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We consider a two-phase elastic medium with zero boundary condition on the displace-

ment field and zero force. We show that the temperatures of phase transitions are

independent of the domain occupied by the medium. Bibliography: 6 titles.

The strain energy functional of a two-phase elastic medium is defined by the equality

I[u, χ, t,Ω] =

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx−
∫

Ω

g · u dx−
∫

∂Ω

f · u dS, (1)

where Ω ⊂ Rm is a bounded domain with Lipschitz boundary, g ∈ L2(Ω, R
m) and f ∈

L2(∂Ω, R
m) are external force fields, the m-dimensional vector-valued function u corresponds

to the displacement field, the characteristic function χ defines the distribution of phases labeled

by the superscripts ±, the energy densities F± have the form

F±(M) = a±ijkl(e(M)− ζ±)ij(e(M)− ζ±)kl, (2)

e(M) = (M +M∗)/2, M belongs to the space Rm×m of m×m matrices, and the parameter t is

interpreted as the temperature. The components of the elasticity modulus tensors a±ijkl satisfy
the traditional symmetry positive definiteness conditions [1], and the residual strain tensors ζ±

are symmetric matrices. In (2) and everywhere below, we adopt the convention regarding the

summation with respect to repeated indices from 1 to m.

To describe the set of admissible displacement fields, we fix a function u0 ∈ W 1
2 (Ω, R

m) and

a measurable subset Γ0 ⊂ ∂Ω (the variants Γ0 = ∅ and Γ0 = ∂Ω are also possible). We consider

the set of admissible displacement fields

X(Ω) = {u ∈ W 1
2 (Ω, R

m) : (u− u0)|Γ0 = 0}. (3)

The set of admissible phase distributions is the set of measurable characteristic functions:

Z(Ω) = {χ ∈ L∞(Ω) : χ(x) = χ2(x) almost everywhere inΩ}. (4)
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By an equilibrium state of a two-phase elastic medium for a given t we mean the pair ût, χ̂t

minimizing the energy functional

I[ût, χ̂t, t,Ω] = inf
u∈X(Ω),χ∈Z(Ω)

I[u, χ, t,Ω], ût ∈ X(Ω), χ̂t ∈ Z(Ω). (5)

We say that an equilibrium state is a one-phase state if

χ̂t = χ+ ≡ 1 or χ̂t = χ− ≡ 0 (6)

and a two-phase state in the opposite case.

Under some additional conditions, for the variational problem (5) the existence of tempera-

tures of phase transitions t± = t±(Ω) was established in [2]

−∞ < t− � t+ < ∞, (7)

which was characterized as follows:

for t < t− a unique solution to the problem (5) is the pair ût = u+, χ̂t = χ+,

for t > t+ a unique solution to the problem (5) is the pair ût = u−, χ̂t = χ−,

for t ∈ (t−, t+) the problem (5) has no one-phase equilibrium states,

(8)

where û± are unique solutions to the variational problems

I[û±, χ±, t,Ω] = inf
u∈X(Ω)

I[u, χ±, t,Ω], û± ∈ X(Ω). (9)

Some sufficient conditions for the coincidence of t± can be found in [3].

The following question arises: whether the phase transition temperatures are determined by

the characteristics of a two-phase medium (a±ijkl, ζ
±
ij ) and external actions (Γ0, u0, g, f). How

the size of Ω affects the phase transition temperatures?

As was established in [4], in the case

Γ0 = ∅, g = 0, f = pn (10)

(here, n is the unit outward normal to ∂Ω and p is a parameter) the temperatures t± depend

only on a±ijkl, ζ
±
ij , p, but are independent of Ω.

It is reasonable to suggest that the phase transition temperatures are independent of Ω under

the following conditions:

u0 = 0, Γ0 = ∂Ω, g = 0 (11)

since for an isotropic two-phase media the phase transition temperatures are explicitly expressed

and are independent of Ω (cf. [5]). We confirm this suggestion in this paper.

Theorem. Under the conditions (11) for the variational problem (5), there exist phase

transition temperatures t± that are independent of the domain Ω.

Proof. Under the condition (11), the set of admissible displacement fields (3) has the form

X(Ω) =
◦
W 1

2(Ω, R
m). (12)
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Therefore, the solutions to the problem (9) are given by the equalities û± = 0. Since these

functions belong to the space W 1∞(Ω, Rm), according to the results of [2] there exit the phase

transition temperatures t±.
We introduce the functions

i+(t,Ω) = inf
u∈X(Ω)

I[u, χ+, t,Ω] = |Ω|(a+ijklζ+ij ζ+kl + t),

i−(t,Ω) = inf
u∈X(Ω)

I[u, χ−, t,Ω] = |Ω|a−ijklζ−ij ζ−kl,

imin(t,Ω) = min{i+(t,Ω), i−(t,Ω)} = |Ω|
⎧⎨
⎩
a+ijklζ

+
ij ζ

+
kl + t, t � t∗,

a−ijklζ
−
ij ζ

−
kl, t � t∗,

t∗ = a−ijklζ
−
ij ζ

−
kl − a+ijklζ

+
ij ζ

+
kl, i(t,Ω) = inf

u∈X(Ω),χ∈Z(Ω)
I[u, χ, t,Ω],

(13)

where |Ω| is the measure of Ω. By the definitions (13), we have

i(t,Ω) � imin(t,Ω). (14)

We set

L(Ω) = {t ∈ R1 : i(t,Ω) < imin(t,Ω)}. (15)

The inclusion t ∈ L(Ω) is equivalent to the fact that for a given t the functional I[u, χ, t,Ω]

has no one-phase equilibrium states. By the definition (8), the existence of the temperatures t±
imply

L(Ω) = (t−(Ω), t+(Ω)). (16)

In the case t−(Ω) = t+(Ω), the set L(Ω) is empty.

