequence {lnRn}∞n=1. Indeed,

0 < vν(Rn) ⇐⇒ An−ν−1R
n−ν−1
n < An+νR

n+ν
n ⇐⇒ An−ν−1

An+ν
< R2ν+1

n . (3.9.40)

From (3.9.14) we have the representation

An−ν−1

An+ν
=

n+ν∏

p=n−ν

Rp = Rn

ν∏

j=1

(
Rn−jRn+j

)
. (3.9.41)

By (3.9.40) and (3.9.41) we have the inequalities

0 < vν(Rn) ⇐⇒
ν∏

j=1

(
Rn−jRn+j

)
< R2ν

n ⇐⇒
ν∑

j=1

(
lnRn+j −2 lnRn+lnRn−j

)
< 0; (3.9.42)

the last inequality follows fromt the concavity of the sequence {lnRn} (this concavity was proved
above).
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We prove the inequalities

vν+1(Rn) < vν(Rn),

which, by the definition of the function vν , are equivalent to the following:

An−ν−1R
n−ν−1
N −An−ν−2R

n−ν−2
n < An+νR

n+ν
n −An+ν+1R

n+ν+1
n . (3.9.43)

Divide both sides of (3.9.43) by An+νR
n+ν
n . Applying formula (3.9.41), we can rewrite the inequalities

obtained in the form
(
1− Rn−ν−1

Rn

) ν∏

j=1

(
Rn+jRn−jR

−2
n

)
< 1− Rn

Rn+ν+1
. (3.9.44)

Introduce the notation

an,ν =
Rn−ν−1

Rn
, bn,ν =

Rn

Rn+ν+1
, un,p = Rn+pR

−2
n Rn−p. (3.9.45)

By (3.9.45), inequalities (3.9.44) take the form

(1− an,ν)
ν∏

j=1

un,ν < 1− bn,ν . (3.9.46)

Dividing both sides of (3.9.46) by 1− bn,ν and using the identity

(1− a)(1− b)−1 = 1 + b(1− b)−1(1− a/b)

(note that an,ν/bn,ν = un,ν+1), we arrive at the inequalities

(
1 + bn,ν(1− bn,ν)

−1(1− un,ν+1)
) ν∏

j=1

un,j < 1, (3.9.47)

which are equivalent to (3.9.44). We will prove (3.9.47).
First, we prove (3.9.47) for 3 ≤ n ≤ 12 (for all ν ∈ [1, n− 2]) and for ν ≥ 0.5n− 1 (for all n ≥ 12).

We show that in both these cases, the following, even stronger than (3.9.47), inequalities hold6:

(
1 + bn,ν(1− bn,ν

)−1
)un,1 < 1. (3.9.48)

We obtain upper estimates of

un,1 = Rn+1R
−2
n Rn−1 = A−1

n+1A
3
nA

−3
n−1An−2

for any n ∈ N, where, as above, An = 1/Γ(μ+ n/ρ). We have

lnun,1 = lnΓ

(
μ+

n+ 1

ρ

)
− 3 ln Γ

(
μ+

n

ρ

)
+ 3 lnΓ

(
μ+

n− 1

ρ

)
− ln Γ

(
μ+

n− 2

ρ

)
. (3.9.49)

Applying the formula of finite increments to the third difference (3.9.49), we obtain that for some
ξ ∈ ((n− 2)/ρ, (n+ 1)/ρ

)
, the following relation holds:

lnun,1 = ρ−3 (ln Γ(μ+ z))
′′′
|z=ξ = ρ−3ψ′′(μ+ ξ) = −2ρ−3

∞∑

k=0

(k + μ+ ξ)−3.

6By the above (see (3.9.28)), un,j < 1, 1 ≤ j ≤ n− 1.
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This implies the estimate

lnun,1 < −2ρ−3
∞∑

k=0

(
k + μ+

n+ 1

ρ

)−3

< −2ρ−3

+∞∫

0

(
t+ μ+

n+ 1

ρ

)−3

dt

= −ρ−3

(
μ+

n+ 1

ρ

)−2

= −ρ−1(ρμ+ n+ 1)−2 ∀n ∈ N. (3.9.50)

From (3.9.50) and the restrictions ρμ ≤ 2 and ρ ≤ 1/9, for n ≤ 12 we obtain the inequality

un,1 < exp

(
−ρ

−1

225

)
≤ exp

(
− 9

225

)
= exp

(
− 1

25

)
. (3.9.51)

By Lemma 3.9.1, for any n, ν ∈ N we have the inequality

bn,ν =
Rn

Rn+ν+1
≤ Rn

Rn+2
=

Rn

Rn+1

Rn+1

Rn+2

< exp

(
− 1

ρ(n+ ρμ)
− 1

ρ(n+ 1 + ρμ)

)
≤ exp

(
− 1

ρ(n+ 2)
− 1

ρ(n+ 3)

)
.

Since ρn ≤ ρN1(ρ) ≤ 1/3, ρ ≤ 1/9, we have

bn,ν < exp

(
− 1

1/3 + 2/9
− 1

1/3 + 1/3

)
= exp(−1.8− 1.5) = exp(−3.3) <

1

26
.

This implies

bn,ν(1− bn,ν)
−1 <

1

25
, n ≤ N1(ρ), 0 < ρ ≤ 1

9
, 1 ≤ ν ≤ n− 2. (3.9.52)

From (3.9.52) and (3.9.51) we conclude that for 3 ≤ n ≤ 12, the left-hand side of (3.9.48) does not
exceed

26

25
exp

(
− 1

25

)
< 1,

which was required.
Now let ν ≥ 0.5n−1. Then by Lemma 3.9.1 and the restriction ν ≤ n−2 we obtain the inequalities

bn,ν =
ν∏

j=0

(
Rn+j

Rn+j+1

)
< exp

⎛

⎝−1

ρ

ν∑

j=0

1

n+ j + ρμ

⎞

⎠ ≤ exp

(
−1

ρ
· ν + 1

n+ ν + ρμ

)

≤ exp

(
−1

ρ
· ν + 1

n+ ν + 2

)
≤ exp

(
−1

ρ
· 0.5n
2n

)
= exp

(
− 1

4ρ

)
.

Thus, for 0.5n− 1 ≤ ν ≤ n− 2, the following estimate holds:

bn,ν(1− bn,ν)
−1 < 2 exp

(
− 1

4ρ

)
< 2ρ (3.9.53)

(for any t ≥ 9, we have the inequality t < exp(t/4), which implies exp(−1/(4ρ)) < ρ).
Now we obtain another upper estimate for un,1, which differs from (3.9.51). From (3.9.50) we obtain

un,1 < exp

(
− 1

ρ(n+ 3)2

)
= exp

(
− ρ

(nρ+ 3ρ)2

)
.

Recall that nρ ≤ 1/3 and ρ ≤ 1/9; then (nρ + 3ρ)2 ≤ 4/9 and hence un,1 < exp(−2ρ). This and
(3.9.53) imply the inequality

(
1 + bn,ν

(
1− bn,ν

)−1
)
un,1 < (1 + 2ρ) exp(−2ρ) < 1,
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which proves (3.9.48) for the case considered.
Finally, it remains to prove (3.9.47) for the case where n ≥ 13 and 1 ≤ ν < 0.5n− 1. According to

(3.9.52), we replace inequalities (3.9.47) by stronger inequalities
(
1 +

1

25

(
1− un,ν+1

)) ν∏

j=1

un,j < 1. (3.9.54)

Prove (3.9.54). We start from the proof of the estimate

u6n,ν < un,ν+1, 1 ≤ ν < 0.5n− 1, n ≥ 13. (3.9.55)

If ν = 1, then

un,2 = un−1,1u
2
n,1un+1,1, n− 1 ≥ 12,

and by Lemma 3.9.2 (where un,1 was denoted by un) and the fact that the sequence {up,1}∞p=2 increases,
we obtain the inequality

u6n,1 < un−1,1u
3
n,1 < un−1,1u

2
n,1 · un+1,1 = un,2.

For ν = 1, inequality (3.9.55) is proved.
If ν ≥ 2, then, applying the representation

un,ν = uνn,1

ν−1∏

k=1

(
un−k,1un+k,1

)ν−k
(3.9.56)

and Lemma 3.9.2, we obtain the estimate7

u6n,ν = u6νn,1

ν−1∏

k=1

(
un−k,1un+k,1

)6(ν−k)
< u2νn,1

ν−1∏

k=1

(
un−k,1un+k,1

)2(ν−k) · u3n−ν+1,1 · u3n+ν−1,1

< u2νn,1

ν−1∏

k=1

(
un−k,1un+k,1

)2(ν−k) · (un−ν,1un+ν,1

) ≤ uν+1
n,1

ν∏

k=1

(
un−k,1un+k,1

)ν+1−k
= un,ν+1.

Here we have used the obvious inequality ν + 1 − k ≤ 2(ν − k), 0 ≤ k ≤ ν − 1, ν ∈ N. The
possibility of applying Lemma 3.9.2 follows from the inequality n − ν ≥ 8 (for n = 13 it is obvious
since ν ≤ 0.5n − 1 ≤ 6.5 − 1 and hence ν ≤ 5, and for n ≥ 14, by the restriction ν < 0.5n − 1, we
have the inequality n− ν ≥ 0.5n+1 ≥ 8). Thus, inequality (3.9.55) is proved. It allows one to replace
inequalities (3.9.54) by stronger inequalities

(
1 +

1

25

(
1− u6n,ν

))
un,ν < 1; (3.9.57)

we will prove (3.9.57).
Consider the function

f(t) =

(
1 +

1

25
(1− t6)

)
t =

26

25
t− t7

25

on the segment 0 ≤ t ≤ 1. Its derivative

f ′(t) =
26

25
− 7t6

25

is positive for for t ∈ [0, 1]. Therefore, f(t) increases on [0, 1], and since f(1) = 1, we see that f(t) < 1
for all t ∈ (0, 1). From this and the inclusion un,ν ∈ (0, 1) proved above, we obtain (3.9.57). Relations
(3.9.38) are proved.

7Here and in the sequel, we use the inequalities un,k < 1, n, k ∈ N, n ≥ 2, 1 ≤ k ≤ n− 1.
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Now we prove inequalities (3.9.39), which have the form

A2nR
2n
n < A2n−1R

2n−1
n −A0. (3.9.58)

Transferring A0 on the left-hand side and dividing (3.9.58) by A2n−1R
2n−1
n , we obtain the equivalent

inequalities (
A0

A2n−1

)
R1−2n

n +

(
A2n

A2n−1

)
Rn < 1,

which, with account of (3.9.14), (3.9.41), and (3.9.45), can be rewritten in the following form:

n−1∏

j=1

un,j +
Rn

R2n
< 1. (3.9.59)

Representing un,j by formula (3.9.56), omitting factors less than 1, and taking into account the fact
that {Rk} increases, we strengthen inequality (3.9.59):

u
n(n−1)

2
n,1 +

Rn

Rn+1
< 1. (3.9.60)

To obtain an upper estimate of the left-hand side of (3.9.60) (we denote it by Un), we use inequalities
(3.9.24) and (3.9.50). We have

Un <
1

6
+ exp

(
− n(n− 1)

2ρ(n+ 1 + ρμ)2

)
<

1

6
+ exp

(
− n(n− 1)

2ρ(n+ 3)2

)
.

Since

n(n− 1)(n+ 3)−2 ≥ 1

6
, ρ ≤ 1

9
for n ≥ 3, we have

Un <
1

6
+ e−

9
12 <

1

6
+

1

2
< 1,

which was required. Equalities (3.2.6) are proved and the proof of Theorems 3.1.1 and 3.1.2 is complete.

3.10. Proof of Theorem 3.1.3

The realness, negativeness, and simpleness of all zeros of the function E1/N (z,N + 1) follow from
Theorem 3.1.1. The required upper estimates of the first [N/3] − 1 zeros for N ≥ 6 are proved in
Theorem 3.1.2, and the upper estimate of the first zero (for any N) is a consequence of Lemma 3.3.1.
It remains to obtain

(1) more exact than in Theorem 3.1.2, lower estimates of the first [N/3]−1 zeros in the case N ≥ 6
and

(2) more exact than in Theorem 3.1.1, two-sided estimates of zeros with numbers n ≥ [N/3].

We start from the simpler problem 2. We have the identity

N

2
E1/N (−wN ; 1) =

[N/2]∑

k=1

exp

[
w cos

(
π(2k − 1)

N

)]
cos

[
w sin

(
π(2k − 1)

N

)]
+ δNe

−w, (3.10.1)

where δN = 1/2 if N odd and δN = 0 if N is even. Identity (3.10.1) can be proved as follows. If

f(x) =
∞∑

m=0

amz
m

is an arbitrary entire function, N ∈ N, then

N
∞∑

ν=0

aνNw
νN =

N∑

k=1

f

(
w exp

(
2πik

N

))
. (3.10.2)
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Applying (3.10.2) to the equality

f(z) = exp
(
ze−πi/N

)
≡

∞∑

m=0

zm

m!
exp

(
−πim

N

)
,

we obtain the following representation of the classical Mittag-Leffler function of order 1/N :

NE1/N

(−wN ; 1
)
=

∞∑

ν=0

(−1)νwνN

(νN)!
=

N∑

k=1

exp

[
w exp

(
πi(2k − 1)

N

)]
.

Combining in the last sum the conjugate pairs exp

(
πi(2k − 1)

N

)
and applying the identity

exp(weiϕ) + exp(we−iϕ) = 2 exp(w cosϕ) cos(w sinϕ),

we arrive at (3.10.1).
Theorem 3.1.1 implies that on each of the intervals

IN,n =

(
−
(
π(n+ 1)

sin(π/N)

)N

, −
(

πn

sin(π/N)

)N
)
, n ∈ N,

the function E1/N (z;N+1) has exactly one root. We must prove that for n ≥ [N/3], a root is contained
on a narrower interval

I ′N,n =

(
−
(
πn+ π/2 + xn(N)

sin(π/N)

)N

, −
(
πn+ π/2− xn(N)

sin(π/N)

)N
)

(the values xn(N) were defined in the statement of Theorem 3.1.3). Note that for any N ∈ N, N ≥ 3,
the sequence xn(N) decreases and tends to zero. It maximal value is equal to x[N/3](N); we denote it
by yN . We have the estimate

yN ≤ y3 = exp(−π/
√
3) < 0.164, 3 ≤ N ≤ 11. (3.10.3)

For N ≥ 12, owing to the inequality sin(2π/N) ≥ 6/N , we have the estimate

yN ≤ 1.01 exp

(
−2π

[
N

3

]
6

N

)
≤ 1.01 exp

(−12π(N − 2)

3N

)

= 1.01 exp

(−4π(N − 2)

N

)
≤ 1.01 exp

(−40π

12

)
< 1.01e−10.47 < e−10.46. (3.10.4)

By (3.10.3) and (3.10.4), we see that the largest value of xn(N) for N ≥ 3 and n ≥ [N/3] is equal to

e−π/
√
3 < 0.164. This implies the inclusion

I ′N,n ⊂ IN,n ∀N ∈ N, ∀n ∈ N, N ≥ 3, n ≥
[
N

3

]
.

Compare the lengths of the intervals IN,n and I ′N,n. It is easy to verify the asymptotics

|IN,n| ∼ (Nn)N
(
exp

(
N

n

)
− 1

)
, N → ∞, n ≥ N/3,

|I ′N,n| ∼ NN+1nN−1 exp

(
−4π2n

N

)
, N → ∞,

n

N
→ ∞.

These asymptotics show that the length of IN,n tends to ∞, whereas the length of I ′N,n tends to zero

as n ≥ (N lnN)2, N → ∞.
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Continue the proof of the theorem. Introduce the notation

w±
n (N) =

(
πn+

π

2
± xn(N)

)
cosec

( π
N

)
.

To prove the existence of a zero of the function E1/N (z;N + 1) ≡ (E1/N (z, 1) − 1
)
/z on each of the

intervals I ′N,n, it suffices to verify that the function

FN (w) =
N

2

(
E1/N (−wN ; 1)− 1

)

has opposite signs at the points w−
n (N) and w+

n (N) for n ≥ [N/3]. We have the relations

cos
(
w±
n (N) sin

( π
N

))
= ∓(−1)n sin (xn(N)) . (3.10.5)

First, we consider values N ∈ [3, 6]. Since the moduli of products of exponents with negative powers
by cosines are not greater than 1, we obtain that

ΔN (w) ≡
∣∣∣FN (w)− exp

(
w cos

( π
N

))
cos
(
w sin

( π
N

))∣∣∣ < N − 1. (3.10.6)

Relations (3.10.5) and (3.10.6) and representation (3.10.1) show that the difference of signs of the
numbers FN (w±

n (N)) follows from the inequality

N − 1 ≤ sin (xn(N)) exp
(
w±
n (N) cos

( π
N

))
.

Since w−
n (N) < w+

n (N), it suffices to prove that

(N − 1) exp
(
−w−

n (N) cos
( π
N

))
< sinxn(N).

Using the estimate xn(N) < 0.17, we obtain the inequalities

sin (xn(N)) > (3/π)xn(N),

w−
n (N) cos

( π
N

)
>
(
πn+

π

2
− 0.17

)
cot
( π
N

)
> (πn+ 1.4) cot

( π
N

)
.

Therefore, the problem is reduced to the proof of the inequality

π

3
(N − 1) exp

(
−πn cot

( π
N

))
exp
(
−1.4 cot

( π
N

))
< xn(N)

⇐⇒ π(N − 1)

3
< exp

(
1.4 cot

( π
N

))
. (3.10.7)

The validity of (3.10.7) for N = 3, 4, 5, 6 can be proved by a straightforward calculation. The two-sided
estimates of zeros for 3 ≤ N ≤ 6 are proved.

For N > 6, the estimate of ΔN (w) is proved in a different way. We have the inequalities
∣∣∣∣δNe

−w − N

2

∣∣∣∣ ≤
N

2
, (3.10.8)

∣∣∣∣∣∣

[N/2]∑

k=2

exp

(
w cos

(
π(2k − 1)

N

))
cos

(
w sin

(
π(2k − 1)

N

))∣∣∣∣∣∣

≤
[N/2]∑

k=2

exp

(
w cos

(
π(2k − 1)

N

))
. (3.10.9)
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The ratio of terms with numbers k + 1 and k in the last sum of exponents is equal to

ωN, k(w) = exp

[
w

(
cos

(
π(2k + 1)

N

)
− cos

(
π(2k − 1)

N

))]

= exp

(
−2w sin

( π
N

)
sin

(
2πk

N

))
. (3.10.10)

We have the inequalities

w±
n sin

( π
N

)
> πn+ 1.4. (3.10.11)

Therefore, for w ≥ w−
[N/3](N), 1 ≤ k ≤ [N/2]− 1, the following inequality holds:

ωN, k(w) < exp

(
−2π

[
N

3

]
sin

(
2πk

N

))

≤ exp

(
−2π

[
N

3

]
sin

(
2π

N

))
≤ exp

(
−8π

N

[
N

3

])
. (3.10.12)

Here we have used the inequalities

sin

(
2πk

N

)
≥ sin

(
2π

N

)
, 1 ≤ k ≤

[
N

3

]
− 1,

sin t ≥ 2t

π
, 0 ≤ t ≤ π

2
.

Since n ≥ [N/3] and for N ≥ 7 we have

8

N

[
N

3

]
≥ 2,

(3.10.12) implies that

ωN,k(w) < exp(−2π) <
1

535
, w ≥ w−

[N/3](N). (3.10.13)

From (3.10.13) and (3.10.10) we obtain the following estimate of sum (3.10.9):

[N/2]∑

k=2

exp

(
w cos

(
π(2k − 1)

N

))
<

(
1 +

1

534

)
exp

(
w cos

(
3π

N

))
, w ≥ w−

[N/3](N). (3.10.14)

From (3.10.1), (3.10.8), and (3.10.14) we obtain the estimate

ΔN (w) ≤ N

2
+

(
1 +

1

534

)
exp

(
w cos

(
3π

N

))
, N ≥ 7, w ≥ w−

[N/3](N). (3.10.15)

Now we must obtain an estimate of the form

N

2
< cN exp (w cos(3π/N)) ,

in which the constant cN “is not large.” The case N = 7 will be considered separately. Clearly, we
can take

c7 = 3.5 exp

(
−w−

2 (7) cos

(
3π

7

))
.

Owing to (3.10.11), we have the relation

c7 < 3.5 exp

[
−(2π + 1.4) cos

(
3π
7

)

sin
(
π
7

)
]
= 3.5 exp

(
− π + 0.7

cos
(
π
14

)
)
< 0.098.
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This and (3.10.15) imply that

Δ7(w) < 1.1 exp

(
w cos

(
3π

7

))
, w ≥ w−

2 (7). (3.10.16)

From (3.10.16), (3.10.5), and (3.10.6) we conclude that the difference of signs of the numbers F7 (w
±
n (7))

for n ≥ 2 follows from the inequality

1.1 exp

(
w±
n (7) cos

(
3π

7

))
≤ sin (xn(7)) exp

(
w±
n (7)

)
cos
(π
7

)
, n ≥ 2

⇐⇒ 1.1 exp

(
−2wn±(7) sin

(π
7

)
sin

(
2π

7

))
≤ sin (xn(7)) , n ≥ 2.

Applying the lower estimate (3.10.11), we see that now we must prove the inequality

1.1 exp

(
−(2πn+ 2.8) sin

(
2π

7

))
≤ sin (xn(7))

⇐⇒ 1.1xn(7) exp

(
−2.8 sin

(
2π

7

))
≤ sin (xn(7)) , n ≥ 2.

Since sin(2π/7) > 4/7, it remains to verify that

1.1e−1.6 <
sinxn(7)

xn(7)
. (3.10.17)

For N ≥ 7, n ≥ [N/3], we have the estimate

xn(N) ≤ 1.01 exp

(
−2π

[
N

3

]
sin

(
2π

N

))
≤ 1.01 exp

(
−8π

N

[
N

3

])
≤ 1.01e−2π <

1

500
.

This implies that

sinxn(N)

xn(N)
≥ 1− x2n(N)

6
> 1− 4 · 10−6

6
> 1− 10−6, N ≥ 7, n ≥ [N/3]. (3.10.18)

From (3.10.18) we see that inequality (3.10.17) is valid. The two-sided estimates of zeros in the case
N = 7, n ≥ 2 are proved.

Further, consider the case N ≥ 8. As cN we can take

cN =
N

2
exp

(
−w−

[N/3](N) cos

(
3π

N

))
<
N

2
exp

(
−π[N/3] cos (3π/N)

sin (π/N)

)
.

Since

cos

(
3π

N

)/
sin
( π
N

)
≥ 1, N ≥ 8,

we have the inequality

cN ≤ N

2
exp

(
−π
[
N

3

])
≤ 4e−2π <

4

535
.

This and (3.10.15) imply the inequality

ΔN (w) <

(
1 +

1

106

)
exp

(
w cos

(
3π

N

))
, N ≥ 8, w ≥ w−

[N/3](N). (3.10.19)
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Thus, to prove that the numbers FN (w±
n (N)) have opposite signs, it suffices to verify the inequality

1.01 exp

(
w±
n (N) cos

(
3π

N

))
< sin (xn(N)) exp

(
w±
n (N)

)
cos
( π
N

)

⇐⇒ 1.01 exp

(
−2w±

n (N) sin
( π
N

)
sin

(
2π

N

))
< sin (xn(N)) .

Applying the lower estimate (3.10.11), we see that now we must prove the inequality

1.01 exp

(
−(2πn+ 2.8) sin

(
2π

N

))
< sin (xn(N)) .

Using the definition of xn(N), for 8 ≤ N ≤ 1400 we replace this inequality by the following:

1.01 exp

(
−2.8 sin

(
2π

N

))
<

sinxn(N)

xn(N)
. (3.10.20)

Since sin(2π/N) > 4/N , N > 4, the left-hand side of (3.10.20) for 8 ≤ N ≤ 560 is less than
1.01 exp(−0.02) < exp(−0.01) < 0.991, whereas the right-hand side of (3.10.20), by (3.10.18), is
greater than 0.999. The required inequality is proved. For 560 < N ≤ 1400, applying the stronger

estimate sin(2π/N) >
6

N
, N > 12, we obtain that the left-hand side of (3.10.20) is less than

1.01 exp(−0.012) < exp(−0.02), which is again less than the right-hand side. Thus, for 8 ≤ N ≤ 1400,
the two-sided estimates of zeros of the function E1/N (z;N + 1) with numbers n ≥ [N/3] are proved.

In the case N > 1400, we do not roughen estimate (3.10.19) and see that we must prove the
inequality (

1 +
1

106

)
exp

(
−(2πn+ 2.8) sin

(
2π

N

))
≤ sin (xn(N)) .

Using the definition of xn(N), we transfer the equivalent inequality

107

106 · 1.01 exp

(
−2.8 sin

(
2π

N

))
<

sinxn(N)

xn(N)
. (3.10.21)

The left-hand side of (3.10.21) is less than
107

107.06
< 1 − 10−4; this value is less than the right-hand

side (see (3.10.18)). We have proved the two-sided estimates of zeros of the function E1/N (z;N + 1)
with numbers ≥ [N/3].

Now we prove lower estimates of the first [N/3]− 1 zeros for N ≥ 6. The required lower estimate of
the first zero immediately follows from Lemma 3.3.3 if we take ε = 1.5R1/R2 and verify the inequality

R1

R2
<

ε

(1 + ε)2
⇐⇒ (1 + ε)2 < 1.5 ⇐⇒ 2ε+ ε2 < 0.5. (3.10.22)

We have the estimate

R1(N)

R2(N)
=

N−1∏

k=0

(
2N − k

3N − k

)
<

(
2

3

)N

≤
(
2

3

)6

< 0.1, N ≥ 6.

Therefore, ε < 0.15, 2ε+ ε2 < 0.4, and inequality (3.10.22) holds. The lower estimate of the first zero
is proved.

Obtain a lower estimate of the second zero (then N ≥ 9). If F is the function from Lemma 3.3.1
and

ε > 0, R2(1 + ε) < R5, (3.10.23)
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then

F (−R2(1 + ε)) =
∞∑

k=0

(−1)kAkR
k
2(1 + ε)k > −A1R2(1 + ε) +A2R

2
2(1 + ε)2 −A3R

3
2(1 + ε)3,

since the moduli of terms of the alternating sum
∞∑

k=4

(−1)kAkR
k
2(1 + ε)k

decrease and hence the sum is positive (the ratio of the terms with numbers k + 1 and k is equal to

R2(1 + ε)

Rk+1
≤ R2(1 + ε)

R5
< 1

by (3.10.23)). If we take ε = 1.5
R2

R3
, then we obtain the inequality

F (−R2(1 + ε))

A2R2
2

> −A1(1 + ε)

A2R2
+ (1 + ε)2 − A3

A2
R2(1 + ε)3 = −(1 + ε) + (1 + ε)2

− R2

R3
(1 + ε)3 = ε+ ε2 − 2

3
ε(1 + ε)3 = ε(

1

3
− ε− 2ε2 − 2

3
ε3). (3.10.24)

Impose on ε the restriction

ε ≤ 0.2 ⇐⇒ 7.5R2 ≤ R3. (3.10.25)

By the monotonicity of Rn, this condition is stronger than in (3.10.23). The positiveness of F (−R2(1+
ε)) immediately follows from (3.10.24) and (3.10.25).

We verify that for the values Rn(N) defined before the statement of Theorem 3.1.3, the inequality
7.5R2(N) ≤ R3(N) holds for N ≥ 9, and hence

E1/N

(
−R2

(
1 +

3R2

2R3

)
;N + 1

)
> 0.

We have the inequality

R2(N)

R3(N)
=

N−1∏

k=0

(
3N − k

4N − k

)
<

(
3

4

)N

≤
(
3

4

)9

< 0.1.

The lower estimate of the second zero is proved since by (3.2.6)

E1/N (−R2;N + 1) < 0.

Further, 3 ≤ n ≤ [N/3]− 1 (here n is the ordinal number of a zero) and, naturally, N ≥ 12. Until
the end of this section, we assume that the number N is fixed and omit the dependence of different
quantities on it. We set

E1/N (z;N + 1) =
∞∑

k=0

zk

(kN +N)!
≡

∞∑

k=0

Akz
k.

Clearly, Rk = Ak−1/Ak, k ∈ N. Introduce the notation

vn,k(x) = An+kx
n+k −An−k−1x

n−k−1, 1 ≤ k ≤ n− 1.

Lemma 3.10.1. For any x ∈ [Rn, Rn + 1), n ≥ 3, the sequence vn, k(x) decreases when the index k
varies from 1 to n− 1. Moreover, the following inequality is valid :

A2nx
2n < vn, n−1(x). (3.10.26)
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Proof. First, we prove the inequality

vn, k+1(x) < vn, k(x), 1 ≤ k ≤ n− 2, Rn ≤ x < Rn+1

⇐⇒ An−k−1x
n−k−1 −An−k−2x

n−k−2 < An+kx
n+k −An+k+1x

n+k+1. (3.10.27)

Introduce the notation

un,k = Rn−kR
−2
n Rn+k =

N∏

j=1

(N(n− k) + j) (N(n+ k) + j)

(Nn+ j)2
=

N∏

j=1

[
1−
(

kN

Nn+ j

)2
]
. (3.10.28)

Then

An−k−1

An+kR
2k+1
n

= R−2k−1
n

n+k∏

m=n−k

Rm =
k∏

j=1

(
Rn−jR

−2
n Rn+j

)
=

k∏

j=1

un, j . (3.10.29)

From (3.10.29) we see that inequality (3.10.27) after dividing both sides by An+kx
n+k can be written

in the following equivalent form:

An−k−1

An+kx2k+1
− An−k−2

An+kx2k+2
< 1− xAn+k+1

An+k

⇐⇒
(
Rn

x

)2k+1 An−k−1

An+kR
2k+1
n

(
1− An−k−2

An−k−1x

)
< 1− x

Rn+k+1

⇐⇒
(
1− Rn−k−1

x

) k∏

j=1

un, j <

(
1− x

Rn+k+1

)
<

(
1− x

Rn+k+1

)(
x

Rn

)2k+1

.

Setting

δn,k(x) =

(
1− Rn−k−1

x

)(
1− x

Rn+k+1

)−1

,

we see that we must prove the inequality

δn, k(x)
k∏

j=1

un, j <

(
x

Rn

)2k+1

, 1 ≤ k ≤ n− 2, Rn ≤ x < Rn+1. (3.10.30)

We obtain an upper estimate of the function δn, k(x). We have the relations

δn, k(x)− 1 =
1−Rn−k−1/x

1− x/Rn+k+1
− 1 =

x/Rn+k+1 −Rn−k−1/x

1− x/Rn+k+1

=
1−Rn−k−1x

−2Rn+k+1

Rn+k+1/x− 1
=

1− (Rn/x)
2un, k+1

Rn+k+1/x− 1
<

1− (Rn/x)
2un, k+1

Rn+2/Rn+1 − 1
. (3.10.31)

Further, we have for n ≤ [N/3]− 1 and N ≥ 12

Rn+2

Rn+1
=

N−1∏

j=0

(
(n+ 3)N − j

(n+ 2)N − j

)
>

(
n+ 3

n+ 2

)N

>

(
N/3 + 2

N/3 + 1

)N

=

(
N + 6

N + 3

)N

≥
(
18

15

)12

> 8 (3.10.32)

(we have used the fact that the functions (t+ 1)/t and ((t+ 6)/(t+ 3))t decrease on the ray 0 < t <
+∞). Introduce the variable y = x/Rn ≥ 1 and, using (3.10.31) and (3.10.32), replace inequality
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(3.10.30) by the following stronger inequality:

(
1 +

1− y−2un, k+1

7

) k∏

j=1

un, j ≤ y2k+1. (3.10.33)

Note that it suffices to prove inequality (3.10.33) only for y = 1 since the derivative (2k + 1)y2k of
its right-hand side is greater than the derivative of its left-hand side, which is equal to

2y−3un, k+1

7

k∏

j=1

un, j <
2y−3

7
≤ 2

7
.

From 3.10.33 we obtain the estimate

un,k <

(
1−
(

k

n+ 1

)2
)N

< exp

(
− k2N

(n+ 1)2

)
; (3.10.34)

this immediately implies that un, k < 1. Thus, we must prove the inequality

(
1 +

1− un, k+1

7

) k∏

j=1

un, j ≤ 1. (3.10.35)

If k ≥ n/4 and n ≥ 3, then from (3.10.34) we see that

k∏

j=1

un, j < exp

⎛

⎝− N

(n+ 1)2

k∑

j=1

j2

⎞

⎠ = exp

(
−N(2k + 1)k(k + 1)

6(n+ 1)2

)

≤ exp

(
−(n/2 + 1)(n/2)(n/4 + 1)

(n+ 1)2

)
= exp

(
−(n+ 2)(n+ 4)n

16(n+ 1)2

)

≤ exp

(
−n+ 2

16

)
≤ exp

(
− 5

16

)
(3.10.36)

(here n ≥ 12 and hence N/6 ≥ 2). Therefore, the left-hand side of (3.10.35) is less than
(
1 +

1

7

)
exp

(
− 5

16

)
< exp

(
1

7
− 5

16

)
< 1

and we have proved what was required.
If 1 ≤ k < n/4, then we replace inequality (3.10.35) by the following stronger but simpler inequality:

(
1 +

1− un, k+1

7

)
un, k ≤ 1, (3.10.37)

and obtain the estimate

u5n, k < un,k+1, 1 ≤ k < n/4. (3.10.38)

From (3.10.38) we immediately obtain (3.10.37) since the function u1/5
(
1 +

1− u

7

)
does not exceed 1

on the segment [0, 1].
Thus, to complete the proof of the first part of the lemma, it remains to verify estimate (3.10.38).

From (3.10.28) we obtain the equality

u5n, k
un, k+1

=
N∏

j=1

(N(n− k) + j)5 (N(n+ k) + j)5

(N(n− k − 1) + j) (Nn+ j)8 (N(n+ k + 1) + j)
. (3.10.39)
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We prove that any factor in (3.10.39) is less than 1, i.e.,

(N(n− k) + j)5 (N(n+ k) + j)5

(N(n− k − 1) + j) (Nn+ j)8 (N(n+ k + 1) + j)
< 1, 1 ≤ j ≤ N, 1 ≤ k < n/4.

Then the product is also less than 1, which means that inequality (3.10.38) is valid. Denoting Nn+ j
by t and Nk by τ , we see that it suffices to prove the inequality

(t2 − τ2)5 < t8(t− τ −N)(t+ τ +N), N ≤ τ ≤ t

4
. (3.10.40)

The right-hand side of (3.10.40) is equal to

t8
(
t2 − (τ +N)2

) ≥ t8(t2 − 4τ2).

Therefore, it suffices to prove the following stronger inequality

t10 − 5t8τ2 + 10t6τ4 − 10t4τ6 + 5t2τ8 − τ10 < t10 − 4t8τ2

⇐⇒ 10t6τ4 − 10t4τ6 + 5t2τ8 − τ10 < t8τ2. (3.10.41)

Rejecting on the left-hand side of (3.10.41) the negative term −τ10 and dividing both sides of (3.10.41)
by t2τ2, we obtain the following, stronger but simpler, inequality

10t4τ2 − 10t2τ4 + 5τ6 < t6. (3.10.42)

Since τ ≤ t/4, the left-hand side of (3.10.42) is less than

10t4τ2 = t6 · 10
(τ
t

)4 ≤ 10

16
t6 < t6,

which was required. The first part of the lemma is proved.
Prove inequality (3.10.26), which, due to the definition of vn,n−1(x), can be written in the form

A0 +A2nx
2n < A2n−1x

2n−1 ⇐⇒ A0

A2n−1
x1−2n +

A2nx

A2n−1
< 1.

We strengthen the last inequality taking into account the inclusion x ∈ [Rn, Rn+1):

A0

A2n−1
R1−2n

n +
A2n

A2n−1
Rn+1 < 1 ⇐⇒

n−1∏

k=1

un,k +
Rn+1

R2n
< 1. (3.10.43)

From estimates (3.10.32) and (3.10.36) we see that inequality (3.10.43) holds. The lemma is completely
proved.

Since relations (3.2.6) have been proved, it suffices to deduce the equalities

sgnE1/N (−Rn(1 + qn);N + 1) = (−1)n, 3 ≤ n ≤
[
N

3

]
− 1. (3.10.44)

Introduce the following notation for the mth remainder of the power series for the function
E1/N (−x,N + 1):

σm(x) =

∞∑

ν=m

(−1)νAνx
ν .
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We have the relation

E1/N (−x,N + 1) =

2n−1∑

ν=0

(−1)νAνx
ν + σ2n(x)

=
n−1∑

k=0

(−1)n+k(An+kx
n+k −An−k−1x

n−k−1) + σ2n(x)

= (−1)n
n−1∑

k=0

(−1)kνn, k(x) + σ2n(x). (3.10.45)

By (3.10.44) and (3.10.45), we must prove that

n−1∑

k=0

(−1)kνn, k(x) + σ2n(x) > 0 for even n,

σ2n(x) <
n−1∑

k=0

(−1)kνn, k(x) for odd n,

x = (1 + qn)Rn. (3.10.46)

First, we prove the inequality

vn,1((1 + qn)Rn) < vn, 0((1 + qn)Rn), 3 ≤ n ≤
[
N

3

]
− 1 (3.10.47)

independently of the parity of n. We have the relations

vn, 0(x) = Anx
n −An−1x

n−1 = An−1x
n−1

(
xAn

An−1
− 1

)
= An−1x

n−1

(
x

Rn
− 1

)
,

vn, 1(x) = An+1x
n+1 −An−2x

n−2 = An−2x
n−2

(
x3An+1

An−2
− 1

)
= An−2x

n−2

(
x3

Rn−1RnRn+1
− 1

)
.

