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ON THE OSCILLATION OF HIGHER-ORDER DELAY DIFFERENTIAL EQUATIONS

B. Baculikova,' J. DZurina,”> and J.R. Graef’ UDC 517.9

The aim of this paper is to study the asymptotic properties and oscillation of the nth-order delay differ-
ential equation

(-0 [« D0]") + g0/ (xxan) =0 (E)

The results obtained are based on some new comparison theorems that reduce the problem of oscillation
of an nth-order equation to the problem of oscillation of one or more first-order equations. We handle
both cases

[o¢]

o0
/r_l/y(t)dt =00 and /r_l/y(t) dt < co.

The comparison principles simplify the analysis of Eq. (E).

1. Introduction

In this paper, we examine the asymptotic and oscillatory behavior of solutions of the nth-order (n > 3) delay
differential equation

(ro [x0]") + g0/ () = 0. (E)

We assume that ¢, 7 € C([tg,0)), r € C([tg,0)), f € C((—00,00)), and the following conditions are
satisfied:

(Hy) y is the ratio of two odd positive integers;
(Hz) r(t)>0, r'(t) >0, and q(¢) > 0;

(H3) t(t) <t, lim t(¢) = oo, and 7(¢) is nondecreasing;
t—>00

(Hs) xf(x) >0 for x #0, f(x) is nondecreasing, and

—f(=xy) = f(xy) = f(x)f(y) for xy>0.
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By a solution of Eq. (E) we mean a function x(z) € C* [Ty, 00), Tyx > to, for which r(z)(x"~D (1)) €
C![Ty,0) and x(¢) satisfies Eq.(E) on [Ty, 00). We consider only those solutions x(¢) of Eq. (E) that satisfy
the condition

sup{|x(#)|: t > T} >0 forall T > Ty,

and we tacitly assume that Eq. (E) possesses such solutions. A solution of Eq. (E) is called oscillatory if it has arbi-
trarily large zeros on [Ty, o0), and it is said to be nonoscillatory otherwise. Equation (E) is said to be oscillatory
if all its solutions are oscillatory.

Equation (E) and its special cases, especially for n = 2, were studied by many authors (see, e.g., [2-19]),
mainly under the condition

o0

/r_l/”(s) ds = oo. (1.1)

to

There are comparatively fewer results (see, e.g., [1] and [20]) for Eq. (E) in the case where

oo

/r_l/y(s) ds < oo. (1.2)

fo

In this paper, we consider both possibilities.

If the gap between ¢ and t(¢) is small, then there exists a nonoscillatory solution of Eq. (E), and so in this
case our goal is to prove that every nonoscillatory solution of Eq. (E) tends to zero as t — oo. On the other hand,
if the difference ¢t — 7(¢) is large enough, then we study the oscillation of Eq. (E). Our aim in this paper is to study
both of these cases as well.

Various techniques have been used in investigating higher-order differential equations. Our method here is
based on establishing new comparison theorems that compare the nth-order equation (E) with one or a couple
of first-order delay differential equations in the sense that the oscillation of these first-order equations implies the
oscillation of Eq. (E). These comparison theorems greatly simplify the analysis of Eq. (E).

Remark 1. All functional inequalities considered in this paper are assumed to hold eventually, i.e., they are
satisfied for all sufficiently large 7.

2. Main Results

Our results make use of the following estimate, which is due to Philos and Staikos (see [17, 18]):

Lemma A. Let z € C*([tg, o0)) and assume that z®) is of fixed sign and not identically zero on a subray
of [to, o0). If, moreover, z(t) > 0, z&V()z®) (1) <0, and

lim z(z) # 0,
t—00
then, for every § € (0, 1), there exists tg > to such that

z(1) > (k%tk_l 1zEV@) on [t5, 0). 2.1)

)
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The positive solutions of Eq. (E) have the following structure:

y
Lemma 1. If x(t) is a positive solution of Eq. (E), then r(t) [x(”_l)(t)] is decreasing, all derivatives

x(i)(t), 1 <i <n—1, are of constant signs, and x(t) satisfies either
x® D@y >0, xP@) <o (C1)
or, if (1.2) holds,

"Dy >0, x* V@) <o. (Ca)

Proof. Since x(t) is a positive solution of Eq. (E), it follows from Eq. (E) that
_ 7\/
(ro[x"P0]") = -4 (x@@) <o.