Let us prove the following relations:

L(Ωe) = L(Ω), Ωe = {x+ e : x ∈ Ω, e is a fixed vector in Rm},
L(Ωλ) = L(Ω), Ωλ = {λx : x ∈ Ω, λ is a fixed number in (0,∞)},
L(Ω′) ⊃ L(Ω) for an arbitrary bounded domain Ω′ ⊂ Rm, Ω′ ⊃ Ω.

(17)

Making the change of variables, we find∫

Ωe

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx =

∫

Ω

{χ̃(F+(∇ũ) + t) + (1− χ̃)F−(∇ũ)} dx̃

x ∈ Ωe, x̃ ∈ Ω, x = x̃+ e, χ(x) = χ̃(x̃), u(x) = ũ(x̃), ũ ∈ X(Ω), χ̃ ∈ Z(Ω).

(18)

Since any pair u ∈ X(Ωe), χ ∈ Z(Ωe) can be obtained from the pair ũ, χ̃ according to (18), we

have i(t,Ωe) = i(t,Ω). By the definition (13) of imin, we have a similar equality imin(t,Ωe) =

imin(t,Ω). Then

imin(t,Ωe)− i(t,Ωe) = imin(t,Ω)− i(t,Ω), (19)

which implies the first assertion in (17).

Making the change of variables, we get∫

Ωλ

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx = λm

∫

Ω

{χ̃(F+(∇ũ) + t) + (1− χ̃)F−(∇ũ)} dx̃ (20)
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x ∈ Ωλ, x̃ ∈ Ω, x = λx̃, χ(x) = χ̃(x̃), u(x) = λũ(x̃), ũ ∈ X(Ω), χ̃ ∈ Z(Ω).

Since any pair u ∈ X(Ωλ), χ ∈ Z(Ωλ) can be obtained from the pair ũ, χ̃ according to (20),

we have i(t,Ωλ) = λmi(t,Ω). By the definition (13) of imin, we have the similar equality

imin(t,Ω
λ) = λmimin(t,Ω). Then

imin(t,Ω
λ)− i(t,Ωλ) = λm(imin(t,Ω)− i(t,Ω)), (21)

which implies the second assertion in (17).

For an arbitrary bounded domain Ω ⊂ Ω′ ⊂ Rm and functions u ∈ X(Ω), χ ∈ Z(Ω) we set

u′(x) =

{
u(x), x ∈ Ω,

0, x ∈ Ω′ \ Ω,
χ′(x) =

{
χ(x), x ∈ Ω,

0, x ∈ Ω′ \ Ω.
(22)

Then u′ ∈ X(Ω′), χ′ ∈ Z(Ω′) and
∫

Ω′

{χ′(F+(∇u′) + t) + (1− χ′)F−(∇u′)} dx

=

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx+ |Ω′ \ Ω|a−ijklζ−ij ζ−kl. (23)

We estimate from below the left-hand side of (23) by i(t,Ω′). Minimizing the right-hand side of

the obtained inequality over all u ∈ X(Ω), χ ∈ Z(Ω), we find

i(t,Ω′) � i(t,Ω) + |Ω′ \ Ω|a−ijklζ−ij ζ−kl. (24)

Instead of (22), we consider

u′(x) =

{
u(x), x ∈ Ω,

0, x ∈ Ω′ \ Ω,
χ′(x) =

{
χ(x), x ∈ Ω,

1, x ∈ Ω′ \ Ω.
(25)

Then u′ ∈ X(Ω′), χ′ ∈ Z(Ω′) and
∫

Ω′

{χ′(F+(∇u′) + t) + (1− χ′)F−(∇u′)} dx

=

∫

Ω

{χ(F+(∇u) + t) + (1− χ)F−(∇u)} dx+ |Ω′ \ Ω|(a+ijklζ+ij ζ+kl + t). (26)

Consequently,

i(t,Ω′) � i(t,Ω) + |Ω′ \ Ω|(a+ijklζ+ij ζ+kl + t). (27)

Combining the inequalities (24) and (27), we conclude that

i(t,Ω′) � i(t,Ω)+ |Ω′ \Ω|min{a+ijklζ+ij ζ+kl + t, a−ijklζ
−
ij ζ

−
kl} = i(t,Ω)+ imin(t,Ω

′)− imin(t,Ω). (28)

From the estimate (28) we find

imin(t,Ω)− i(t,Ω) � imin(t,Ω
′)− i(t,Ω′), (29)
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which implies the third equation in (17).

To complete the proof of the theorem, we shift the domain Ω by a vector e in such a way that

the origin belongs to Ωe. We fix two balls Br(0) and BR(0) by the condition Br(0) ⊂ Ωe ⊂ BR(0).

By (17), we have

L(Br(0)) ⊂ L(Ωe) ⊂ L(BR(0)), L(Ωe) = L(Ω), L(Br(0)) = L(BR(0)) = L(B),

where B is the unit ball in Rm centered at the origin. Then L(Ω) = L(B). Hence, under

the condition (11), the temperatures of phase transitions for the functional (1) in an arbitrary

bounded domain Ω coincide with the temperatures of phase transitions for the same functional

in B. The theorem is proved.

Remark. Under the condition (11), the estimates for the phase transition temperatures

obtained in [6] imply that the temperatures coincide if and only if

a+iiklζ
+
kl = a−iiklζ

−
kl, a+ijklζ

+
kl = a−ijklζ

−
kl (30)

respectively. We note that, under the condition (10), the temperatures of phase transitions

always coincide (cf. [4]).
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