Therefore, inequality vn,1(x) < vn,0(x) can be rewritting in the following form:

An−2x
n−2

(
x3

Rn−1RnRn+1
− 1

)
< An−1x

n−1

(
x

Rn
− 1

)

⇐⇒ x3

Rn−1RnRn+1
− 1 <

x

Rn−1

(
x

Rn
− 1

)
.

From this we conclude that inequality (3.10.47) is equivalent to the following inequality:

(1 + qn)
3 R2

n

Rn−1Rn+1
− 1 < qn(1 + qn)

Rn

Rn−1
. (3.10.48)

Substituting qn = 1.5Rn/Rn+1 in (3.10.48) and setting tn = (1+qn)R
2
nR

−1
n−1R

−1
n+1, we rewrite (3.10.48)

in the following form:

(1 + qn)
2tn < 1 + 1.5tn ⇐⇒ (2qn + q2n)tn < 1 + 0.5tn.

It is easy to see that the last inequality holds if qn < 0.2, i.e.,

Rn

Rn+1
<

2

15
, 3 ≤ n ≤

[
N

3

]
− 1.
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From (3.1.8) we obtain

Rn+1

Rn
=

N∏

k=1

(
nN +N + k

nN + k

)
=

N∏

k=1

(
1 +

N

nN + k

)
=

N∏

k=1

(
1 +

1

n+ k/N

)

>

(
1 +

1

n+ 1

)N

≥
(
1 +

1

[N/3]

)N

≥
(
1 +

1

p

)3p

, p =

[
N

3

]
≥ 4.

Therefore, taking into account the fact that the sequence

(
1 +

1

p

)p

increases, we obtain the estimate

Rn

Rn+1
≤
(
4

5

)12

<
1

12
,

which was required.
Owing to (3.10.47), inequalities (3.10.46) can be replaced by stronger inequalities

n−1∑

k=2

(−1)kvn, k(x) + σ2n(x) > 0 for even n,

σ2n(x) <
n−1∑

k=2

(−1)kvn,k(x) for odd n,

x = (1 + qn)Rn.

Prove these inequalities. The case where n is even is simple: by Lemma 3.10.1, the sequence vn,k(x)
decreases and all its elements are positive. Therefore,

n−1∑

k=2

(−1)kvn,k(x) > 0.

The fact that the alternating sum σ2n(x) is positive follows from a similar reasoning: the first term is
positive and the moduli of terms decrease when 0 < x < R2n. Since x < Rn+1 < R2n, we obtain the
required inequality. For odd n, we reject the sum

n−1∑

k=2

(−1)kvn,k(x)

on the right-hand side (as was proved above, it is positive for for n ≥ 5 and empty for n = 3) and
keep A2nx

2n > σ2n(x) on the left-hand side. Thus, we must prove the inequality

A2nx
2n < (−1)n−1vn, n−1(x) ≡ vn, n−1(x),

which has been proved in Lemma 3.10.1. Therefore, relations (3.10.44) are verified and Theorem 3.1.3
is completely proved.

3.11. Proof of Theorem 3.1.4

If an entire function

F (z) = 1 +

∞∑

k=1

Bkz
k

of order less than 1 has only real negative roots8 (not necessarily simple), then it can be represented
in the form

F (z) =
∞∏

n=1

(
1 +

z

rn

)
,

8Here we use the term “root” instead of “zero” to avoid the inconsistent expression “negative zero.”
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where
∞∑

n=1

rn
−1 < +∞,

where rn is the sequence of all zeros of F (z) taken with opposite sign and arranged in increasing order
of their moduli with account of their multiplicity. Then

B1 =
∞∑

n=1

r−1
n , B2 =

∑

1≤p<q<+∞
(rprq)

−1.

Obviously, 2B2 < B2
1 . Therefore, we conclude that if the function Eρ(z, μ) for some positive value of

the parameter μ has only real negative roots (in this case, the order ρ of the function Eρ(z, μ) does
not exceed 1/2), then, owing to the representation

Γ(μ)Eρ(z, μ) = 1 +
∞∑

k=1

Γ(μ)

Γ(μ+ k/ρ)
zk,

we have the inequality

2
Γ(μ)

Γ(μ+ 2/ρ)
<

(
Γ(μ)

Γ(μ+ 1/ρ)

)2

.

We rewrite it in the following equivalent form:

ln 2 < ln Γ(μ)− 2 ln Γ

(
μ+

1

ρ

)
+ lnΓ

(
μ+

2

ρ

)
. (3.11.1)

We prove that for

μ ≥ 0.9 + (ρ2 ln 2)−1 − ρ−1

inequality (3.11.1) does not hold and hence not all zeros of Eρ(z, μ) are real. For this, we obtain
an upper estimate of the second difference on the right-hand side of inequality (3.11.1). The power
expansion

F (x± h) =
∞∑

k=0

F (k)(x)
hk(±1)k

k!
,

which holds for any F analytic in a neighborhood of the disk {z ∈ C | |z − x| ≤ h}, implies the identity

F (x+ h)− 2F (x) + F (x− h) = 2
∞∑


=1

F (2
)(x)
h2


(2
)!
. (3.11.2)

From (3.11.2) and the expansions

(ln Γ(z))(k) = ψ(k−1)(z) = (−1)k(k − 1)!
∞∑

m=0

(m+ z)−k

we obtain

ln Γ(x+ h)− 2 ln Γ(x) + lnΓ(x− h) =

∞∑


=1


−1
∞∑

m=0

(m+ x)−2
h2
, 0 < h < x. (3.11.3)

Since

a−p <

a+0.5∫

a−0.5

t−pdt
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for all a > 0.5 and p > 1, we have the estimate

∞∑

m=0

(m+ x)−2
 <

+∞∫

x−0.5

t−2
dt = (2
− 1)−1(x− 0.5)1−2
, x > 0.5. (3.11.4)

From (3.11.3) and (3.11.4) we obtain the inequality

ln Γ(x+h)−2 ln Γ(x)+lnΓ(x−h) <
∞∑


=1


−1(2
−1)−1h2
(x−0.5)1−2
, h > 0, x > h+0.5. (3.11.5)

We find an upper estimate of the sum on the right-hand side of (3.11.5) using the relation

∞∑


=2

1

2
(2
− 1)
=

∞∑


=2

(
1

2
− 1
− 1

2


)
= ln 2− 1

2
< 0.2.

For x > h+ 0.5, we have the relation

∞∑


=1

h2
(x− 0.5)1−2



(2
− 1)
=

h2

x− 0.5
+ h

∞∑


=2

(
h

x− 0.5

)2
−1

· 1


(2
− 1)

<
h2

x− 0.5
+

h4

(x− 0.5)3

∞∑


=2

1


(2
− 1)
<

h2

x− 0.5
+

0.4h4

(x− 0.5)3
. (3.11.6)

We denote x−0.5 by y. Then under the condition h2 < y, h > 1, from (3.11.6) and the easily verifiable
inequality

h2

y
+ 0.4

h4

y3
<

h2

y(y − 0.4)
, h > 0, y > 0.4, h2 < y,

we obtain
∞∑


=1

h2



(2
− 1)(x− 0.5)2
−1
<

h2

y − 0.4
=

h2

x− 0.9
. (3.11.7)

From (3.11.7) and (3.11.5) for h > 1 and h2 < x− 0.5 we obtain the inequality

ln Γ(x+ h)− 2 ln Γ(x) + lnΓ(x− h) <
h2

x− 0.9
. (3.11.8)

We set h = 1/ρ and x = μ+ 1/ρ. By the condition of the theorem,

μ+
1

ρ
≥ 0.9 + (ρ2 ln 2)−1,

i.e.,

y = x− 0.5 > (ρ2 ln 2)−1 > h2.

Therefore, inequality (3.11.8) can be applied to the upper estimate of the second difference from
(3.11.1), and we obtain the inequality

ln Γ(μ)− 2 ln Γ

(
μ+

1

ρ

)
+ lnΓ

(
μ+

2

ρ

)
<

h2

μ+ 1/ρ− 0.9
≤ h2ρ2 ln 2 = ln 2,

which contradicts inequality (3.11.1). Therefore, the function Eρ(z, μ) has zeros outside R for
μ ≥ 0.9 + (ρ2 ln 2)−1 − ρ−1. Theorem 3.1.4 is proved.
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3.12. Proof of Theorem 3.1.5

Lemma 3.12.1. If ρ ∈ (1/3, 1/2) and 1− 1/ρ ≤ μ < −1 or 0 < ρ ≤ 1/3 and −2 < μ < −1, then the
following inequality holds :

4Γ2(μ+ 1/ρ)

Γ(μ)Γ(μ+ 2/ρ)
< 1. (3.12.1)

Proof. Inequality (3.12.1) is equivalent to the following:

4μ(μ+ 1)(μ+ 2) <
Γ(μ+ 2/ρ)Γ(μ+ 3)

Γ(μ+ 1/r)Γ(μ+ 1/ρ)
. (3.12.2)

Note that

max
{
4μ(μ+ 1)(μ+ 2) | −2 ≤ μ ≤ −1

}
=

2√
27
.

Therefore, the left-hand side of (3.12.2) is less than 1.6. We obtain a lower estimate for the right-hand
side.

If 1/3 ≤ ρ < 1/2, then 1 ≤ μ + 1/ρ < 2¡1 < μ + 2 < 2. Therefore, owing to the inequalities
0.8 < Γ(t) ≤ 1, 1 ≤ t ≤ 2, the lower estimate

Γ(μ+ 3)

Γ(μ+ 1/ρ)
> 0.8

is valid. In addition, setting μ+ 1/ρ = τ , we have

Γ(μ+ 2/ρ)

Γ(μ+ 1/r)
=

Γ(τ + 1/ρ)

Γ(τ)
>

Γ(τ + 2)

Γ(τ)
= τ(τ + 1) ≥ 2.

(Note that since Γ(x) increases on the ray x ≥ 2 and the inequality 3 ≤ t + 2 < t + 1/ρ holds, we
have the inequality Γ(t+ 1/ρ) > Γ(t+ 2).) This implies that the right-hand side of (3.12.2) is greater
than 1.6, and inequality (3.12.2) is proved.

If 1/4 ≤ ρ < 1/3, then 3 − 1/ρ < 0, and from the Lagrange intermediate-value theorem for
derivatives, we obtain the estimate (ξ ∈ (μ+ 3,m+ 1/ρ))

ln Γ(μ+ 3)− ln Γ

(
μ+

1

ρ

)
=

(
3− 1

ρ

)
ψ′(ξ) ≥

(
3− 1

ρ

)
max

{
ψ+(t)

∣∣∣∣ μ+ 3 ≤ t ≤ m+
1

ρ

}

≥
(
3− 1

ρ

)
ψ(3) ≥ −ψ(3) > −1.

Therefore, the right-hand side of (3.12.2) is greater than

Γ(μ+ 2/ρ)

eΓ(μ+ 1/ρ)
=

Γ(τ + 1/ρ)

eΓ(τ)
≥ τ + 3

eΓ(τ)
=
τ(τ + 1)(τ + 2)

e
≥ 6

e
> 2,

which proves the required inequality in the case considered.
If ρ < 1/4, then we have the relation (τ = μ+ 1/ρ)

ln Γ(μ+ 3)− ln Γ

(
1 +

1

ρ

)
≥
(
3− 1

ρ

)
ψ(τ), ln Γ

(
τ +

1

ρ

)
− ln Γ(τ) ≥ 1

ρ
ψ(τ).

since ψ increases; therefore, the right-hand side of (3.12.2) is greater than

exp
(
3ψ(τ)

)
> exp

(
3ψ(2)

)
= exp

(
3(1− γ)

)
> e.

The lemma is completely proved.
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The proof of Theorem 3.1.5 is based on the same ideas as the proof of Theorems 3.1.1 and 3.1.2.
We start from the proof of the inequalities

Eρ(−R1;μ) > 0, Eρ(−2R1;μ) < 0, (3.12.3)

where

R1 =
Γ(μ+ 1/ρ)

Γ(μ)
.

Recall (this will be extensively used) that Γ(μ) > 0 for −2 < μ < −1. We have the relations

Eρ(−R1;μ) =
∞∑

k=2

(−1)kRk
1

Γ(μ+ k/ρ)
, (3.12.4)

Γ(μ)Eρ(−2R1;μ) = −1 +
4Γ2(μ+ 1/ρ)

Γ(μ)Γ(μ+ 2/ρ)
+

∞∑

k=3

(−1)k(2R1)
kΓ(μ)

Γ(μ+ k/ρ)
. (3.12.5)

The sum of the alternating series (3.12.4) is positive since the moduli of its terms decrease:

Rk+1
1

Γ
(
μ+ (k + 1)/ρ

) < Rk
1

Γ(μ+ k/ρ)
⇐⇒ Γ(μ+ 1/ρ)

Γ(μ)
<

Γ
(
μ+ (k + 1)/ρ

)

Γ(μ+ k/ρ)
. (3.12.6)

Since the sequence of ratios

{
Γ(μ+ (k + 1)/ρ)

Γ(μ+ k/ρ)

}

k∈N
increases, it suffices to prove inequality (3.12.6)

only for k = 1. This immediately follows from Lemma 3.12.1. The first inequality (3.12.3) is proved.
The sum of the alternating series in (3.12.5) is negative since the sequence of the moduli of its terms

is monotonic; we must verify the inequality

2Γ(μ+ 1/ρ)

Γ(μ)
<

Γ
(
μ+ (k + 1)/ρ

)

Γ(μ+ k/ρ)
,

which also follows from Lemma 3.12.1. Therefore,

Γ(μ)Eρ(−2R1;μ) < −1 +
4Γ2(μ+ 1/ρ)

Γ(μ)Γ(μ+ 2/ρ)
.

By Lemma 3.12.1, the last expression is negative. Inequalities (3.12.3) are proved.
As in the proof of Theorem 3.1.1, the cases 0 < ρ ≤ 1/6 and 1/6 < ρ < 1/2 are examined separately.

We start from the values ρ ∈ (1/6, 1/2). Prove the relations

sgnEρ

(− ξ1/ρn (ρ, μ);μ
)
= (−1)n ∀n ∈ N, n ≥ 2, (3.12.7)

2R1 < ξ
1/ρ
2 (3.12.8)

(as a rule, for brevity we omit the arguments ρ and μ of ξn and Rn). From (3.12.7) we obtain the

existence of at least one zero of the function Eρ(z;μ) on each of the intervals
( − ξ

1/ρ
n+1;−ξ1/ρn

)
for

all n ≥ 2, and from (3.12.3), (3.12.7), and (3.12.8) we obtain the existence of zeros on the intervals( − ξ
1/ρ
2 ;−2R1

)
, (−2R1,−R1). Therefore, for any n ∈ N, n ≥ 2, the interval

( − ξ
1/ρ
n , 0

)
of the real

axis contains no less than n zeros of the function Eρ(z;μ). On the other hand, by Theorems 2.1.4

and 2.2.2, for any sufficiently large n, the disk |z| ≤ ξ
1/ρ
n contains exactly n zeros of the Mittag-Leffler

function. This means that all zeros are real, negative, and simple.
Now we prove relations (3.12.8) and (3.12.7). Write inequality (3.12.8) in detailed form:

2Γ(μ+ 1/ρ)

Γ(μ)
<

(
π
(
2 + ρ(μ− 1)

)

sinπρ

)1/ρ

. (3.12.9)
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The restrictions of Theorem 3.1.5 on the parameter μ imply the estimate 2 + ρ(μ − 1) ≥ 1. We also
have the inequality

1

Γ(μ)
=
μ(μ+ 1)(μ+ 3)

Γ(μ+ 3)
≤ 2√

27Γ(μ+ 3)
<

1

2
, μ ∈ (−2,−1).

Here we have applied the well-known estimate 1/Γ(x) < 1.2, 1 < x < 2. Therefore, (3.12.9) can be
replaced by the stronger but simpler inequality

Γ(μ+ 1/ρ) <

(
π

sinπρ

)1/ρ

,

which can be easily proved. If 1/4 < ρ < 1/2, then 1 ≤ μ+ 1/ρ < 3 and

Γ

(
μ+

1

ρ

)
< 2,

but

(π cosecπρ)1/ρ > π1/ρ > π2.

If 1/6 < ρ ≤ 1/4, then

Γ

(
μ+

1

ρ

)
≤ Γ

(
1

μ
− 1

)
< Γ(5) = 24,

but

(π cosecπρ)1/ρ > π4.

We prove equalities (3.12.7). Denote λ by μ+ 1/ρ. We have the inequalities

1 ≤ λ <
1

ρ
− 1,

1

3
< ρ <

1

2
,

1 ≤ 1

ρ
− 2 < λ <

1

ρ
− 1, 0 < ρ ≤ 1

3
.

(3.12.10)

By the identity

Eρ(z;μ) =
1

Γ(μ)
+ zEρ(z;λ), ξn(ρ, μ) = ξn−1(ρ, λ)

relations (3.12.7) are equivalent to the following:

sgn

[
Eρ

(− ξ1/ρm (ρ, λ);λ
)− 1

Γ(μ)ξ
1/ρ
m (ρ, λ)

]
= (−1)m ∀m ∈ N. (3.12.11)

In the proof of Theorem 3.1.1, we obtained the equalities

sgnEρ

(− ξ1/ρm (ρ, λ);λ
)
= (−1)m ∀m ∈ N, 1/6 < ρ < 1/2. (3.12.12)

Clearly, for odd m, equalities (3.12.12) are stronger than (3.12.11), and conversely for even m. There-
fore, in the case 1/6 < ρ < 1/2 it remains to deduce the inequalities

Eρ

(− ξ1/ρm (ρ, λ);λ
)
>

1

Γ(μ)ξ
1/ρ
m (ρ, λ)

for any even m. (3.12.13)

The estimates of the remainder in the representation of the function Eρ(z;λ) (Theorems 1.5.3

and 1.5.4), the expression 2ρξ1−λ
m exp(ξm cosπρ) for the principal term at the point z = −ξ1/ρm for
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even m, and the estimate of the second term (see Sec. 3.8) imply the following inequalities, which are
valid for arbitrary λ ∈ (0, 1/ρ]:

Eρ(−ξ1/ρm ;λ) >

⎧
⎪⎪⎨

⎪⎪⎩

2ρξ1−λ
m exp(ξm cosπρ)− 1.5ξ

−1/ρ
m , 0.4 ≤ ρ < 0.5,

2ρξ1−λ
m exp(ξm cosπρ)− 0.74ξ−λ

m , 0.25 < ρ < 0.4,

1.96ρξ1−λ
m exp(ξm cosπρ)− 0.74ξ−λ

m ,
1

6
< ρ ≤ 1

4
.

(3.12.14)

From (3.12.14), (3.12.10), and the estimate 0 < 1/Γ(μ) < 1/2, −2 < μ < −1, obtained above, we see
that inequality (3.12.13) follows from the inequalities

ξ−1/ρ
m < ρξ1−λ

m exp(ξm cosπρ), 0.4 ≤ ρ < 0.5, 1 ≤ λ <
1

ρ
− 1,

0.5ξ−1/ρ
m + 0.74ξ−λ

m < 1.96ρξ1−λ
m exp(ξm cosπρ),

1

6
< ρ < 0.4, 1 ≤ λ <

1

ρ
− 1.

(3.12.15)

Multiplying inequalities (3.12.15) by ξλ−1
m and applying the estimates ξm > 1 (see Secs. 3.5–3.7) and

λ− 1− 1/ρ ≤ −2, we reduce the problem to the proof of the following inequalities:

ξ−2
m < ρexp(ξm cosπρ), 0.4 ≤ ρ < 0.5, 1 ≤ λ <

1

ρ
− 1,

0.5ξ−2
m + 0.74ξ−1

m < 1.96ρξ1−λ
m exp(ξm cosπρ),

1

6
< ρ < 0.4, 1 ≤ λ <

1

ρ
− 1.

(3.12.16)

We obtain a more exact lower estimate for ξm = ξm(ρ, λ). Since λ ≥ 1 and m ≥ 2, we have

ξm(ρ, λ) =
π
(
m+ ρ(λ− 1)

)

sinπρ
≥ πm

sinπρ
> 2π. (3.12.17)

From (3.12.17) and the trivial estimate exp(ξm cosπρ) > 1 we immediately obtain (3.12.16). The
proof of the theorem for values ρ ∈ (1/6, 1/2) is complete.

In the case ρ ∈ (0, 1/6], inequality (3.12.13) must be proved for any even m ≥ [1/(3ρ)]. Arguing as
above, we obtain the existence of at least one zero of the function Eρ(z;μ) on each of the intervals

(
−ξ1/ρn+1(ρ, μ), −ξ1/ρn (ρ, μ)

)
, n ≥

[
1

3ρ

]
+ 1 =M.

We must also prove the equalities (for n = 1 this has been done in (3.12.3) and the inequality
Eρ(−R1(ρ, μ);μ) > 0 was proved)

sgnEρ

(
−Rn (ρ, μ)

2
;μ

)
= (−1)n−1 , 2 ≤ n ≤M, (3.12.18)

sgnEρ (−2Rn (ρ, μ) ;μ) = (−1)n , 1 ≤ n ≤M − 1. (3.12.19)

This, together with the inequalities

0 < R1 < 2R1 <
1

2
R2 < 2R2 <

1

2
R3 < . . . < 2RM−1 <

1

2
RM < ξ

1/ρ
M (3.12.20)

yields the existence (the signs of the function Eρ at the points −RM/2 and −ξ1/ρM are different) of no

less than M zeros on the interval
(
−ξ1/ρM , 0

)
. Then we obtain that on the interval

(
−ξ1/ρn (ρ, μ), 0

)
for

any n ≥M , the function Eρ(z;μ) has no less than n distinct zeros. Applying the theorem from Chap. 2

that asserts that in the disk |z| ≤ ξ
1/ρ
n (ρ, μ), 0 < ρ < 1/2 (where n ∈ N is an arbitrary sufficiently

large number), the function Eρ(z;μ) has exactly n zeros, we conclude that it has no other zeros except
for real and negative ones. If we prove inequalities (3.12.20), then the proof of Theorem 3.1.5 will be
complete.
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The inequality RM < ξ
1/ρ
M is proved in Lemma 3.1.1 since

RM (ρ, μ) = RM−1(ρ, λ), ξM (ρ, μ) = ξM−1(ρ, λ), where λ = μ+
1

ρ
.

The inequality 4RN < RN+1 for n = 1 was proved in the lemma, and for 2 ≤ n ≤M − 1 (m = n− 1,
(m+ 1)ρ ≤ 1/3), by Lemma 3.9.1, we have the inequality

Rn(ρ, μ)

Rn+1(ρ, μ)
=

Rm(ρ, λ)

Rm+1(ρ, λ)
< exp

(
− 1

ρ(m+ ρλ)

)
< exp

(
− 1

ρ(m+ 1)

)
< e−3 <

1

20
.

We prove Eqs. (3.12.18). From the power expansion of the Mittag-Leffler function we obtain

Eρ

(
−Rn

2
;μ

)
= Sn,0 +

(
(−1)n−1

2
An−1

(
Rn

2

)n−1

+ (−1)nAn

(
Rn

2

)n
)

+ Sn,1, (3.12.21)

where

Sn,0 =

n−2∑

k=0

(−1)kAk

(
Rn

2

)k

+
(−1)n−1

2
An−1

(
Rn

2

)n−1

, Sn,1 =

∞∑

k=n+1

(−1)kAk

(
Rn

2

)k

.

From the definition of Rn = An−1/An we conclude that the parenthesized expression on the right-hand
side of (3.12.21) vanishes. Therefore,

Eρ

(
−Rn

2
;μ

)
= Sn,0 + Sn,1. (3.12.22)

The moduli of terms of the alternating sum Sn,1 decrease; indeed, the ratio of any subsequent term
to the preceding is equal to

Ak+1(Rn/2)
k+1

Ak(Rn/2)k
=

Rn

2Rk+1
<

Rn

Rn+1
< 1

since the sequence Rn increases. Therefore, the sign of the sum Sn,1 coincides with the sign of its
maximal (in modulus) term:

sgnSn,1 = (−1)n+1 = (−1)n−1. (3.12.23)

The moduli of terms of the alternating sum Sn,0 increase; we can similarly verify that the maximal
ratio of a subsequent term to the previous is equal to 4Rn−1/Rn < 1. Therefore, the sign of the sum
Sn,0 coincides with the sign of its maximal (in modulus) term:

sgnSn,0 = (−1)n−1. (3.12.24)

From (3.12.22)–(3.12.24) we obtain (3.12.18).
Prove equalities (3.12.19). Rejecting in the expansion of Eρ(−2Rn;μ) the part

(−1)n−1An−1 (2Rn)
n−1 +

(−1)n

2
An (2Rn)

n,

which is equal to zero, we obtain the representation

Eρ(−2Rn;μ) = σn,0 + σn,1, (3.12.25)

where

σn,0 =
n−2∑

k=0

(−1)kAk (2Rn)
k , σn,1 =

(−1)n

2
An (2Rn)

n +
∞∑

k=n+1

(−1)kAk (2Rn)
k .

We can easily verify that the moduli of terms of the sum σn,0 increase and hence

sgnσn,0 = (−1)n−2 = (−1)n. (3.12.26)
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The maximal ratio of moduli of terms of the sum σn,1 is equal to

4Rn

Rn+1
< 4 exp

(
− 1

ρ(n+ ρμ)

)
< 4 exp

(
− 1

nρ

)
≤ 4e−2;

here we have use Lemma 3.9.1 and the inequality

− 1

nρ
≤ −2 ⇐⇒ 2nρ ≤ 1,

which follows from the estimate

2ρ

(
1 +

[
1

3ρ

])
≤ 2ρ

(
1 +

1

3ρ

)
= 2ρ+

2

3
≤ 1, 0 < ρ ≤ 1

6
.

This means that 4Rn/Rn+1 < 1 and hence the moduli of terms of the sum σn,1 decrease and sgnσn,1 =
(−1)n. From this, (3.12.25), and (3.12.26) we obtain (3.12.19).

It remains to prove inequalities (3.12.13) for any even m ≥ [1/(3ρ)]. By the method applied to the
case 1/6 < ρ ≤ 1/4 and reasoning similarly to Sec. 3.8, we reduce the problem to the proof of the
inequality

0.5ξ−1/ρ
m + 0.74ξ−λ

m < 1.92ρξ1−λ
m exp(ξm cosπρ), m ≥

[
1

3ρ

]
.

Replace this inequality by the following stronger inequality:

1.24 < 1.92ρξ1−λ
m exp(ξm cosπρ). (3.12.27)

Since

λ = μ+
1

ρ
≥ −2 +

1

ρ
≥ 4 > 1,

we have

ρξm =
πρ
(
m+ ρ(λ− 1)

)

sinπρ
>

πρm

sinπρ
> m.

Since exp(ξm cosπρ) > 1, inequality (3.12.27) is valid. Theorem 3.1.5 is proved.

Chapter 4

NONASYMPTOTIC PROPERTIES OF ZEROS

4.1. Real zeros

In this section, for real μ we solve the problem on the number of positive (for ρ ≥ 1) and negative
(for ρ > 1) roots of the function Eρ(z;μ). Here and in the sequel, we use the term “root” instead of
“zero” to avoid the inconsistent expressions “positive zero” and “negative zero.”

4.1.1. Negative roots.

Theorem 4.1.1. Let ρ > 1. Then the following assertions hold :

(1) if

μ ∈
( ∞⋃

n=0

[
−n+

1

ρ
,−n+ 1

])
∪ [1,+∞)

then the function Eρ(z;μ) has no negative roots ;
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(2) if

μ ∈
∞⋃

n=0

(
−n,−n+

1

ρ

)
,

then the function Eρ(z;μ) has a unique negative root, and this root is simple.

The case ρ = 1 will be considered in Sec. 4.5.

Proof. The proof is based on formulas (1.1.14), (1.1.12), and (1.1.10), which holds for ρ > 1 and
μ < 1 + 1/ρ. For z = −r, we rewrite these formulas in the form

E(r) :=
1

ρ
rρ(μ−1)Eρ(−r;μ) =

∞∫

0

e−(tr)ρtρ(1−μ)g(t)dt, r > 0, (4.1.1)

g(t) =
t sinπμ+ sinπ(μ− 1/ρ)

π(t2 + 2t cosπ/ρ+ 1)
, t > 0.

We see that the number −r0 (where r0 > 0) is a negative root of the function Eρ(z;μ) if and only
if the number r0 is a positive root of the function E(r) of the same multiplicity.

(1) If −n+ 1/ρ ≤ μ ≤ −n+ 1, n ∈ Z+, then either the numbers

sinπμ, sinπ

(
μ− 1

/
ρ

)
(4.1.2)

have the same signs or one of them is equal to zero. Therefore, for such μ the function g(t) preserves
its sign on R+, namely, sign g(t) = (−1)n, t > 0. By (4.1.1),

signEρ(x;μ) = (−1)n, x < 0, −n+
1

ρ
≤ μ ≤ −n+ 1, n ∈ Z+, (4.1.3)

and the function Eρ(z;μ) does not vanish on the negative real half-line. In assertion (1), it remains
to consider values μ > 1.

Let 1 < μ < 1 + 1/ρ. Then Eρ(0;μ) > 0. Theorem 1.2.1 implies that Eρ(x;μ) > 0 also in
an appropriate neighborhood of the point −∞. Therefore, either E(r) has no positive roots or the
number of them (with account of their multiplicities) is even.

Assuming that r0 is a root of E(r), we consider the function

G(t) =

∞∫

t

e−(r0t)ρtρ(1−μ)g(t)dt, t ≥ 0. (4.1.4)

Then G(0) = 0. Since 1 < μ < 1 + 1/ρ, the first number of (4.1.2) is negative and the second is
positive. Therefore, g(t) has a unique positive root t0 and, moreover,

g(t) > 0 for 0 < t < t0 , g(t) < 0 for t > t0. (4.1.5)

From (4.1.4) we see that

signG′(t) = − sign g(t)

and hence G(t) decreases on [0, t0] and increases on [t0,∞). But G(0) = 0 and G(t) < 0 for t > t0.
Therefore, G(t) < 0 for t > 0.

From (4.1.1) we obtain that

E′(r0) = ρrρ−1
0

∞∫

0

tρdG(t).
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Integrating by parts, we obtain the formula

E′(r0) = −ρ2rρ−1
0

∞∫

0

tρ−1G(t)dt. (4.1.6)

This and the negativeness of G(t) imply that the derivative of the function E(r) at its possible positive
root is necessarily positive. However, this is impossible since the number of positive roots of E(r)
is even. Therefore, for 1 < μ < 1 + 1/ρ the function Eρ(z;μ) has no negative roots; moreover,
Eρ(x;μ) > 0 for x < 0.

The last inequality and formula (4.1.3) with n = 0 show that

Eρ(x;μ) > 0 for x < 0 (4.1.7)

if 1/ρ ≤ μ < 1 + 1/ρ. This and the formula

Eρ(z;μ) = μEρ(z;μ+ 1) +
z

ρ
E′

ρ(z;μ+ 1) (4.1.8)

imply that if 1/ρ ≤ μ < 1+1/ρ, then the derivative of the function Eρ(z;μ+1) at its possible negative
root is negative. Again, the function Eρ(z;μ + 1) is positive at the origin and (by Theorem 1.2.1)
in a neighborhood of the point −∞. Therefore, the function Eρ(z;μ + 1) has no negative roots
for 1/ρ ≤ μ < 1 + 1/ρ, i.e., the function Eρ(z;μ) has no negative roots for 1 + 1/ρ ≤ μ < 2 + 1/ρ;
moreover, such μ satisfy property (4.1.7). Repeating this reasoning, we obtain property (4.1.7) for
2 + 1/ρ ≤ μ < 3 + 1/ρ, etc. Finally, we obtain the absence of negative roots of the function Eρ(z;μ)
for μ > 1. Assertion (1) is proved.

(2) Let μ ∈ (−n,−n+ 1) and n ∈ Z+. Then

signEρ(0;μ) = signΓ(μ) = (−1)n,

and by Theorem 1.2.1

signEρ(x;μ) = signΓ

(
μ− 1

ρ

)
= (−1)n−1, x < −R,

for sufficiently large R > 0. Therefore, at the origin and in a neighborhood of the point −∞ the
function Eρ(x;μ) has values of opposite signs; therefore, it has at least one negative root. We must
prove that it is unique and simple.

Now numbers (4.1.2) have opposite signs and

sign g(t) = sign sinπμ = (−1)n, t > t0,

where t0 is a unique root of the function g(t). Reasoning as in the case 1 < μ < 1 + 1/ρ, we conclude
that

signG(t) = (−1)n, t > 0.

By (4.1.6), the derivative of the function E(r) at each of its positive roots has the same sign, which
is possible only if the root is unique and simple. Assertion (2) is proved. Theorem 4.1.1 is now
completely proved.

Remark 4.1.1. In the sequel, it will be important that property (4.1.7) holds for ρ > 1 and 1 < μ <
1 + 1/ρ (this was established in the proof of Theorem 4.1.1).
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4.1.2. Positive roots. First, we recall some facts that immediately follow from the definition: for
μ ≥ 0, the function Eρ(x;μ) is positive on the half-line x > 0 and, therefore, has no positive roots,
and for μ = −m, m ∈ Z+, it has a root at the point x = 0: simple if ρ > 1 and (m + 1)-multiple if
ρ = 1.

Theorem 4.1.2.
(I). Let ρ > 1 and μ < 0. Then the following assertions hold :

(1) if μ ∈ [−2n− 1,−2n), n ∈ Z+, then the function Eρ(z;μ) has a unique positive simple root ;
(2) if μ ∈ [−2n,−2n+1), n ∈ N, then one of the following possibilities is realized : the set of positive

roots of the function Eρ(z;μ) is empty, or consists of two simple roots, or consists of one double
root ; more precisely, there exist sequences νn and μn, n ∈ N, such that −2n+1/ρ < νn ≤ μn <
−2n+ 1 and
(a) for −2n ≤ μ < νn, the function Eρ(z;μ) has no positive roots ;
(b) for μn < μ < −2n+ 1, the function Eρ(z;μ) has two simple positive roots;
(c) for μ = νn, μn, the function Eρ(z;μ) has a double positive root.

(II). The function E1(z;μ) has a unique positive simple root if μ ∈ (−2n − 1,−2n), n ∈ Z+, and
has no positive roots if μ ∈ [−2n,−2n+ 1], n ∈ N.

Proof. (I). From representations (1.1.16), (1.1.12), and (1.1.10) we obtain the formula

E(r) = E(r;μ) :=
1

ρ
rρ(μ−1)Eρ(r;μ) = er

ρ
+

∞∫

0

e−(rt)ρtρ(1−μ)g(t)dt, r > 0, (4.1.9)

which is valid for ρ > 1 and μ < 1 + 1/ρ, where

g(t) =
t sinπμ− sinπ(μ− 1/ρ)

π(t2 − 2t cosπ/ρ+ 1)
, t > 0. (4.1.10)

(1) Let μ ∈ (−2n − 1,−2n), n ∈ Z+. Then Γ(μ) < 0 and Eρ(0, μ) < 0; since Eρ(+∞;μ) = +∞
(this follows from the definition), the function E(r) (r > 0) has at least one root.

If μ = −2n − 1, then 1/Γ(μ) = Eρ(0;μ) = 0. But Γ(μ + 1/ρ) < 0 (here the condition ρ > 1 is
important) and hence E′

ρ(0;μ) < 0. Therefore, Eρ(r;μ) < 0 for sufficiently small r > 0, and again
E(r) has at least one root.

We prove that for μ ∈ [−2n− 1,−2n), the root of the function E(r), r > 0, is unique and simple.
We keep notation (4.1.4) for G(t), where r0 is some positive root of E(r). We claim that G(t) < 0

for t > 0.
Indeed, if −2n− 1 ≤ μ ≤ −2n− 1 + 1/ρ, then the numbers

sinπμ, − sinπ(μ− 1/ρ) (4.1.11)

are not positive and do not vanish simultaneously. Therefore, g(t) < 0 for t > 0, and hence G(t) < 0
for t > 0.

If −2n − 1 + 1/ρ < μ < −2n, then we set r = r0 in (4.1.9). Since E(r0) = 0, we obtain that
G(0) = − exp(rρ0) < 0. Now the first of the numbers (4.1.11) is negative and the second is positive.
Therefore, similarly to the case 1 < μ < 1 + 1/ρ in Theorem 4.1.1, we see that inequalities (4.1.5)
hold. This implies (see the reasonings after (4.1.5)) that G(t) < 0 for t > 0. The assertion on the sign
of G(t) is proved.

By (4.1.9),

E′(r) = E′(r;μ) = ρrρ−1

⎛

⎝erρ −
∞∫

0

e−(rt)ρtρ(2−μ)g(t)dt

⎞

⎠ . (4.1.12)
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Therefore,

E′(r0) = ρrρ−1
0

⎛

⎝er
ρ
0 +

∞∫

0

tρdG(t)

⎞

⎠ ,

and after integration by parts we have the expression

E′(r0) = ρrρ−1
0

⎛

⎝er
ρ
0 − ρ

∞∫

0

tρ−1G(t)dt

⎞

⎠ .

Since G(t) < 0, we obtain that the derivative of the function E(r) at its positive root is positive, which
is possible only in the case of a unique simple root. Assertion (1) is proved.