Y
Thus, r(t) [x("_l)(z)] is decreasing, which implies that either x®*~D(r) > 0 or x®~D(r) < 0. Note that

the second case may occur only if (1.2) holds. Moreover, since x(¢) > 0, it follows from x(”_l)(t) < 0 that
x=2 (1) > 0.
On the other hand, if x®~D(¢) > 0, then, using the fact that r/(z) > 0 in the expression

Y\’ Y y—1
0> (r(z) [x("—l)(z)] ) =r'® [x("—l)(z)] +r(t)y [N*’(z)] ™ (),
we conclude that x™ (r) < 0. This completes the proof of the lemma.
We next give some criteria for excluding the possibility that cases (C;) and (C») occur.

Theorem 1. Let (1.1) hold. If, for some constant § € (0, 1), the first-order delay differential equation

(1)

(n—D! r/v(z(t))

Yo+ ( ) 7 ("7 wn) =0 (Ev

is oscillatory, then

(i) foreven n, Eq.(E) is oscillatory,

(ii) for odd n, every nonoscillatory solution x(t) of Eq. (E) satisfies

lim x(¢) = 0.
t—>00

Proof. Assume that x(¢) is a nonoscillatory solution of Eq. (E), say, x(¢) > 0. It follows from Lemma 1
that x(¢) satisfies (Cy).
If n is even, then it is clear from (C7) that

lim x(¢) # 0.
1—>00
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Thus, it follows from Lemma A that, for every § € (0, 1),

S (1)
x(t(1)) = (n— 1! r1/7(r)

(r/7 0x" D ((0)) 2.2)

Y
eventually. Using (2.2) in Eq.(E), we see that y(f) = r(¥) [x(”_l)(t)] is a positive solution of the delay

differential inequality

8 1)
— D! r7(z(1))
By Theorem 1 in [16], we conclude that the corresponding equation (£) also has a positive solution. This contra-

diction proves part (i) of the theorem.
Now assume that n is odd. We claim that

yi(t)+q@)f ((n ) f (yl/y(t(t))) <0.

lim x(¢) = 0.
t—>00

If this is not the case, then, proceeding exactly as in the proof of part (i), we again obtain that Eq. (£;) has a
positive solution. This contradiction proves part (ii) of the theorem.

Remark 2. 1t follows from the proof of Theorem 1 that the oscillation of (E£1) prevents case (C1) of Lemma 1
from occurring provided that

lim x(¢) # 0.
t—>00

Applying the criteria for the oscillation of (E1), we immediately obtain sufficient conditions for cases (i) and
(i1) of Theorem 1 to hold. We offer two such results.

Corollary 1. Assume that (1.1) holds,

F@yu=1 for 0<|ul <1, (2.3)
and, for some § € (0,1),
t 8 n=1(g) 1
.. T N
it [ 100/ (G255 mvey) 7 & ey
(1)

Then the following assertions are true:

(i) if n is even, then Eq. (E) is oscillatory;

(i) if n is odd, then every nonoscillatory solution x(t) of Eq. (E) satisfies

lim x(¢) = 0.
t—>00
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Proof. First, note that (2.4) yields

T 8 "1 (s) B
/q(s)f ((n Y rl/y(r(s))) ds = oo

o

By Theorem 1, it is sufficient to show that Eq. (E1) is oscillatory. Assume to the contrary that Eq. (£7) has an
eventually positive solution y(z). Then y’(z) < 0. We claim that

lim y(t) = 0.
t—>00
If this is not the case, then there exists £ > 0 such that y(z(z)) > £. Integrating Eq. (E1) from #; to ¢, we get

.L.n—l(s)

(n— D! r/v(z(s))

t
i) = y(0) + /q(s)f(

5]

)f (57 (D) ds

t

. / 8 " 1(s) )
> f (zl y) /q(s)f ((n — D! /7 (z(s)) @

51

Letting t — oo, we obtain a contradiction, and so
lim y(¢t) =0.
t—>o0

Thus, 0 < y(t) < 1 eventually. Using (2.3) in Eq. (E1), one can easily see that y(¢) is a positive solution of the
differential inequality

.[n—l ( S)
(n = D! 777 (2(s))

() +q@) f ( ) y(t(r)) <0. (2.5)

However, by Theorem 2.4.1 in [13], condition (2.4) ensures that inequality (2.5) has no positive solutions. This
contradiction completes the proof of the theorem.

