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WHEN ARE ALL GROUP CODES OF A NONCOMMUTATIVE GROUP
ABELIAN (A COMPUTATIONAL APPROACH)?

C. Garćıa Pillado, S. González,
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Abstract. Let G be a finite group and F be a field. Any linear code over F that is permutation equivalent
to some code defined by an ideal of the group ring FG will be called a G-code. The theory of these “abstract”
group codes was developed in 2009. A code is called Abelian if it is an A-code for some Abelian group A.
Some conditions were given that all G-codes for some group G are Abelian but no examples of non-Abelian
group codes were known at that time. We use a computer algebra system GAP to show that all G-codes
over any field are Abelian if |G| < 128 and |G| /∈ {24, 48, 54, 60, 64, 72, 96, 108, 120}, but for F = F5 and
G = S4 there exist non-Abelian G-codes over F . It is also shown that the existence of left non-Abelian
group codes for a given group depends in general on the field of coefficients, while for (two-sided) group
codes the corresponding question remains open.

Introduction

Let F be a field. We consider the natural action of the symmetric group Sn on the n-dimensional
space Fn defined as permutation of coordinates:

σ(a1, . . . , an) =
(
aσ(1), . . . , aσ(n)

)
for all (a1, . . . , an) ∈ Fn.

We recall that two codes C1, C2 ⊆ Fn are permutation equivalent if there exists a permutation σ ∈ Sn such
that C2 = σ(C1). For a given code C ⊆ Fn, the group of all permutations σ ∈ Sn such that σ(C) = C is
denoted by PAut(C).

Let G = {g0 = e, g1, . . . , gn−1} be a finite group. Any (left) ideal L of the group ring FG defines
a (left) group code K(L) of length n over F by the rule

(a0, a1, . . . , an−1) ∈ K(L) ⇐⇒ a0g0 + a1g1 + · · · + an−1gn−1 ∈ L.

Any code that is permutation equivalent to K(L) for some (left) ideal L of the ring FG is called a (left)
G-code.

A code is called Abelian if it is an A-code for some Abelian group A. In [1], it was proved that there
exist non-Abelian left group codes but no non-Abelian group codes were presented.

In this note, we show how to use the computer algebra system GAP [3] to describe some groups for
which all group codes are Abelian as well as to give an example of a non-Abelian group code and to prove
that all left group codes in F2Q8 are Abelian.

For any subsets A and B of a group G, we denote by AB the set of all products ab with a ∈ A
and b ∈ B. We say that a group G has an Abelian decomposition if there exist Abelian subgroups A, B
in G such that G = AB. This condition was introduced in [1], where it was proved that if a group G
has an Abelian decomposition then any G-code is an Abelian group code [1, Theorem 3.1]. We show
that all groups G of orders less than 127, except those with |G| ∈ {24, 48, 54, 60, 64, 72, 96, 108, 120}, have
an Abelian decompositions. Also we give the full list of groups of order 26 = 64 having no Abelian
decomposition. Some of these examples give also a negative answer to the following natural question:
Does every group of exponent 4 and nilpotent length 2 have an Abelian decomposition? Then we show
that there exist S4-codes over F5 that are not Abelian codes. Finally, we show that all left ideals in the
group ring F2Q8 are two-sided, so they are Abelian codes, while in [2] it was shown that there are left
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[8, 3, 5]-codes in F4Q8 but no left codes with the same parameters in any ring F4A, where A is an Abelian
group of order 8 (it should be noted, to avoid confusion, that left group codes were called group codes
in [2]).

1. Abelian Decompositions

The next lemma is an easy exercise in elementary group theory.

Lemma 1.1.
(1) If A and B are two subgroups of a group G, then

|AB| =
|A| |B|
|A ∩ B| .

(2) If G = AB for some subgroups A and B, then for any subgroup A′ conjugated to A there exists
a subgroup B′ conjugated to B such that G = A′B′.