(2) Let μ ∈ [−2n,−2n+1), n ∈ N. Then μ− 1 ∈ [−2n− 1,−2n), and by assertion (1) the function
Eρ(z;μ− 1) has a unique positive simple root. By the formula

E′(r;μ) = ρrρ−1E(r;μ− 1), (4.1.13)

which follows from (4.1.12), (4.1.9), and (4.1.10), the derivative E′(r;μ) for r > 0 has a unique simple
root. This and the property

E(+0;μ) = E(+∞;μ) = +∞
imply that either E(r) has no roots or has two simple roots or has one double root. We have proved
the first claim of assertion (2).

If μ ∈ [−2n,−2n+ 1/ρ], then numbers (4.1.11) are nonnegative and do not vanish simultaneously.
Therefore, g(t) > 0 for t > 0, and (4.1.9) implies that for such μ the function Eρ(z;μ) has no positive
roots.

Let μ→ −2n+ 1− 0, where n is fixed. Then

Eρ(z;μ) → Eρ(z;−2n+ 1)

uniformly in any disk. But the function Eρ(z;−2n+ 1) has a simple root at the point z = 0 and has
no other roots in some neighborhood U(0) of the origin. By the Hurwitz theorem, for all μ sufficiently
close to −2n+ 1 and such that μ < −2n+ 1, the function Eρ(z;μ) has exactly one root in U(0). By
Theorem 4.1.1, for such values of μ the function Eρ(z;μ) has no negative roots. If U(0) contains a
nonreal root z1, then the conjugate root z̄1 would also lie in U(0) (since Eρ(x;μ) is real). Therefore,
the neighborhood U(0) must contain a simple positive root of the function E(r). In this case, by the
conclusion after formula (4.1.13), the function E(r) has two simple positive roots if μ < −2n+ 1 and
μ is sufficiently close to −2n+ 1. Denote ny μn the infimum of such μ.

The following auxiliary assertion holds. Let, for some μ0 ∈ (−2n,−2n+ 1), the function Eρ(x;μ0)
possess one of the following properties:

(1) it has no positive roots;
(2) it has two simple positive roots.

Then for all μ from some (real) neighborhood of the point μ0, the function Eρ(x;μ) possesses the same
property.

Indeed, we introduce the notation

m(μ) = min(Eρ(x;μ) : x ∈ [0,+∞)).

Since

Eρ(0;μ0) > 0, Eρ(+∞;μ0) = +∞,

we have

m(μ0) > 0 in the case (1), m(μ0) < 0 in the case (2).
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By the continuity of the function m(μ), the last inequalities are valid in some neighborhood of the
point μ0, and the assertion stated holds.

We prove that for μ = μn, the function Eρ(x;μ) has a double positive root. Indeed, in the opposite
case, by the conclusion stated after formula (4.1.13), the function Eρ(x;μn) either has two positive
simple roots or has no roots at all. By the auxiliary assertion, this is also valid for the function Eρ(x;μ)
from some neighborhood of the point μn. However, this contradict the sense of the value μn.

Similarly, if we denote by νn the supremum of numbers μ > −2n for which Eρ(z;μ) has no positive
roots, then Eρ(z; νn) has a double positive root and −2n+ 1/ρ < νn. Obviously, νn ≤ μn, and Part (I)
of Theorem 4.1.2 is proved.

(II). Let μ < 2. Passing to the limit in formulas (4.1.9) and (4.1.10) as ρ → 1 + 0, we obtain that
formula (4.1.9) remains valid for ρ = 1 and formula (4.1.10) becomes

g(t) =
sinπμ

π(t+ 1)
.

If μ ∈ [−2n,−2n+1], n ∈ N, then g(t) ≥ 0 for t > 0, and by (4.1.9) we see that E(r) > 0 for r > 0.
Therefore, for such μ, the function Eρ(z;μ) has no positive roots.

If μ ∈ (−2n− 1,−2n), n ∈ Z+, then

E1(0;μ) < 0, E1(+∞;μ) = +∞.

Therefore, E1(x;μ) has at least one positive root. The fact that this root is unique and simple can
be proved as in assertion (1) of Part (I). The proof is based on the negativeness of the function G(t)
for t > 0, but this property holds in the present case since g(t) < 0 for t > 0 with the specified values
of μ. We have verified Part (II). Theorem 4.1.2 is completely proved.

Remark 4.1.2. Assertion (2) of Part (I) characterizes positive roots for μ ∈ [−2n,−2n+ 1), n ∈ N

incompletely. We venture to suggest that νn = μn as a matter of fact.

4.1.3. Behavior of real roots. Let ρ > 1. For μ ∈ (−n,−n+1/ρ), n ∈ Z+, by Theorem 4.1.1, the
function Eρ(z;μ) has a unique negative root; we denote it by x−(μ). For μ ∈ [−2n− 1,−2n), n ∈ Z+,
by Theorem 4.1.2, the function Eρ(z;μ) has a unique positive simple root; we denote it by x+(μ).
The two positive simple roots Eρ(z;μ) in the case μ ∈ (μn,−2n+1) are denoted by x1+(μ) and x

2
+(μ);

assume that x1+(μ) < x2+(μ). The double positive root of the function Eρ(z;μ) in the case μ = μn is
denoted by x∗+(μn). We keep the notation x+(μ) in the case ρ = 1.

Theorem 4.1.3. (1) Let ρ > 1. Then the following assertions hold :

x+(μ) → 0 as μ→ −2n− 0, n ∈ Z+,

x+(μ) → x+(−2n− 1) as μ→ −2n− 1 + 0, n ∈ Z+,

x−(μ) → 0 as μ→ −n+ 0, n ∈ Z+,

x−(μ) → −∞ as μ→ −n+
1

ρ
− 0, n ∈ Z+,

x1+(μ), x
2
+(μ) → x∗+(μn) as μ→ μn + 0, n ∈ N,

x1+(μ) → 0, x2+(μ) → x+(−2n+ 1) as μ→ −2n+ 1− 0, n ∈ N.

(2) If ρ = 1, then

x+(μ) → 0 as μ→ −2n− 1 + 0 and as μ→ −2n− 0, n ∈ Z+.

Proof. The point x = 0 is a simple root of the function Eρ(x;−2n). Therefore, for any sufficiently
small ε > 0, the values Eρ(±ε;−2n) have opposite signs. By the continuity of the function Eρ(±ε;μ)
by the variable μ for all μ sufficiently close to −2n and less than −2n, values of Eρ(±ε;μ) have opposite
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signs and hence in an ε-neighborhood of the point x = 0, there exists a root of the function Eρ(x;μ),
which is obviously nonzero. By Theorem 4.1.1, for such μ, the function Eρ(x;μ) has no negative roots.
Therefore, the root in question is x+(μ) and x+(μ) → 0 as μ→ −2n− 0.

In the case μ → −2n − 1 + 0, we replace a neighborhood of the point x = 0 by a neighborhood
of the point x+(−2n − 1), and all arguments are similar (and even simpler since we do not need
Theorem 4.1.1). We have proved the first two limit relations.

For similar reasons, for μ sufficiently close to −n and such that μ > −n, a punctured neighborhood
of the point x = 0 contains a root of the function Eρ(x;μ). For even n, it cannot be positive
by Theorem 4.1.2, and for odd n, a unique positive root of Eρ(x;μ) lies in a neighborhood of the
point x+(−2n − 1) by the second limit relation of Theorem 4.1.3. Therefore, this root is x−(μ), and
x−(μ) → 0 as μ→ −n+ 0. We have proved the third limit relation.

Let μ→ −n+ 1/ρ− 0. Then
Eρ(x;μ) → Eρ(x;−n+ 1/ρ)

uniformly on each segment. By Theorem 4.1.1, the function Eρ(x;−n + 1/ρ) has no negative roots;
obviously, the point x = 0 is not a root. Assume that there exist R > 0 and a sequence μj →
−n+ 1/ρ− 0 such that

−R ≤ x−(μj) < 0.

Then, extracting from the sequence x−(μj) a converging subsequence and using the uniform conver-
gence, we conclude that its limit x− is a root of the function Eρ(x;−n+ 1/ρ), which is impossible
since x− ∈ [−R, 0]. This means that the fourth limit relation of Theorem 4.1.3 is valid.

The fifth limit relation follows from the Hurwitz theorem. The proof of the sixth relation is similar
to that of the first two. Part (1) of Theorem 4.1.3 is proved.

Part (2) can be proved similarly to the first limit relation of part (1). Theorem 4.1.3 is completely
proved.

Theorems 4.1.1 and 4.1.2 imply the following assertion.

Corollary 4.1.1. For ρ > 1 and μ ∈ R, the function Eρ(z;μ) has no real roots of multiplicity higher
than 2.

4.2. Distribution of Roots in Angles

4.2.1. Absence of roots on the right-hand angle. Let ρ > 1/2, μ be real, and μ ≤ 1 + 1/ρ.
Then by Theorem 2.1.1, all sufficiently large (in modulus) roots of the function Eρ(z;μ) lie outside
the angle

| arg z| ≤ π

2ρ
. (4.2.1)

In this section, we describe a possibly wide set of pairs of the parameters ρ > 1/2 and μ ∈ R such that
all roots of the function Eρ(z;μ) lie outside the angle (4.2.1). Theorem 2.1.1 shows that the condition
μ ≤ 1 + 1/ρ is necessary.

Theorem 4.2.1.
(I). Let one of the following conditions hold :

(1) ρ > 1, μ ∈ [1, 1 + 1/ρ];
(2) 1/2 < ρ < 1, μ ∈ [1/ρ− 1, 1] ∪ [1/ρ, 2].

Then all roots of the function Eρ(z;μ) lie outside the angle (4.2.1).
In particular, all roots of the classical Mittag-Leffler function Eρ(z; 1), ρ > 1/2, ρ 	= 1, lie outside

the angle (4.2.1).
(II). If 1/2 < ρ < 1 and μ = 0, then all nonzero roots of the function Eρ(z;μ) lie outside the

angle (4.2.1).

330



The case ρ = 1 will be considered in detail below.

Lemma 4.2.1. Let f(x), x > 0, be a nontrivial real-valued function of class L1(R+), which does not
change sign on R+. Then its Laplace transform

F (z) =

∫

R+

e−zvf(v)dv, Re z ≥ 0, (4.2.2)

is continuous in the closed half-plane Re z ≥ 0 and possesses the following property :

|F (z)| < |F (0)|, Re z ≥ 0, z 	= 0.

Proof of Lemma 4.2.1. The assertion on the continuity is a direct consequence of the condition f ∈ L1.
Since the function f(x) does not change sign, the inequality

|F (z)| < |F (0)|, Re z > 0,

is obvious, and it remains to prove that

|F (iy)| < |F (0)|, y ∈ R, y 	= 0.

Assume the contrary, i.e., |F (iy)| = |F (0)| for some y 	= 0. Then

F (iy) = F (0)eiβ , β ∈ R,

and (4.2.2) and the fact that f is real-valued imply that

0 = Re(F (0)− e−iβF (iy)) = Re

∫

R+

(1− e−i(yv+β))f(v)dv =

∫

R+

(1− cos(yv + β))f(v)dv.

Since the integrand in the last integral does not change sign and is nontrivial, we arrive at a contra-
diction. The lemma is proved.

Proof of Theorem 4.2.1. We use the following representation: if ρ > 1/2, μ < 1 + 1/ρ, and α = 1/ρ,
then

zμ−1Eρ(z
α;μ) = ρez + Fαμ(z), Re z > 0, (4.2.3)

where

Fαμ(z) =
1

π

∫

R+

e−zvvα−μ sinπ(α− μ) + vα sinπμ

v2α + 1− 2vα cosπα
dv.

Since in both sides of formula (4.2.3) we have functions that are analytic in the half-plane Re z > 0,
it suffices to prove the representation for z = x > 0.

Let an arbitrary x > 0 be fixed. Then applying formula (1.1.1) with α2 = −α1 = π, σ > x, z = xα,
and α = 1/ρ, and then the residue theorem, we have the equality

Eρ(x
α;μ) = ρexx1−μ +

1

2πi

∫

γ

ettα−μdt

tα − xα
, x > 0,

where γ is the negative real half-line bypassed in mutually opposite directions. Further, setting t = −u,
we first represent the integral over γ as two integrals over the positive real half-line and then, combining
them by a simple calculation (similar to that used in the proof of Theorem 1.1.2) and the change of
variables u = vx, we obtain the required representation.

Let

ρ >
1

2
, ρ 	= 1, μ ∈ [1, 2] ∩

[
1

ρ
, 1 +

1

ρ

)
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or
1

2
< ρ < 1, μ = 0.

Then the function

f(v) =
1

π
vα−μ sinπ(α− μ) + vα sinπμ

v2α + 1− 2vα cosπα
, v > 0,

satisfies all the conditions of Lemma 4.2.1. By this lemma,

|Fαμ(z)| < |Fαμ(0)|, Re z ≥ 0, z 	= 0.

This and (4.2.3) imply that
∣∣∣zμ−1Eρ(z

α;μ)
∣∣∣ ≥
∣∣ρez
∣∣− ∣∣Fαμ(z)

∣∣ > ρ− ∣∣Fαμ(0)
∣∣, Re z ≥ 0, z 	= 0. (4.2.4)

To find Fαμ(0), we use formula (4.2.3). Namely, we substitute z = 0 in (4.2.3) if μ 	= 0 or pass to
the limit as z → 0 if μ = 0. Since Eρ(0;μ) = 1/Γ(μ) and

Eρ(z
α; 0) ∼ zα

Γ(1/ρ)
, z → 0, α =

1

ρ
> 1,

we obtain that

Fαμ(0) = −ρ for μ > 1 and μ = 0, Fαμ(0) = 1− ρ for μ = 1. (4.2.5)

Since the resulting inequality (4.2.4) is strong, we see that the function Eρ(z
α;μ) has no zeros on the

set Re z ≥ 0, z 	= 0, i.e., the function Eρ(z;μ) has no zeros in the angle (4.2.1) with punctured point
z = 0. We have proved Part (II) of the theorem. Since Eρ(0;μ) 	= 0 for μ 	= 0, we have also proved
the absence of zeros in the angle (4.2.1) for pairs of the parameters ρ and μ for which μ 	= 0.

To prove part (I) of the theorem relating to condition (1), it remains to consider the value μ = 1+1/ρ
for ρ > 1. For this, we note that (4.2.4) and (4.2.5) for μ = 1 imply the inequality

|Eρ(z, 1)| > ρ− |1− ρ| = 1, | arg z| ≤ π

2ρ
, z 	= 0.

Applying it to the right-hand side of the formula

zEρ

(
z; 1 +

1

ρ

)
= Eρ(z, 1)− 1,

we see that the function Eρ(z;μ) does not vanish in the angle (4.2.1). Case (1) is completely considered.
We have also considered the part of case (2) relating to the values μ ∈ [1/ρ, 2]. To extend it to the

missing values μ ∈ [1/ρ− 1, 1], we need the following “conditional” lemma.

Lemma 4.2.2. Let 0 < ρ < 1 and μ > 1. If all zeros ak of the function Eρ(z;μ) lie outside the angle

| arg z| ≤ β,
π

2
≤ β < π,

then all zeros of the function Eρ(z;μ− 1) also lie outside this angle.

The proof of Lemma 4.2.2 is based on the following auxiliary assertion.
Let G(z) be a nontrivial meromorphic function of the form

G(z) =
γ0
z

+
∞∑

k=1

γk
z − ak

,

where

γk ≥ 0, k ∈ Z+,
∞∑

k=1

γk
|ak| <∞.
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If the sequence (ak)
∞
k=1 is contained in the angle

Aη,δ := (z : η < arg z < η + δ), η ∈ [0, 2π), 0 < δ ≤ π,

then the function G(z) does not vanish outside Aη,δ.
First, we verify this assertion in the case η = 0 and δ = π, i.e., when Aη,δ is the open upper

half-plane. We have the equality

ImG(z) = −γ0 Im z

|z|2 −
∞∑

k=1

γk
Im z − Im ak
|z − ak|2 .

Since Im ak > 0 for k ≥ 1, we see that ImG(z) > 0 for Im z ≤ 0, and the assertion is valid in this case.
Rotating the complex plane about the origin, we can show that the assertion is also valid for δ = π

and any η ∈ [0, 2π). This and the representation

Aη, δ = Aη, π ∩Aη+δ+π, π

imply that it is valid in the general case.
Now we prove Lemma 4.2.2. We use the well-known formula

Eρ(z;μ− 1) = (μ− 1)Eρ(z;μ) +
z

ρ
E′

ρ(z;μ)

(see [6]). Setting γ = ρ(μ− 1), we rewrite it in the form

ρEρ(z;μ− 1) = zEρ(z;μ)

(
γ

z
+
E′

ρ(z;μ)

Eρ(z;μ)

)
. (4.2.6)

Denote by (ak)
∞
k=1 the set of all zeros of the function Eρ(z;μ). Since Eρ(z;μ) is an entire function

of order ρ < 1, we have
∞∑

k=1

1

|ak| <∞

and by Hadamard’s theorem

Eρ(z;μ) =
1

Γ(μ)

∞∏

k=1

(
1− z

ak

)
.

Therefore,

E′
ρ(z;μ)

Eρ(z;μ)
=

∞∑

k=1

1

z − ak
.

By the condition of the lemma

(ak)
∞
k=1 ⊂ Aβ, 2(π−β).

Since β ≥ π/2, we have 0 < 2(π − β) ≤ π. Moreover, γ > 0. Therefore, we can apply to the function

G(z) =
γ

z
+
E′

ρ(z;μ)

Eρ(z;μ)

the auxiliary assertion, which implies that G(z) does not vanish in the angle | arg z| ≤ β. By (4.2.6),
the function Eρ(z;μ− 1) does not vanish in this angle, and Lemma 4.2.2 is proved.

Now the missing part of case (2) follows from the fact that it is valid for μ ∈ [1/ρ, 2] and Lemma 4.2.2.
Theorem 4.2.1 is proved.
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4.2.2. Absence of zeros on the left-hand angle. In this section, we examine the condition on
pairs of the parameters ρ > 1 and μ ∈ R for which the function Eρ(z;μ) has no zeros in the angle

π

ρ
≤ | arg z| ≤ π. (4.2.7)

Denote by Aρ (ρ > 1) the set of all μ ∈ R such that all nonzero roots of the function Eρ(z;μ) lie
outside the angle (4.2.7).

Theorem 4.2.2. The following inclusions hold :

(1) Aρ ⊂
( ∞⋃

n=0

[
−n+

1

ρ
,−n+ 1

])
∪ [1,+∞)

(2) Aρ ⊃
[
1, 1 +

1

ρ

]
∪ (−Z+) ∪

(
−Z+ +

1

ρ

)
;

(3) A2 ⊃
( ∞⋃

n=0

[
−n+

1

2
,−n+ 1

])
∪
[
1,

3

2

]
.

For fixed R, ρ > 0, we introduce the notation

I(x) =

∞∫

0

e−Rtρ t− x

t2 − 2tx+ 1
dt, x ≤ 1, (4.2.8)

where for x = 1 the integral is understood as singular.

Lemma 4.2.3. The function I(x) decreases for x ≤ 1.

Proof. If x < 1, then t2 − 2tx+ 1 > 0 and, integrating by parts, we obtain

I(x) =
1

2

∞∫

0

e−Rtρd ln(t2 − 2tx+ 1) =
Rρ

2

∞∫

0

e−Rtρtρ−1 ln(t2 − 2tx+ 1)dt. (4.2.9)

Obviously, the right-hand side decreases on the half-line x ≤ 1. However, now we know only that it
coincides with I(x) for x < 1. Hence it remains to verify that the formal substitution of x = 1 on the
right-hand side of (4.2.9) yields the singular integral I(1). Denoting by B(ε) the set R+ \ (1−ε, 1+ε),
ε > 0, by the definition of a singular integral we have the equality

I(1) = lim
ε→0

∫

B(ε)

e−Rtρ dt

t− 1
= lim

ε→0

∫

B(ε)

e−Rtρd ln |t− 1|.

Integrating by parts, we obtain

I(1) = lim
ε→0

⎛

⎜⎝
(
e−R(1−ε)ρ − e−R(1+ε)ρ

)
ln ε+

Rρ

2

∫

B(ε)

e−Rtρtρ−1 ln(t− 1)2dt

⎞

⎟⎠

=
Rρ

2

∞∫

0

e−Rtρtρ−1 ln(t− 1)2dt;

moreover, the last integral exists in the ordinary sense. Comparing this with (4.2.9), we see that the
right-hand side in (4.2.9) is I(1). The lemma is proved.
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Lemma 4.2.4. Let a function H(z) be harmonic and bounded in the angle θ0 < arg z = θ < θ1 and
continuous for θ0 ≤ θ ≤ θ1. Moreover, let H = 0 on one side of the angle and H > 0 on the other.
Then H(z) > 0 in this angle.

Proof. If this angle is the half-plane 0 < θ < π, then the lemma follows from the representation of the
function H(z) by the Poisson integral of H(x) and the positiveness of the Poisson kernel.

The general case is reduced to this by a conformal mapping of the angle to the half-plane. The
lemma is proved.

Proof of Theorem 4.2.2. (1) This assertion follows from Theorem 4.1.1.
Theorem 4.1.1 and the fact that zeros are complex conjugate imply that in the proof of assertions (2)

and (3), it suffices to consider the angle π/ρ ≤ θ < π instead of angle (4.2.7).
We apply Theorem 1.1.2, which for ρ > 1 and μ < 1 + 1/ρ yields the following representations:

Eρ(z;μ) = Fρ(z;μ),
π

ρ
< | arg z| ≤ π, (4.2.10)

Eρ(z, μ) = Fρ(z;μ) +
ρ

2
zρ(1−μ)ez

ρ
, arg z = ±π

ρ
, (4.2.11)

Eρ(z;μ) = Fρ(z;μ) + ρzρ(1−μ)ez
ρ
, | arg z| < π

ρ
, (4.2.12)

where

Fρ(z;μ) =
ρ

2πi

∞∫

0

e−tρtρ(1−μ)fρ(t; z, μ)dt, (4.2.13)

fρ(t; z, μ) =
e−iπμ

ze−iπ/ρ − t
− eiπμ

zeiπ/ρ − t
. (4.2.14)

In the sequel, we write f(t) instead of fρ(t; z, μ).
(2) Let μ = m = 1, 0,−1, . . .. Then by formula (4.2.14) we have

(−1)m−1f(t) =
1

zeiπ/ρ − t
− 1

ze−iπ/ρ − t
,

(−1)m−1Re f(t) =
r cos(θ + π/ρ)− t

r2 − 2tr cos(θ + π/ρ) + t2
− r cos(θ − π/ρ)− t

r2 − 2tr cos(θ − π/ρ) + t2
.

Denoting

a = cos

(
θ − π

ρ

)
, b = cos

(
θ +

π

ρ

)
, R = rρ,

by formula (4.2.13) we have the equality

(−1)m−1 ImFρ(z;μ) = − ρ

2π

∞∫

0

e−Rtρ Re f(t)dt

=
ρ

2π

∞∫

0

e−Rtρ
(

t− b

t2 − 2bt+ 1
− t− a

t2 − 2at+ 1

)
dt =

ρ

2π
(I(b)− I(a))

in notation (4.2.8); moreover, a, b ≤ 1. We have the formula

a− b = 2 sin θ sin
π

ρ
> 0 for 0 < θ < π.

By Lemma 4.2.3,

(−1)m−1 ImFρ(z;μ) > 0, 0 < θ < π, r > 0. (4.2.15)
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Using this and formula (4.2.10), we see that

(−1)m−1 ImEρ(z;μ) > 0,
π

ρ
≤ θ < π, r > 0, μ ∈ (−Z+) ∪ {1}, (4.2.16)

and hence (−Z+) ∪ {1} ⊂ Aρ.
From (4.2.16) and the formula

Eρ(z;μ) =
1

Γ(μ)
+ zEρ

(
z;μ+

1

ρ

)
(4.2.17)

(this follows from the definition) we immediately obtain that

Im

(
zEρ

(
z;m+

1

ρ

))
	= 0,

π

ρ
≤ θ < π, r > 0,

i.e., m+ 1/ρ ∈ Aρ for m = 1, 0,−1, . . ..
To examine the rest of the set of parameters μ ∈ (1, 1 + 1/ρ), for fixed ρ > 1, μ ∈ R, and s ∈ (0, 1)

we consider the auxiliary function

G(z) = G(z; ρ, μ, s) := Eρ(z;μ)− zsEρ

(
z;μ+

s

ρ

)
,

which is analytic for y = Im z > 0 and continuous for y ≥ 0. Theorem 1.2.1 implies the boundedness
of the function G(z) for y > 0. Therefore, the function H(z) = ImG(z) is harmonic in the half-plane
y > 0, bounded in it, and continuous for y ≥ 0.

Since the values

Eρ(x;μ), Eρ

(
x;μ+

s

ρ

)

are real for x ∈ R, we have

H(x) = 0 for x > 0. (4.2.18)

Further,

signH(x) = − sign Im

(
|x|seiπsEρ

(
x;μ+

s

ρ

))
= − signEρ

(
x;μ+

s

ρ

)
, x < 0. (4.2.19)

Fix μ = m = 1. By Remark 4.1.1,

Eρ

(
x; 1 +

s

ρ

)
> 0, x < 0.

Therefore,

H(x) < 0 for x < 0. (4.2.20)

From this and (4.2.18), by Lemma 4.2.4, we have the inequality

H(z) < 0, y > 0. (4.2.21)

In the sense of the function G(z) this means that

Im

(
zsEρ

(
z; 1 +

s

ρ

))
> ImEρ(z; 1), y > 0, (4.2.22)

if 0 < s < 1. By (4.2.16), the right-hand side in (4.2.22) is positive in the angle π/ρ ≤ θ < π.
Therefore, the left-hand side is also positive, i.e., the function Eρ(z; 1 + s/ρ) does not vanish in this
angle if 0 < s < 1. Assertion (2) is proved.

(3) Owing to assertions (2) and (1), we must prove that the function E2(x;μ) has no zeros in the
angle π/2 ≤ θ < π if

μ ∈
(
−m+

1

2
, −m+ 1

)
, m ∈ Z+. (4.2.23)
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First, let μ = −m+ 1/2, m ∈ Z+. Then by formula (4.2.14)

(−1)mf(t) =
i

iz + t
− i

iz − t
.

Therefore, if z = iy, y > 0, then Re f(t) = 0, and by formula (4.2.13)

ImFρ(z, μ) = 0

on the positive imaginary half-line. Then by (4.2.11)

sign ImE2(z;μ) = sign Im(e−z2z2(1−μ)) = sign sinπ

(
1

2
+m

)
= (−1)m

on this half-line. Obviously, ImE2(x;μ) = 0 for x ∈ R. By Theorem 1.2.1, the function E2(z;μ) is
bounded in the angle π/2 < θ < π. Thus, the function ImE2(z;μ) is harmonic and bounded in the
angle π/2 < θ < π and is such that on one side of this angle it identically vanishes and preserves its
sign (−1)m on the other side. By Lemma 4.2.4, everywhere in the angle π/2 < θ < π it preserves its
sign (−1)m. Therefore,

sign ImE2

(
z;−m+

1

2

)
= (−1)m,

π

2
≤ θ < π, m ∈ Z+. (4.2.24)

We fix m ∈ Z+ and consider the auxiliary function

G(z) = G

(
z; 2,−m+

1

2
, s

)
, 0 < s < 1.

Recall that property (4.2.18) holds.
First, let m be even. Then by (4.1.3)

E2

(
x;−m+

1 + s

2

)
> 0, x < 0,

and hence by formula (4.2.19) property (4.2.20) holds. This and (4.2.18) by Lemma 4.2.4 imply
property (4.2.21). Therefore,

Im

(
zsE2

(
z;−m+

1 + s

2

))
> ImE2

(
z;−m+

1

2

)
, y > 0.

By (4.2.24), the left-hand side in the angle π/2 ≤ θ < π is positive. We have proved that all values
of μ from the set (4.2.23) with even m belong to the set A2.

If m is odd, then by property (4.3.4)

E2

(
x;−m+

1 + s

2

)
< 0, x < 0,

and therefore, formula (4.2.19) yields the inequality

H(x) > 0 for x < 0, 0 < s < 1.

This and (4.2.18), by Lemma 4.2.4, imply the inequality

H(z) > 0, y > 0.

But now

ImE2

(
z;−m+

1

2

)
< 0,

π

2
≤ θ < π,

by (4.2.24). Therefore,

Im

(
zsE2

(
z;−m+

1 + s

2

))
< ImE2

(
z;−m+

1

2

)
< 0,

π

2
≤ θ < π,
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and assertion (3) is verified. Theorem 4.2.2 is completely proved.

Theorem 4.2.3. For ρ > 1 and μ ∈ [1, 1 + 1/ρ], all zeros of the function Eρ(z;μ) lie on the set

π

2ρ
< | arg z| < π

ρ
, 2πn < | Im zρ| < (2n+ 1)π, n ∈ Z+. (4.2.25)

In particular, for ρ > 1, all zeros of the classical Mittag-Leffler function Eρ(z; 1) lie on the
set (4.2.25).

Proof. For ρ > 1 and 1 ≤ μ ≤ 1 + 1/ρ, all zeros of the function Eρ(z;μ) lie outside the angle (4.2.1)
(by Theorem 4.2.1) and outside the angle (4.2.7) (by Theorem 4.2.2). It remains to verify the second
double inequality in (4.2.25). Owing to the complex conjugacy of zeros it suffices to consider the angle

π

2ρ
< θ <

π

ρ
.

Let μ = m = 1. Then formula (4.2.12) and inequality (4.2.15), respectively, imply that

ImEρ(z; 1) = ImFρ(z; 1) + ρ Im ez
ρ
> ρeRe zρ sin(Im zρ), 0 < θ <

π

ρ
,

ImEρ(z; 1) > 0, 2πn < Im zρ < (2n+ 1)π, n ∈ Z+, 0 < θ <
π

ρ
, (4.2.26)

and for μ = 1 Theorem 4.2.3 is valid. Now, gathering (4.2.26) with formula (4.2.17), and then with
inequality (4.2.22), we obtain the assertion of the theorem for μ = 1 + 1/ρ and μ ∈ (1, 1 + 1/ρ).
Theorem 4.2.3 is proved.

Corollary 4.2.1. For ρ > 1 and 1 ≤ μ ≤ 1 + 1/ρ, the function Eρ(z;μ) has no zeros in the disk

|z| ≤ π1/ρ.

4.3. Case ρ = 1/2

In this section, we prove that for μ ∈ (1, 2) ∪ (2, 3), all zeros of the function E1/2(z;μ) are negative
and simple and indicate the interval containing these zeros. If values of the parameter μ are close to 2
or 3, then we indicate more exact bounds of intervals containing zeros with small numbers. We start
from the case μ > 3: we show that the function E1/2(z;μ) has no real zeros and then clarify this fact
by proving that there are no zeros inside some parabola containing the negative real half-line.

4.3.1. Case μ > 3. Our reasoning is based on the following formulas, which were proved in [6]:

E1/2(−z2;μ) =
1

Γ(μ− 1)

1∫

0

(1− t)μ−2 cos zt dt, μ > 1, (4.3.1)

zE1/2(−z2;μ) =
1

Γ(μ− 2)

1∫

0

(1− t)μ−3 sin zt dt, μ > 2. (4.3.2)

Lemma 4.3.1 (see [19, 20, 34]). Let a function f(t), t > 0, be nonnegative and nonincreasing and let

tf(t)

t+ 1
∈ L1(R+).

Moreover, let f(t) decrease on some interval. Then the function

F (y) =

∫

R+

f(t) sin yt dt, y ∈ R,

is positive on the half-line y > 0 and, in particular, has no nonzero roots.
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Introduce the notation

xμ =
√
(μ− 3)(μ− 2) + artanh

√
μ− 3

μ− 2
, μ > 3. (4.3.3)

Theorem 4.3.1. Let μ > 3. Then the following assertions hold :

(1) the function E1/2(z;μ) has no real zeros ;
(2) the function E1/2(z;μ) has no zeros on the set

0 ≤ Re
√
z ≤ xμ, (4.3.4)

i.e., in the left-hand curvilinear half-plane bounded by the parabola

x = x2μ − y2

4x2μ
.

Proof. (1) The fact that E1/2(z;μ) has no nonnegative roots follows from the definition of the Mittag-
Leffler function. We prove that E1/2(z;μ) has no negative roots.

Introduce the notation

f(t) =

{
(1− t)μ−3, 0 < t < 1,

0, t ≥ 1;

we see that for μ > 3 the function f(t) satisfies all conditions of Lemma 4.3.1. By this lemma and
formula (4.3.2), the function E1/2(z;μ) has no negative roots. Assertion (1) is proved.

(2) The proof of this assertion is also based on formula (4.3.2), which we rewrite in the form

Γ(μ− 2)zE1/2(z
2;μ) =

1∫

0

(1− t)μ−3 sinh zt dt, μ > 2.

This implies that

Γ(μ− 2) Im(zE1/2(z
2;μ)) =

1∫

0

(1− t)μ−3 coshxt sin yt dt, z = x+ iy, μ > 2. (4.3.5)

For fixed x ≥ 0, we set fx(t) = 0 for t ≥ 0 and

fx(t) = (1− t)μ−3 coshxt, 0 ≤ t ≤ 1.

Then the right-hand side of (4.3.5) has the form of the function F (y) from Lemma 4.3.1. The function
fx(t) satisfies all condition of this lemma, except for, perhaps, the monotonicity. Therefore, if for
some x the function fx(t) becomes decreasing on the interval (0, 1), by Lemma 4.3.1, the function
E1/2(z

2;μ) has no zeros on the line Re z = x with punctured point x. By assertion (1), for μ > 3, a
real point cannot be a zero of this function. Therefore, in the case where fx(t) decreases, the function
E1/2(z;μ) has no zeros on the line Re z = x.

Since

(fx(t))
′ = (1− t)μ−3

(
−μ− 3

1− t
coshxt+ x sinhxt

)
, 0 < t < 1,

the condition (fx(t))
′ ≤ 0 (expressing the fact that the function fx(t) does not increase) is equivalent

to the condition

x tanhxt ≤ μ− 3

1− t
, 0 < t < 1. (4.3.6)

Obviously, condition (4.3.6) holds for all small x > 0 and fails for all sufficiently large x. The
right-hand side of (4.3.6) is a function strongly convex on the interval (0, 1), and the left-hand side,
for fixed x > 0, is a function strongly concave on it. This and the continuous dependence of the
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left-hand side on x imply the existence of a unique value x = xμ > 0 such that the graphs of these
function touch each other for some t = tμ ∈ (0, 1), and for t 	= tμ, 0 < t < 1, the strong inequality
in (4.3.6) holds. This means that for 0 ≤ x ≤ xμ, the function fx(t) decreases on the interval (0, 1)
and hence the function E1/2(z

2;μ) has no zeros on the strip 0 ≤ Re z ≤ xμ. Therefore, the function
E1/2(z;μ) has no zeros on the set (4.3.4). It remains to calculate xμ.

The touching of the graphs mentioned is equivalent to the equality (4.3.6) for some t ∈ (0, 1) and
the equality of the derivatives at the same value of t, i.e., is equivalent to the system of equations

x tanhxt =
μ− 3

1− t
,

x2

cosh2 xt
=

μ− 3

(1− t)2
. (4.3.7)

To find x = xμ, we must eliminate t from this system.
Raising both sides of the first equation to the second power, adding the second equation, and

applying the formual 1− tanh2 t = 1/ cosh2 t, we obtain

x2 =
(μ− 3)(μ− 2)

(1− t)2
.

From this we have

xt = x−
√
(μ− 3)(μ− 2),

μ− 3

1− t
=

√
μ− 3

μ− 2
x,

and substituting these relations in the first equation (4.3.7), we obtain

tanh
(
x−
√
(μ− 3)(μ− 2)

)
=

√
μ− 3

μ− 2
.

Since a solution of system (4.3.7) exists and is unique, it can be found by formula (4.3.3). The theorem
is proved.

Note that assertion (1) of Theorem 4.3.1 is contained in assertion (2). We have presented its proof
since it is much simpler than the proof of assertion (2).

4.3.2. Zeros of finite Fourier cosine and sine transforms. Let f ∈ L1(0, 1). Consider the
corresponding Fourier cosine and sine transforms

U(z) =

1∫

0

f(t) cos zt dt, (4.3.8)

V (z) =

1∫

0

f(t) sin zt dt. (4.3.9)

The integrals in formulas (4.3.1) and (4.3.2) have the form U(z) and V (z), respectively. Therefore,
it is natural to use known results on the distribution of zeros of the functions U(z) and V (z) (these
results were essentially obtained by Pólya). We formulate them in Theorems A and B; by an exceptional
function we mean an echelon function with discontinuities at rational points.
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Introduce the sequences of intervals
(
π

(
n− 1

2

)
, π

(
n+

1

2

))
, n ∈ N, (4.3.10)

(
πn, π(n+ 1)

)
, n ∈ N, (4.3.11)

(
π

(
n− 1

2

)
, πn

)
, n ∈ N, (4.3.12)

(
π(2n− 1), 2πn

)
,

(
2πn, π

(
2n+

1

2

))
, n ∈ N. (4.3.13)

The following results are well known.

Theorem A. Assume that a function f(t) is positive and nondecreasing on the interval (0, 1) (and
is not an exceptional function). Then all roots of the function U(z) (respectively, V (z)) are real and
simple; moreover, all positive roots of the function U(z) (respectively, V (z)) lie singly in the intervals
(4.3.10) (respectively, in the intervals (4.3.11)).

Theorem B. Assume that a function f(t) is positive, increasing, and convex on the interval (0, 1)
(and its right-sided derivative is not an exceptional function). Then all roots of the function V (z)
(respectively, U(z)) are real and simple; moreover, all positive roots lie singly in the intervals (4.3.13)
(respectively, in the intervals (4.3.12)).