The second result is contained in the following corollary:

Corollary 2. Let (1.1) hold and let B be the ratio of two odd positive integers with 8 < y. If

I ( )(Tn_l(s))ﬂ ds > 0 2.6
oo J T BI () © T =
(1)
then
(i) foreven n, the differential equation
(ro [x*P0]") + g0t i) =0 (E#)

is oscillatory;



392 B. BACULIKOVA, J. DZURINA, AND J. R. GRAEF

(ii) for odd n, every nonoscillatory solution of Eq. (EB) x(t) satisfies

lim x(¢) = 0.
t—00

Proof. First, note that (2.6) yields

e (.L,n—l(s))ﬂ B
/Q(S)m ds = 00

In view of Theorem 1, it is sufficient to show that Eq. (£;), which now reduces to

B n—1 B
) a0 5O iy <o, (EP)

Y0+ ( P17 (2(1))

(n—1)!

is oscillatory. Assume that (£ f ) has an eventually positive solution y(z). Similarly to the proof of Corollary 1,
we can show that y(¢) is decreasing and

lim y() = 0.
t—>00

Integrating (E f} ) from 7(¢) to ¢, we obtain

nl
)/() D 1y s

ozya)—yﬁUD4-( PPl (2(s)

“1)

From the monotonicity of yA/Y(z(r)), we have

n—DN g _ ()"
("57) V(r(z))_/q() e

(1)

Taking the limit superior of both sides, we obtain a contradiction to (2.6), and this establishes the desired result.

Next, we turn our attention to the case where n is odd. Employing an additional condition, we are able to
ensure the oscillation of all solutions of Eq. (E) for odd n. In other words, we are able to eliminate the possibility
that there are nonoscillatory solutions converging to zero. For convenience, we set

E1() =E@1), &) =&(E@),

Jit) =80 —t. i1 (1) =

&)
Ji(s)ds,
t

where £(¢) € C([to, 00)).
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Theorem 2. Let n be odd and let (1.1) hold. Assume that £(t) € C([tg, 00)) is such that
£(t) is nondecreasing, £(t) >t, and &,—1(t(t)) <t. 2.7

If, for some § € (0,1), Eq. (E1) is oscillatory and the equation

VO +40) f (77 G @0 dnma @) £ (3 (Enma (7)) = 0 (E2)

is also oscillatory, then Eq. (E) is oscillatory.

Proof. Assume to the contrary that x(¢) is a positive solution of Eq. (E). Then, by Theorem 1, the oscillation
of Eq. (E) implies that

lim x(t) =0.
t—>00
Thus, in view of Lemma 1, x(¢) satisfies
-DixP@)y >0, i=12,....n—1. (2.8)

Consequently,

e

(®

—x(n_z)(l) > x(n—Z)(gg-(t)) _ x(”_z)(t) — x(”_l)(s) ds

N\

> x0TV ED)ED) — 1) = XD EE) ).

The repeated integration of the previous inequalities from ¢ to £(¢) yields

x(t) = x"D (&1 (0) Ju—1 (1),

or, equivalently,

Jn—1(z(1))
riv (&1 (z(0)))

x(@(0) = [ (Enm1 () "D (1 (20)))]

Y
Using the last inequality in Eq. (E), we see that y(¢t) = r(¢) [x(”_l)(t)] is a positive solution of the delay
differential inequality

YO+ f (7 G GO) Iama ) £ (97 G r0)))) < 0.

It follows from Theorem 1 in [16] that the corresponding equation (E>) also has a positive solution. This contra-
diction completes the proof.
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Remark 3. Similarly to Remark 2 above, the oscillation of Eq. (E>) prevents case (C;) of Lemma 1 from
holding provided that

lim x(z) # 0.
t—>00
As an application of Theorem 2, we have the following corollary:

Corollary 3. Let n be odd and let (1.1), (2.3), and (2.4) hold for some & € (0,1). Assume that £(t) €
C([to, 00)) is such that (2.7) is satisfied. If

t
timint [ ) (7 (6 () aa (2060 ds > L (2.9)
t—>00 €

En—1(x(®))
then Eq. (E) is oscillatory.

Proof. By Theorem 2, it is sufficient to show that both equations (E£1) and (E>) are oscillatory. It follows
from the proof of Corollary 1 that the oscillation of (E1) is due to (2.4). Using arguments similar to those in the
proof of Corollary 1, one can show that (2.9) guarantees the oscillation of (E3). This proves the corollary.