So one can use the following simple GAP function to decide whether a given group G has an Abelian
decomposition.
HasAbelianDecomposition:=function(G)
local lat, A, x, xx, y, z, n, flag;
n:=Size(G);
lat:=LatticeSubgroups(G);
#GAP calculated the lattice of all subgroups
A:=Filtered(ConjugacyClassesSubgroups(lat),
x->IsAbelian(Representative(x)));
#A is the list of conjugacy classes of Abelian subgroups
flag:=0;
for xx in A do x:=Representative(xx);
#take any representative of a~given class
for y in A do for z in AsList(y) do
#test all Abelian subgroups in G
if Size(x)*Size(z)/Size(Intersection(x,z))=n
then return true; fi;
od; od;
od;
return false;
#function returns ’true’ if an Abelian decomposition was found
#and ’false’ otherwise
end;

The next code gives an example of the usage of this function.
for n in [2..127] do cnt:=0;
for G in AllSmallGroups(Size,n,IsAbelian,false) do
if not HasAbelianDecomposition(G) then cnt:=cnt+1; fi; od;
if cnt>1 then Print(n, " ", cnt, "\n"); fi;
od;

The output of this code is the following table.
24 2
48 6
54 1
60 1
64 19
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72 7
96 26
108 4
120 6

There exist pure algebraic proofs that any group of order piqj , where p, q are (not necessarily different)
primes and 0 ≤ i, j ≤ 2, has an Abelian decomposition, as well as any group of order 32 = 25. These
proofs will be published later. Also there is a construction of a group of order p5 having no Abelian
decomposition, where p > 2 is a prime. The output we have provided shows the sharpness of these
results.

We see that there are two groups of order 24 that have no Abelian decomposition. We can identify
one of them as follows.

Proposition 1.2. The symmetric group S4 has no Abelian decomposition.

Proof. Execution of the following line in GAP

HasAbelianDecomposition(SymmetricGroup(4));

produces the result false.

Note also that there are sufficiently many groups of order 64 having no Abelian decomposition. Table 1
contains the GAP library number, exponent, and nilpotent length for each of these groups.

Table 1. Groups of order 64 having no Abelian decomposition.

GAP number Exponent Nilpotent length
[ 64, 73 ] 4 2
[ 64, 74 ] 4 2
[ 64, 75 ] 4 2
[ 64, 76 ] 4 2
[ 64, 77 ] 4 2
[ 64, 78 ] 4 2
[ 64, 79 ] 4 2
[ 64, 80 ] 4 2
[ 64, 81 ] 4 2
[ 64, 82 ] 4 2
[ 64, 149 ] 8 3
[ 64, 150 ] 8 3
[ 64, 151 ] 8 3
[ 64, 170 ] 8 3
[ 64, 171 ] 8 3
[ 64, 172 ] 8 3
[ 64, 177 ] 8 3
[ 64, 178 ] 8 3
[ 64, 182 ] 8 3

We can give a nice presentation of these groups. For example, the first one, that with GAP index
[64, 73], can be constructed as follows. Consider an elementary Abelian 2-group N with three generators
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z1, z2, and z3 and also an elementary Abelian group H with three generators x̄1, x̄2, and x̄3. It is easy to
prove, using Schreier’s theorem [4, Theorem 15.1.1], that there exists an extension G with N = Z(G)G
and G/N ∼= H such that for some preimages x1, x2, and x3 of x̄1, x̄2, and x̄3 the following relations are
satisfied:

x2
i = z2

i = e, i = 1, 2, 3; [xi, zj ] = [zi, zj ] = e, i, j = 1, 2, 3;

[xi, xj ] = zi+j−2, i, j = 1, 2, 3, i < j.

The required automorphisms a 
→ ah of the group N are identity maps, and the factor system should be
defined as follows:

(x̄k1
1 x̄k2

2 x̄k3
3 , x̄r1

1 x̄r2
2 x̄r3

3 ) = zr1k2
1 zr1k3

2 zr2k3
3 for all ki, rj ∈ F2, i, j = 1, 2, 3.

2. Non-Abelian Group Codes in F5S4

Of course, it does not follow from Proposition 1.2 that there exist non-Abelian S4-codes over some
fields. Nevertheless, we provide such examples below. To the end of this section we fix F = F5 and G = S4

realized as the group of permutations of the set {0, 1, 2, 3}.
Our study of ideals in the group algebra FG is based on application of the GAP function

DirectSumDecomposition(A), which gives the decomposition of a semisimple finite dimensional ring A
into a sum of minimal ideals. In our case, R is semisimple by the classical Maschke theorem, whence the
following GAP code gives five minimal ideals in R.
G:=SymmetricGroup(4);
F:=GF(5);
R:=GroupRing(F,G);
D:=DirectSumDecomposition(R);;
List(D,Dimension);

The output of this fragment is [ 9, 9, 4, 1, 1 ], i.e., there are two ideals of dimension 1, two ideals
of dimension 9, and one ideal of dimension 4.