Theorem A and the part of Theorem B relating to roots of the function U(z) belong to Pólya
(see [20]) and the part of Theorem B relating to roots of the function V (z) belong to Sedletskii [30].

We consider formula (4.3.1) for μ ∈ (1, 2) and formula (4.3.2) for μ ∈ (2, 3). These formulas show
that the functions E1/2(−z2;μ) and zE1/2(−z2;μ) have the form U(z) and V (z), respectively, where,
up to a coefficient,

f(t) = (1− t)μ−2 for 1 < μ < 2, (4.3.14)

f(t) = (1− t)μ−3 for 2 < μ < 3. (4.3.15)

In both cases, f(t) satisfies the conditions of Theorem B. By this theorem, all roots of the function

E1/2(−z2;μ), Re z ≥ 0,

are positive and simple and lie singly in the intervals (4.3.12) (respectively, in the intervals (4.3.13)).
Since the function is even, it suffices to consider only the right-hand side half-plane. Therefore, the
following theorem holds.

Theorem 4.3.2. For 1 < μ < 2 and 2 < μ < 3, all roots zn of the function E1/2(z;μ) are negative

and simple and the points (−zn)1/2 lie singly in the intervals (4.3.12) and (4.3.13), respectively.

In Chap. 3 we proved stronger assertions, which were obtained by painstaking and cumbersome
calculations, whereas Theorem 4.3.2 is an immediate consequence of well-known results. Moreover,
this theorem motivates an additional analysis of formulas (4.3.1) and (4.3.2), which allows one to
localize zeros with small numbers more exactly. We perform this in the general case, i.e., for the
functions U(z) and V (z), and then, using formulas (4.3.1) and (4.3.2), apply the obtained assertions
to the function E1/2(−z2;μ).

Assume that a function f(t) is positive and nondecreasing in the interval (0, 1), i.e., the conditions
of Theorem A holds (nota that this theorem, unlike Theorem B, has not yet been used). Denote by
un (respectively, vn), n ∈ N, positive zeros of the function U(z) (respectively, V (z)), numbered in
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ascending order, i.e.,

π

(
n− 1

2

)
< un < π

(
n+

1

2

)
, πn < vn < π(n+ 1), n ∈ N.

Introduce the notation

I = If :=

1∫

1/2

(f(t)− f(1− t))dt.

The method used in the proof is effective (compared with Theorem 4.3.2) under the condition that I
is not too large and f(+0) > 0.

Theorem 4.3.3. Assume that a function f(t) does not decrease in the interval (0, 1) and f(+0) = 1.
Then the following assertions hold :

(1) if, for some N ∈ N,

I <
1

π(N + 1/2)
, (4.3.16)

then

πn− arcsin(πnI) < un < πn+ arcsin

(
π

(
n+

1

2

)
I

)
, n = 1, N ; (4.3.17)

(2) if, moreover, the function f increases and is convex in (0, 1) and, for some N ∈ N,

I <
1

πN
, (4.3.18)

then

πn− arcsin(πnI) < un < πn, n = 1, N.

Theorem 4.3.4. Assume that a function f(t) does not decrease in the interval (0, 1) and is not an
exceptional function. Let f(+0) = 1. Then the following assertions hold :

(1) if, for some N ∈ N,

2I <
1

πN
, (4.3.19)

then

2πn− arccos
(
1− 2πnI

)
< v2n−1 < 2πn, n = 1, N ; (4.3.20)

(2) if, for some n ∈ N,

2I <
1

π(N + 1/2)
,

then

2πn < v2n < 2πn+ arccos
(
1− π(2n+ 1)I

)
, n = 1, N ; (4.3.21)

(3) if, moreover, the function f increases and is convex in (0, 1) and, for some N ∈ N,

2I <
1

π(N + 1/4)
, (4.3.22)

then

2πn < v2n < 2πn+ arccos

(
1− π

(
2n+

1

2

)
I

)
, n = 1, N.

Note that by the conditions imposed on I, all values in Theorem 4.3.4 represented as arccosines lie
in the interval (0, π/2).

In the proof we use the following Steffensen inequality.
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Theorem C (see [4]). Let a function f(t) be integrable, positive, and nondecreasing in the inter-
val (0, 1) and

0 ≤ g(t) ≤ 1, 0 < t < 1, g ∈ L1(0, 1).

Then
1∫

0

f(t)g(t)dt ≤
1∫

1−c

f(t)dt,

where

c =

1∫

0

g(t)dt.

Assume that the function f is the same as in Theorem C and

−a ≤ G(t) ≤ a (a > 0), 0 < t < 1, G ∈ L1(0, 1). (4.3.23)

Then for the functions f and g, where

g(t) =
G(t) + a

2a
,

the conditions of Theorem C hold. By this theorem,

1∫

0

f(t)
G(t) + a

2a
dt ≤

1∫

1−c

f(t)dt,

where

c =
1

2
+

1

2a

1∫

0

G(t)dt. (4.3.24)

We see that the following lemma is valid.

Lemma 4.3.2. Let a function f(t) be integrable, positive, and nondecreasing in the interval (0, 1),
and a function G(t) satisfy conditions (4.3.23). Then

1∫

0

f(t)G(t)dt ≤ a

⎛

⎝2

1∫

1−c

f(t)dt−
1∫

0

f(t)dt

⎞

⎠ ,

where c is calculated by formula (4.3.24).

Proof of Theorem 4.3.3. In formula (4.3.8), we set z = x and then subtract the formula

sinx

x
=

1∫

0

cosxt dt.

We obtain that at zeros of the function U , which are real by Theorem A, the following inequality
holds:

−sinx

x
=

1∫

0

(f(t)− 1) cosxt dt.

Let n be odd. If x = un = πn, then there is nothing to prove. Let x = un 	= πn. Then by
Theorem A

sinx ≷ 0 for x ≶ πn, (4.3.25)
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and, therefore, in the formula

sin(±(πn− x))

x
=

1∫

0

(f(t)− 1)(∓ cosxt)dt, x = un ≶ πn, (4.3.26)

both sides are positive. The functions

f(t)− 1 and ∓ cosxt

satisfy the conditions of Lemma 4.3.2 with a = 1. By this lemma,

sin(±(πn− x))

x
≤ 2

1∫

1−c

(f(t)− 1)dt−
1∫

0

(f(t)− 1)dt, (4.3.27)

where

c =
1

2

⎛

⎝1 +

1∫

0

∓ cosxt dt

⎞

⎠ =
1

2

(
1∓ sinx

x

)
. (4.3.28)

From (4.3.25) it follows that c ≤ 1/2 and hence

sin(±(πn− x))

x
≤

⎛

⎜⎝2

1∫

1/2

−
1∫

0

⎞

⎟⎠ (f(t)− 1)dt = I. (4.3.29)

We have proved estimate (4.3.29) for odd n.
If n is even, then in (4.3.25) inequalities for sinx must be replaced by the opposite. Therefore, on

the right-hand side of (4.3.26) the signs ∓ interchange; both sides in (4.3.26) are positive. Applying
Lemma 4.3.2, we obtain inequality (4.3.27), where c is calculated by formula (4.3.28), in which the
signs ∓ also interchange. Taking into account the sign of the sine, we see that again c ≤ 1/2. Therefore,
estimate (4.3.29) is also valid for even n.

From (4.3.29) it follows that

0 < sin(πn− x) < πnI, if π

(
n− 1

2

)
< x < πn,

0 < sin(x− πn) < π

(
n+

1

2

)
I, if πn < x < π

(
n+

1

2

)
.

(4.3.30)

Taking into account condition (4.3.16), we see that these inequalities yield the required inequalities
(4.3.17). Assertion (1) is proved.

If f is convex, then by Theorem B x = un ∈ (π(n− 1/2), πn), and by (4.3.18) assertion (2) follows
from (4.3.30). Theorem 4.3.3 is proved.

Proof of Theorem 4.3.4. In formula (4.3.9), we set z = x and then subtract the formula

1− cosx

x
=

1∫

0

sinxt dt.

We obtain that at zeros of the function V , which are real by Theorem A,

1− cosx

x
=

1∫

0

(f(t)− 1)(− sinxt)dt.
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By Theorem A, both sides are positive. By Lemma 4.3.2, for x = vn we have

1− cosx

x
≤ 2

1∫

1−c

(f(t)− 1)dt−
1∫

0

(f(t)− 1)dt,

where

c =
1

2

⎛

⎝1 +

1∫

0

(− sinxt)dt

⎞

⎠ =
1

2

(
1− 1− cosx

x

)
.

Therefore, c ≤ 1/2 and hence
1− cosx

x
≤ I, x = vn. (4.3.31)

Since by Theorem A

π(2n− 1) < v2n−1 < 2πn < v2n < π(2n+ 1), (4.3.32)

from (4.3.31) we obtain

cos(2πn− x) > 1− 2πnI, if x = v2n−1,

cos(x− 2πn) > 1− π(2n+ 1)I, if x = v2n.

Therefore, the following inequalities hold:

2πn− x < arccos(1− 2πnI), x = v2n−1,

x− 2πn < arccos(1− π(2n+ 1)I), x = v2n.

Together with (4.3.32), they yield the required inequalities (4.3.20) and (4.3.21). Assertions (1) and (2)
are proved.

If f increases and is convex, then, by Theorem B, instead of the right-hand inequality (4.3.32) we
have the inequality

v2n < 2πn+
π

2
.

Making this change, we obtain assertion (3). Theorem 4.3.4 is proved.

Now we turn to consequences we are interested. They are based on formulas (4.3.1) and (4.3.2),
which show that the functions

Γ(μ− 1)E1/2(−z2;μ), Γ(μ− 2)zE1/2(−z2;μ)
have the form U(z) and V (z) (see (4.3.8) and (4.3.9)), where the corresponding functions f(t) are
defined by formulas (4.3.14) and (4.3.15). In these formula, we restricted the values of μ not by
accident: under these restrictions, the function f(t) satisfies the conditions of Theorems 4.3.3 and 4.3.4,
respectively, and is convex in (0, 1). Therefore, to apply these theorems, we must express I and the
conditions for I in Theorems 4.3.3 and 4.3.4 through the parameter μ.

We have the following relation:

I =
22−μ − 1

μ− 1
for 1 < μ < 2,

I =
23−μ − 1

μ− 2
for 2 < μ < 3.

Therefore, if 1 < μ < 2, then condition (4.3.18) takes the form

22−μ − 1

μ− 1
<

1

πN
; (4.3.33)
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if 2 < μ < 3, then conditions (4.3.19) and (4.3.22) become, respectively,

23−μ − 1

μ− 2
<

1

2πN
,

23−μ − 1

μ− 2
<

1

π(2N + 1/2)
. (4.3.34)

Denote by xn = xn(μ), n ∈ N, zeros of the function E1/2(z;μ). Since

(−xn)1/2 = un for 1 < μ < 2, (−xn)1/2 = vn for 2 < μ < 3,

by Theorems 4.3.3 and 4.3.4, we obtain the following assertion on zeros xn with small numbers.

Corollary 4.3.1. Let 1 < μ < 2. If, for some N ∈ N, condition (4.3.33) holds, then

πn− arcsin

(
πn

22−μ − 1

μ− 1

)
< (−xn)1/2 < πn, n = 1, N.

Corollary 4.3.2. Let 2 < μ < 3. Then the following assertions hold :

(1) if, for some N ∈ N, the first condition (4.3.34) holds, then

2πn− arccos

(
1− 2πn

23−μ − 1

μ− 2

)
< (−x2n−1)

1/2 < 2πn, n = 1, N ;

(2) if, for some N ∈ N, the second condition (4.3.34) holds, then

2πn < (−xn)1/2 < 2πn+ arccos

(
1− π

(
2n+

1

2

)
23−μ − 1

μ− 2

)
, n = 1, N.

Corollaries 4.3.1 and 4.3.2 allow one to draw conclusions on the rate of approximation of the points
(−xn)1/2 to positive roots of the functions sin z and 1−cos z, respectively, as μ→ 2−0 and μ→ 3−0.

Introduce the notation

ρn(μ) = πn− (−xn(μ))1/2 for 1 < μ < 2

and

ρ2n−1(μ) = 2πn− (−x2n−1(μ))
1/2, ρ2n(μ) = (−x2n(μ))1/2 − 2πn for 2 < μ < 3.

Since

arcsinx ∼ x, arccos(1− x) ∼
√
2x, x→ +0,

from Corollaries 4.3.1 and 4.3.2 we obtain the following assertion.

Corollary 4.3.3. For any fixed n ∈ N,

lim
μ→2−0

ρn(μ)

2− μ
≤ πn ln 2,

lim
μ→3−0

ρn(μ)√
3− μ

≤
√

2π

(
n+

3− (−1)n

4

)
ln 2.

Conditions (4.3.33) and (4.3.34) contain transcendental functions. If we apply the inequality

2x − 1 < x, 0 < x < 1,

then we can replace these condition by rougher but simpler conditions of applicability of Corollar-
ies 4.3.1 and 4.3.2:

2− 1

πN + 1
< μ < 2,

3− 1

2πN + 1
< μ < 3, 3− 1

π(2N + 1/2) + 1
< μ < 3.
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4.4. Absence of Multiple Zeros

The results of Chap. 2 show that, except for the unique case ρ = 1/2, μ = 3, the number of multiple
zeros of the function Eρ(z;μ) is no more than finite.

We still have few information on multiple zeros.
First, all zeros of the function E1/2(z; 3) in the specified exceptional case are double.
Second, the case of the zero multiple root admits a complete description. Indeed, the definition

implies that the point z = 0 is a s-multiple root of the function Eρ(z;μ) if and only if

1

Γ(μ)
=

1

Γ(μ+ 1/ρ)
= . . . =

1

Γ(μ+ s/ρ)
= 0,

1

Γ(μ+ (s+ 1)/ρ)
	= 0.

These conditions are equivalent to the following:

μ, μ+
1

ρ
, . . . , μ+

s

ρ
∈ −Z+, μ+

s+ 1

ρ
/∈ −Z+.

Clearly, this is possible only in the case where ρ = 1/n, n ∈ N, and choosing μ appropriately, we can
obtain a multiple root of arbitrarily high multiplicity. Thus, we have the following assertion.

Proposition 4.4.1. The following assertions hold.

(1) A multiple root of the function Eρ(z;μ) is possible only in the case where ρ = 1/n, n ∈ N.
(2) If ρ = 1/n, n ∈ N, then the function Eρ(z;μ) has at the point z = 0 an s-multiple root if and

only if μ = −s/ρ.
Third, by Theorem 4.1.2, for any ρ > 1, there exists a sequence μn < 0, μn → −∞, such that

the function Eρ(z;μn) has a double positive root, and by Corollary 4.1.1, for ρ > 1 and μ ∈ R, the
function Eρ(z;μ) has no real roots of multiplicity higher than 2.

The following lemma gives an answer to the question on multiple roots of the Mittag-Leffler functions
in the case of natural ρ.

Lemma 4.4.1. Let z0 be a root of the function En(z;μ), n ∈ N, μ ∈ C. It is multiple if and only if
the following condition holds:

1

Γ(μ− 1)
+

z0
Γμ− 1 + 1/n)

+ . . .+
zn−1
0

Γ(μ− 1 + (n− 1)/n)
= 0. (4.4.1)

Proof. The proof is based on the formula

Eρ(z;μ) = μEρ(z;μ+ 1) +
z

ρ
E′

ρ(z;μ+ 1) (4.4.2)

and formula (4.2.17), which we rewrite in the following form:

Eρ(z;μ− 1) =
1

Γ(μ− 1)
+ zEρ

(
z;μ− 1 +

1

ρ

)
. (4.4.3)

In our case ρ = n. We replace μ by μ+ 1/n in formula (4.4.3):

En

(
z;μ− 1 +

1

n

)
=

1

Γ(μ− 1 + 1/n)
+ zEn

(
z;μ− 1 +

2

n

)
.

Substituting the left-hand side of this formula on the right-hand side of formula (4.4.3), we obtain

En(z;μ− 1) =
1

Γ(μ− 1)
+

z

Γ(μ− 1 + 1/n)
+ z2En

(
z;μ− 1 +

2

n

)
. (4.4.4)
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Now, replacing μ by μ + 2/n in (4.4.3), we obtain an expression for En(z;μ − 1 + 2/n) and then
substitute it on the right-hand side of (4.4.4). Repeating this process, after n steps we obtain

En(z;μ− 1) =
1

Γ(μ− 1)
+

z

Γ(μ− 1 + 1/n)
+ . . .+

zn−1

Γ(μ− 1 + (n− 1)/n)
+ znEn(z;μ). (4.4.5)

Let z0 be a root of the function En(z;μ).
Then the last term in (4.4.5) vanishes, and formula (4.4.2) shows that a root of the function En(z;μ)

is multiple if and only if it is a root of the function En(z;μ− 1). Thus, the fact that a root z0 of the
function En(z;μ) is multiple is equivalent to vanishing of the left-hand side of (4.4.1). The lemma is
proved.

Theorem 4.4.1. The following assertions hold.

(1) The function E1(z;μ), μ ∈ C \ (−N), has no multiple roots.
(2) The function En(z;μ), 1 < n ∈ N, 1 ≤ μ < 1 + 1/n, has no multiple roots. In particular, the

classical Mittag-Leffler function En(z; 1) of integer order has no multiple roots.
(3) The number of multiple roots of the function En(z;μ), 1 < n ∈ N, μ ∈ C, does not exceed n−1.
(4) The function E2(z;μ)

(a) has no roots of multiplicity higher than 2 for μ ∈ C,
(b) has no multiple nonpositive roots for μ ∈ R,
(c) has no multiple roots for μ ≥ 0.

(5) The function E3(z;μ) has no roots of multiplicity higher than 2 for μ ∈ R.
(6) The function E1/2(z;μ), μ ∈ C, has no nonzero roots of multiplicity higher than 2.

Proof. (1) For n = 1, condition (4.4.1) means that 1/Γ(μ − 1) = 0. This is possible only if μ =
1, 0,−1, . . .. In this case, E1(z;μ) has an explicit form (see the beginning of Chap. 2), which implies
that for μ = 1, 0, the function E1(z;μ) has no multiple roots. The values μ ∈ −N (when z = 0 is a
root of multiplicity 1− μ) have been excluded. Assertion (1) is proved.

(2) Since 1 ≤ μ ≤ 1 + 1/n and the function Γ(x) decreases on (0, 1], a necessary condition (4.4.1)
of a multiple root is the equation

a0 + a1z + . . .+ an−1z
n−1
0 = 0

with monotonic coefficients 0 < a0 < . . . < an−1. It is well known (see [13, Chap. 4, Sec. 3] or [22,
Part 3, Chap. 1, Sec. 2]) that all roots of this equation lie in the disk |z| < 1. By Corollary 4.2.1, the
function En(z;μ) has no roots in this disk. Therefore, the function En(z;μ) has no multiple roots.

(3) Assertion (3) follows from the fact that the order of Eq. (4.4.1) is not higher than n− 1.
(4) If μ ∈ R, then by Theorem 4.1.1, a possible negative root of the function E2(z;μ) is simple. If

there was a nonreal multiple root, then the conjugate number was also a multiple root. This means
that the function E2(z;μ) would have no less than two multiple roots, which contradicts assertion (3).
The case μ ∈ R has been examined. It also implies the case μ ≥ 0 since E2(x;μ) > 0 for x > 0 and
μ ≥ 0.

Let z0 be a root of the function E2( μ) of multiplicity no higher than 2. By (4.4.2), z0 is a multiple
root of the function E2(z;μ− 1). By Lemma 4.4.1 and Proposition 4.4.1, z0 is a nontrivial solution of
the following system:

1

Γ(μ− 1)
+

z0
Γ(μ− 1/2)

= 0,
1

Γ(μ− 2)
+

z0
Γ(μ− 3/2)

= 0.

We have proved that μ 	= 2, 3/2. The first of these equations can be rewritten in the form

1

(μ− 2)Γ(μ− 2)
+

z0
(μ− 3/2)Γ(μ− 3/2)

= 0.
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Comparing this with the second equation, we see that the system cannot have nontrivial solutions.
The case μ ∈ C has also been examined.

(5) Let z0 be a root of the function Eρ(z;μ) of multiplicity higher than 2. Then by formula
(4.3.33), z0 is a multiple root of the function Eρ(z;μ− 1). Therefore, by Lemma 4.4.1, in addition to
condition (4.4.1), the following condition must hold:

1

Γ(μ− 2)
+

z0
Γ(μ− 2 + 1/n)

+ . . .+
zn−1
0

Γ(μ− 2 + (n− 1)/n)
= 0.

For n = 3, both these conditions mean that z0 is a common root of two quadratic equations. The
relation Γ(s+1) = sΓ(s) implies that the coefficient of these equations are not proportional and hence
these equations can have no more than one common root z0. By Theorems 4.1.1 and 4.1.2, z0 /∈ R,
but then z̄0 (since μ is real) must be a common root, which is impossible. Assertion (5) is proved.

(6) Let z0 be a root of the function E1/2(z;μ) of multiplicity not higher than 2. Twice applying
formula (4.4.2), we conclude that z0 is a root of the function E1/2(z;μ−2). Then formula (4.4.3) with
ρ = 1/2 shows that the following condition holds:

1

Γ(μ− 2)
= 0;

this is possible only for μ = 2, 1, 0,−1, . . .. But for these μ, the function E1/2(z;μ) has an explicit
form (see the begining of Chap. 2), which shows that a multiple root can exist only at the point z = 0.
Assertion (6) is verified, and the theorem is completely proved.

4.5. Zeros of the Function E1(z;μ), Incomplete Gamma-Function,
and the Error Function

Owing to the formula

E1(z;μ) =
1

Γ(μ− 1)

1∫

0

ezt(1− t)μ−2dt, μ > 1, (4.5.1)

the case ρ = 1 admits a more detailed analysis of zeros, which is presented in the present section. As
consequences we obtain assertions on the distribution of roots of two functions that can be expressed
through E1(z;μ): the incomplete gamma-function and the error function (Gaussian error function
related to the density of normal distribution in probability theory).

4.5.1. Zeros of the function E1(z;μ). The following lemma, by some modification of for-
mula (4.5.1), allows one to broaden the set of values of the parameter μ.

Lemma 4.5.1. The following representation holds:

Γ(μ)e−zE1(z;μ) = 1 + (1− μ)

1∫

0

(1− e−zt)tμ−2dt, μ > 0.

Proof. Since both sides of the equality are entire functions, it suffices to prove it for z = x > 0. By
formula (4.5.1), we have the expression

E1(x;μ+ 1) =
ex

Γ(μ)

1∫

0

e−txtμ−1dt. (4.5.2)
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Integration by parts yields

x

1∫

0

e−txtμ−1dt = −(e−x − 1) + (μ− 1)

1∫

0

(e−tx − 1)tμ−2dt.

Combining this relation, the well-known formula

E1(x;μ) =
1

Γ(μ)
+ xE1(x;μ+ 1),

and formula (4.5.2), we obtain the equality

E1(x;μ) =
1

Γ(μ)
+

ex

Γ(μ)

⎛

⎝−(e−x − 1
)
+ (μ− 1)

1∫

0

(
e−tx − 1

)
tμ−2dt

⎞

⎠

=
ex

Γ(μ)

⎛

⎝1 + (μ− 1)

1∫

0

(
e−tx − 1

)
tμ−2dt

⎞

⎠ .

This is equivalent to the required formula for z = x > 0. The lemma is proved.

Lemma 4.5.2. For μ > 0, the following formula holds:

Im
(
e−zE1(z;μ)

)
=

1− μ

Γ(μ)

1∫

0

e−xttμ−2 sin yt dt, z = x+ iy. (4.5.3)

Lemma 4.5.2 immediately follows from Lemma 4.5.1.
The main result of this section is the following theorem.

Theorem 4.5.1. The following assertions hold.

(1) For μ > 2, all roots of the function E1(z;μ) belong to the set

Re z > μ− 2, | Im z| > π.

(2) For 1 < μ < 2, all roots of the function E1(z;μ) belong to the set

Re z < μ− 2, | Im z| > π. (4.5.4)

(3) For 0 < μ < 1, all roots of the function E1(z;μ), except for a unique negative root, belong to
the set (4.5.4).

(4) For μ ∈ (−n,−n+ 1), n ∈ Z+, the function E1(z;μ) has a unique negative root.

Note that positive roots of the function E1(z;μ) were characterized in Theorem 4.1.2, and recall
that for μ = 1, 0,−1, . . ., this function has an explicit representation (see the beginning of Chap. 2).

Proof. (1)–(3) Let μ > 0. Then for 0 < y ≤ π (respectively, −π ≤ y < 0), the integrand in formula
(4.5.3) is positive (respectively, negative) in the interval (0, 1). Therefore, by formula (4.5.3), the
function E1(z;μ) has no roots on the set 0 < | Im z| ≤ π.

Formula (4.5.1) implies the absence of real zeros of the function E1(z;μ), μ > 1.
Let 0 < μ < 1. The definition of the Mittag-Leffler function implies that there are no nonnegative

roots of the function E1(z;μ). The assertion on the uniqueness of a negative root will be proved in
part (4) (we have used assertion (4), which has not been proved, but this does not lead to a vicious
circle in the proof).

Thus, to prove assertions (1)–(3), it remains to examine the distribution of nonreal roots in the cor-
responding half-planes. The analysis is based on representations (4.5.1) and (4.5.3) and Lemma 4.3.1.
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Let μ ∈ (0, 1) ∪ (1, 2). For fixed x ∈ R, we set

f(t) =

{
e−xttμ−2, 0 < t < 1,

0, t ≥ 1.

We show that for x ≥ μ− 2, the function f(t) satisfies the conditions of Lemma 4.3.1.
The condition

tf(t)

t+ 1
∈ L1(R+)

is obvious. Further,

f ′(t) = e−xttμ−3(−xt+ (μ− 2)), 0 < t < 1.

If x ≥ 0, then f ′(t) < 0 on (0, 1) since μ − 2 < 0. If x < 0, then −xt + μ − 2 < −x + μ − 2 for
t ∈ (0, 1). Therefore, f ′(t) < 0 on (0, 1) also for μ− 2 ≤ x < 0. Thus, f(t) decreases on (0, 1). Finally,
for x ≥ μ− 2, all conditions of Lemma 4.3.1 hold. Applying this lemma to integral (4.5.3), we obtain
that

E1(z;μ) 	= 0 for x = Re z ≥ μ− 2, y 	= 0.

Thus, assertions (2) and (3) are proved.
Let μ > 2. From (4.5.1) it follows that

Γ(μ− 1) ImE1(z;μ) =

∫

R+

f(t) sin yt dt,

where

f(t) =

{
ext(1− t)μ−2, 0 < t < 1,

0, t ≥ 1.

If we prove that the function f(t) decreases on (0, 1) for x ≤ μ − 2, then, by Lemma 4.3.1, the
function E1(z;μ) has no roots in the half-plane Re z = x ≤ μ− 2, and assertion (1) will be proved.

We have

f ′(t) = ext(1− t)μ−3(x(1− t)− (μ− 2)),

which implies that for x ≤ μ− 2, the derivative of the function f(t) is negative on (0, 1). The function
f(t) decreases on (0, 1). We have proved assertion (3).

(4) Let μ ∈ (−n,−n+1), n ∈ Z+. By the definition of the Mittag-Leffler function and Theorem 1.2.1,
we have the equality

E1(0, μ) =
1

Γ(μ)
, signE1(−∞;μ) = signΓ(μ− 1).

Since Γ(μ) and Γ(μ − 1) have opposite signs, this implies that the function E1(x;μ) has at least one
negative root. By Theorem 4.4.1, it is simple. Prove the uniqueness.

Assume the contrary, i.e., let the function E1(x;μ) have at least two negative roots x1 and x2. By
Theorem 4.4.1, they are simple. Since

Eρ(z;μ) → E1(z;μ), ρ→ 1 + 0,

uniformly in any disk, by the Hurwitz theorem, for ρ sufficiently close to 1, ρ > 1, small neighborhoods
of the points x1 and x2 contain exactly one root of the function Eρ(z;μ). Since conjugate roots form
pairs, we conclude that both these roots are real, which contradicts Theorem 4.1.1. We have proved the
uniqueness of a negative root, and hence assertion (4) holds. The theorem is completely proved.

In Chap. 5, assertion (2) of Theorem 4.5.1 will be substantially strengthened by another approach.
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4.5.2. Zeros of the incomplete gamma-function and the error function. Consider the in-
complete gamma-function of the variable z:

γ(α, z) =

z∫

0

e−ttα−1dt, Reα > 0. (4.5.5)

This function is analytic everywhere, except for a possible branch point z = 0; the principal branch is
defined by the cut along the negative real half-line. Expanding e−t in a power series and integrating,
we obtain the representation

γ(α, z) = zα
∞∑

n=0

(−1)n
zn

n!(n+ α)
,

which allows one to continue γ(α, z) to all values α 	= 0,−1,−2, . . .. This implies that the modified
incomplete gamma-function

γ∗(α, z) =
γ(α, z)

zαΓ(α)

is an entire functions (also with respect to α) and the following formula holds:

γ∗(α, z) = e−z
∞∑

n=0

zn

Γ(α+ n+ 1)

(see [18, Chap. 2, Sec. 5]). Therefore, for all α ∈ C,

γ∗(α, z) = e−zE1(z; 1 + α). (4.5.6)

This representation allows one to apply theorems on zeros of the function Eρ(z;μ) for ρ = 1 and
μ = 1 + α to the function γ∗(α, z). We exclude from consideration the degenerate case α ∈ −Z+,
where γ∗(α, z) = z−α.

Corollary 4.5.1. Let α /∈ −Z+. Then all zeros wn of the function γ∗(α,w) are simple. They can be
numbered such that n ∈ Z \ 0 and

wn = 2πni+ (α− 1) ln 2πin+ ln
1

Γ(α)
+ (1− α)2

ln 2πin

2πin
+O

(
1

n

)
, n→ ±∞. (4.5.7)

Corollary 4.5.1 follows from formula (4.5.6) and Theorems 2.2.1, 4.2.2, and 4.1.1.

Corollary 4.5.2. The following assertions hold.

(1) For α > 1, all roots of the function γ∗(α,w) belong to the set

Rew > α− 1, | Imw| > π.

(2) For 0 < α < 1, all roots of the function γ∗(α,w) belong to the set

Rew < α− 1, | Imw| > π. (4.5.8)

(3) For −1 < α < 0, all roots of the function γ∗(α,w), except for a unique negative root, belong to
the set (4.5.8).

(4) For α ∈ (−n− 1,−n), n ∈ Z+the function γ∗(α,w) has a unique negative root.

Corollary 4.5.2 follows from formula (4.5.6) and Theorem 4.5.1.
In concluding this section, we consider the error function

erf z =
2√
π

z∫

0

e−t2dt. (4.5.9)
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It is an entire function having a simple root z = 0 and having no other real roots. From (4.5.5) and
(4.5.9) we obtain the formula

erf z =
1√
π
γ

(
1

2
, z2
)

(see also [18, Chap. 2, Sec. 2]), which shows, together with the definition of γ∗(α, z), that all nonzero
roots of the function erf z coincide with roots of the function γ∗(1/2, z2). By Corollary 4.5.2, roots of
the function γ∗(1/2, z2) belong to the set

Re z2 < −1/2, | Im z2| > π.

This set lies in the angles ∣∣∣±π
2
− arg z

∣∣∣ <
π

4
and consists of the intersections of two curvilinear sectors, which are symmetric with respect to the
real axis and are bounded by branches of the hyperbola

y2 − x2 =
1

2
(z = x+ iy),

with the outer region of the hyperbolic cross |xy| ≤ π.
Consider the mapping w = z2 of the angle

∣∣∣
π

2
− arg z

∣∣∣ <
π

4
(4.5.10)

on the half-plane Rew < 0, which, by Corollary 4.5.2, contains roots wn of the function γ∗(1/2, w);
recall that these roots are simple.

Denote by z+n roots of the function erf z in the angle (4.5.10). Then n ∈ Z\0, and by formula (4.5.7)
with α = 1/2 we have

(z+n )
2 = 2πni− 1

2
ln 2πin− ln Γ

(
1

2

)
+

ln 2πin

8πin
+O

(
1

n

)
, n→ ±∞.

Since erf z is odd, the symmetric angle
∣∣π/2 + arg z

∣∣ < π/4 contains a symmetric chain of roots z−n of
the function erf z. The function erf z has no roots other than the point z = 0. Since Γ(1/2) =

√
π, we

have proved the following assertion.

Corollary 4.5.3. All zeros of the function erf z are simple. Nonzero roots form two chains z+n and z−n ,
n ∈ Z\0, which are symmetric with respect to the real axis and lie in the intersection of the hyperbolic
sectors y2 − x2 > 1/2 with the outer region of the hyperbolic cross |xy| ≤ π/2. Moreover,

(z±n )
2 = 2πni− 1

2
ln 2πin− 1

2
lnπ +

ln 2πin

8πin
+O

(
1

n

)
, n→ ±∞.

Theorem 4.2.1 belongs to Ostrovskii and Peresyolkova (see [19]). Other results of this chapter were
proved by Sedletskii (see [31, 32, 36, 37]).
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Chapter 5

ZEROS OF LAPLACE TRANSFORMS AND DEGENERATE

HYPERGEOMETRIC FUNCTION

5.1. Statement of the Problem

In this chapter, we examine the distribution of zeros of functions that, in some sense, are related
to the Mittag-Leffler function for ρ = 1. Namely, we consider the Laplace transforms of functions
concentrated in the interval (0, 1), i.e., entire functions of the form

F (z) =

1∫

0

eztf(t)dt, f ∈ L1(0, 1), (5.1.1)

and the confluent hypergeometric function (the Kummer function)

Φ(a, c; z) := 1 +
∞∑

s=1

a(a+ 1) . . . (a+ s− 1)

c(c+ 1) . . . (c+ s− 1)

zs

s!
, c /∈ −Z+ (5.1.2)

(see, e.g., [10, 18, 40]), as a function of the variable z for fixed values of the parameters a, c ∈ C.
These function are often used in various branches of analysis, for example, in spectral theory, in the

theory of differential-difference equations, in the study of nonharmonic Fourier series, etc. Functional
classes (5.1.1) and (5.1.2) are extremely vast. In particular, class (5.1.1), contains the functions
E1(z;μ), Reμ > 1, owing to the formula

E1(z;μ) =
1

Γ(μ− 1)

1∫

0

ezt(1− t)μ−2dt, Reμ > 1 (5.1.3)

(see (1.4.21)). The well-known integral representation

Φ(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

1∫

0

eztta−1(1− t)c−a−1dt, 0 < Re a < Re c (5.1.4)

(see [10, 18, 40]) shows that

Φ(1, c; z) = Γ(c)E1(z; c), Re c > 1.

Note that the modified Bessel function can be represented by the Kummer function for c = 2a (see [40]).

5.2. Zeros of Finite Laplace Transforms

The starting point is the following Pólya theorem from [20] (see also [34]).

Theorem A. Let a function f(t) be integrable and positive and not decrease in the interval (0, 1).
Then all zeros of the function (5.1.1) lie in the left-hand half-plane Re z ≤ 0. Moreover, if f(t) is not
an echelon function of the form

f(t) = ci, ti < t < ti+1, i = 0, . . . , n; t0 = 0, tn+1 = 1, 0 < ci < ci+1,

where numbers ti are rational, then all zeros of the function (5.1.1) lie in the open left-hand half-plane
Re z < 0.
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In the class of function f satisfying the conditions of this theorem, we consider a sufficiently wide
subclass and prove for it more thorough assertions on the distribution of zeros of function (5.1.1),
namely, assertions on the localization of all zeros of function (5.1.1) in some proper subsets of the set
Re z < 0. The additional condition defining this subclass consists of the requirement that the function
f is logarithmically convex in some left-hand neighborhood of the point t = 1. For this subclass, we
find the shape of a (left-hand) curvilinear half-plane, and under the condition f(+0) > 0 the shape of
a curvilinear strip that contains all zeros of function (5.1.1). In both cases, the description of the set
containing all zeros is exact, in some sense. Moreover, we prove that if f is logarithmically convex on
the whole interval (0, 1), then, independently of the monotonicity of f , all zeros of function (5.1.1) lie
in the union of horizontal strips (2n− 1)π < | Im z| < 2πn, n ∈ N.

5.2.1. Distribution of zeros in curvilinear half-planes and strips.

Definition. A function f that is positive in an interval (a, b) is said to be logarithmically convex in
this interval if the function ln f is convex in (a, b).

For a twice differentiable positive function, its logarithmic convexity in (a, b) is equivalent to the
condition

(f ′(t))2 ≤ f(t)f ′′(t), t ∈ (a, b)

(see [22]). In the general case, the criterion of the logarithmic convexity is as follows.

Lemma 5.2.1. Let a function f be positive in an interval (a, b). It is logarithmically convex in this
interval if and only if the function

fx(t) := extf(t)

is convex in (a, b) for all x ∈ R.

Proof. In the proof of both necessity and sufficiency, we deal with the continuous functions f and
ln f . We use the fact that for a function ϕ ∈ C(a, b) the convexity of ϕ in (a, b) is equivalent to the
condition

ϕ

(
t1 + t2

2

)
≤ ϕ(t1) + ϕ(t2)

2
(5.2.1)

for all points t1, t2 ∈ (a, b) (see [8]). We obtain that the logarithmic convexity of the function f in (a, b)
is equivalent to the condition

f

(
t1 + t2

2

)
≤
√
f(t1)f(t2) (5.2.2)

for all t1, t2 ∈ (a, b).
Let a function f be logarithmically convex in (a, b). Then property (5.2.2) holds. Multiplying

(5.2.2) by exp(x(t1 + t2)/2), we obtain the inequality

fx

(
t1 + t2

2

)
≤
√
fx(t1)fx(t2).