We illustrate our results by the following examples:

Example 1. Consider the nth-order nonlinear differential equation

(z3 (x("_l)(t))3) n t;f_s X3(Ar) =0 (2.10)

with b > 0 and 0 < A < 1. Condition (2.4) reduces to

3
1 — 1!
§3pA3" 6 1In 7> (= DY for some & € (0, 1), (2.11)
€
or, simply,
3

1 — 1!

bA3"61n 7> u (2.12)

€

since (2.12) implies (2.11). Hence, Corollary 1 guarantees that if (2.12) holds, then

(i) foreven n, (2.10) is oscillatory,

(i) for odd n, every nonoscillatory solution x(¢) of (2.10) satisfies

lim x(¢) = 0.
t—00

For n =3 and B > 0 such that 383(8 + 1)* = bA~38 one such solution is x(r) = 5.
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Moreover, if n is odd, we set £(¢) = at, where

1+A—1/(n—1)

o

Then condition (2.9) takes the form

1
T 2.13)

b ((/\—1)()&2—1) (A”‘l—l)A”_1)3 1
In

a3n—3)3 (n—1)!

It follows from Corollary 3 that (2.10) is oscillatory even if #n is odd, provided that both conditions (2.12) and
(2.13) are satisfied.

We now turn our attention to the case where (1.2) holds. It is useful to note that, in this case, Eq. (£) may have
a solution x(¢) with property x(z)x’(t) < 0 no matter if n is even or odd.

Theorem 3. Let (1.2) hold. If, for some constant § € (0,1) and every t; > to, both the first-order delay
differential equations (E1) and the equation

t 1/y

)
Yool | q(s)f((n_z)!r"—z(s)) ds| 7 () =0 (E3)

151

are oscillatory, then every nonoscillatory solution of Eq. (E) satisfies
lim x(¢) = 0.
t—00
Proof. Assume to the contrary that x(¢) is a nonoscillatory solution of Eq. (£) such that
lim x(z) # 0.
t—00

We may assume that x(¢) > 0. Lemma 1 implies that x(¢) satisfies either (Cy) or (C3). On the other hand, it
follows from the proof of Theorem 1 that the oscillation of (E£;) implies that case (Cp) is impossible. We shall
show that the oscillation of (E3) excludes case (C>).

Lemma 1 gives the estimate

x(z(t) = " 72(1) x" D (2 (1)), (2.14)

(n—2)!

Using (2.14) in Eq. (E), we get

(ro [ 0]) + a0 ( r"‘zm) f ("2 @) < o.

(n—2)!
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Integrating, we obtain

t

§
—r[x" Do) = f 46) f ( — 2),r"—2(s)) S ((s)) ds,

151
which, in view of the monotonicity of f (x(”_z) (t (t))), gives

t 1/y

V@) = VY @) £V (6O D (2 (1)) /q(s)f ( f"_z(s)) ds

5]

(n—2)!

Consequently, y(t) = x"=2 (1) isa positive solution of the delay differential inequality

t 1/y

Y@+ [ q(s)f((nfz),r"‘%s)) ds| S0 <0,

By Theorem 1 in [16], the corresponding equation (£3) also has a positive solution. This contradiction shows that
lim x(¢) =0
t—>00

and completes the proof of the theorem.

Remark 4. The oscillation of Eq. (E3) prevents case (C3) in Lemma 1 from occurring provided that
lim x(z) # 0.
t—>00
Next, we eliminate the possibility that
lim x(t) =0
t—>00
from Theorem 3 even if (1.2) holds. We consider another first-order delay differential equation, namely,

t 1/y

Y()+ V7 () / q)ds | Y (Tnma@@)) £V (3 (En—a(z(@))) = 0. (Eq)

5]

Theorem 4. Let (1.2) hold. Assume that, for some § € (0,1) and every t1 > to, both (E1) and (E3) are
oscillatory. Assume further that there exists €(t) € C([tg, 00)) such that

(i) forodd n, (2.7) holds and (E») is oscillatory;

(ii) foreven n, (E4) is oscillatory for every t1 >ty and

£(t) is nondecreasing, &£(t) >t, and §&,—»(t(t)) <t. (2.15)

Then Eq. (E) is oscillatory.
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Proof. Assume that x(¢) is a positive solution of Eq. (E). It follows from the proofs of Theorems 1 and 3 that
lim x(¢t) = 0.
t—o00

Then, in view of Lemma 1, x(¢) must satisfy (2.8).

(i) If n is odd, then it follows from the proof of Theorem 2 that Eq. (E) is oscillatory due to the oscillation
of (E 2).