Theorem 2.1. Codes corresponding to 9-dimensional minimal ideals of the ring R are non-Abelian.

Proof. Direct calculation of the permutation automorphism group for the codes in question would take
too much time; so we used the following “flanking manoeuvre.”

First, we calculated the weight distributions for these two ideals using the following GAP function.

WeightDistribution:=function(I,R)
local wlist, k, j, d, x, V, B, mf;
mf:=Size(LeftActingDomain(R))-1;
wlist:=List([0..Dimension(R)],x->0);
wlist[1]:=1;
d:=Dimension(I);
B:=BasisVectors(Basis(I));
for j in [1..d] do
V:=SubspaceNC(R,B{[(j+1)..d]});
for x in V do
k:=Size(CoefficientsAndMagmaElements(B[j]+x))/2+1;
wlist[k]:=wlist[k]+mf;
od;
od;
return wlist;
end;
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This function was used as follows:

WD1:=WeightDistribution:=function(D[1],R);
WD2:=WeightDistribution:=function(D[2],R);

The two weight distributions turned out to be identical, and they are described by the following table.

Weight d Number of words of weight d Weight d Number of words of weight d

0 1 17 190080
8 324 18 320640
10 144 19 365184
12 5520 20 437952
13 2304 21 245760
14 23808 22 158400
15 23328 23 47232
16 111840 24 20608

Then we tested all Abelian codes of length 24 over F5. This part of the computation turned out to
be the most time consuming; so we have applied the following simple observations:

(1) the action of a group automorphisms on any group can be extended to the group ring, and this
extension is a weight-preserving automorphism of the group ring;

(2) during the computation of a weight distribution of some ideal, it happens that for some weight
w the number of already found words with weight w exceeds the number of such words in the
already known weight distribution WD1; then this weight distribution for this ideal cannot be
identical to WD1, so the calculation for this ideal should stop at this moment.

So we used the following GAP functions.
(1) A technical function transforming automorphisms of a group to automorphisms of the group ring.

StandardIsomorphismsOfAGroupRing:=function(R,HH)
local H, h, f, x, y, B1, B2, C, n;
H:=[];
B1:=BasisVectors(Basis(R));
n:=Size(B1);
C:=List(B1, x->(CoefficientsAndMagmaElements(x)[1]));
for h in HH do
B2:=List([1..n], x->B1[Position(C,Image(h,C[x]))]);
#Print(B2, "\n");
Add(H, AlgebraHomomorphismByImagesNC( R, R, B1, B2 ));
od;
return H;
end;

(2) A function producing a list of ideals of given dimension k. Each of these ideals is defined as a sum
of minimal ideals whose dimensions are enumerated in the list l.

CombinationsOfGivenSum:=function(l,k)
local AllCombList, n, s; n:=Size(l);
AllCombList:=Combinations([1..n]);
return Filtered(AllCombList, x->(Sum(List(x, i->l[i]))=k));
end;
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(3) A function enumerating the permutations of the set of minimal ideals induced by the set H of
group automorphisms.

PermutationsOfComponents:=function(R,H,DSD)
local x, y, h, HH, PL, l, B, I, II, pl;
l:=Size(DSD);
PL:=[[1..l]]; #identity permutation must present
HH:=StandardIsomorphismsOfAGroupRing(R,H);
for h in HH do
pl:=[];
for I in DSD do
B:=BasisVectors(Basis(I));
II:=Ideal(R,List(B,y->Image(h,y)));
Add(pl,Position(DSD,II));
od;
if not pl in PL then Add(PL,pl); fi;
od;
return PL;
end;

(4) A function checking if some permutation of minimal ideals contained in the permutation list
PL transforms the set of minimal ideals into some set that is lexicographically less than the given one.
While searching for an ideal with identical weight distribution it is sufficient to consider only those that
correspond to lexicographically minimal sets of minimal ideals.

IsMinimalCombination:=function(L, PL)
local x, i;
for x in PL do
for i in L do
if x[i]>i then break; else if x[i]<i then return false; fi; fi;
od;
od;
return true;
end;

(5) A function comparing the weight distribution of an ideal to the given weight distribution.