Applying to the right-hand side the Cauchy inequality, we obtain for the function ϕ = fx prop-
erty (5.2.1), which means the convexity of the function fx.

Conversely, let the function fx be convex in (a, b). Then for ϕ = fx property (5.2.1) is valid. We
can rewrite it in the form

f

(
t1 + t2

2

)
≤ 1

2
(ex(t1−t2)/2f(t1) + ex(t2−t1)/2f(t2)). (5.2.3)

By the condition, for fixed t1 and t2 this inequality holds for all x ∈ R, in particular, for a value of x for
which the minimum of the right-hand side is attained. Differentiating, we see that for this value of x,
terms on the right-hand side of (5.2.3) coincide. Then their half-sum is equal to their geometric mean
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and we obtain property (5.2.2), which is equivalent to the logarithmic convexity of the function f .
The lemma is proved.

Lemma 5.2.2 (see [9]). If a function ϕ is convex in an interval (0, 2π) (respectively, in the interval
(π/2, 5π/2)), then

2π∫

0

ϕ(t) cos t dt ≥ 0

(respectively,
5π/2∫

π/2

ϕ(t) sin t dt ≥ 0).

Recalling that x = Re z, y = Im z, r = |z|, θ = arg z, we introduce the notation

Φu(z) =

1∫

u

e−ztg(t)dt. (5.2.4)

Lemma 5.2.3. Let a function g have bounded variation of a segment [a0, 1], 0 ≤ a0 < 1, and g(1−0) 	=
0. Then for any fixed b0 ∈ (a0, 1), we have the estimate

|Φu(z)| ≥ C
e−x

r
(1 + o(1)), x→ −∞, (5.2.5)

where C > 0 is independent of u ∈ [a0, b0].

Proof. Assume that g(1) = g(1− 0); by the condition, g(1) 	= 0. Using the continuity of the function
g(t) at the point 1 from the left, we fix δ ∈ (0, 1− b0) so small that

var(g(t) : 1− δ ≤ t ≤ 1) ≤ |g(1)|
2

. (5.2.6)

Integrate by parts:

Φu(z) = −1

z

⎛

⎝e−zg(1)− e−zug(u)−
1∫

u

e−ztdg(t)

⎞

⎠ . (5.2.7)

We divide the last integral into two terms K1 and K2 corresponding to the segments [u, 1− δ] and
[1− δ, 1], respectively. For x ≤ 0, taking into account (5.2.6), we obtain the estimates

|K1| ≤ V e−(1−δ)x, |K2| ≤ |g(1)|
2

e−x.

These estimates together with the triangle inequality applied to (5.2.7) yield the inequality

|Φu(z)| ≥ |g(1)|
2

e−x

r
(1−M1e

(1−δ)x −M2e
δx), x ≤ 0,

which proves Lemma 5.2.3.

Theorem 5.2.1. Let the conditions of Theorem A hold and, moreover, let a function f(t) be logarith-
mically convex on an interval (1− a, 1), 0 < a ≤ 1. Then all zeros of function (5.1.1) with sufficiently
large moduli lie in the set

x ≤ − ln

⎛

⎜⎝y2
π/(2|y|)∫

0

tf(1− t)dt

⎞

⎟⎠+ C, |y| > y0,
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where C is some constant.

Note that the meaningfulness of Theorem 5.2.1 (in comparison with Theorem A) is manifested in
the case f(1− 0) = +∞, where

y2
π/(2|y|)∫

0

tf(t)dt >
π2

8
f

(
1− π

2|y|
)

→ +∞, y → ±∞. (5.2.8)

Proof. Since F (z̄) = F̄ (z), it suffices to consider only y > 0. We have the expressions

e−zF (z) =

1∫

0

e−ztf(1− t)dt =: G(z) (5.2.9)

and

V (z) := − ImG(z) =

1∫

0

e−xtf(1− t) sin ytdt.

We obtain a lower estimate of |V (z)| for sufficiently large y and for x < 0 (recall that, by Theorem A,
the function F (z) has no zeros for x ≥ 0). We denote

N = N(y) := max

(
n ∈ N :

π

2y
+

2πn

y
≤ a

)
,

aN :=
π

2y
+

2πN

y

and note that aN ≤ a. Moreover, since

π

2y
+

2π(N + 1)

y
> a,

we have aN > a− 2π/y and therefore
a

2
< aN ≤ a (5.2.10)

for sufficiently large y. Let

V (z) =

⎛

⎜⎝
π/(2y)∫

0

+

aN∫

π/(2y)

+

1∫

aN

⎞

⎟⎠ e−xtf(1− t) sin yt dt =: V1 + V2 + V3.

Since x < 0, we have

V1 >
2

π
y

π/(2y)∫

0

tf(1− t)dt.

Further, by the condition, the function f(1− t) is logarithmically convex on (0, a). By Lemma 5.2.1,
the function e−xtf(1− t) is convex on (0, a) and hence by Lemma 5.2.2, V2 ≥ 0. Since

V3 = − Im

1∫

aN

e−ztf(1− t)dt = Im

⎛

⎝1

z

1∫

aN

f(1− t)de−zt

⎞

⎠

= Im

⎛

⎝1

z

⎛

⎝f(+0)− f(1− aN )e−zaN −
1∫

aN

e−ztdf(1− t)

⎞

⎠

⎞

⎠ ,
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taking into account (5.2.10), for x < 0 we have the relations

|V3| ≤ A
e−x

r
≤ A

e−x

y
, A = 3f

(
1− a

2

)
.

The function G(z) (and hence the function F (z)) has no zeros in the region where V1 + V2 > |V3|.
Therefore, the estimates obtained for Vi i = 1, 2, 3, imply that F (z) has no zeros in the region where

2

π
y

π/(2y)∫

0

tf(1− t)dt >
A

y
e−x, y > y0 > 0.

Taking the logarithm, we obtain the assertion of the theorem. Theorem 5.2.1 is proved.

Theorem 5.2.1, the inequality in (5.2.8), and Theorem A imply the following assertion.

Corollary 5.2.1. Let the conditions of Theorem 5.2.1 hold. Then all zeros of function (5.1.1) lie in
the union of the set

x ≤ min

(
0, − ln f

(
1− π

2|y|
)
+ C

)
, |y| > π

2
,

where C is a constant, and the semi-strip x < 0, |y| ≤ π/2.

Denote by (zn)
∞
n=1, |zn+1| ≥ |zn|, the sequence of all zeros of function (5.1.1)9. We are interested

in condition for the function f under which

Re zn → −∞, n→ ∞. (5.2.11)

It was proved in [28] that, under the conditions of Theorem A, all zeros of function (5.1.1) lie in
some vertical strip −∞ < h ≤ Re z ≤ 0 if and only if

0 < f(+0) ≤ f(1− 0) < +∞.

Therefore, if condition (5.2.11) holds, then at least one of the following conditions is necessary:

f(+0) = 0, f(1− 0) = +∞.

Corollary 5.2.1 shows that, under the conditions of Theorem 5.2.1, the second of them is also sufficient.

Corollary 5.2.2. Let a function f satisfy the conditions of Theorem 5.2.1. If

f(1− 0) = +∞,

then zeros of function (5.1.1) satisfy the relation (5.2.11).

The right bound for zeros of function (5.1.1) guaranteed by Theorem 5.2.1 depends on the behavior
of the function f in a left-hand neighborhood of the point 1. Now we find a left bound for zeros.
It also depends on the behavior of the function f in a right-hand neighborhood of the point 0. We
impose the condition

f(+0) > 0. (5.2.12)

Theorem 5.2.2. . Let the conditions of Theorem 5.2.1 hold and, moreover, let condition (5.2.12)
hold. Then there exist constants C ∈ R and H, y0 > 0 such that all zeros of function (5.1.1) lie in the
union of the set

x ≥ − ln

⎛

⎜⎝|y|
π/(2|y|)∫

0

f(1− t)dt

⎞

⎟⎠+ C, |y| > y0,

with the set −H ≤ x < 0, |y| ≤ y0.

9It is well known (see, e.g., [12]) that function (5.1.1) has an infinite set of zeros.
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Proof. Let G(z) and aN be the same as in the proof of Theorem 5.2.1. It suffices to consider y ≥ 0.
First, we show that any sector of the form cos θ ≤ −δ < 0 contains no more than a finite number
of zeros of the function G(z). For this, we denote by J1 and J2 the parts of the integral in (5.2.9)
corresponding to the intervals (0, 1/2) and (1/2, 1), respectively. Then

|J1| ≤ e−x/2‖f‖1, x ≤ 0.

Since J2 = Φ1/2 in notation (5.2.4), by Lemma 5.2.3 (with g(t) = f(1 − t)), for J2 we have esti-
mate (5.2.5). Therefore, if H is sufficiently large, then by the triangle inequality for x ≤ H < 0 we
obtain the estimate

|G(z)| ≥ C1
e−x

r
− C2e

−x/2 ≥ C1
e−x

r
(1− C3re

x/2).

The expressions in the last parentheses is positive if cos θ ≤ −δ < 0 and r is sufficiently large, and the
intermediate assertion for sectors is proved.

Thus, to find a left bound for zeros, we can consider instead of the left-hand half-plane the set

x < H, y >
r

2
, (5.2.13)

where H is sufficiently large. We can assume that a < 1. We set

G(z) =

⎛

⎝
aN∫

0

+

1∫

aN

⎞

⎠ e−ztf(1− t)dt =: G1(z) +G2(z).

By (5.2.10) and Lemma 5.2.3 we have estimate (5.2.5) for ΦaN (z) = G(z). Therefore, on the set
(5.2.13) for sufficiently large H the following estimate is valid:

|G2(z)| ≥ B
e−x

y
, B > 0. (5.2.14)

Now let G1 = U − iV , where

U =

aN∫

0

e−xtf(1− t) cos yt dt, V =

aN∫

0

e−xtf(1− t) sin yt dt.

We write

V =

π/y∫

0

+

3π/(2y)∫

π/y

+

aN−π/y∫

3π/(2y)

+

aN∫

aN−π/y

=: V1 + V2 + V3 + V4.

Then V2 < 0 by the negativeness of sin yt. Applying Lemmas 5.2.1 and 5.2.2, we obtain inequality
V3 ≤ 0. Since the function f(1 − t) does not increase and −x/y ≤ M1 < +∞ on the set (5.2.13), we
have the double inequality

0 < V1 < 2e−πx/y

π/(2y)∫

0

f(1− t)dt < C

π/(2y)∫

0

f(1− t)dt.
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Further, taking into account (5.2.10) and the monotonicity of the function f and denoting IN by
(aN − π/y, aN ) and C1 by 3f(1− a/2), for y > y0 we obtain that

|V4| =

∣∣∣∣∣∣∣
Im

⎛

⎜⎝
1

z

∫

IN

f(1− t)de−zt

⎞

⎟⎠

∣∣∣∣∣∣∣
≤ 1

r
|f(1− aN )e−zaN

− f

(
1− aN +

π

y

)
e−z(aN−π/y) −

∫

IN

e−ztdf(1− t)| < C1
e−ax

y
. (5.2.15)

But

V =

π/(2y)∫

0

+

aN∫

π/(2y)

> 0, (5.2.16)

since in the first term of the integrand the function is positive and to the second term, owing to
Lemma 5.2.1, we can apply Lemma 5.2.2. Since V2, V3 ≤ 0, we have

0 < V = (V1 + V4) + (V2 + V3) ≤ V1 + V4 ≤ V1 + |V4|,
i.e.,

|V | ≤ C

π/(2y)∫

0

f(1− t)dt+ C1
e−ax

y
. (5.2.17)

Similarly, for the function U ,

U =

π/(2y)∫

0

+

π/y∫

π/(2y)

+

aN−3π/(2y)∫

π/y

+

aN∫

aN−3π/(2y)

=: U1 + U2 + U3 + U4.

Note that U2 < 0 by the negativeness of cos yt and U3 ≤ 0 by Lemmas 5.2.1 and 5.2.2. Further, on
the set (5.2.13) the inequality

0 < U1 < e−πx/(2y)

π/(2y)∫

0

f(1− t)dt < C

π/(2y)∫

0

f(1− t)dt

is valid and |U4| satisfies estimate (5.2.15), i.e.,

|U4| < C
e−ax

y
.

Similarly to (5.2.16), we have the inequality

U =

aN−π/(2y)∫

0

+

aN∫

aN−π/(2y)

> 0

and hence for |U | we obtain estimate (5.2.17). Finally, estimate (5.2.17) is valid for |G1|.
Recalling that G = G1+G2 and applying estimate (5.2.17) for |G1| and estimate (5.2.14), we arrive

at the inequality

|G(z)| ≥ B
e−x

y
− C2

π/(2y)∫

0

f(1− t)dt− C3
e−ax

y
.
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This implies that if H is sufficiently large, then, for x < −H, the function G(z) (and hence the function
F (z)) has no zeros on the set

⎛

⎜⎝z = x+ iy :
B

2
e−x > C2y

π/(2y)∫

0

f(1− t)dt, y > y0

⎞

⎟⎠ .

This proves Theorem 5.2.2.

From Theorems 5.2.1, 5.2.2, and A we obtain the following assertion.

Corollary 5.2.3. Let the conditions of Theorem 5.2.2 hold. Then there exist constants C1, C2 ∈ R

and H, y0 > 0 such that all zeros of function (5.1.1) lie in the curvilinear strip, which is the union of
the set

− ln

⎛

⎜⎝|y|
π/(2|y|)∫

0

f(1− t)dt

⎞

⎟⎠+ C1 ≤ x ≤ − ln

⎛

⎜⎝y2
π/(2|y|)∫

0

tf(1− t)dt

⎞

⎟⎠+ C2 < 0, (5.2.18)

where |y| > y0, with the set −H ≤ x < 0, |y| ≤ y0.

Remark 5.2.1. Due to Corollary 5.2.1, the set (5.2.18) in Corollary 5.2.3 can be replaced by the set

− ln

⎛

⎜⎝|y|
π/(2|y|)∫

0

f(1− t)dt

⎞

⎟⎠+ C1 ≤ x ≤ − ln f

(
1− π

2|y|
)
+ C2 < 0.

For a function f regularly varying in a neighborhood of the point 1, asymptotics of integrals in
(5.2.18) can be easily calculated, which allows one to simplify the form of the set (5.2.18).

A function g positive and measurable in a right-hand neighborhood of the point 0 is called a regularly
varying function of order α ∈ R if for all λ > 0,

lim
t→+0

g(λt)

g(t)
= λα.

A regularly varying function of order α = 0 is called a slowly varying function. A regularly varying
function g of order α has the form

g(t) = tαl(t), (5.2.19)

where l(t) is a slowly varying function. For any slowly varying function l(t), there exists an equivalent,
as t→ +0, continuously differentiable function l0(t) satisfying the condition

l′0(t) = o

(
l0(t)

t

)
, t→ +0. (5.2.20)

The definitions and facts presented above are taken from [38].
Introduce the notation

g1(u) =
1

u

u∫

0

g(t)dt, g2(u) =
1

u2

u∫

0

tg(t)dt, 0 < u < 1.

Lemma 5.2.4. Let a function g be integrable on (0, 1) and be a regularly varying function of order
α > −1. Then

g1(u) ∼ 1

1 + α
g(u), g2(u) ∼ 1

2 + α
g(u), u→ +0.
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Proof. By the condition, representation (5.2.19) holds, where l(t) is a slowly varying function. Since
the replacement of the function g by an equivalent function does not change the asymptotics of the
functions g1 and g1, we can assume that l(t) satisfies property (5.2.20). By the L’Hôpital rule,

lim
u→+0

g1(u)

g(u)
= lim

u→+0

1

u1+αl(u)

u∫

0

tαl(t)dt

= lim
u→+0

uαl(u)

(1 + α)uαl(u) + u1+αl′(u)
= lim

u→+0

1

1 + α+ (ul′(u)/l(u))
, (5.2.21)

which, together with property (5.2.20), implies the required asymptotics for g1. If in (5.2.21) we
replace g1 by g2, then α is replaced by 1 + α, and everything repeats. The lemma is proved.

Corollary 5.2.4. Let the condition of Theorem 5.2.2 hold and. moreover, let a function f(1− t) be a
regularly varying function of order α ∈ (−1, 0]. Then all zeros of function (5.1.1) lie in the curvilinear
strip, which is the union of the set {−H ≤ x < 0, |y| ≤ y0} with the set

∣∣∣∣x+ ln f

(
1− 1

|y|
)∣∣∣∣ ≤ C, |y| > y0,

where H, y0, and C are positive numbers.

Indeed, introducing the notation

g(t) = f(1− t), u =
π

2|y|
and applying Lemma 5.2.4, we see that the operands of the logarithms in (5.2.18) are asymptotically
proportional to the expressions g1(u) and g2(u), respectively. Therefore, Corollary 5.2.4 follows from
Corollary 5.2.3 and the definition of regularly varying functions, which allows one to replace f(1 −
π/(2|y|)) by f(1− 1/|y|) in the resulting set.

The example

f(1− t) = g(t) =
1

t ln2 t
,

where the functions

g1(u) =
1

u| lnu| , g2(u) ∼ 1

u ln2 u
, u→ +0,

are not asymptotically proportional, shows that in the case α = −1 we must be satisfied with Re-
mark 5.2.1.

5.2.2. Distribution of zeros in horizontal strips.

Theorem 5.2.3. Let a function f be integrable and logarithmically convex in an interval (0, 1). Then
all zeros of function (5.1.1) lie in the union of the horizontal strips

(2n− 1)π < | Im z| < 2πn, n ∈ N.

Proof. Let

G(z) = e−zF (z) =

1∫

0

e−ztf(1− t)dt =: U(z)− iV (z).

It suffices to prove that the function G(z) has no zeros in the strips

2πn ≤ y ≤ (2n+ 1)π, n ∈ Z+.
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First, let (
2n+

1

2

)
π ≤ y ≤ (2n+ 1)π, n ∈ Z+. (5.2.22)

If n = 0, then sin yt > 0 for 0 < t < 1, and since f > 0, we have V > 0.
If n ≥ 1, then we write

V (z) =

⎛

⎜⎝
π/(2y)∫

0

+
n−1∑

k=0

π(5/2+2k)/y∫

π(1/2+2k)/y

+

1∫

π(1/2+2n)/y

⎞

⎟⎠ e−xtf(1− t) sin yt dt =: I1 +
n−1∑

k=1

Vk + I2.

For I1 and I2, we have the inequality sin yt > 0. For I1 this is obvious. For I2, we have
π(1/2 + 2n)/y < t < 1 and hence

π

2
+ 2πn < yt < π + 2πn

(we have taken into account the right-hand side inequality (5.2.22)). Since f > 0, we have I1+ I2 > 0.
Applying Lemmas 5.2.1 and 5.2.2, we obtain the inequality Vk ≥ 0 on the set (5.2.22). Therefore,

this set does not contain zeros of the function G(z).
It remains to consider the strips

2πn ≤ y <
π

2
+ 2πn, n ∈ Z+. (5.2.23)

Here we examine the function U(z).
If n = 0, then cos yt > 0 for 0 < t < 1 and hence U > 0.
For n ≥ 1 we have

U(z) =
n∑

k=1

⎛

⎜⎝
2πk/y∫

2π(k−1)/y

+

1∫

2πn/y

⎞

⎟⎠ e−xtf(1− t) cos yt dt =:
n∑

k=1

Uk + J.

By Lemmas 5.2.1 and 5.2.2, again Uk ≥ 0, and J > 0 due to the positiveness of the integrand. Indeed,
if 2πn/y < t < 1, then by the right-hand inequality (5.2.23), we have the relation

2πn < yt < y ≤ π

2
+ 2πn.

Therefore, U > 0 on the set (5.2.23), and the function G(z) also has no zeros on this set. The theorem
is proved.

Theorems A and 5.2.3 imply the following assertion.

Corollary 5.2.5. Let a function f be integrable, nondecreasing, and logarithically convex in the in-
terval (0, 1). Then all zeros of function (5.1.1) lie in the union of the semi-strips

Rex < 0, (2n− 1)π < | Im z| < 2πn, n ∈ N.

Formula (5.1.3) shows that for μ > 1, the function E1(z;μ) has the form (5.1.1), where

f(t) =
(1− t)μ−2

Γ(μ− 1)
.

If 1 < μ < 2, then this function satisfies all conditions of Theorem 5.2.3. Moreover, by Theorem 4.3.4,
in this case all zeros of the function E1(z;μ) lie in the half-plane Re z < μ− 2. Thus, Theorems 4.3.4
and 5.2.3 imply the following assertion.

Corollary 5.2.6. For 1 < μ < 2, all zeros of the function E1(z;μ) lie in the union of semi-strips

Re z < μ− 2, (2n− 1)π < | Im z| < 2πn, n ∈ N.

The results of this section are taken from the paper [33].
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5.3. Zeros of the Confluent Hypergeometric Function

In this section, we find the asymptotics of zeros of the confluent hypergeometric function (see
formula (5.1.2)) for all values of the parameters a and c for which the set of zeros is infinite, and
indicate a modus of numeration of all zeros matched with asymptotics. As a particular case, we
consider a subclass of sine-type functions important for applications. We also obtain nonasymptotic
properties of zeros, namely, their distributions in the left- and right-hand half-planes and in horizontal
strips.

5.3.1. Asymptotics of zeros and its matching with numeration. If a ∈ −Z+, then the series
in (5.1.2) terminates, i.e., Φ(a, c; z) is a polynomial. Further, if c − a ∈ −Z+, then Φ(c − a, c, z) is a
polynomial and the Kummer formula (see [18])

e−zΦ(a, c; z) = Φ(c− a, c;−z) (5.3.1)

shows that the function Φ(a, c; z) has no more than a finite number of zeros. Therefore, in the study
of zeros of function (5.1.2) we impose the condition a, c, c− a /∈ −Z+.

Theorem 5.3.1. Let a, c ∈ C, a, c, c− a /∈ −Z+. Then the following assertions hold :

(1) all zeros zn of the function Φ(a, c; z) are simple and the following asymptotic formula holds:

zn = 2πin+

(
(c− 2a) ln 2π|n|+ ln

Γ(a)

Γ(c− a)
± i

π

2
(c− 2)

)(
1 +

c− 2a

2πin

)

+
2a(a− c)− c

2πin
+O

(
ln |n|
n2

)
, n→ ±∞; (5.3.2)

(2) the numeration of all zeros of the function Φ(a, c; , z) is matched with asymptotics (5.3.2) by the
index set T = Z \ {0}.

Proof. (1) Since for all z ∈ C the function w = Φ(a, c; z) is a solution of the equation

zw′′ + (c− z)w′ − aw = 0 (5.3.3)

(see [18, Chap. 7, Sec. 9]), the absence of multiple zeros is proved as for the Bessel function (see [18,
Chap. 7, Sec. 6]), i.e., by using the uniqueness of solution of the Cauchy problem. Namely, let z0 be
a multiple zero of the function w = Φ. Then

w(z0) = w′(z0) = 0. (5.3.4)

But the function w ≡ 0 is also a solution of Eq. (5.3.3) with initial condition (5.3.4). By the theorem
on the uniqueness of a solution of the Cauchy problem we have Φ ≡ 0. The contradiction obtained
proves the simpleness of all zeros of the function Φ(a, c; z).

To deduce formula (5.3.2), we use the well-known asymptotics (see [10, 40])

Φ(a, c; z) =
Γ(c)

Γ(c− a)
(−z)−a

(
1− a(1 + a− c)

z
+O

(
1

z2

))

+
Γ(c)

Γ(a)
za−cez

(
1 +

(1− a)(c− a)

z
+O

(
1

z2

))
, z → ∞, (5.3.5)

where

−π < arg z ≤ π, −π < arg(−z) ≤ π. (5.3.6)

For brevity, we introduce the notation

γ =
Γ(a)

Γ(c− a)
, A = 2a(a− c)− c.
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If a, c− a /∈ −Z+, then γ is defined and γ 	= 0. Since
(
1− a(a− c+ 1)

z
+O

(
1

z2

))
/

(
1 +

(1− a)(c− a)

z
+O

(
1

z2

))
= 1 +

A

z
+O

(
1

z2

)
,

the formula (5.3.5) yields the following equation for sufficiently large (in modulus) zeros zn of the
function Φ(z) = Φ(a, c; z):

za−c(−z)aez = −γ
(
1 +

A

z
+O

(
1

z2

))
. (5.3.7)

This implies that these zeros lie in the set

arg z ∓ π

2
= O

(
ln |z|
|z|
)
, |z| > r0.

If 0 < arg z < π (respectively, −π < arg z < 0), then by condition (5.3.6), −π < arg(−z) < 0
(respectively, 0 < arg(−z) < π). Therefore,

(−z)a = zae∓iπa, Im z ≷ 0. (5.3.8)

Taking this into account and setting−1 = e∓iπ respectively in the cases Im z ≷ 0, we rewrite Eq. (5.3.7)
in the form

ez+(2a−c) ln z = γe∓iπ(1−a)

(
1 +

A

z
+O

(
1

z2

))
. (5.3.9)

This implies that for sufficiently large |n|, the following relation holds:

zn + (2a− c) ln zn = 2πin∓ iπ(1− a) + ln γ +
A

zn
+O

(
1

n2

)
.

Twice iterating this formula, we obtain the required formula (5.3.2). Assertion (1) is proved.
(2) Step 1. Assuming that r0 is sufficiently large and introducing the notationK(r0) = (z : |z| > r0),

we consider the sets

P+ = (z : |za−c(−z)aez| > 2|γ|) ∩K(r0),

P− =

(
z : |za−c(−z)aez| < 1

2
|γ|
)
∩K(r0),

P =

(
z :

1

2
|γ| ≤ |za−c(−z)aez| ≤ 2|γ|

)
∩K(r0),

which are the left- and right-hand curvilinear half-planes and the union of two curvilinear semi-strips
lying in the upper and lower half-planes, respectively. Clearly,

C\(z : |z| ≤ r0) = P+ ∪ P− ∪ P.
We need convenient estimates |Φ(z)| on these sets. To obtain them, we consider the function

Φ1(z) =
Γ(a)

Γ(c)
(−z)aΦ(a, c; z).

From (5.3.5) follows that

Φ1(z) = za−c(−z)aez
(
1 +O

(
1

z

))
+ γ

(
1 +O

(
1

z

))
, z → ∞. (5.3.10)

365



On the sets P+ and P−, estimates for |Φ1(z)| can be obtained from (5.3.10), the triangle inequality,
and the definitions of these sets. Indeed, for sufficiently large r0, from (5.3.10) we obtain the inequalities

|Φ1(z)| ≤ 3

2
|za−c(−z)aez|+ 2|γ|, (5.3.11)

|Φ1(z)| ≥ 3

4
|za−c(−z)aez| − 5

4
|γ|, (5.3.12)

|Φ1(z)| ≥ −5

4
|za−c(−z)aez|+ 3

4
|γ|. (5.3.13)

Therefore, if z ∈ P+, then (5.3.11) and (5.3.12) imply the estimates

1

8
|za−c(−z)aez| ≤ |Φ1(z)| ≤ 5

2
|za−c(−z)aez|, z ∈ P+, (5.3.14)

and if z ∈ P−, then (5.3.11) and (5.3.13) imply the estimates

1

8
|γ| ≤ |Φ1(z)| ≤ 11

4
|γ|, z ∈ P−. (5.3.15)

If z ∈ P , then (5.3.11) yields the upper estimate

|Φ1(z)| ≤ 5|γ|, z ∈ P. (5.3.16)

However, a lower estimate cannot be obtained as easily as for the sets P+ and P−; the reason is the
fact that the set P contains zeros of the function Φ1(z). Therefore, we use the mapping

w = z + (2a− c) ln z. (5.3.17)

From (5.3.8) we see that

Rew = Re(z + (2a− c) ln z) = ln |za−c(−z)aez| ∓ π Im a

respectively for Im z ≷ 0; therefore, the images of the components of the set P for sufficiently large
| Im z| coincide with the semi-strips

ln
|γ|
2

∓ π Im a ≤ |Rew| ≤ ln(2|γ|)∓ π Im a, Imw ≷ 0, | Imw| > v0. (5.3.18)

By (5.3.10), the image Ψ(w) of the function Φ1(z) under mapping (5.3.17) has the form

Ψ(w) = ewe∓iπa(1 + o(1)) + γ(1 + o(1)), Imw → ∞, Imw ≷ 0.

Obviously, in semi-strips (5.3.18), but outside small disks of a fixed radius δ centered at zeros of the
function Ψ(w) (i.e., at the points wn = 2πin+ln γ∓ iπ(1−a)+o(1), n→ ±∞), the following estimate
holds:

|Ψ(w)| ≥ C(δ) > 0.

Since δ can be taken arbitrarily small, this implies the existence of a sequence rk ↑ +∞ such that

|Φ1(z)| ≥ C0 > 0, z ∈ P, |z| = rk. (5.3.19)

Now, by estimates (5.3.14)–(5.3.16) and (5.3.19), we obtain the resulting estimates for the func-
tion Φ(z):

|Φ(z)| � exrRe(a−c), z = x+ iy = reiθ ∈ P+, (5.3.20)

|Φ(z)| � r−Re a, z ∈ P−, (5.3.21)

|Φ(z)| � r−Re a, z ∈ P, r = rk ↑ +∞. (5.3.22)

Step 2. The definition of the set P+ implies that on its boundary

x � ln r for Re(2a− c) 	= 0
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and

x = O(1) for Re(2a− c) = 0

(both relations for r > r0). Therefore, denoting by r exp(iθ±r ) the intersection point of the boundary
of the set P+ with the circle |z| = r > r0, θ

±
r ≷ 0, we have the relations

cos θ±r =
x

r
= O

(
ln r

r

)
, r → ∞.

Applying the formulas cos θ = sin(π/2∓ θ), we obtain that

θ±r = ±π
2
+O

(
ln r

r

)
, r → ∞. (5.3.23)

Step 3. The final step of the proof is based on the Jensen formula
r∫

0

n(t)

t
dt =

1

2π

π∫

−π

ln |Φ(reiθ)|dθ, (5.3.24)

where n(t) is the number of zeros of the function Φ(z) = Φ(a, c; z) in the disk |z| < t. We write

π∫

−π

ln |Φ(reiθ)|dθ =
θ+r∫

θ−r

+

π∫

θ+r

+

θ−r∫

−π

=: J1 + J2 + J3. (5.3.25)

Using estimate (5.3.20) and relations (5.3.23) we have the relations

J1 =

θ+r∫

θ−r

(
r cos θ +Re(a− c) ln r

)
dθ +O(1)

= r
(
sin θ+r − sin θ−r

)
+
(
θ+r − θ−r

)
Re(a− c) ln r +O(1)

= 2r + πRe(a− c) ln r +O(1), r → ∞.

To estimate J2 and J3, we apply relations (5.3.21) and (5.3.22) and formulas (5.3.23). We obtain

J2 + J3 =

⎛

⎜⎝
π∫

θ+r

+

θ−r∫

−π

⎞

⎟⎠ (−Re a ln r +O(1))dθ

=

(
π +O

(
ln r

r

))
(−Re a ln r +O(1)) = −πRe a ln r +O(1),

where r = rk is a sequence from estimate (5.3.22). Substituting the estimate for Jk in formula (5.3.25)
and then the obtained result in (5.3.24), we arrive at the following asymptotics:

r∫

0

n(t)

t
dt =

r

π
− Re c

2
ln r +O(1), r = rk → ∞. (5.3.26)

On the other hand, we estimate the left-hand side in (5.3.26) by using formula (5.3.2).
By (5.3.2), there exists an integer m such that if Z is a sequence of all zeros of the function Φ(z),

then

Z = Z+ ∪ Z−, Z+ = (z+n )
+∞
n=m, Z− = (z−n )

−∞
n=−1, Z+ ∩ Z− = ∅, (5.3.27)

and relation (5.3.2) is valid for z±n as n → ±∞. Thus, the numeration of (5.3.27) is matched with
asymptotics (5.3.2), and it remains to prove that m = 1.
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From (5.3.2) it follows that

|zn| =
(
(Im zn)

2 + (Re zn)
2
)1/2

= | Im zn|
(
1 +O

((
Re zn
Im zn

)2
))

= | Im zn|+ o(1), n→ ±∞.

Taking this into account and using formula (5.3.2), we obtain the relation

|z±n | = 2π|n| ± Im(c− 2a) ln |n|+ π

(
Re c

2
− 1

)

± (Im(c− 2a) ln 2π + arg γ) + o(1), n→ ±∞. (5.3.28)

We use Lemma 2.2.2. If a positive sequence Λ = (λn)
+∞
n=m has the form

λn = a1n+ a2 lnn+ a3 + o(1), n→ +∞, a1 > 0, a2, a3 ∈ R,

and Λ(t) is the number of points λn in the interval (0, t), then

r∫

0

Λ(t)

t
dt =

r

a1
− a2

2a1
ln2 r +

(
1

2
−m− a3

a1
+
a2
a1

ln a1

)
ln r + o(ln r), r → ∞. (5.3.29)

Let us apply this lemma to the sequences |Z+| = (|z+n |)+∞
n=m and |Z−| = (|z−−n|)∞n=1 with the parameters

a1 = 2π, a2 = ± Im(c− 2a), a3 = π

(
Re c

2
− 1

)
± (Im(c− 2a) ln 2π + arg γ) (5.3.30)

contained in (5.3.28).
We write relation (5.3.29) first for Λ = |Z+| and then for Λ = |Z−|, and in the latter case, we

must set m = 1 in relation with numeration (5.3.27). After this, we add the obtained relations. On
the right-hand side, the terms corresponding to terms in (5.3.30) with opposite signs vanish, and we
obtain

r∫

0

n(t)

t
dt =

r

π
+

(
1−m− Re c

2

)
ln r + o(ln r), r → ∞.

Comparing this with formula (5.3.26), we see that m = 1. The theorem is proved.

In connection with formula (5.3.2), we note that the choice of the value of ln(Γ(a)/Γ(c− a)) is not
important. Indeed, replacement of one value by another leads to the renumbering of the sequence of
zeros by the same index set, after which asymptotics (5.3.2) does not change.

5.3.2. Sine-type functions and their generalizations. Denote by Sα, α ∈ R, the class of entire
function of exponential type satisfying the estimate

|F (z)| � |z|−αeπ| Im z|, when | Im z| ≥ h = h(F ) > 0. (5.3.31)

The S0 consists of so-called sine-type functions introduced by Levin (see [11]). The classes Sα and, in
particular, the class S0 play an important role in nonharmonic analysis (see [34]).

The Fourier–Stieltjes transform of a finite measure concentrated on the segment [−π, π], i.e., the
function

F (z) =

π∫

−π

eiztdσ(t), varσ(t) < +∞, (5.3.32)

is a sine-type function if and only if σ(t) has jumps at both points ±π; in this case, zeros zn of the
function F (z) satisfy the condition

zn = n+O(1), n→ ±∞. (5.3.33)
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In a number of works, sine-type functions that are not Fourier–Stieltjes transforms, i.e., that cannot
be represented in the form (5.3.32), were constructed; in all cases, zeros of the functions constructed
also satisfy condition (5.3.33). All mentioned results can be found in [34].

It is known (see [34]) that an entire function of the form

F (z) =

π∫

π

eizt
k(t)dt

(π2 − t2)1−β
, 0 < Reβ < 1, var k(t) < +∞, k(±π ∓ 0) 	= 0, (5.3.34)

belongs to the class SReβ , and its zeros also have the form (5.3.33).
It turns out that under certain conditions on a and c, the function

F (z) = e−iπzΦ(a, c; 2πiz) (5.3.35)

belongs to the class SRe a and possesses some additional properties. The following theorem holds.

Theorem 5.3.2. Let a, c ∈ C, a, c, c− a /∈ −Z+, and

Re c = 2Re a. (5.3.36)

Then the following assertions hold :

(1) function (5.3.35) belongs to the class SReα;
(2) zeros of function (5.3.35) have the asymptotics

zn = n+

(
Im(c− 2a)

2π
ln 2π|n| − i

2π
ln

Γ(a)

Γ(c− a)
± c− 2

4

)(
1 +

Im(c− 2a)

2πn

)

− 2a(c− a)− c

4π2n
+O

(
ln |n|
n2

)
, n→ ±∞; (5.3.37)

(3) the numeration of all zeros of function (5.3.35) is matched with asymptotics (5.3.37) by the
index set T = Z \ {0};

(4) if, moreover,

c 	= 2a, (5.3.38)

then function (5.3.35) for Re a = 0 is not a Fourier–Stieltjes transform, and for 0 < Re a < 1
it cannot be represented in the form (5.3.34).

Proof. First, formula (5.3.5) implies that the entire function (5.3.35) is of exponential type. Second,
this formula together with condition (5.3.36) shows that if positive h is sufficiently large, then the
following estimates hold:

|Φ(z)| � |z|−Re a when Re z ≤ −h,
|Φ(z)| � |z|−Re aeRe z when Re z > h > 0.

Therefore, function (5.3.35) satisfies the estimate (5.3.31) with α = Re a, i.e., function (5.3.35) belongs
to the class SRe a, and assertion (1) is proved.

Assertions (2) and (3) immediately follow from Theorem 5.3.1 if we replace zn by 2πizn on the
left-hand side of formula (5.3.2).