(i) Assume that n is even. We shall show that (2.8) cannot hold. Proceeding exactly as in the proof of
Theorem 2, we obtain

x(1) 2 x"7D (En2(1) Jn—2(0). (2.16)
On the other hand, the integration of Eq. (E) yields

t t
_ y
0 [ 0] = [0 saem ds = faeo) [ o ds
151 151
In other words,
t 1/y
=@ =) 1Y (x (2 (1)) / g(s)ds | .
131
which, combined with (2.16), implies that y(r) = x®~2)(¢) is a positive solution of the delay differential inequal-
ity
t 1/y

YO+ @ | [awds| 1 (G2 S (erac0))) <0

1

Again by Theorem 1 in [16], the corresponding equation (£2) must have a positive solution.
This completes the proof of the theorem.

Remark 5. The oscillation of (E4) prevents case (C») in Lemma 1 from holding provided that
tl_l)ngo x(t) #0.
Corollary 4. Let (1.2) and (2.3) hold and assume that, for some § € (0,1) and every t; > tgy, both (2.4) and
t u 1/y

liminf [ r~ 7 (u) / q(s) f( t”_z(s)) ds du > é (2.17)

1—>00
t(t) t

(n—2)!

are satisfied. Then every nonoscillatory solution of Eq. (E) tends to zero as t — oo.
Assume, in addition, that there exists £(t) € C([tg, 00)) such that
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(i) forodd n, (2.7) and (2.9) hold,

(ii) foreven n, (2.15) and the following relation hold:

t u 1/y
1
liminf / =YY () /q(s) ds Fuy (Jn—2(t())) du > —. (2.18)
t—>00 €
En—2(z (1)) I

Then Eq. (E) is oscillatory.

Proof. Conditions (2.4), (2.9), (2.17), and (2.18) ensure that (E;), (E»2), (E3), and (E4), respectively, are
oscillatory. The assertion now follows from Theorems 3 and 4.

Example 2. Consider the nth-order nonlinear differential equation

(r6 (x("_l)(t))3) n t35_8x3()u) —0 (2.19)

with » > 0 and 0 < A < 1. Conditions (2.4) and (2.17) reduce to

3
1 — 1!
bA32In - > u (2.20)
A e
and
1 1/3(p —2)!
p1/3)n=2 In— > 3=t 2.21)
(&

respectively. Corollary 4 guarantees that every nonoscillatory solution x(¢) of (2.19) tends to zero as ¢t — oo
provided that both conditions (2.20) and (2.21) are satisfied.
On the other hand, if n is odd, then we set £(¢) = af, where

1+A—1/(n—1)
«a=—.
2

Then condition (2.9) takes the form

_ —14 3
b A=DA%2=1 ... AL —ar-t 1 1
1 > —. 222
6166 ( n—1)! Ty 7 e (2.22)
Conditions (2.20)—(2.22) imply that Corollary 4 holds, and so all solutions of Eq. (2.19) with odd » are oscillatory.
For even n, if we set £(t) = atf, where

1+ A7/ @=2)
-
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then condition (2.18) takes the form

1 (n —2)!(3n —9)1/3
a2} ~ e '

bA—1DA%2=1) ... A" 2= DA"2n (2.23)

It follows from Corollary 4 that Eq. (2.10) with even n is oscillatory if conditions (2.20), (2.21), and (2.23) are
satisfied.

Example 3. Consider the fourth-order delay differential equation

t—1/2
(etx///(t))/ + €

xt—-1=0, t>1. (2.24)

This equation was studied by Zhang et al. in [20]. They showed that every nonoscillatory solution of (2.24) tends
to zero as ¢ — oo (this conclusion also follows from our Corollary 4). In particular, x(r) = e~*/2 is a solution
of (2.24). We now consider the more general differential equation

(etx’”(l))/ +bhelx(t—1)=0, t>1. (2.25)

It is not difficult to verify that both (2.4) and (2.17) hold. If we set

£(1) ==

then (2.18) takes the form

25
b>—,
e
which, according to Corollary 4, yields the oscillation of (2.25). This is a new phenomenon, which does not appear

to have been studied previously.

3. Summary

In this paper, we have presented new comparison theorems for studying the asymptotic behavior and oscilla-
tion of Eq. (E) from the oscillation of a set of suitable first-order delay differential equations. Thus, our method
substantially simplifies the examination of higher-order equations, and what is more, it supports the value of con-
tinued research on first-order delay differential equations. Our results here extend and complement many recent
ones in the literature. Suitable illustrative examples have also been provided.
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