EqualWeightDistribution:=function(I,R, WD)
local wlist, k, j, d, x, V, B, mf;
mf:=Size(LeftActingDomain(R))-1;
wlist:=List([0..Dimension(R)],x->0);
wlist[1]:=1;
d:=Dimension(I);
B:=BasisVectors(Basis(I));
for j in [1..d] do
V:=SubspaceNC(R,B{[(j+1)..d]});
for x in V do
k:=Size(CoefficientsAndMagmaElements(B[j]+x))/2+1;
wlist[k]:=wlist[k]+mf;
if wlist[k]>WD[k] then return false; fi;
od;
od;
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return true;
end;

Now we present the main code that checks the statement of the theorem.

G:=SymmetricGroup(4);
F:=GF(5);
R:=GroupRing(F,G);
D:=DirectSumDecomposition(R);;
WD1:=WeightDistribution(D[1],R);
allab:=AllSmallGroups(Size,24,IsAbelian,true);;
for A in allab do
R:=GroupRing(F,A);;
dsd:=DirectSumDecomposition(R);;
dsddim:=List(dsd,Dimension);;
CL:=CombinationsOfGivenSum(dsddim,9);;
H:=AutomorphismGroup(G);;
dsdperm:=PermutationsOfComponents(R,H,dsd);;
RCL:=Filtered(CL, x->IsMinimalCombination(x,dsdperm));;
for C in RCL do I:=Sum(List(C, x->dsd[x]));;
if EqualWeightDistribution(I,R, WD1) then
Print("Equal weight distribution found\n");; break;
fi;
od;
od;

The execution of this code took several hours and no Abelian codes with weight distribution stored
in WD1 were found.

Remark 2.2. In a subsequent paper, we give a pure algebraic proof that the ideals D[3], D[4], and D[5]
define Abelian codes. However, no pure algebraic proof has been found for Theorem 2.1.

3. Base Field Change

It is unknown, in general, if for a given group G the existence of non-Abelian codes in FG depends
on the coefficient field F . In a subsequent paper, we will prove the following two statements.

Proposition 3.1. Let F be a subfield of a field E and G be a group. If all G-codes over E are Abelian,
then all G-codes over F are Abelian.

Proposition 3.2. Let F be a subfield of a field E and G be a group. Suppose, in addition, that char F � |G|
and F is a splitting field for G, i.e.,

FG ∼=
k⊕

i=1

Mdi(F )

(the group algebra is a direct sum of matrix algebras over F ). Under these conditions, if all G-codes
over F are Abelian, then all G-codes over E are Abelian.

Here we emphasize the difference between the cases of group codes and left group codes: there is
a rather simple example showing that the similar property of left group codes cannot be lifted to a field
extensions in general.

Theorem 3.3. Let F = F2, E = F4 be its extension, and G be the quaternion group Q8. Then all left
G-codes over F are Abelian but there exist left G-codes over E that are not.
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Proof. The second part of the statement follows from the already mentioned result of [2, Table 6]: there
exist left [8, 3, 5]-codes in F4Q8 but no left A-codes over F4 have the same parameters for any Abelian
group A of order 8.

To prove the first part of the statement, it is enough to check that any left ideal in FG is a two-sided
ideal. Indeed, any Q8-code over any field is Abelian by [1, Theorem 3.1] and the results of Sec. 1.

We again present here a GAP program checking this statement although a pure algebraic proof is
known and will be published elsewhere.

Of course one can consider only principal left ideals since any left ideal is a sum of principal ones.
The code below is not optimized for execution speed but seems to be the most simple one.

List(AllSmallGroups(Size,8), StructureDescription);
[ "C8", "C4 x C2", "D8", "Q8", "C2 x C2 x C2" ]
Q:=AllSmallGroups(Size,8)[4];;
F:=GF(2);;
R:=GroupRing(F,Q);;
for x in R do I:=LeftIdeal(R,[x]);
for y in R do
if not (x*y in I) then
Print(x,"*",y," not in Rx\n"); break;
fi;
od;
od

We have included the output for the first line since it seems to be the simplest way to define the
quaternion group in a GAP session. The execution this code takes several seconds. It produced no output
so the statement is valid.
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