Finally, if condition (5.3.38) holds, then formula (5.3.37), by which

zn − n ∼ C ln |n|, n→ ±∞, C 	= 0,

is incompatible with the necessary condition (5.3.33) of the representability of the function F (z) in
the form (5.3.32) for Re a = 0 and in the form (5.3.34) for 0 < Re a < 1. Assertion (4) is also valid.
The theorem is proved.
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Thus, Theorem 5.3.2 gives a whole class of sine-type functions whose asymptotics of zeros cannot
be represented by formula (5.3.33). Further studies of these functions have been carried out in [47].

5.3.3. Nonasymptotic properties of zeros of the confluent hypergeometric function.

Theorem 5.3.3. The following assertions hold.

(1) Let 1 ≤ a < c ≤ a + 1 and, moreover, c 	= 2 if a = 1. Then all zeros of the function Φ(a, c; z)
lie in the half-plane

Re z < −(√a− 1 +
√
1− (c− a)

)2
. (5.3.39)

(2) Let 0 < a ≤ 1 and c ≥ 1 + a and, moreover, c 	= 2 if a = 1. Then all zeros of the function
Φ(a, c; z) lie in the half-plane

Re z >
(√
c− a− 1 +

√
1− a

)2
.

(3) Let 0 < a ≤ 1 and a < c ≤ 1 + a and, moreover, c 	= 2 if a = 1. Then all zeros of the function
Φ(a, c; z) lie in the horizontal strips

(2n− 1)π < | Im z| < 2πn, n ∈ N. (5.3.40)

Proof. We have the formula

Φ(a, c; z) =
Γ(c)

Γ(c− a)Γ(a)

1∫

0

eztta−1(1− t)c−a−1dt, Re a, Re(c− a) > 0 (5.3.41)

(see [10, 18, 40]), which allows one to apply the Pólya theorem [20] (below we recall its statement)
and results of the first part of this chapter on zeros of the Laplace transform

F (z) =

1∫

0

eztf(t)dt, f ∈ L1(0, 1). (5.3.42)

Theorem A (see [20, 34]). Let a function f(t) be positive, differentiable, nonconstant in the interval
(0, 1), and, moreover,

f ′(t)
f(t)

≥ −h, 0 < t < 1,

for some h ∈ R. Then all zeros of function (5.3.42) lie in the half-plane Re z < h.

Thus, having in mind formula (5.3.41), we must find the minimum of the function f ′(t)/f(t) on (0, 1),
where

f(t) = tα(1− t)β , α = a− 1 > −1, β = c− a− 1 > −1; (5.3.43)

the case α = β = 0 is excluded by the condition of the theorem (c 	= 2 if a = 1). In this case, all zeros
of the function Φ(a, c; z) lie on the boundary of the half-plane (5.3.39).

We have the formula
f ′(t)
f(t)

=
α− (α+ β)t

t(1− t)
. (5.3.44)

For the boundedness from below of function (5.3.44) on the interval (0, 1), the nonnegativeness of the
numerator for t = 0, 1 is necessary; this requirement implies the condition β ≤ 0 ≤ α. Thus (see
(5.3.43)), we consider values

−1 < β ≤ 0 ≤ α. (5.3.45)

If α + β = 0 (i.e., c = 2), then α > 0, and the minimum of function (5.3.44) on (0, 1) is equal to
4α = 4(a− 1). By Theorem A, all zeros of the function Φ(a, c; z) lie in the half-plane Re z < 4(1− a),
which coincides with (5.3.39) for c = 2.
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If α = 0 (i.e., a = 1), then β < 0, and the minimum of function (5.3.44) on [0, 1) is equal to −β.
By Theorem A, all zeros of the function Φ(a, c; z) lie in the half-plane Re z < β, which coincides
with (5.3.39) for a = 1.

Let α+ β 	= 0 and α > 0. Then
(
f ′(t)
f(t)

)′
=

−(α+ β)t2 + 2αt− α

t2(1− t)2
= −α

t2
− β

(1− t)2
. (5.3.46)

The middle part of this formula vanishes at the points

t1 =

√
α√

α+
√−β , t2 =

√
α√

α−√−β .

Clearly, t1 ∈ (0, 1], t2 ≥ 1, and the minimum of function (5.3.44) on (0, 1] is attained at the point t1.
Substituting this value on the right-hand side of (5.3.44), we obtain the inequality

f ′(t)
f(t)

≥ (
√
α+
√
−β)2, 0 < t < 1.

This and Theorem A imply assertion (1). It should be taken into account that condition (5.3.45) turns
into the condition 1 ≤ a < c ≤ a+ 1.

Assertion (2) follows from assertion (1) and formula (5.3.1).
To prove assertion (3), we use Theorem 5.2.3, which asserts that if a function f(t) 	= C is positive

and logarithmically convex in (0, 1), then all zeros of function (5.3.42) lie in strips (5.3.40). For
this, we must find the set of the parameters α, β > −1 for which function (5.3.43) is logarithmically
convex in (0, 1), i.e., the function ln f(t) is convex in (0, 1). Since (ln f(t))′′ is the right-hand side of
formula (5.3.46), the function ln f(t) is convex only for values α, β > −1 satisfying the condition

α(1− t)2 + βt2 ≤ 0 (5.3.47)

for t ∈ (0, 1), and, by the continuity, also for t ∈ [0, 1]. Substituting here the values t = 0, 1, we obtain
a necessary condition α, β ≤ 0. Clearly, it is also sufficient for the validity of the condition (5.3.47).
Recalling the relation (5.3.43) between the pairs of parameters α, β and a, b, we complete the proof of
assertion (3). Theorem 5.3.3 is proved.

In connection with Theorem 5.3.3, we draw the attention of the reader to papers [42, 43] of Tsvetkov
on zeros of the Whittaker function Mk,m(z). This function is related with the Kummer function by
the formula

Mk,m(z) = e−z/2zm+1/2Φ

(
1

2
+m− k, 1 + 2m; z

)
.

This allows one to reformulate results of [42, 43] for the function Φ(a, c; z) as follows.
If 0 < c < 2a (respectively, c > max(0, 2a)), then the function Φ(a, c; z) has no complex roots in

the half-plane Re z ≥ c− 2a (respectively, Re z ≤ c− 2a; see [42]).
If 1 < c < 2a (respectively c > max(1, 2a)), then the function Φ(a, c; z) has complex roots only in

the half-plane Re z < c− 2a (respectively, Re z > c− 2a; see [43]).
We see that the result of [42] covers a wider set of the parameters a and c compared with Theo-

rem 5.3.3. On the other hand, Theorem 5.3.3 indicates the half-plane of roots more exactly. Indeed,
if 1 < a < c < a+ 1, then

−
(√

a− 1 +
√
1− (c− a)

)2
< c− 2a.

Therefore, the half-plane (5.3.39) from Theorem 5.3.3 is a proper subset of the half-plane Re z < c−2a
appearing in [42, 43].
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Presentation of the material of this section follows [35].

Chapter 6

REAL ROOTS OF THE MITTAG-LEFFLER FUNCTION

OF ORDER ρ ∈ (1/2, 1)

6.1. Statement of the Problem and the Main Results

Theorem 2.1.1 implies that for any ρ > 1/2 and μ ∈ C, the set of real roots of the Mittag-Leffler
function is either empty or finite. In tis connection, we state the following problem.

Problem. For any ρ ∈ (1/2, 1) and μ ∈ R, find or estimate, as exactly as possible, the number
N(ρ, μ), of real roots of the function Eρ(z;μ).

For ρ ≥ 1, this problem was almost completely solved in Chap. 4. For μ = 2, the problem was stated
by Nakhushev [17] in 1977, but a solution (not complete) was obtained only in 2006 by Popov [24].
The first publication known to the authors containing results on this problem appeared in 2005.

Theorem 6.1.1 (see [26]). The following assertions hold.

(1) There exists a function f decreasing on the segment [1/2, 1] and such that for any ρ ∈ [1/2, 1]
and μ > f(ρ), the function Eρ(z;μ) has no real roots. On the other hand, for any μ ∈ (0, f(ρ)),
the function Eρ(z;μ) attains negative values on some interval of the real axis and, therefore,
has at least one real root. For any ρ ∈ [1/2, 1), the function Eρ(z; f(ρ)) is nonnegative on R,
but has at least one real root of even multiplicity.

(2) The following double inequality holds :

1

ρ
< f(ρ) <

3

2ρ
,

1

2
< ρ < 1. (6.1.1)

The author of [26] did not consider values μ ≤ 0. However, for

μ ∈
∞⋃

n=0

(
−2n− 3 +

1

ρ
,−2n

]
, (6.1.2)

the existence of a root of Eρ(z;μ) on R is obvious: for such μ, either

1

Γ(μ)
= Eρ(0;μ) ≤ 0,

or
1

Γ (μ− 1/ρ)
= lim

x→−∞
(− xEρ(x;μ)

)
< 0,

and since
lim

x→+∞Eρ(x;μ) = +∞
for any μ ∈ R, we obtain the existence of a real root of the Mittag-Leffler function; here we have used
the identity

sgn

(
1

Γ(t)

)
= (−1)n, −n < t < 1− n, n ∈ N.

It is much more difficult to prove the existence of a real root Eρ(z;μ) for negative μ that does not
belong to the set (6.1.2), i.e., for

μ ∈
⋃

m∈N

(
−2m,−2m− 1 +

1

ρ

]
. (6.1.3)
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We have reason to believe that Eρ(z;μ) has at least one root on R for any pair (ρ, μ) ∈ (1/2, 1) ×
(−∞, 0], but we have not been able to prove this assertion completely.

Theorem 6.1.2. If ρ ∈ (1/2, 3/4], then Eρ(z;μ) has at least one real root for any μ < 0, and if
ρ ∈ (3/4, 1], then the existence of a real root is guaranteed for any μ ≤ −(1− ρ)−2.

Further results are related to the decreasing of the gap in the two-sided estimate (6.1.1). Following
Nakhushev, we introduce the parameter α = 2− 1/ρ. Then inequality (6.1.1) takes the form

2− α < f(ρ) < 3− 1.5α, 0 < α < 1.

We strengthen this result.

Theorem 6.1.3. The following double inequalities hold :

3− 3α+ 0.7α2 < f(ρ) < 3− 2α, 0 < α ≤ 1

2
⇐⇒ 1

2
< ρ ≤ 2

3
, (6.1.4)

1

ρ
+ h(ρ) < f(ρ) <

4

3ρ
,

2

3
< ρ < 1, (6.1.5)

where

h(ρ) = exp
[
− π cot

(
π(1− ρ)

)]
.

From (6.1.4) we immediately obtain that

f(ρ) = 3 +O

(
ρ− 1

2

)
, ρ→ 1

2
+,

which implies the continuity of the function f at the point 1/2 (the results of Chap. 5 imply the
equality f(1/2) = 3). However, the continuity of f at the point 1 has not yet been proved (below at
the end of Sec. 6.5 we prove that f(1) = 1).

We first observe the following phenomenon. For any μ < 3, the value N(ρ, μ) tends to +∞ as ρ→
1/2+. If μ ≥ 3, then, owing to (6.1.1), we have the equality N(ρ, μ) = 0 for any ρ > 1/2.

Theorem 6.1.4. For any μ < 3 and ρ → 1/2+ (then ε = ρ− 1/2 → 0+), the following asymptotics
holds:

N(ρ, μ) =
3− μ

π2ε

(
ln

(
1

ε

)
+O

(
ln ln

(
1

ε

)))
, μ /∈ Z,

N (ρ, μ) =
4− μ

π2ε

(
ln

(
1

ε

)
+O

(
ln ln

(
1

ε

)))
, μ ∈ Z.

In connection with [17], the case μ = 2 is studied in more detail. Since the number λ ∈ C is an
eigenvalue of the boundary-value problem10

y′′(x) + λy(α)(x) = 0, 0 < x < 1, y(0) = y(1) = 0, y ∈ C[0, 1] ∩ C2(0, 1), (6.1.6)

if and only if Eρ(−λ, 2) = 0, we consider roots of the function Eρ(−z, 2) and arrange them in the
sequence {λn}n∈N = {λn(α)}n∈N, which is nondescending by moduli. Each element of this sequence
is found in it as many times as its multiplicity. In what follows, “eigenvalue” means an eigenvalue of
problem (6.1.6).

Theorem 6.1.5. The following assertions hold.

(1) For 0.45 ≤ α ≤ 1, there is no real eigenvalues.

10Here y(α)(x) ≡ 1

Γ(1− α)

d

dx

(
x∫
0

(x− t)−α y(t)dt

)
, 0 < α < 1, is the Riemann–Liouville derivative of a function y(x)

of order α.
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(2) For 0 < α ≤ 0.364, there are at least two real eigenvalues.
(3) If, for α ∈ (0.346, 0.45), there are real eigenvalues, then they lie on the interval (−32,−3).
(4) If 0 < α ≤ 1/3, then all real eigenvalues lie on the interval

(
Γ(4− α), R2−α(α)

)
, where

R(α) = 2

[
ln

(
2

α

)
+ ln ln

(
2

α

)]
cosec(πε), ε = ρ− 1

2
=

α

4− 2α
.

(5) Let

R1(α) = 2 ln

(
1

α

)
cosec(πε), xn(α) = π(n+ ρ) sec(πε).

Then, in the case 0 < α ≤ 1/6, all eigenvalues lying in the disk |z| ≤ R2−α
1 (α) are real, simple,

and satisfy the inequalities

x2−α
n−1(α) < λn(α) < x2−α

n (α). (6.1.7)

(6) As α→ 0+ (then ρ = (2− α)−1 → 1/2+), the following asymptotics holds :

N(ρ, 2) = 8π−2α−1 ln

(
1

α

)
+O

(
α−1 ln ln

(
1

α

))
.

(7) If 0 < α ≤ 0.1, then eigenvalues lying in the disk |λ| ≤ α−2 satisfy the following estimate, more
exact than (6.1.7):

(
π (n+ ε)

cosπε

)2−α

< λn(α) <

(
π (n+ 2ε)

cosπε

)2−α

,

( πn

cosπε

)2−α
< λn(α) <

(
π (n+ ε)

cosπε

)2−α

.

(6.1.8)

In particular, independently of the parity of n, we have the inequality

(πn)2−α < λn(α) < (πn)2. (6.1.9)

We do not give here the proof of Theorem 6.1.5 (it can be found in [24]). We only prove assertion (1)
(in [24], the absence of real eigenvalues for α ≥ 0.5 was proved). Note that assertion (2) immediately
follows from the lower estimate (6.1.4), and assertion (6) is a consequence of Theorem 6.1.4.

For α = 0, problem (6.1.6) is a classical Sturm–Liouville problem and all its eigenvalues are real:

λn = (πn)2. This fact is confirmed by the identity E1/2(−z; 2) ≡ sin
√
z√

z
. Thus, for any fixed n,

inequality (6.1.9) implies the limit relation

lim
n→∞λn(α) = λn(0) = (πn)2 .

A more careful analysis of the double inequality (6.1.9) yields a stronger assertion. If h(α) is an
arbitrary positive function increasing on the interval 0 < α < 0.1 and such that

lim
α→0+

h(α) = 0,

then

lim
α→0+

max
{∣∣λn(α)− (πn)2

∣∣
∣∣∣ 1 ≤ n ≤ h(α) (α ln (1/α))−1/2

}
= 0. (6.1.10)

Indeed, since for n = O (exp (1/α)) we have the relation nα − 1 = O(α lnn), α→ 0+, and

(πn)2 − (πn)2−α = (πn)2
(
1− (πn)−α) = O

(
n2α ln (πn)

)
= O

(
αn2 lnn

)
, (6.1.11)

from (6.1.11) and the condition

n ≤ h(α) (α ln (1/α))−1/2
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follows the estimate

(πn)2 − (πn)2−α = O (h(α)) ,

which proves (6.1.10).
The following question arises: Is a general theorem on the convergence of appropriately numbered

roots of the family of the functions Eρ(z;μ) to roots of the function Eρ0(z;μ) if the parameter μ is
constant and ρ → ρ0 valid? There exists examples of pairs (ρ0, μ) for which this assertion is invalid:
μ > 3 and ρ→ 1/2− or ρ0 = 1 and μ = 1, 0,−1, . . .. However, there is reason to believe that in other
cases this theorem is valid. This question awaits investigation.

In concluding this section, we note an aspect of Nakhushev’s problem that was not reflected in
Theorem 6.1.5. What is the number α0 such that for α < α0, there exists a real eigenvalue and for
α > α0, all eigenvalues lie outside R? Such a number exists by the first part of Theorem 6.1.1 owing
to the fact that the function f decreases:

α0 = sup

{
2− 1

ρ

∣∣∣∣ f(ρ) > 2

}

and due to inequality (6.1.4), which shows that the set of values ρ ∈ (1/2, 1) such that f(ρ) > 2 is
nonempty. Theorem 6.1.5 shows that 0.36 < α0 < 0.45, but we cannot obtain a more exact estimate
of α0 without a computer. Assertion (3) of Theorem 6.1.5 gives an opportunity to find α0 using com-
puters. Indeed, to find the first two digits of the decimal representation of the number α0, it suffices to
compute with high accuracy values of the Mittag-Leffler function Eρ(x; 2), ρ = (2− α)−1, on the seg-
ment −32 ≤ x ≤ −3 for values of the parameter α ∈ {0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44}.
Computer simulations gave the estimate 0.4 < α0 < 0.41, which, in our opinion, can be proved
analytically.

6.2. Proof of Theorem 6.1.2

By Theorem 1.1.3 (we set m = 0), the function

Fρ(x;μ) ≡ xμ−1Eρ

(− x1/ρ;μ
)

for
1

3
< ρ < 1, μ ≤ 1

ρ
, x > 0, (6.2.1)

admits the representation

Fρ

(
x;μ
)
= 2ρ exp(x cosπρ) cos

(
x sin(πρ)− πρ(μ− 1)

)
+ ωρ(x;μ), (6.2.2)

where

ωρ(x;μ) =
1

π

(
I1(x; ρ, μ) sinπ

(
μ− 1

ρ

)
+ I2(x; ρ, μ) sinπμ

)

and

I1(x; ρ, μ) =

+∞∫

0

ts−1e−xtdt

t2/ρ + 2t1/ρ cos (π/ρ) + 1
, I2(x; ρ, μ) =

+∞∫

0

ts−1e−xtdt

t1/ρ + 2 cos (π/ρ) + t−1/ρ
, (6.2.3)

s = −μ+ 1 + 1/ρ.
First, we consider the case 1/2 < ρ ≤ 2/3. By Theorem 1.5.3 we have the inequality

∣∣ωρ(x;μ)
∣∣ < 0.48x−sΓ(s). (6.2.4)

By (6.1.3), it suffices to prove the theorem for the values of the parameter μ ≤ −3 + 1/ρ. Then s ≥ 4
and the length of the segment Δs = [s, 3s] is equal to 2s and does not exceed 4π/

√
3. At one of the

points of an arbitrary semi-interval of length 2π cosec(πρ), the function cos(x sinπρ − γ), γ ∈ R, is
equal to −1. Since in the case considered cosec(πρ) ≤ 2/

√
3, from (6.2.2) and (6.2.4) we conclude that

∃x ∈ Δs : Fρ(x;μ) < −2ρ exp(cosπρ) + 0.48x−sΓ(s) < 0.5x−sΓ(s)− e−0.5x.
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Here we have used the inequalities 2ρ > 1 and −0.5 ≤ cosπρ < 0 for 1/2 < ρ ≤ 2/3. For s ≥ 2, the
inequality

Γ(s) < 2
(s
e

)s

holds11. Applying it, we can write

∃x ∈ Δs : Fρ(x;μ) < x−se−sss − e−0.5x = x−s
(
e−sss − xse−0.5x

)
.

It is easy to prove that the minimum of the function xse−0.5x on the segment Δs is attained at the
point x = s; this means that the expression sse−s − xse−0.5x is not greater than sse−s − sse−0.5s < 0.
Thus, the function Fρ(x;μ) at some point x ∈ Δs ⊂ (0,+∞) is negative. Therefore, the function
Eρ(z;μ) takes a negative value on (−∞, 0). Since

lim
z→+∞,
z∈R

Eρ(z;μ) = +∞ ∀μ ∈ R,

this proves that the Mittag-Leffler function has a real root.
Now we consider the case 2/3 < ρ ≤ 3/4. Since the minima of the denominators of the integrands

in (6.2.3) are equal to sin2(π/ρ) ≥ 0.5 and 2 + 2 cos(π/ρ) ≥ 2−√
2 respectively and the sum of their

reciprocals does not exceed 3 + 1/
√
2, we have

∣∣ωρ(x;μ)
∣∣ ≤ x−sΓ(s)

(
3 +

1√
2

)
1

π
< 1.186x−sΓ(s). (6.2.5)

At some point of an arbitrary segment of length 6 cosec(πρ), the function cos(x sinπρ − γ), γ ∈ R,
takes a value not greater than cos 3 < −0.9899. Since s ≥ 4 and cosec(πρ) ≤ √

2, the length of the
segment Δ′

s = [s/
√
2, 2

√
2s] is equal to (3/

√
2)s and is not less than 6 cosec(πρ). Therefore,

∃x ∈ Δ′
s : Fρ(x;μ) ≤ 1.186x−sΓ(s) + (cos 3)2ρ exp(x cosπρ). (6.2.6)

It is easy to verify that the function ρ exp(x cosπρ) decreases with respect to the variable ρ on the
segment 1/2 ≤ ρ ≤ 3/4 for any fixed x ≥ 1; therefore,

2ρ exp(x cosπρ) ≥ 1.5 exp

(
− x√

2

)
∀x ≥ 1.

This and (6.2.6) imply that

∃x ∈ Δ′
s : Fρ(x;μ) ≤ 1.186x−sΓ(s)− cos(π − 3)1.5 exp

(
− x√

2

)

= x−s cos(π − 3)

[
1.186 sec(π − 3)Γ(s)− 1.5xs exp

(
− x√

2

)]

< x−s cos(π − 3)

[
1.2Γ(s)− 1.5xs exp

(
− x√

2

)]

= 1.5x−s cos(π − 3)

[
0.8Γ(s)− xs exp

(
− x√

2

)]
.

It remains to prove the negativeness of the function

g(s, x) = 0.8Γ(s)− xs exp

(
− x√

2

)
for x ∈ Δ′

s, s ≥ 4.

11It is equivalent to

ϕ(s) ≡ ln Γ(s)− s ln s+ s < ln 2.

Since the function ϕ decreases on (0,+∞), ϕ′(s) = ψ(s)− ln(s) < 0 for all s > 0, it suffices to prove the inequality only

for s = 2. We have the relation ϕ(2) = 2− ln 4 < ln 2.
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The relations

0.8Γ(s) < 1.1sse−s ∀s ≥ 4, min
x∈Δ′

s

[
xs exp

(
− x√

2

)]
= sse−s

(√
8

e

)s

are proved immediately. They imply the estimate

g(s, x) < 1.1sse−s − sse−s

(√
8

e

)s

= sse−s

(
1.1−

(√
8

e

)s)

≤ sse−s

⎛

⎝1.1−
(√

8

e

)4
⎞

⎠ = sse−s
(
1.1− 64e−4

)
< 0.

Theorem 6.1.2 for the case 1/2 < ρ ≤ 3/4 is proved.
In the case 3/4 < ρ < 1, we estimate the modulus of the function ωρ(x;μ); more exactly, we use

the presence of the factors sinπ(μ − 1/ρ) and sinπμ) in the integrals I1 and I2 in its representation.
We have the inequalities

∣∣ωρ(x;μ)
∣∣ ≤ x−sΓ(s)

π

⎡

⎢⎢⎣

∣∣∣∣sinπ
(
μ− 1

ρ

)∣∣∣∣

sin2
π

ρ

+

∣∣ sinπμ
∣∣

4 cos2
π

2ρ

⎤

⎥⎥⎦ ≤ x−sΓ(s)

π sin2
π

ρ

[∣∣∣∣sinπ
(
μ− 1

ρ

)∣∣∣∣+ |sinπμ|
]
.

It is easy to verify that for μ ∈ (−2m,−2m−1+1/ρ),m ∈ N, both expressions sinπμ and sinπ(μ−1/ρ)
are positive and their sum does not exceed 2 sin(β/2), where β = 1/ρ− 1. Therefore,

|ωρ(x;μ)| ≤ x−sΓ(s)

sinπβ cos
πβ

2

.

In particular, for 3/4 < ρ ≤ 5/6 we have the estimate

|ωρ(x;μ)| ≤ x−sΓ(s)

π sin π
5 cos

π
10

< 0.6x−sΓ(s).

Since

s = 1− μ+
1

ρ
> |μ|+ 2

and

|μ| ≥ (1− ρ)−2 > 16,
3

4
< ρ ≤ 5

6
,

we have

s ≥ 18 =⇒ s

√
3

2
> 4π.

Therefore we obtain

∃x ∈
[
s

√
3

2
, s
√
3

]
: cos

(
x sinπρ− πρ(μ− 1)

)
= −1.
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Therefore,

∃x ∈
[
s

√
3

2
, s
√
3

]
: Fρ(x;μ) < 0.6x−sΓ(s)− 2ρ exp(x cosπρ)

≤ 0.6x−sΓ(s)− 1.5 exp

(
−x

√
3

2

)
= 0.6x−s

(
Γ(s)− 2.5xs exp

(
−x

√
3

2

))
.

Since

Γ(s)sse−s for s ≥ 8, min

{
xs exp

(
−x

√
3

2

)∣∣∣s
√
3

2
≤ x ≤ s

√
3

}

= ss(
√
3)s exp

(
−3s

2

)
> sse−s,

we obtain that at some point the function Fρ(x;μ) attains a negative value. This implies (see the
reasoning above) the presence of a real root of the function Eρ(z;μ).

Let ε = 1− ρ. For 5/6 < ρ < 1 (or, equivalently, 0 < ε < 1/6 and 0 < β < 1/5), by the relations

sinπβ) cos
πβ

2
> sin

πβ

β + 1
= sinπε > 3ε (6.2.7)

(explained below) we have the inequalities

|ωρ(x;μ)| ≤ x−sΓ(s)

3πε
<
x−ssse−s

π
√
sε

.

At the end of this section, we prove the inequality

Γ(s) < ess−0.5e−s ∀s > 1.

Since

s > |μ| ≥ ε−2,

we obtain the estimate

|ωρ(x;μ)| < π−1ss(xe)−s. (6.2.8)

We also have
√
s > 3 cosecπε.

Therefore,

∃x ∈ [s−√
s, s+

√
s] : cos

(
x sinπρ− πρ(μ− 1)

)
≤ cos 3 < −0.989.

This and (6.2.8) and (6.2.2) imply

∃x ∈ [s−√
s, s+

√
s] : Fρ(x;μ) � π−1ss(xe)−s − 1.97ρ exp (x cosπρ)

< π−1ss(xe)−s − 1.97

(
5

6

)
e−x = π−1x−s

(
sse−s −

(
5π · 1.97

6

)
xse−x

)

< π−1x−s
(
sse−s − 4xse−x

)
. (6.2.9)
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It is easy to verify that the minimum of the function xse−x on the segment [s−√
s, s+

√
s] is attained

at the point x = s−√
s and is equal to

(s−√
s)s exp(−s+√

s) = sse−s exp

[√
s+ s ln

(
1− 1√

s

)]

= sse−s exp

[
−1

2
−

∞∑

k=3

s1−k/2

k

]
> sse−s−1. (6.2.10)

From (6.2.9) and (6.2.10) we see that on the segment [s −√
s, s +

√
s], there exists a point at which

the function F attains a negative value. Therefore, the Mittag-Leffler function also attains a negative
value on (−∞, 0), which was required. Theorem 6.1.2 is completely proved.

In concluding this section, we prove several inequalities related to the gamma-function, which were
used in the proof of Theorem 6.1.2. By the Stirling formula, as s→ +∞, we have the inequality

Γ(s) ∼
(s
e

)s
√

2π

s
⇐⇒ ln Γ(s) =

(
s− 1

2

)
ln s− s+

1

2
ln 2π + o(1). (6.2.11)

We need a nonasymptotic upper estimate of the gamma-function. Asymptotics (6.2.11) yields the
following lower estimate of the Γ-function:

Γ(s) >
(s
e

)s
√

2π

s
⇐⇒ ln Γ(s) >

(
s− 1

2

)
ln s− s+

1

2
ln 2π ∀s > 0. (6.2.12)

For completeness, we present the proof of this inequality; the concept of this proof (the decreasing
of the function g(s) = lnΓ(s)− (s− 1/2) ln s− s) will be used below. It is easy to prove that the
decreasing of g(s) together with the limit relation

lim
s→+∞ g(s) = 0.5 ln 2π

proves the inequality

g(s) > 0.5 ln 2π ∀s > 0,

which is equivalent to (6.2.12). We have the relation

g′(s) = ψ(s)− ln s+
1

2s
.

To prove the negativeness of g′ we note that

lim
s→+∞ g′(s) = lim

s→+∞ (ψ(s)− ln s) = 0

(see Lemma 3.4.1). Therefore, the increasing of g′(s) (in particular, the positiveness of g′′(s)) implies
the required assertion. We have the relation

g′′(s) = ψ′(s)− 1

s
− 1

2s2
=

∞∑

k=0

1

(k + s)2
− 1

s
− 1

2s2
.

Clearly, the positiveness of g′′(s) follows from the following lemma applied to the function
ϕs(t) = (s+ t)−2.

Lemma 6.2.1. Let ϕ ∈ C1 [0,+∞) be a positive, decreasing, and convex function,

I =

+∞∫

0

ϕ(t)dt < +∞.
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Then
∞∑

k=0

ϕ(k) > I +
ϕ(0)

2
.

This lemma follows from the integral representation of the series

∞∑

k=0

ϕ(k) = I +
ϕ(0)

2
+

+∞∫

0

σ(x)dϕ′(x), where σ(x) =
{x} − {x}2

2
.

Now we obtain an upper estimate of Γ(s). By the decreasing of g(s), we have the inequality
g(s) < g(y), 0 < y < s. Exponentiating this inequality, we have

Γ(s) <
Γ(y)ey

yy−1/2
ss−1/2e−s, 0 < y < s. (6.2.13)

Setting in (6.2.13) y = 1, y = 2, y = 4, and y = 8, we obtain all upper estimates of Γ(s) used in the
proof of Theorem 6.1.2. The greater y, the “closer” estimate (6.2.13) asymptotics (6.2.11), since

lim
y→+∞Γ(y)eyy1/2−y =

√
2π.

Finally, we prove relations (6.2.7). The inequality

sinπε > 3ε ⇐⇒ sinπε

πε
>

3

π
, 0 < ε <

1

6
,

follows from the decreasing on (0, π) of the function t−1 sin t, which is equal to 3/π at the point
t = π/6. The inequality

sin
πβ

β + 1
< sinπβ cos

πβ

2
⇐⇒ sinπβ

(
1− cos

πβ

2

)
< sinπβ − sin

πβ

β + 1

⇐⇒ sinπβ sin2
πβ

4
< sin

(
π

2

(
β − β

β + 1

))
cos

(
π

2

(
β +

β

β + 1

))

can be strengthened if we replace sin2
πβ

4
by a larger value π2β2/16 and cos

(
π

2

(
β +

β

β + 1

))
by a

smaller value 1/2. Thus, it remains to prove that

5β2

8
sinπβ <

1

2
sin

πβ2

2 (β + 1)
.

We strengthen this inequality replacing sin
πβ2

2 (β + 1)
by a smaller value

3β2

2 (β + 1)
. We obtain the

inequality

5

8
sinπβ <

3

4 (β + 1)
⇐⇒ (β + 1) sinπβ <

6

5
.

The last inequality for 0 < β < 1/5 is obvious.

6.3. Auxiliary Inequalities

In this section, we prove several inequalities needed in the sequel. The first lemma is the most
cumbersome.
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Lemma 6.3.1. Introduce the notation

v(α) = 2α− 0.7α2, ε(α) =
α

4− 2α
.

Then the function

g(α) = v(α) ln 2π + lnΓ(1− v(α)) + ln(1 + 2ε(α))− 2π sinπε(α)

is positive on the semi-interval 0 < α ≤ 1/2.

For simplicity, we used a computer to prove the following four numerical inequalities:

g(0.3) > 0.075, g(0.35) > 0.075, g(0.4) > 0.13, g(0.45) > 0.13. (6.3.1)

Of course, (6.3.1) can be proved without a computer by using the Taylor expansions for the sine and
the logarithm and the relation

ln Γ(1− z) = γz +
∞∑

k=2

ζ(k)

k
zk, |z| < 1, (6.3.2)

where

ζ(s) =
∞∑

n=1

n−s

and γ is the Euler constant. Formula (6.3.2) follows from the relations

ψ(m)(1) = (−1)m−1m!ζ(m+ 1), m ∈ N, ψ(1) = −γ
(see [25, p. 775]).

Proof of Lemma 6.3.1. We have the equality

g′(α) = v′(α)
(
ln 2π − ψ

(
1− v(α)

))
+ ε′(α)

(
2

1 + 2ε(α)
− 2π2 cosπε(α)

)

= (2− 1.4α)
(
ln 2π − ψ

(
1− v(α)

))
+

1

2

(
1− α

2

)−2
(

1

1 + 2ε(α)
− π2 cosπε(α)

)
. (6.3.3)

We outline our plan. From (6.3.1) we see (values of the function are estimated on a net with step
0.05) that to prove the positiveness of g(α) on the semi-interval 0.4 < α ≤ 0.5, it suffices to verify the
inequality

g′(α) > −2.6, 0.4 < α < 0.5, (6.3.4)

and the positiveness of the function g on the interval 0.3 < α < 0.4 follows from the inequality

g′(α) > −1.5, 0.3 < α < 0.4. (6.3.5)

Further, we show that the polynomial

g1(α) = 0.359− 3.42α+ 3.99α2

is a minorant of g′(α) on the interval 0 < α < 0.3. Since g(0) = 0, we have the relation

g(α) ≥
α∫

0

g1(t)dt = 0.395α− 1.71α2 + 1.33α3 = 0.1αP (α),

where

P (α) = 3.95− 17.1α+ 13.3α2.

It is easy to verify that the polynomial P decreases on the segment 0 ≤ α ≤ 0.3 and hence on the
interval 0 < α < 0.3 it exceeds its value 0.17 at the point 0.3. This concludes the proof of the
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positiveness of the function g. Thus, it remains to verify inequalities (6.3.4), (6.3.5), and g′(α) ≥ g1(α),
0 < α < 0.3.

Inequality (6.3.4), due to (6.3.3), can be rewritten in the form
(
π2 cosπε(α)− 1

1 + 2ε(α)

)(
1− α

2

)−2
< 5.2 + (4− 2.8α)

[
ln 2π − ψ

(
1− v(α)

)]
. (6.3.6)

It is easy to prove that the function π2 cosπε − (1 + 2ε)−1 decreases on the segment 1/46 ≤ ε ≤ 1/2
and the function −ψ(1 − v(α)) increases on the interval 0 < α < 1/2. Since ε(0.4) = 1/8, we can
substitute on the left-hand side of (6.3.6) the number 1/8 instead of ε(α) and on the right-hand side
ψ(1− v(0.4)) = ψ(0.312) and obtain a stronger but simpler inequality than (6.3.6)

(
π2 cos

π

8
− 1

1.25

)(
1− α

2

)−2
< 5.2 + (4− 2.8α)

(
ln 2π − ψ(0.312)

)
, (6.3.7)

which will be proved for 0/4 < α < 0.5. The following numerical estimates hold:

π2 < 9.87, cos
π

8
< 0.93, ln 2π > 1.8378, −ψ(0.312) > −ψ(1/3) > 3.

By the identity

ψ(z) +
1

z
= ψ(z + 1), z ∈ C\{0,−1,−2, . . .},

and the negativeness of the function ψ on the semi-interval (0, 1.46], we have the relations

−ψ(t) = 1

t
− ψ(t+ 1) >

1

t
, 0 < t ≤ 0.46.

Using these estimates, we simplify and strengthen (6.3.7):

8.4
(
1− α

2

)−2
< 5.2 + 4.8(4− 2.8α) ⇐⇒ 13.44α+ 8.4

(
1− α

2

)−2
< 24.4, 0.4 < α < 0.5.

Since the left-hand side of the last inequality is an increasing function, it is less that its value at the
point α = 0.5, and this value is less than 22. Thus, inequality (6.3.4) is proved.

Inequality (6.3.5) is proved similarly. Rewrite it in the equivalent form:
(
π2 cosπε(α)− 1

1 + 2ε(α)

)(
1− α

2

)−2
< 3 + (4− 2.8α)

(
ln 2π − ψ

(
1− v(α)

))
.

As above, using the monotonicity of the corresponding functions and the relations

ε(0.3) =
3

34
, cos

3π

34
< 0.962, v(0.3) = 0.537, −ψ(0.463) > 2,

we strengthen and simultaneously simplify this inequality:

8.65
(
1− α

2

)−1
< 3 + 3.83(4− 2.8α) ⇐⇒ 10.724α+ 8.65

(
1− α

2

)−1
< 18.32, 0.3 < α < 0.4.

The left-hand side of the last inequality is an increasing function of the variable α, which is less than 18
at the point α = 0.4. Inequality (6.3.5) is proved.

We obtain a lower estimate for g′(α), 0 < α < 0.3. By (6.3.2) we have the relation

−ψ(1− v) = γ +
∞∑

k=1

ζ(k + 1)vk, |v| < 1.

From this and the inequalities

γ > 0.5772, ζ(2) =
π2

6
> 1.644, ζ(3) > 1.2, ζ(s) > 1 ∀s > 1,

v(α) = α(2 + 0.7α) > 1.79α for 0 < α < 0.3,
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we obtain the lower estimate

ln 2π − ψ
(
1− v(α)

)
> 2.415 + 1.644 · 1.79α+ 1.2 · 1.792α2 +

∞∑

k=3

(1.79α)k. (6.3.8)

Since

cos t < 1− t2

2
+
t4

24
, ∀t > 0,

we have the estimate

cos t < 1− t2
(
1

2
+
t2

24

)
< 1− t2

(
1

2
− 9π2

24 · 342
)
< 1− 0.496t2

for 0 < t < πε(0.3) = 3π/34.
Therefore, taking into account the inequality ε > α/4, we have the estimate

−π2 cosπε(α) > π2
(− 1 + 0.496π2ε2(α)

)
> −π2 + 0.496π4

α2

16
> −π2 + 3α2.

This implies

1

2

(
1

1 + 2ε(α)
− π2 cosπε(α)

)
>

1

2

(
1− π2 + 3α2 +

1

1 + 2ε(α)
− 1

)

=
1

2

(
1− π2 + 3α2 − α

2

)
> −4.435 +

3α2

2
− α

4
. (6.3.9)

From (6.3.3), (6.3.8), and (6.3.9) we deduce the lower estimate for the derivative

g′(α) > (2− 1.4α)

[
2.415 + 2.942α+ 3.844α2 +

∞∑

k=3

(1.79)kαk

]

− 4.435
(
1− α

2

)−2
+

(
3α2

2
− α

4

)(
1− α

2

)−2
.

Since

2− 1.4α > 2− 1.4 · 0.3 = 1.58,
(
1− α

2

)−2
=

∞∑

k=0

(k + 1)2−kαk,

we have

g′(α) > 0.395− 3.381α+ 1.58

(
2.942α+ 3.844α2 +

∞∑

k=3

(1.79)kαk

)

− 4.435

(
α+ 0.75α2 +

∞∑

k=3

(k + 1)2−kαk

)
− 0.25α+ 1.25α2 +

∞∑

k=3

(11k − 12)2−k−1αk. (6.3.10)

Since the sequence ak = 1.58 · 1.79k increases and bk = 4.435(k + 1)2−k decreases for k ≥ 1, the
coefficients of the expansion of the right-hand side of (6.3.10) in powers of α are positive starting from
the second. Therefore, rejecting all powers of α starting from the third, we obtain the lower estimate

g′(α) > 0.395 +
(− 3.381 + 1.58 · 2.942− 4.435− 0.25

)
α

+
(
1.58 · 3.844− 4.435 · 0.75 + 1.25

)
α2 > 0.395− 3.42α+ 3.99α2,

which was required. The lemma is completely proved.
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Lemma 6.3.2. Let

h(ρ) = exp
[− π cotπ(1− ρ)

]
.

The following inequalities hold :

h(ρ) <
1

6
,

2

3
< ρ <

3

4
, h(ρ) <

1

23
,

3

4
≤ ρ < 1, 2.042h(ρ) <

1

ρ
− 1,

2

3
< ρ < 1. (6.3.11)

Proof. The formula for h(ρ) shows that this function decreases. Therefore,

h(ρ) < h

(
2

3

)
= exp

(
−π cot π

3

)
= exp

(
− π√

3

)
<

1

6
,

2

3
< ρ <

3

4
,

h(ρ) ≤ h

(
3

4

)
= exp

(
−π cot π

4

)
= e−π <

1

23
,

3

4
≤ ρ < 1.

To prove the last inequality of the lemma we set t = 1−ρ and apply the estimate 1/ρ = (1−t)−1 > 1+t.
It remains to verify that

2 exp
(− ππt

)
< t ⇐⇒ 2 < t exp

(
π cotπt

)
, 0 < t <

1

3
.

Since the function ϕ(t) = t exp(π cotπt) decreases on the interval 0 < t < 1, for 0 < t < 1/3 we have
the relations

ϕ(t) > ϕ

(
1

3

)
=

1

3
exp

(
π√
3

)
> 2.042,

which was required. The lemma is completely proved.

Lemma 6.3.3. For any α ∈ (0, 1/2], the inequality

Γ(1− α) < e1.15α

holds. If 0 < α ≤ 1/4, then

Γ(1− α) < e0.9α.

Proof. Consider the function

ϕc(α) = lnΓ(1− α)− cα,

where c is a constant. Since

ϕ′′
c (α) = ψ′(1− α) > 0,

the maximum of this function on any segment ⊂ [0, 1) is attained at one of endpoints of this segment.
Since

ϕ0.9

(
1

4

)
< 0, ϕ1.15

(
1

2

)
< 0, ϕc(0) = 0,

the function ϕ0.9(α) is negative on the semi-interval 0 < α ≤ 1/4 and the function ϕ1.15(α) is negative
on the semi-interval 0 < α ≤ 1/2. This implies the assertion of the lemma.

Lemma 6.3.4. If ρ ∈ [1/2, 1], μ < 0, then

Eρ(x;μ) > 0 ∀x ≥ (1− μ)2.

Proof. First, let −1 < μ < 0. Since ρ ≤ 1, all terms of the Maclaurin series of Eρ(x;μ), except for the
constant term, are positive. Therefore, for x ≥ 1 we have the estimate

Eρ(x;μ) >
1

Γ(μ)
+

x

Γ(μ+ 1/ρ)
≥ 1

Γ(μ)
+

1

Γ(μ+ 1/ρ)
≥ 1

Γ(μ)
+

1

Γ(μ+ 1)
=

1 + μ

Γ(μ+ 1)
> 0.

The inequality
1

Γ(μ+ 1/ρ)
≥ 1

Γ(μ+ 1)
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can be proved as follows. We set μ+ 1 = t and h = 1/ρ− 1. Then t ∈ (0, 1) and h ∈ [0, 1]. We must
prove that

1

Γ(t)
≤ 1

Γ(t+ h)
.

If t+ h ∈ (1, 2), then
1

Γ(t+ h)
> 1,

1

Γ(t)
< 1.

If t + h ≤ 1, then the required inequality follows from the fact that the function 1/Γ(t) increases on
the segment 0 ≤ t ≤ 1.

Now let μ ≤ −1. Denote by N the minimal natural number such that μ + N/ρ ≥ 0. Then all

terms of the Maclaurin series of the function Eρ, starting from
xN

Γ (μ+N/ρ)
, are positive and hence

the following estimate holds:

Eρ(x;μ) >
xN

Γ
(
μ+ N

ρ

) +
xN+1

Γ
(
μ+ N+1

ρ

) −
N−1∑

k=0

xk∣∣∣Γ(μ) + k
ρ

∣∣∣
.

By the identity
1

Γ(s)Γ(1− s)
=

sinπs

π

we have the inequality
1

|Γ(s)| ≤
Γ(1− s)

π
∀s < 0.

Therefore, having introduced the notation

Bk(x) = xkΓ

(
1−
(
μ+

k

ρ

))
,

we find

Eρ(x;μ) >
xN

Γ
(
μ+ N

ρ

) +
xN+1

Γ
(
μ+ N+1

ρ

) − N

π
max

0≤k≤N−1
Bk(x). (6.3.12)

We prove that the sequence

Bk(x) = exp
(
ϕx(k)

)

increases, where

ϕx(t) = t lnx+ lnΓ

(
1−
(
μ+

t

ρ

))
.

We have the formula

ϕ′
x(t) = lnx− 1

ρ
ψ

(
1−
(
μ+

t

ρ

))
.

Since the function ψ increases and the estimate ψ(t) < ln(t) holds, we obtain the inequality

1

ρ
ψ

(
1−
(
μ+

t

ρ

))
≤ 1

ρ
ψ(1− μ) <

1

ρ
ln(1− μ) ≤ 2 ln(1− μ) ≤ lnx.

Thus, ϕ′
x(t) > 0 and the fact that Bk(x) increases is proved. By the choice of N , we have the relation

−2 ≤ −1

ρ
≤ μ+

N − 1

ρ
< 0,

which implies

Bk(x) ≤ xN−1Γ

(
1−
(
μ+

N − 1

ρ

))
≤ 2xN−1. (6.3.13)
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From (6.3.12) and (6.3.13) we deduce the estimate

Eρ(x;μ) >
xN

Γ
(
μ+ N

ρ

) +
xN+1

Γ
(
μ+ N+1

ρ

) − 2NxN−1

π
.

Since μ+
N − 1

ρ
< 0, we have μ+

N

ρ
< 2. If 1 ≤ μ+

N

ρ
< 2, then

1

Γ
(
μ+ N

ρ

) ≥ 1 and

Eρ(x;μ) > xN − 2NxN−1

π
≥ xN − 2(2− μ)xN−1

π
= xN

(
1− 4− 2μ

πx

)
. (6.3.14)

We have the relation

x ≥ (1− μ)2 =⇒ 2x ≥ 2− 4μ+ 2μ2 ≥ 4− 4μ > 4− 2μ

(recall that μ ≤ −1). Therefore,
4− 2μ

πx
< 0

and the positiveness of Eρ(x;μ) is proved. If

0 ≤ μ+
N

ρ
< 1,

then

1 ≤ μ+
N + 1

ρ
≤ 3,

xN+1

Γ
(
μ+ N+1

ρ

) ≥ xN+1

2
> xN ,

and we again obtain (6.3.14). The lemma is proved.

6.4. Existence of Real Roots of the Mittag-Leffler Function
for Particular Values of the Parameter μ > 1/ρ

In this section, we consider the following dependence of the parameter μ on the order ρ of the
Mittag-Leffler function (as in Sec. 6.1, α = 2− 1/ρ):

μ(ρ) =

⎧
⎪⎨

⎪⎩

3− 3α+ 0.7α2,
1

2
< ρ ≤ 2

3
,

1

ρ
+ h(ρ),

2

3
< ρ < 1, where h(ρ) = exp (−π cotπ(1− ρ)).

(6.4.1)

We prove that the function Eρ(z;μ(ρ)) attains a negative value at some point on (−∞, 0). Since
Eρ(z; 0) = 1/Γ(μ) > 0 for μ > 0 and, by the asymptotics

Eρ(z;μ) ∼ −1

zΓ(μ− 1/ρ)
, z ∈ R, z → −∞, ρ > 1/2, μ /∈

{
1

ρ
,
1

ρ
− 1,

1

ρ
− 2, . . .

}
,

the function Eρ(z;μ(ρ)) attains positive values for all sufficiently large (in modulus) negative z, we
conclude that Eρ(z;μ(ρ)) has no less than two real roots. Note that in the case 1/2 < ρ ≤ 2/3 (or,
equivalently, 0 < α ≤ 1/2), from (6.4.1) follows the relation

μ(ρ)− 1

ρ
= 1− 2α+ 0.7α2 (6.4.2)

(this immediately implies that μ(ρ) > 1/ρ).
We also obtain a boundary for possible real roots of the function Eρ(z;μ) when μ is greater than μ(ρ).
It would be interesting to prove the following assertion (which seems quite plausible). If the set

of real roots of the function Eρ(z;μ) is nonempty for some values of the parameters ρ ∈ [2/3, 1) and
μ > 1/ρ, then the number of these roots, with account of their multiplicities, is exactly two. If the
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parameter ρ “is close” to 1/2, then, as Theorem 6.1.4 shows, this assertion, in general, is invalid: the
number of real roots of Eρ(z;μ) may be sufficiently large.

Assertion 6.4.1. We set

xρ = π(1 + ρ(μ(ρ)− 1)) cosec(πρ).

Then for any ρ ∈ (1/2, 1), the following inequality holds :

Eρ

(− x1/ρρ ;μ(ρ)
)
< 0 ⇐⇒ Fρ

(
xρ;μ(ρ)

)
< 0. (6.4.3)

Proof. It is easy to verify that

cos
(
x sin(πρ)− πρ(μ− 1)

)
= −1 for x = π

(
1 + ρ(μ− 1)

)
cosec(πρ).

Therefore, by Theorem 1.1.3, we have the formula

Fρ

(
xρ;μ(ρ)

)
= −2ρ exp(xρ cosπρ) +

x
μ(ρ)−1−1/ρ
ρ

Γ(μ(ρ)− 1/ρ)

− 1

π

[
I1 sin

(
π

(
μ(ρ)− 2

ρ

))
+ I2 sin

(
π

(
μ(ρ)− 1

ρ

))]
, (6.4.4)

where I1 and I2 are positive functions of the variable x and the parameters ρ and μ.
First, we consider the case 1/2 < ρ ≤ 2/3. We express μ(ρ)− 1/ρ− 1 (see (6.4.2)) and μ(ρ)− 2/ρ

through the parameter α:

μ(ρ)− 1

ρ
− 1 = −2α+ 0.7α2, μ(ρ)− 2

ρ
= −1− α+ 0.7α2.

Substituting these expressions in (6.4.4) and denoting v(α) by 2α− 0.7α2, we obtain

Fρ

(
xρ;μ(ρ)

)
= −2ρ exp(xρ cosπρ) +

x
−v(α)
ρ

Γ(1− v(α))
− I1 sinπ

(
α− 0.7α2

)
+ I2 sin (πv(α))

π
.

Since 0 < α− 0.7α2 < 1/2 and 0 < v(α) < 1 for 0 < α ≤ 0.5, we have

sinπ
(
α− 0.7α2

)
> 0, sinπv(α) > 0 for 0 < α ≤ 0.5,

and we arrive at the following upper estimate:

Fρ

(
xρ;μ(ρ)

)
< −2ρ exp(xρ cosπρ) +

x
−v(α)
ρ

Γ(1− v(α))
.

Thus, it remains to prove the inequality

x
−v(α)
ρ

Γ(1− v(α))
≤ (1 + 2ε) exp

(− xρ sinπε
)

⇐⇒ 0 ≤ v(α) lnxρ + lnΓ(1− v(α)) + ln(1 + 2ε)− xρ sin(πε), 0 < α ≤ 1/2 (6.4.5)

(here ε = ρ− 1/2).
Obviously, xρ > π. We show that xρ < 2π. Since, owing to (6.4.2),

μ(ρ)− 1 =
1

ρ
− v(α) =⇒ ρ(μ(ρ)− 1) = 1− ρv(α) = 1− 2α− 0.7α2

2− α
,

we have

xρ = π

(
2− 2α− 0.7α2

2− α

)
cosec(πρ) = π

(
2− α− 0.3α2

2− α

)
sec(πε)

= π (2− α− 0.6εα) sec(πε) < π (2− α) sec(πε).
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Thus, it remains to prove that

2− α < 2 cos(πε) ⇐⇒ 4 sin2(πε/2) < α.

Since

ε =
α

4− 2α
≤ α

3
for 0 < α ≤ 1

2
,

we have

4 sin2
πε

2
< π2ε2 <

π2α2

9
<

10

9
α2 ≤ 0.5α

10

9
< α,

which was required.
Further, we note that if on the right-hand side of (6.4.5) we replace xρ by x, we obtain a function

that decreases on the ray 3 ≤ x < +∞. Indeed, its derivative with respect to x is equal to

v(α)

x
− sinπε <

2α

x
− 3ε ≤ 2

3
α− 3ε < 0,

since ε > α/4. Therefore, the right-hand side of (6.4.5) exceeds the value obtained after replacing xρ
by 2π. This leads to the problem of the proof of a simpler but stronger inequality than (6.4.5):

0 ≤ v(α) ln 2π + lnΓ(1− v(α)) + ln(1 + 2ε)− 2π sinπε, 0 < α ≤ 1

2
.

This has been proved in Lemma 6.3.1, and we have proved assertion 6.4.1 in the case 1/2 < ρ ≤ 2/3.

Consider the case 2/3 < ρ < 1. We verify that both sines in the representation (6.4.4) are positive
and hence the following inequality holds:

Fρ

(
xρ;μ(ρ)

)
< −2ρ exp

(
xρ cosπρ

)
+

xμ(ρ)−1−1/ρ

Γ
(
μ(ρ)− 1/ρ

) .

Indeed,

sin

(
π

(
μ(ρ)− 1

ρ

))
= sin(πh(ρ)) > 0

since 0 < h(ρ) < 1, and

sin

(
π

(
μ(ρ)− 2

ρ

))
= sin

(
π

(
h(ρ)− 1

ρ

))
= sinπ

(
1

ρ
− 1− h(ρ)

)
> 0

since

0 <
1

ρ
− 1− h(ρ) < 1

(the left-hand side inequality was proved in Lemma 6.3.2, and the right-hand side inequality is obvious
since 1/ρ− 1 < 1 for ρ > 1/2 and, moreover, 1/ρ− h(ρ)− 1 < 1).

Thus, we have reduced the problem to the inequality (here 1− ρ = t)

x
h(ρ)−1
ρ

Γ(h(ρ))
< 2ρ exp(−xρ cosπt), 2

3
< ρ < 1. (6.4.6)

We have the expression

xρ = π

(
1 + ρ

(
1

ρ
+ h(ρ)− 1

))
cosec(πρ)

= π(2 + ρh(ρ)− ρ) cosec(πt) = π(1 + t+ ρh(ρ)) cosec(πt). (6.4.7)

By Lemma 6.3.2, we have the estimate

ρh(ρ) <
t

2.042
< 0.49t.
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Therefore,
xρ cosπt < π(1 + 1.49t) cotπt = − lnh(ρ) + 1.49πt cotπt,

exp(−xρ cosπt) > h(ρ) exp(−1.49πt cotπt) > h(ρ)e−1.49.
(6.4.8)

From (6.4.6) and (6.4.8) we see that it remains to prove the inequality

x
h(ρ)−1
ρ

Γ(h(ρ))
< 2ρe−1.49h(ρ) ⇐⇒ e1.49xh(ρ)−1

ρ < 2ρΓ(1 + h(ρ)),
2

3
< ρ < 1. (6.4.9)

Lemma 6.3.2 implies that 0 < h(ρ) < 1/6 and hence

xh(ρ)−1
ρ < x−5/6

ρ , Γ(1 + h(ρ)) > Γ(1 + 1/6), 2ρ >
4

3
(6.4.10)

(since Γ(s) decreases on the interval 1 < s < 1.4 and the inequality xρ > 1). Replacing in (6.4.9) the
right-hand side by a smaller value and the left-hand side by a greater value in accordance with (6.4.10),
we obtain the inequality

e1.49x−5/6
ρ <

4

3
Γ

(
1 +

1

6

)
,

which after taking the logarithm becomes

1.49− 5

6
lnxρ < ln

4

3
+ lnΓ

(
1 +

1

6

)
. (6.4.11)

We estimate the right-hand side of (6.4.11) from below and the left-hand side from above. Since
ln(4/3) > 0.287, ln Γ(1 + y) = yψ(ξ), 1 < ξ < 1 + y (y > 0), and the function ψ increases and
ψ(1) = −γ > −0.58, we have

ln
4

3
+ lnΓ

(
1 +

1

6

)
> 0.287− 0.58

6
> 0.19. (6.4.12)

On the other hand, from (6.4.7) and the fact that the function (1 + t) cosec(πt) decreases on the
interval 0 < t < 0.4 we obtain

xρ > π(1 + t) cosecπt > π

(
1 +

1

3

)
cosec

π

3
=

8π

3
√
3
> 4.8, 0 < t <

1

3
.

Therefore,

1.49− 5

6
lnxρ < 1.49− 5

6
ln 4.8 < 0.185. (6.4.13)

From (6.4.13) and (6.4.12) we obtain (6.4.11). This completes the proof of assertion (1).

Assertion 6.4.2. We set

M(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

36 cos−4 πρ,
1

2
< ρ ≤ 3

4
,

6

h(ρ)
,

3

4
< ρ < 1.

Then for any μ ∈ [μ(ρ), 1.5/ρ), the function Eρ(z;μ) is positive on R\(−M(ρ),−1). In particular, its
real roots (if they exist) lie only in the interval (−M(ρ),−1).

In assertion 6.4.2, we need not consider values of the parameter μ ≥ 1.5/ρ: in the following section
we prove that in the case where μ ≥ 1.5/ρ and 1/2 < ρ < 1, the function Eρ(z;μ) is positive on the
whole real axis. Further, this bound for the parameter μ will be lowered.

We also note that the two-sided estimate of possible roots in assertion (2) is sufficiently rough; its
refinement required a specific examination.
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Proof of assertion 6.4.2. The positiveness of the function Eρ(z;μ) for z ∈ R such that

z ≥ −
Γ
(
μ+ 1

ρ

)

Γ(μ)

was proved in Chap. 3 (Corollary 3.3.1 of Lemma 3.3.1). If μ ≥ q ≥ 1, then

Γ(μ+ q)

Γ(q)
≥ Γ(q + 1)

Γ(q)
= q ≥ 1.

This implies the positiveness of Eρ(z;μ) on the ray [−1,+∞) (recall that μ(ρ) > 1/ρ).
The proof of the positiveness of Eρ(z;μ) for z ∈ R, z ≤ −M(ρ), is more difficult. First, we

consider the case where 1/2 < q ≤ 2/3. We must verify the positiveness of the function Fρ(x;μ) =

xμ−1Eρ(−x1/ρ;μ) on the ray x ≥Mρ(ρ). From Theorem 1.5.2 we deduce the estimate

Fρ(x;μ) ≥ −2ρ exp(x cosπρ) +
xμ−1−1/ρ

Γ(μ− 1/ρ)
+ ωρ(x;μ),

where
∣∣ωρ(x;μ)

∣∣ ≤ 3Γ(1− μ+ 2/ρ)

2π
xμ−1−2/ρ <

Γ(1− μ+ 2/ρ)

2
xμ−1−2/ρ.

Since μ > 1/ρ, we have

1− μ+
2

ρ
< 1 +

1

ρ
< 3 =⇒ Γ

(
1− μ+

2

ρ

)
< 2

(obviously, 1− μ+ 2/ρ > 1 since μ < 1.5/ρ). Therefore,
∣∣ωρ(x;μ)

∣∣ ≤ xμ−1−2/ρ ≤ xμ−1−1/ρ/M(ρ)

and we arrive at the estimate

Fρ(x;μ) > −2ρ exp(x cosπρ) + xμ−1−1/ρ

[
1

Γ(μ− 1/ρ)
− 1

M(ρ)

]
. (6.4.14)

We present a lower numerical estimate of the expression

1

Γ(μ− 1/ρ)
− 1

M(ρ)
, μ(ρ) ≤ μ ≤ 1.5

ρ
,

1

2
< ρ ≤ 2

3
.

Since the function 1/Γ(t) increases on the interval 0 < t < 1 and is greater than t, we have

1

Γ(μ− 1/ρ)
≥ 1

Γ(μ(ρ)− 1/ρ)
=

1

Γ(1− 2α+ 0.7α2)
≥ 1

Γ(7/40)
>

7

40
.

Since

M(ρ) = 36 cos−4 πρ ≥ 36 · 16,
we have

1

Γ(μ− 1/ρ)
− 1

M(ρ)
>

7

40
− 1

36 · 16 > 0.17. (6.4.15)

From (6.4.14) and (6.4.15) we conclude that to prove the positiveness of Fρ(x;μ) on the ray
x ≥Mρ(ρ), it suffices to verify the inequality

2ρ exp(x cosπρ) < 0.17xμ−1−1/ρ ⇐⇒ xv(α) exp(x cosπρ) <
0.17

2ρ
,

1

2
< q ≤ 2

3
, x ≥Mρ(ρ) ≥M1/2(ρ) = 6 cos−2(πρ).
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We strengthen and simultaneously simplify the last inequality. Since v(α) < 1, the left-hand side
does not exceed x exp(x cosπρ) and the right-hand side is greater than 0.17/(4/3) > 0.1. Therefore,
it remains to verify that

x exp(x cosπρ) < 0.1 for x ≥ 6 cos−2(πρ),
1

2
< ρ ≤ 2

3
.

The function x exp(x cosπρ) decreases on the ray x ≥ | sec(πρ)| and hence for the considered values x
it does not exceed its value at the point x = 6 cos−2 πρ:

x exp(x cosπρ) ≤ 6 sec2 πρ exp(6 secπρ) =
1

6
u2e−u ≤ 1

6
max
u≥0

(u2e−u) =
2

3
e−2 < 0.1.

The required inequality is proved.
Now let 2/3 < ρ ≤ 3/4. Similarly to (6.2.5), we have the estimate

|ωρ(x;μ)| ≤ 1.19Γ

(
1− μ+

2

ρ

)
xμ−1−2/ρ < 1.19Γ(2.5)x1−μ−2/ρ < 1.6x1−μ−1/ρ/M(ρ).

Therefore, we obtain the estimate

Fρ(x;μ) > −2ρ exp(x cosπρ) + xμ−1−1/ρ

[
1

Γ(μ− 1/ρ)
− 1.6

M(ρ)

]
.

As above, we see that the right-hand side increases with respect to μ for the considered values of the
parameter and obtain the estimate

Fρ(x;μ) > −2ρ exp(x cosπρ) + x−1

[
1

Γ(h(ρ))
− 1.6

M(ρ)

]
.

Similarly to the above reasoning (here h(ρ) ≥ h(3/4) = e−π and M(ρ) ≥ 36 cos−4(3π/4) = 36.4), we
have the relations

1

Γ(h(ρ))
− 1.6

M(ρ)
≥ h(ρ)− 1.6

9 · 16 ≥ e−π − 1

90
>

1

24
− 1

90
>

1

36
.

Thus, we must prove the inequality

2ρ exp(x cosπρ) <
1

36x
⇐⇒ 6x exp(x cosπρ) <

1

12ρ
, x ≥ 6

cos2(πρ)
,

2

3
< ρ ≤ 3

4
.

Since the function x exp(x cosπρ) decreases for x ≥ | secπρ|, we have the estimate

6x exp(x cosπρ) ≤ 36 sec2 πρ exp(6 secπρ) = u2e−u < 36e−6 < 0.1, x ≥ 6 sec2 πρ.

However, we have the inequality
1

12ρ
≥ 1

12
· 4
3
=

1

9
> 0.1,

and we have obtained what was required.
Finally, 3/4 < ρ < 1. By Theorem 1.4.2 (m = 1), we have the formula

Eρ(z;μ) = ρzρ(1−μ) exp(zρ)− 1

zΓ(μ− 1/ρ)
+R(z; ρ, μ), (6.4.16)

where

|R(z; ρ, μ)| ≤ 21+b/2Γ(b+ 1)|z|−2, b =
2

ρ
− μ.

Recall that in this representation of the Mittag-Leffler function, we take the principal branch of the
argument in the definition of noninteger powers of z, and on the ray (−∞, 0) we can set either z = |z|eπi
or z = |z|e−πi. A discontinuity of an exponentially small term in the approximate representation of
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Eρ does not introduce any contradiction. From (6.4.16), taking into account the realness of the
Mittag-Leffler function on R (μ ∈ R), we obtain the following lower estimate:

Eρ(z;μ) >
1

|z|Γ(h(ρ)) − exp
(|z|ρ cosπρ)− 21+b/2Γ(b+ 1)|z|−2, z ∈ R, z < −1.

Further, by the restrictions ρ > 3/4, cosπρ < −1/
√
2, and b ≤ 1/ρ < 4/3, we have the estimate

Eρ(z;μ) >
h(ρ)

|z| − exp

(
−|z|3/4√

2

)
− 25/3Γ(1 + 4/3)|z|−2,

|z|Eρ(z;μ) > h(ρ)− |z| exp
(
−|z|3/4√

2

)
− 4.2|z|−1.

This shows that to prove the positiveness of Eρ(z;μ) for z ∈ R, z ≤ −6/h(ρ), it suffices to verify the
inequality

|z| exp
(
−|z|3/4√

2

)
<

1.8

|z| , |z| ≤ −6/h(ρ).

Denoting |z|3/4/√2 = u, we obtain

|z|2 exp
(
−|z|3/4√

2

)
= (u

√
2)8/3e−u =

(
16

u

)1/3

u3e−u < max
u≥0

(u3e−u) = 27e−u < 1.8,

which was required (we have used the fact that h(ρ) < 1/23 for 3/4 < ρ < 1 by Lemma 6.3.2 and
hence |z| > 100 and u > 16). Assertion 6.4.2 is completely proved.

6.5. Proof of Theorem 6.1.1

In this section, we take up one more special function, the Wright function (see [45, 46]):

eβ(z) =
∞∑

n=1

zn

n! Γ(−βn) , 0 < β < 1.

We need the following of its properties obtained by Wright:

eβ(y) > 0 ∀y ∈ (−∞; 0), eβ(y) = O(eAy), y → −∞ ∀A > 0, (6.5.1)

+∞∫

0

sν−1eβ(−s) ds = Γ(ν)

Γ(βν)
∀ν > 0. (6.5.2)

From (6.5.2) by using the substitution s = tx−β for any x > 0 we obtain

+∞∫

0

tν−1eβ(−tx−β) dt = x−βν Γ(ν)

Γ(βν)
. (6.5.3)

The key point of the proof of the theorem is the following.

Lemma 6.5.1. If ρ ≥ 1/2, μ > 0, and the function Eρ(z;μ) is nonnegative on R, then the following
assertions hold :

(1) for any λ > μ, the function Eρ(z;λ) is positive on R;
(2) for any β ∈ (0, 1), the function Eρ/β(z;βμ) is positive on R.
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Proof. For any λ > 0, the function Eρ(z;λ) is positive on [0,+∞) and no difficulties arise. We must
prove its positiveness on the ray (−∞, 0). To test the function Eρ(z;λ) on this ray, it is convenient to
pass to the function

Fρ(x;λ) ≡ xλ−1Eρ(−x1/ρ;λ).
Consider the operator D−ε, ε > 0, defined by the formula

D−εg(x) =
1

Γ(ε)

x∫

0

g(t)dt

(x− t)1−ε
,

defined, at least, on C[0,+∞) and called the integral of order ε. We need the result of the action of
this operator on the function Fρ:

D−εFρ(x;μ) = Fρ(x;μ+ ε). (6.5.4)

Prove Eq. (6.5.4). The power-series expansion of the Mittag-Leffler function yields (here B is the
beta-function)

x∫

0

Fρ(t;μ)

(x− t)1−ε
dt =

x∫

0

∞∑

k=0

(−1)ktμ−1+k/ρdt

Γ(μ+ k/ρ)(x− t)1−ε
=

∞∑

k=0

(−1)k

Γ(μ+ k/ρ)

1∫

0

(ux)μ−1+k/ρd(ux)

(x)1−ε(1− u)1−ε

=
∞∑

k=0

(−1)kxμ+ε−1+k/ρ

Γ(μ+ k/ρ)
B

(
μ+

k

ρ
, ε

)
= xμ+ε−1

∞∑

k=0

(−1)kxk/ρΓ(ε)

Γ(μ+ ε+ k/ρ)
= Γ(ε)Fρ(x;μ+ ε).

Since the operator D−ε (for all ε > 0) maps nonnegative functions that do not vanish identically in
any right-hand side semi-neighborhood of the origin to positive functions, we obtain the first assertion
of the lemma by setting ε = λ− μ > 0.

To prove the second assertion, we use properties (6.5.1) and (6.5.3) of the Wright function. From
(6.5.3) we have

+∞∫

0

Fρ(t;μ)e
0
β(−tx−β)dt =

+∞∫

0

∞∑

k=0

(−1)ktμ−1+k/ρ

Γ(μ+ k/ρ)
e0β(−tx−β)dt

=
∞∑

k=0

(−1)k

Γ(μ+ k/ρ)

+∞∫

0

tμ−1+k/ρe0β(−tx−β)dt =
∞∑

k=0

(−1)kxβμ+βk/ρ

Γ(βμ+ βk/ρ)
= xFρ/β(x;βμ). (6.5.5)

The validity of swapping summation and integration must be justified. The series representing
Fρ(t;μ) converges to this function everywhere on (0,+∞), but it is also required that a majorant of

the modulus of partial sums of this series multiplied by e0β(−tx−β) is summable on R for any x > 0.
The modulus of any partial sum of this series does not exceed

tμ−1
∞∑

k=0

tk/ρ

Γ(μ+ k/ρ)
= tμ−1Eρ(t

1/ρ;μ) = O(et), t > 0.

The Wright function e0β(−t) tends to zero faster than e−At as t → +∞ for all A > 0. This implies

the summability. From (6.5.5) and the positiveness of the Wright function on (−∞, 0) we obtain the
second assertion of the lemma. Lemma 6.5.1 is completely proved.

Taking ρ = 1/2 and μ = 3 (then E1/2(z; 3) = z−1(cosh
√
z − 1) ≥ 0 on R), we obtain the following

consequence of Lemma 6.5.1.
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Corollary 6.5.1. The function E1/2(z;λ) is positive on R for any λ > 3. The function Eρ(z;λ) is
positive on R for any ρ > 1/2 and λ ≥ 1.5/ρ.

Now we can prove Theorem 6.1.1. We introduce the set

Bρ =
{
μ > 0

∣∣ ∃z ∈ R : Eρ(z;μ) < 0
}
.

The fact that the set Bρ is nonempty follows from assertion (1) in Sec. 6.4 and the simple inclusion
1/ρ ∈ Bρ, 1/2 < ρ < 1. Indeed, for any ρ > 1/2 and μ ∈ C, by Theorem 1.2.1, we have the asymptotics

Eρ(z;μ) =
−1

zΓ(μ− 1/ρ)
− 1

z2Γ(μ− 2/ρ)
−O

(
1

z3

)
, z ∈ R, z → −∞. (6.5.6)

Therefore, for μ = 1/ρ and ρ > 1/2, ρ 	= 1, the following equivalence holds:

Eρ

(
z;

1

ρ

)
∼ −1

z2Γ(−1/ρ)
, z ∈ R, z → −∞. (6.5.7)

From (6.5.7) and the positiveness of the Γ-function on the interval (−2,−1) we obtain that for all
sufficiently large (in modulus) negative z, the function Eρ(z; 1/ρ) is negative. Therefore, 1/ρ ∈ Bρ.

Thus, the set Bρ is nonempty, and Corollary 6.5.1 shows the boundedness of Bρ. Therefore, there
exists a finite positive function f(ρ) = supBρ, 1/2 < ρ < 1. From Lemma 6.5.1 we obtain the
implication

μ /∈ Bρ =⇒ [μ,+∞) ∩Bρ = ∅, μ > 0,

which proves the inclusion (0, f(ρ)) ⊂ Bρ. By the continuity (and even holomorphicity) of the Mittag-
Leffler function with respect to the parameter μ, the inequality

Eρ(z0;μ0) < 0, z0, μ0 ∈ R,

implies the inequality Eρ(z0;μ) < 0 for all μ lying in some neighborhood U of the point μ0. This
means that U ⊂ Bρ and hence f(ρ) is a boundary point of Bρ and does not belong to the set Bρ.

Thus, for μ ∈ (0, f(ρ)), the function Eρ(z;μ) takes at some points of the real axis negative values,
the function Eρ(z; f(ρ)) is nonnegative on R, and for λ > f(ρ), we have the inequality Eρ(z;λ) > 0
for all z ∈ R.

We prove that Eρ(z; f(ρ)) has a real root. By assertion (2) from Sec. 6.4, for μ ≥ μ(ρ), all negative
values of Eρ(z;μ) (if they exist) are located on the segment [−M(ρ),−1]. For μ(ρ) ≤ μ < f(ρ), they
exist and, therefore, denoting mρ(μ) by min

{
Eρ(z;μ) | −M(ρ) ≤ z ≤ −1

}
< 0, μ(ρ) ≤ μ < f(ρ), we

obtain that

mρ(f(ρ)) = lim
μ→f(ρ)−0

mρ(μ) ≤ 0.

This proves the existence of a real root of the function Eρ(z; f(ρ)).
It remains to deduce the two-sided estimate (6.1.1) and prove that f(ρ) decreases. The inclusion

1/ρ ∈ Bρ means the validity of the inequality 1/ρ < f(ρ) and Corollary 6.5.1 of Lemma 6.5.1 im-
mediately implies the inequality f(ρ) ≤ 1.5/ρ. But in the case where 1/2 < ρ < 1, the function
Eρ(z; f(ρ)) has a root and hence for these ρ, the inequality is strong: f(ρ) < 1.5/ρ. The second part
of Lemma 6.5.1 means the validity of the inequality

f(ρ) ≤ ρ0
ρ
f(ρ0),

1

2
≤ ρ0 < ρ, (6.5.8)

which implies the fact that f decreases. Theorem 6.1.1 is completely proved.
These arguments allow one to give another proof of the theorem, which asserts that the function

Eρ(z;μ) has no real roots for ρ > 1 and μ ≥ 1/ρ but has for 0 < μ < 1 < ρ. First, we prove that
f(1) = 1. Indeed, if μ ∈ (0, 1), then from (6.5.6) we see that

E1(z;μ) ∼ −(zΓ(μ− 1))−1, z → −∞, z ∈ R.
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This implies the negativeness of E1(z;μ) for all sufficiently large (in modulus) negative z. However,
the function E1(z;μ) ≡ ez is positive on R. Here, in contrast to the case 1/2 < ρ < 1, where the
second parameter of the Mittag-Leffler function is equal to supB1, there are no real roots. The reason
is that a real root of E1(z;μ) tends to −∞ as μ tends to 1 from the left. The same effect also appears
if ρ > 1.

Taking ρ0 = 1, we find from (6.5.8) that f(ρ) ≤ 1/ρ. On the other hand, for 0 < μ < 1/ρ, from
asymptotics (6.5.6) we obtain the equivalence

Eρ(z;μ) ∼ −
(
zΓ

(
μ− 1

ρ

))−1

, z ∈ R, z → −∞,

which implies the existence of negative values of the function Eρ(z;μ). Therefore, f(ρ) = 1/ρ for
ρ ≥ 1. In concluding this section, we note that, in our opinion, the function f(ρ) for 1/2 < ρ < 1 is
unlikely to be elementary.

6.6. Proof of Theorem 6.1.3

Lower estimates of the function f(ρ) follow from assertion (1) of Sec. 6.4. To prove upper estimates,
it suffices to verify the positiveness of the function Fρ(x; 3− 2α) on the ray

x >

(
Γ(3− 2α+ 1/ρ)

Γ(3− 2α)

)ρ

.

Recall that, by Lemma 3.1.1, the function Eρ(z;μ) is positive on the ray

z ≥ −Γ(μ+ 1/ρ)

Γ(μ)

of the real axis for μ > 0. Thus, we verify the positiveness of Eρ(z; 3 − 2α) for all z ∈ R and hence
prove the estimate

f(ρ) < 3− 2α,
1

2
< ρ ≤ 2

3
.

In particular, f(2/3) < 2. This and (6.5.8) imply

f(ρ) <

2

3
f

(
2

3

)

ρ
<

4/3

ρ
, ρ >

2

3
,

which proves the upper estimate (6.1.5).
Obtaining lower estimate of the variable x, which is equal to

(
Γ(3− 2α+ 1/ρ)

Γ(3− 2α)

)ρ

,

is rather difficult. We deduce the inequality
(
Γ(μ+ 1/ρ)

Γ(μ)

)ρ

> 2, μ = 3− 2α,
1

2
< ρ ≤ 2

3
, (6.6.1)

and then prove the positiveness of the function Fρ(x; 3 − 2α) for x > π/2. Taking the logarithm of
(6.6.1), we obtain the equivalent inequality

ln 2 < ρ

(
ln Γ

(
μ+

1

ρ

)
− ln Γ(μ)

)
= ρ

μ+1/ρ∫

μ

ψ(t)dt.

395



Since ψ increases, the last integral mean is no less than its value corresponding to the minimal value
of the parameter μ = 2:

ρ

2+1/ρ∫

2

ψ(t)dt.

We have the relation

d

dρ

⎛

⎜⎝ρ
2+1/ρ∫

2

ψ(t)dt

⎞

⎟⎠ =

2+1/ρ∫

2

ψ(t)dt− 1

ρ
ψ

(
2 +

1

ρ

)
< 0

since ψ increases. Thus, the minimum of the left-hand side of (6.6.1) is equal to
(
Γ(2 + 3/2)

Γ(2)

)2/3

= (Γ(3.5))2/3 > 32/3 > 2,

which was required.
To prove the positiveness of the function Fρ(x; 3− 2α) for x ≥ 2, we use Theorem 1.5.2 with m = 1

and μ = 3− 2α. Taking into account the relations

ρ(μ− 1) = ρ(2− 2α) = ρ(2− α)− ρα = 1− ρα, μ− 1

ρ
= 1− α, μ− 2

ρ
= −1

and setting ε = ρ− 1/2, we obtain the representation

Fρ(x; 3− 2α) = −2ρ exp
(− x sinπε

)
cos
(
x cosπε+ πρα

)
+

x−α

Γ(1− α)
+ ωρ(x), (6.6.2)

in which the remainder ωρ(x) is estimated as follows:

∣∣ωρ(x)
∣∣ ≤ Γ(2)

πx2
sinπα

4 cos2
π

2ρ

<
α

2x2
. (6.6.3)

We deduce a two-sided estimate of the operand of the cosine in (6.6.2) for 2 ≤ x ≤ 4. Consider the
function of two variables

ϕ(x, ρ) = x cosπε+ πρα.

Since ∂ϕ/∂x > 0, the maximum of this function in the rectangle
{
(x, ρ)

∣∣∣ 2 ≤ x ≤ 4,
1

2
≤ ρ ≤ 2

3

}

is attained at x = 4 and the minimum at x = 2. Further, we have the relations

∂ϕ(x, ρ)

∂ρ
= π(2− x sinπε) =⇒ ∂ϕ(2, ρ)

∂ρ
> 0,

∂ϕ(4, ρ)

∂ρ
≥ 0,

for
1

2
≤ ρ ≤ 2

3
⇐⇒ 0 ≤ ε ≤ 1

6
.

Therefore, in this rectangle the following inequality holds:

2 = ϕ

(
2,

1

2

)
≤ ϕ(x; ρ) ≤ ϕ

(
4,

2

3

)
= 4 cos

π

6
+
π

3
<

3π

2
.

From this we conclude that the first term on the right-hand side of (6.6.2), which is equal to
−2ρe−x sinπε cosϕ(x, ρ), is positive and the following inequality holds:

Fρ(x; 3− 2α) >
x−α

Γ(1− α)
− α

2x2
≥ 1√

πx
− 1

4x2
> 0, 2 ≤ x ≤ 4.
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For x ≥ 4 from (6.6.2) and (6.6.3) we obtain

Fρ(x; 3− 2α) >
x−α

Γ(1− α)
− 2ρ exp

(− x sinπε
)− α

2x2
.

Therefore,

xαΓ(1− α)Fρ(x; 3− 2α) > 1− 2ρΓ(1− α)xα exp
(− x sinπε

)− αΓ(1− α)

2x2−α
.

We roughen this estimate slightly and simplify it at the same time. Since

2ρ = 1 + 2ε < e2ε, Γ(1− α) ≤ √
π,

sinπε ≥ 3ε 0 < ε ≤ 1

6
,

x2−α ≥ x1.5 ≥ 8, x ≥ 4,

we have

xαΓ(1− α)Fρ(x; 3− 2α) ≥ 1− Γ(1− α)xαe2ε−3εx − 0.12α.

The function xαe−3εx decreases on the ray

x ≥ α

3ε
=

4− 2α

3
;

therefore, for x ≥ 4 we have the inequality

xαe−3εx ≤ 4αe−12ε < e1.4α−12ε.

This means that it remains to prove the positiveness of the function

g(α) = 1− Γ(1− α)e1.4α−10ε − 0.12α, 0 < α ≤ 1

2
,

where

ε =
α

4− 2α
.

For 0 < α ≤ 1/4, using the estimates

ε >
α

4
, Γ(1− α) < e0.9α

(see Lemma 6.3.3), we obtain

g(α) > 1− e−0.2α − 0.12α.

Since

1− e−t > t− t2

2
∀t > 0,

we see that

g(α) > 0.08α− 0.02α2 > 0, 0 < α ≤ 1

4
.

In the case 1/4 < α ≤ 1/2, applying the estimates

ε >
α

3.5
, Γ(1− α) < e1.15α

(see Lemma 6.3.3), we also obtain that

g(α) > 1− e−0.2α − 0.12α > 0,
1

4
< α ≤ 1

2
,

which was required. Theorem 6.1.3 is proved.
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6.7. Sketch of the Proof of Theorem 6.1.4

In this section, we describe the main steps of the proof of Theorem 6.1.4. We denote 1 − μ by s
and consider the sequence

xn = xn(ρ, μ) = π(n− ρs) sec(πε), n ∈ N, (6.7.1)

which is useful for the localization of real roots and counting of their number. The proof is based on
the representation of the function

Fρ(z;μ) = zμ−1Eρ(−z1/ρ;μ)
in the half-plane Re z > 0 by Theorem 1.5.2. Namely, setting in this theorem m = 1, we obtain the
equality

Fρ(x;μ) = 2ρ exp
(− z sinπε

)
cos
(
z cosπε+ πρs

)
+

z−s−1/ρ

Γ(μ− 1/ρ)
+ ωρ(z;μ), (6.7.2)

where ε = ρ− 1/2 and ωρ(z;μ) is a function of the variable z holomorphic in the half-plane Re z > 0:

∣∣ωρ(z;μ)
∣∣ ≤ (|z|/x)sΓ(s+ 2/ρ)

πxs+2/ρ

[∣∣∣∣sin
(
π

(
μ− 2

ρ

))∣∣∣∣+
1

2

∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣

]
. (6.7.3)

We see from (6.7.2) that the power of z in the second term is equal to −s − 1/ρ = μ − 3 + α
(where α = 2− 1/ρ→ 0 as ρ → 1/2) and is negative and is separated from zero if μ < 3. Therefore,
the exponent (although its operand is also negative but tends to zero as ρ → 1/2+) prevails over

z−s−1/ρ

Γ(μ− 1/ρ)
, at least when x = �z is less than

R1(ε) = b cosecπε ln cosecπε, (6.7.4)

where

b =

{
3− μ if μ /∈ Z,

4− μ if μ ∈ Z.

Conversely, if x ≥ R(ε),

R(ε) = b cosecπε
(
ln cosecπε+ 2 ln ln cosecπε

)
, (6.7.5)

then the first term becomes substantially less than the second, and real roots are absent.
The asymptotics of the number of real roots is obtained as follows. Denote by n(ε) the largest

number n such that xn(ρ, μ) ≤ R1(ε); a number n0 depending only on μ but independent of ρ will be
chosen later. We will prove in the next section that on the sides of the trapezium

Tn =
{
z = x+ iy

∣∣∣ xn ≤ x ≤ xn+1, −x ≤ y ≤ x
}
, n0 ≤ n ≤ n(ε)− 1, (6.7.6)

the following inequality holds:
∣∣∣∣∣
z−s−1/ρ

Γ(μ− 1/ρ)

∣∣∣∣∣+
∣∣ωρ(z;μ)

∣∣ < 2ρ
∣∣∣ exp

(− z sinπε
)
cos
(
z cosπε+ πρs

)∣∣∣. (6.7.7)

It implies the coincidence of the number of roots (with account of their multiplicities) of the function
Fρ(z;μ) and exp

(−z sinπε) cos (z cosπε+πρs) inside any such trapezium. Roots of the latter function
can be easily found:

cos
(
z cosπε+ πρs

)
= 0 ⇐⇒ z = secπε

(
πn+

π

2
− πρs

)
=
xn + xn+1

2
, n ∈ Z.

All these roots are simple. Thus, inside each trapezium Tn, n0 ≤ n ≤ n(ε) − 1, the function Fρ(z;μ)
has a unique root. Since the function Fρ is real-valued on R and the trapeziums Tn are symmetric
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with respect to R, this root is real. Thus, the segment xn0 ≤ x ≤ xn(ε) contains exactly n(ε)−n0 roots
of the function Fρ(x;μ). We see from (6.7.1) and (6.7.4) that

n(ε) =
R1(ε)

π
cosπε+O(1) =

b cot(πε)

π
ln cosecπε+O(1) =

b

π2ε
ln

1

ε
+O

(
1

ε

)

is the principal term of the asymptotics for the number of real roots of Eρ(z;μ).
We prove in Sec. 6.8 that for x ≥ R(ε), the function Fρ(x;μ) has constant sign for all ρ suffi-

ciently close to 1/2 from the right and, therefore, has no roots. The following step of the derivation
of the asymptotics for N(ρ;μ) is the estimate of the number of roots of Fρ(x;μ) on the segment
xn(ε) = R1(ε) +O(1) ≤ x ≤ R(ε). The length of this segment is O(ε−1 ln ln ε−1), ε → 0+. We prove
that on the sides of the rectangle

Π(ε) =
{
x+ iy

∣∣∣ xn(ε) ≤ x ≤ xm(ε), |y| ≤ cosecπε
}

(the segment considered bisects this rectangle), the modulus of the logarithmic derivative
F ′
ρ(z;μ)/Fρ(z;μ) does not exceed 2 (for all ρ sufficiently close to 1/2 and fixed μ). Therefore, the

number of roots of the function Fρ(z;μ) in Π(ε) and, moreover, on the center line of this rectangle
does not exceed the perimeter of Π(ε) divided by π, i.e., O(ε−1 ln ln ε−1); this is the remainder of the
asymptotics.

The final step of the proof of Theorem 6.1.4 is the upper estimate of the number of roots of Eρ(z;μ)

that are “nonlarge” in modulus, i.e., roots lying on the ray [−x1/ρn0 ,+∞). Actually (see Lemma 6.3.4)

they lie on the segment [−x1/ρn0 , s
2] ⊂ [−x2n0

, s2]. As n0, we take the minimum of the numbers n such

that xn ≥ A2(s), where

A(s) = 2s+4(s+ 3)2, s ≥ 0, A(s) =
2A(0)

b
− 2 < s < 0

(recall that s = 1 − μ). Since the distance between two neighboring elements of the sequence xn is
equal to π secπε, we have

xn0 ≤ A2(s) + 4 <
√
2A(s) =⇒ x2n0

< 2A4(s),

and it remains to obtain an upper estimate for the number of roots of the function Eρ(z;μ) on the
segment [−2A4(s), s2]. It is intuitively clear that the number of roots on this segment is bounded
from above by a value depending only on s (i.e., on μ) but independent of ρ. The strong proof is as
follows. Since the number of roots of an arbitrary entire function, which does not vanish identically,
on any compact is finite (or roots are absent), we see that for all δ ∈ (0, 1], except for, perhaps, a
finite number of values, the function E1/2(z;μ) has no roots on the sides of the rectangle

Kδ =
{
z ∈ C

∣∣∣ − 2A4(s)− δ ≤ Re z ≤ s2 + δ,
∣∣ Im z

∣∣ ≤ δ
}
.

Since the family of functions Eρ(z;μ) converges to E1/2(z;μ) as ρ → 1/2 uniformly on any compact
in C (in particular, in the rectangle Kδ), the numbers of roots of the functions Eρ(z;μ) and E1/2(z;μ)
in Kδ coincide for all ρ sufficiently close to 1/2, Thus, the number of roots of the function Eρ(z;μ)

lying on the ray [−x1/ρn0 ,+∞) does not exceed the number of roots of the function E1/2(z;μ) lying in
the rectangle K1, i.e., O(1) for fixed μ and ρ→ 1/2+.

The above considerations lead to the following conclusion. Theorem 6.1.4 will be completely proved
if we can perform the following:

(1) prove the fact that the function Fρ(x;μ) has constant sign for x ≥ R(ε);
(2) deduce the inequality (6.7.7) on the sides of the trapeziums Tn defined in (6.7.6);
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(3) prove the estimate ∣∣∣∣
F ′
ρ(z;μ)

Fρ(z;μ)

∣∣∣∣ ≤ 2

on the sides of the rectangle Π(ε).

This will be done in the following section.
In concluding this section, we explain how to choose n0 (or, equivalently, A(s)). The value A(s) is

chosen so that the following inequality holds:

∣∣ωρ(z;μ)
∣∣ ≤ |z|−s−1/ρ−5/4

|Γ(μ− 1/ρ)| , Re z ≥ A2(s), | Im z| ≤ Re z. (6.7.8)

We prove this inequality in the case μ ≤ 1 (s ≥ 0); for μ ∈ (1, 3), the proof is similar. First, we
note that, by the identity

1

Γ(w)Γ(1− w)
=

sinπw

π

and the notation α = 2− 1/ρ and s = 1− μ, we have

1

Γ(μ− 1/ρ)
=

sinπ(μ− 1/ρ)

π
Γ(s+ 2− α). (6.7.9)

It is easy to verify that the inequality
∣∣∣∣sin
(
π

(
μ− 2

ρ

))∣∣∣∣ ≤ 2

∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣ (6.7.10)

holds both for μ ∈ Z (for all α ∈ (0, 1/2]) and for μ /∈ Z (for any ρ sufficiently close to 1/2). Relations
(6.7.3), (6.7.9), and (6.7.10) together with the restriction |z| ≤ x

√
2 yields the relations

∣∣ωρ(z;μ)
∣∣ ≤ 2s/2Γ(s+ 4− 2α)

πxs+2/ρ
· 5
2

∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣

=
2.5 · 2s/2(s+ 3− 2α)(s+ 2− 2α)Γ(s+ 2− 2α)

πxs+2/ρ

∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣

<
22+s/2(s+ 3)2Γ(s+ 2− α)

πxs+2/ρ

∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣ =
22+s/2(s+ 3)2

xs+2/ρ
∣∣∣Γ
(
μ− 1

ρ

)∣∣∣

=
22+s/2(s+ 3)2

|z|s+2/ρ
∣∣∣Γ
(
μ− 1

ρ

)∣∣∣

∣∣∣
z

x

∣∣∣
s+2/ρ ≤ 2s+4(s+ 3)2

|z|s+2/ρ
∣∣∣Γ
(
μ− 1

ρ

)∣∣∣
≡ A(s)|z|−s−2/ρ

∣∣∣Γ
(
μ− 1

ρ

)∣∣∣
.

Since |z| ≥ A2(s) and 1/ρ > 7/4 (we consider only values of ρ from the interval 1/2 < ρ < 4/7 since

ρ→ 1/2+), we arrive at (6.7.8) replacing A(s) by |z|1/2 in the last expression.
We show that the same inequality as (6.7.8) holds for the derivative ω′

ρ(z;μ), but in a narrower
domain. Namely,

∣∣ω′
ρ(z;μ)

∣∣ ≤ |z|−s−1/ρ−s/4

∣∣∣Γ
(
μ− 1

ρ

)∣∣∣
, Re z ≥ A2(s) + 2, | Im z| ≤ Re z − 3. (6.7.11)

The definition of A(s) implies the inequality

2(s+ 4)A−2(s) < ln 2. (6.7.12)

We use the fact that if z ∈ C, R > 0, the function ϕ(ζ) is holomorphic in the disk

K =
{
ζ ∈ C

∣∣∣ |ζ − z| ≤ R
}
,
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and

max
ζ∈K

|ϕ(ζ)| =M,

then

ϕ′(z) =
1

2πi

∫

|ζ−z|=R

ϕ(ζ)

(ζ − z)2
dζ =⇒ |ϕ′(z)| ≤ M

R
.

Taking R = 2, we obtain the inequality

∣∣ω′
ρ(z;μ)

∣∣ ≤ 1

2
max

|ζ−z|=2

∣∣ωρ(ζ;μ)
∣∣. (6.7.13)

From (6.7.8), (6.7.13), and (6.7.12) we obtain

∣∣ω′
ρ(z;μ)

∣∣ ≤ 1

2

(|z| − 2)−s−1/ρ−5/4

|Γ(μ− 1/ρ)|

=
1

2

|z|−s−1/ρ−5/4

|Γ(μ− 1/ρ)|
( |z|
|z| − 2

)s+1/ρ+5/4

≤ 1

2

|z|−s−1/ρ−5/4

|Γ(μ− 1/ρ)| exp
(
2(s+ 1/ρ+ 5/4)

|z| − 2

)

≤ 1

2

|z|−s−1/ρ−5/4

|Γ(μ− 1/ρ)| exp
(
2(s+ 4)

A2(s)

)
<

|z|−s−1/ρ−5/4

|Γ(μ− 1/ρ)| ,

which was required.

6.8. Completion of the Proof of Theorem 6.1.4

In this and following sections, we use the notation v = cosecπε.
Representation (6.7.2) shows that the fact of constant sign of the function Fρ(x;μ) for x ≥ R(ε)

follows from the inequality

2ρ exp
(
−x
v

)
<

x−s−1/ρ

|Γ(μ− 1/ρ)| −
∣∣ωρ(x;μ)

∣∣, x ≥ R(ε). (6.8.1)

Note that
1

Γ(μ− 1/ρ)
=

1

Γ(μ− 2 + α)

preserves its sign for fixed μ ∈ R and all sufficiently small positive α. From (6.7.8) we see that
inequality (6.8.1) can be replaced by the following stronger inequality:

2 exp
(
−x
v

)
<

(
1− 1

x

)
x−s−1/ρ

|Γ(μ− 2 + α)| , x ≥ R(ε).

If μ is noninteger, then, as ρ → 1/2+, the fraction 1/|Γ(μ− 2 + α)| is separated from zero. This
reduces the problem to the inequality

Cxs+2 exp
(
−x
v

)
< 1, x ≥ R(ε), C = C(s), (6.8.2)

when the parameter ε is sufficiently close to zero. We have the relation

R(ε) ∼ bv ln v, ε→ 0+, (6.8.3)

and the function xs+2 exp(−x/v) decreases on the ray x ≥ (s + 2)v. Therefore (if the parameter ε
is small), it suffices to prove inequality (6.8.2) only for x = R(ε). Recall that b = s + 2 (in the case
μ /∈ Z) and

R(ε)

v
= b(ln v + 2 ln ln v) =⇒ exp

(
−R(ε)

v

)
= v−b(ln v)−2b.
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Therefore, the left-hand side of inequality (6.8.2) for x = R(ε) is equal to CRb(ε)v−b(ln v)−2b → 0 as
ε→ 0+ by (6.8.3), and hence is less than 1.

If μ ∈ Z, then
∣∣Γ(μ− 2 + α)

∣∣ � α−1 � v, ε→ 0+,

and we must prove the inequality

C1vx
s+2 exp(−x/v) < 1, x ≥ R(ε), C1 = C1(s). (6.8.4)

As in the previous case, it suffices to prove (6.8.4) only for x = R(ε). But here b = s + 3 and, after
increasing the left-hand side of (6.8.4) (replacing v by R(ε)) we arrive at the inequality

C1R
b(ε) exp

(
−R(ε)

v

)
< 1,

which has been proved above.
Prove inequality (6.7.7). As above, x = Re z. Since on the straight lines

Re z = π(n− γ) sec θ, θ, γ ∈ R, n ∈ Z,

the modulus of the function cos(z cos θ + πγ) is not less than 1, the relations

2ρ > 1, −s− 1

ρ
= μ− 3 + α < 0

hold (the parameter μ < 3 is fixed, α → 0+), and |z| ≥ x, inequality (6.7.7), with account of (6.7.8)
and bounds for Re z , can be replaced by the following stronger inequality:

(
1 +

1

x

)
x−s−1/ρ

|Γ(μ− 1/ρ)| < exp
(
−x
v

)
, A2(s) ≤ x ≤ R1(ε). (6.8.5)

This inequality guarantees that (6.7.7) also holds on the lateral sides of trapeziums since the modulus
of the cosine exceeds 1 on them by the estimates

∣∣ cos(ξ + iη)
∣∣ ≥ | sinh η| ≥ |η|, ξ, η ∈ R, Im

(
z cosπε

)
= x cosπε >

x

2
≥ A2(0)

2
≥ 1442

2
.

First, we prove (6.8.5) for μ ∈ (2, 3); then b = 3− μ ∈ (0, 1). In this situation, if the parameter ρ is
close to 1/2 from the right, we have

0 < μ− 1

ρ
< 1 =⇒ 0 <

1

Γ(μ− 1/ρ)
< 1.

Since x ≥ 4A2(0)b−2 = 2882b−2, we have

1 +
1

x
< exp(10−4b2)

and hence, for μ ∈ (2, 3), inequality (6.8.5) can be replaced by the following stronger but simpler
inequality:

exp
(
10−4b2

)
xα−b exp

x

v
< 1 ⇐⇒ 10−4b2 + (α− b) lnx+

x

v
< 0, A2(s) ≤ x ≤ R1(ε). (6.8.6)

It is easy to verify the convexity of the function −b lnx+ x/v and the inequality

α lnx ≤ α lnR1(ε) ≤ 4v−1 ln v, v > b (6.8.7)
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(recall that R1(ε) = bv ln v and v = cosecπε). As is known, the maximum of a convex function on a
segment is attained at one of the endpoints of this segment. Therefore, to prove (6.8.6) it suffices to
verify the validity of the following two inequalities:

10−4b2 + 4v−1 ln v − 2b lnA(s) +
A2(s)

v
< 0, (6.8.8)

10−4b2 + 4v−1 ln v − b lnR1(ε) +
R1(ε)

v
< 0. (6.8.9)

Since

lim
ε→0+

(
4v−1 ln v +

A2(s)

v

)
= 0,

we see that for all sufficiently small ε, the left-hand side of (6.8.8) is less than

10−3b2 − 2b lnA(s) < 10−3b2 − 2b lnA(0) < 10−3b2 − 8b < 0.

Thus, inequality (6.8.8) holds. Further, we have the relation

−b lnR1(ε) +
R1(ε)

v
= −b ln(b ln v) → −∞ as ε→ 0+,

and hence inequality (6.8.9) also holds.
Prove that (6.8.5) in the case μ < 2, μ /∈ Z. From (6.7.9) we obtain the inequality

1

|Γ(μ− 1/ρ)| ≤
Γ(s+ 2− α)

π
.

This shows that inequality (6.8.5) can be replaced by the following stronger inequality:

xα−bΓ(b− α) exp
x

v
<

πx

x+ 1
, A2(s) ≤ x ≤ R1(ε). (6.8.10)

Taking into account the lower bound for x and the upper estimate (6.8.7) for xα, we obtain the
following, stronger but simpler than (6.8.10), inequality:

x−b exp
x

v
< e, 1 < b < 2, x−bΓ(b) exp

x

v
< e, b > 2, A2(s) ≤ x ≤ R1(ε). (6.8.11)

Prove it. Taking the logarithm of (6.8.11) and using the convexity of the function x/v − b lnx, we
reduce the problem to the following inequalities:

−b lnx+
x

v
< 1, 1 < b < 2,

−b lnx+ lnΓ(b) +
x

v
< 1, b > 2,

x = A2(s), x = R1(ε).

(6.8.12)

As was noted above,

lim
ε→0+

(
−b lnR1(ε) +

R1(ε)

v

)
= − lim

ε→0+
b ln(b ln v) = −∞

independently of b > 0. Therefore, inequalities (6.8.12) at the point x = R1(ε) for sufficiently small
positive ε hold. For x = A2(s), the first inequality (6.8.12) for small ε is obvious:

lim
ε→0+

A2(s)

v
= 0, −b lnx < 0.

We prove the validity of the inequality

−b lnA2(s) + ln Γ(b) < 0;
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after this, it suffices to prove the second inequality for x = A2(s). For b > 2, by the choice of A(s),
we have the inequality A2(s) > 4b. Therefore,

−b lnA2(s) + lnΓ(b) < −b2 + lnΓ(b) = −b2 + b ln b = b(−b+ ln b) ≤ −b.
Thus, inequalities (6.8.12) are completely proved.

Consider integer values of μ ≤ 2. Then
∣∣∣∣sin
(
π

(
μ− 1

ρ

))∣∣∣∣ =
∣∣∣ sinπ(μ− 2 + α)

∣∣∣ = sinπα ≤ πα,

and (6.7.9) implies the inequality

1

|Γ(μ− 1/ρ)| ≤ αΓ(s+ 2− α). (6.8.13)

In this case, b = s+ 3 and, owing to (6.8.13), inequality (6.8.5) can be replaced by the following:
(
1 +

1

x

)
αΓ(b− 1− α)x1+α−b exp

x

v
< 1, A2(s) ≤ x ≤ R1(ε). (6.8.14)

Taking the logarithm of (6.8.14), applying (6.8.7) and estimate ln(1 + 1/x) < 1/x, and using the fact
that the function (1− b) lnx+ x/v is convex, we reduce the problem to the inequality

1

x
+ 4v−1 ln v + lnα+ lnΓ(b− 1− α) + (1− b) lnx+

x

v
< 0;

x = A2(s), x = R1(ε), b ∈ Z, b ≥ 2.
(6.8.15)

For x = A2(s), the validity of inequality (6.8.15) for all sufficiently small positive ε is obvious since
its left-hand side tends to −∞ as ε → 0+ on account of the term lnα. For x = R1(ε), we have the
expression

lnα+ (1− b) lnx+
x

v
= − ln v +O(1) + (1− b) ln(v ln v) + b ln v = (1− b) ln ln v +O(1).

This expression tends to −∞ as ε→ 0+ and other terms of the left-hand side of (6.8.15) are bounded
for x = R1(ε) and ε→ 0+. Inequality (6.8.15) is proved.

The final part of the proof of Theorem 6.1.4 is the estimate of the modulus of the logarithmic
derivative of the function Fρ(z;μ) on the sides of the rectangle Π(ε):

∣∣∣∣
F ′
ρ(z;μ)

Fρ(z;μ)

∣∣∣∣ ≤ 2.

We set

Φρ(z;μ) = 2ρ exp
(− z sinπε

)
cos
(
z cosπε+ πρs

)
.

Then

Fρ(z;μ) = Φρ(z;μ) +
z−s−1/ρ

Γ(μ− 1/ρ)
+ ωρ(z;μ),

F ′
ρ(z;μ) = Φ′

ρ(z;μ)−
(s+ 1/ρ)z−s−1/ρ−1

Γ(μ− 1/ρ)
+ ω′

ρ(z;μ),

Φ′
ρ(z;μ) = −2ρ exp

(− z sinπε
)
sin
(
z cosπε+ πρs+ πε

)
.

The plan of further action is as follows. On the left vertical side Re z = xn(ε) of the rectangle Π(ε)
we prove the inequality

|z|−s−1/ρ

|Γ(μ− 1/ρ)| +
∣∣ωρ(z;μ)

∣∣+
∣∣ω′

ρ(z;μ)
∣∣ < 1

3
exp
(
−x
v

)
. (6.8.16)
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The sequence xn is such that on the straight lines Re z = xn we have the inequality
∣∣Φ′

ρ(z;μ)
∣∣ ≤ ∣∣Φρ(z;μ)

∣∣ = exp
(
−x
v

)
cosh

(
y cosπε

)
, z = x+ iy.

This and (6.8.16) immediately imply the inequalities

∣∣Fρ(z;μ)
∣∣ ≥ 2

3

∣∣Φρ(z;μ)
∣∣,
∣∣F ′

ρ(z;μ)
∣∣ ≤ 4

3

∣∣Φρ(z;μ)
∣∣,

which yield the required upper estimate for the modulus of the logarithmic derivative. The inequality

|z|−s−1/ρ

|Γ(μ− 1/ρ)| +
∣∣ωρ(z;μ)

∣∣+
∣∣ω′

ρ(z;μ)
∣∣ < 1

4
exp
(
−x
v

)
sinh

(
v cosπε

)
, (6.8.17)

similar to (6.8.16), is proved on the horizontal sides xn(ε) ≤ Re z ≤ xm(ε), Im z = ±v of the rectan-
gle Π(ε). As above, taking into account the estimates

∣∣Φρ(z;μ)
∣∣ ≥ 2ρ exp

(
−x
v

) ∣∣ sinh
(
y cosπε

)∣∣,
∣∣Φ′

ρ(z;μ)
∣∣ ≤ ∣∣ coth (y cosπε)Φρ(z;μ)

∣∣ (6.8.18)

(here z = x+ iy), from (6.8.17) we deduce the inequality
∣∣∣∣
F ′
ρ(z;μ)

Fρ(z;μ)

∣∣∣∣ ≤ 2

on the horizontal sides of Π(ε); if 0 < ε ≤ 1/6, then

coth
(
v cosπε

)
= coth

(
cotπε

) ≤ coth
√
3 < 1.1.

An upper estimate of the modulus of the logarithmic derivative of the function Fρ on the right
vertical side

lε =
{
z ∈ C

∣∣∣ Re z = xm(ε), | Im z| ≤ v
}

of the rectangle Π(ε) is proved differently. Introduce the notation

Zρ(z;μ) =
z−s−1/ρ

|Γ(μ− 1/ρ)| .

On R+, the function Zρ(z;μ) is real-valued and its sign coincides with the sign of 1/Γ(μ− 1/ρ), which
we denote by δ, δ ∈ {−1, 1}. Recall that the number μ < 3 is fixed, α = 2− 1/ρ→ 0+, and hence the
sign of

1

Γ(μ− 1/ρ)
=

1

Γ(μ− 2 + α)

(when the parameter α is positive and sufficiently small) is constant and is equal to 1 if the entire
part of μ is even and to −1 in the opposite case. The function Φρ(z;μ) is real and preserves its sign
on vertical straight lines xn+ iy, n ∈ Z, y ∈ R, sgnΦρ(xn+ iy;μ) = (−1)n. The remainder of dividing
m(ε) by 2 is such that

sgnΦρ(xm(ε) + iy;μ) = δ.

Thus, ∣∣Φρ(z;μ)
∣∣ = δ

∣∣Φρ(z;μ)
∣∣, z ∈ lε. (6.8.19)

If the variable z “moves” vertically upward or downward from R, the function Zρ(z;μ) is no longer
real-valued, but

∣∣ReZρ(z;μ)
∣∣ is insignificantly less than

∣∣Zρ(z;μ)
∣∣ while arg z is not large. For z ∈ lε,

we have the relation

| arg z| ≤ arctan

(
v

xm(ε)

)
= O

(
1

ln v

)
.
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Therefore,

ReZρ(z;μ) = δ
|z|−s−1/ρ

|Γ(μ− 1/ρ)|(1 + o(1)), ε→ 0+, uniformly with respect to z ∈ lε. (6.8.20)

Relations (6.8.19), (6.8.20), and (6.7.8) imply the asymptotic relation
∣∣ReFρ(z;μ)

∣∣ =
∣∣Φρ(z;μ)

∣∣+
∣∣Zρ(z;μ)

∣∣(1 + o(1)), ε→ 0+, uniformly with respect to z ∈ lε.

Since ∣∣Z ′
ρ(z;μ)

∣∣+
∣∣ω′

ρ(z;μ)
∣∣ = o

∣∣Zρ(z;μ)
∣∣, ε→ 0+, uniformly with respect to z ∈ lε

and for z ∈ lε, we have the inequality
∣∣Φ′

ρ(z;μ)
∣∣ ≤ ∣∣Φρ(z;μ)

∣∣,

we now obtain the required estimate of |F ′
ρ/Fρ| on the side lε.

Now we deduce inequalities (6.8.16) and (6.8.17). Since the moduli of the remaining ωρ and its
derivative by order are less that the modulus of the function Zρ, |z| ≥ x,

lim
ε→0+

Rα(ε) = 1,

it suffices to prove the inequalities

4x−s−2

|Γ(μ− 2 + α)| exp
x

v
< 1, x = xn(ε),

x−s−2

|Γ(μ− 2 + α)| exp
x

v
< 0.1 exp(cotπε), xn(ε) ≤ x ≤ xm(ε),

which after taking the logarithm become

−b lnxn(ε) +
xn(ε)

v
< C, −b lnx+

x

v
< C + cotπε, xn(ε) ≤ x ≤ xm(ε), μ /∈ Z,

− ln v + (1− b) lnxn(ε) +
xn(ε)

v
< C, − ln v + (1− b) lnx+

x

v
< C + cotπε,

xn(ε) ≤ x ≤ xm(ε), μ ∈ Z.

These inequalities are proved by the same way as above. The proof of Theorem 6.1.4 is complete.

6.9. Proof of Assertion (1) of Theorem 6.1.5

Since the function f(ρ) from Theorem 6.1.1 decreases, it suffices to verify the absence of eigenvalues
for α = 0.45, i.e., the positiveness of the function Eρ(z; 2), ρ = (2 − α)−1 = 1/1.55 = 20/31, on
R. Since there are no roots for z ≥ −Γ(4 − α), it remains to prove the positiveness of the function

Fρ(x; 2) for x ≥ (Γ(3.35))ρ. But (Γ(3.35))20/31 > 2π/3 and hence we prove the positiveness of the
function F20/31(x; 2) for x ≥ 2π/3.

Taking m = 1, μ = 2, and ρ = 20/31 in Theorem 1.1.3 and introducing the notation F (x) =
F20/31(x; 2), after transformations we obtain the representation

F (x) =
40

31
exp

[
−x sin

(
9π

62

)]
sin

[
x cos

(
9π

62

)
− 9π

62

]
+

x−0.55

Γ(0.45)
− ω(x), (6.9.1)

in which

ω(x) =
1

π

[
I1(x) sin

( π
10

)
+ I2(x) cos

( π
20

)]
, 0 < Ik(x) <

Γ(2.1)

kx2.1
, k = 1, 2. (6.9.2)
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Representation (6.9.1), numerical estimates of quantities in (6.9.2), and estimate 1/Γ(0.45) > 0.508
yield the inequality

F (x) >
40

31
exp

[
−x sin

(
9π

62

)]
sin

[
x cos

(
9π

62

)
− 9π

62

]
+ 0.508x−0.55 − 0.27x−2.1. (6.9.3)

From (6.9.3) we immediately obtain the positiveness of F (x) if

sin

[
x cos

(
9π

62

)
− 9π

62

]
> 0, x > 1.

These inequalities hold for 2π/3 ≤ x ≤ 4; therefore, F (x) > 0 on this segment.
If 4 < x ≤ 4.5, then

sin

(
x cos

(
9π

62

)
− 9π

62

)
> −1

2
.

From this and (6.9.3), taking into account the numerical estimate

sin

(
9π

62

)
> 0.44,

we obtain the inequality

F (x) > 0.508x−0.55 − 0.27x−2.1 − 20

31
exp(−0.44x).

Since

e−t <
1

et
=⇒ 40

31
exp(−0.44x) <

20

31 · 0.44ex <
0.6

x
,

for x ∈ (4, 4.5] we have the inequality

F (x) > 0.5x−0.55 − 0.27x−2.1 − 0.6x−1 = 0.5x−0.55
(
1− 0.54x−1.55 − 1.2x−0.45

)

> 0.5x−0.55
(
1− 0.54 · 4−1.55 − 1.2 · 4−0.45

)
> 0,

since

1− 0.54 · 4−1.55 − 1.2 · 4−0.45 > 0.2.

Finally, for x > 4.5 we have the relation

F (x) > 0.508x−0.55 − 0.27x−2.1 − 40

31
exp(−0.44x)

= 0.508x−0.55

[
1− 0.27

0.508
x−1.55 − 40

0.508 · 31x
0.55e−0.44x

]
.

This and numerical estimates

0.27

0.508
< 0.532,

40

0.508 · 31 < 2.55

imply (for x > 4.5)

F (x) > 0.508x−0.55G(x),

where

G(x) = 1− 0.532x−1.55 − 2.55x0.55e−0.44x.

Since G(x) increases on the ray x > 4.5, the following estimate is valid:

G(x) > 1− 0.532 · (4.5)−1.55 − 2.55 · (4.5)0.55e−1.98 > 0.1,

which proves the positiveness of the function F . Assertion (1) of Theorem 6.1.5 is proved.
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