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NUMERICAL SOLUTION OF THE PROBLEM OF THE STRESS-STRAIN STATE  
IN HOLLOW CYLINDERS USING SPLINE APPROXIMATIONS 

A. Ya. Grigorenko,1  W. H. Müller,1,2  R. Wille,1,2  and  S. N. Yaremchenko1,2 UDC 539.3 

The three-dimensional theory of elasticity is used for a study of the stress-strain state in a hollow cylin-
der with varying stiffness.  The corresponding problem is solved by a method that is partly analytical 
and partly numerical in nature:  Spline approximations and collocation are used to reduce the partial dif-
ferential equations of elasticity to a boundary-value problem for a system of ordinary differential equa-
tions of higher order for the radial coordinate, which is then solved using the method of stable discrete 
orthogonalization.  Results for an inhomogeneous cylinder for various types of stiffness are presented. 

The increasingly stringent requirements for the estimation of strength characteristics, the tendency toward a 
detailed consideration of real properties of structural materials, and the discovery and study of three-dimensional 
effects occurring in thick-walled elements require the treatment of hollow cylindrical structures in terms of a 
three-dimensional model.  Finding a solution for the stress-strain state in thick-walled structures within the 
framework of spatial linear elasticity theory goes hand-in-hand with significant difficulties related to the com-
plexity of initial systems and partial differential equations, as well as the necessity of satisfying the boundary 
conditions prescribed on the surfaces of the elastic body.  These difficulties arise substantially during the calcu-
lation of structural elements such as cylinders made of anisotropic and inhomogeneous materials.  The facts 
mentioned above are consistent with the relative sparseness of the number of publications addressing such ques-
tions (Kollar, Patterson, and Springer [11], Banerjee and Henry [3], Kollar [10], Shi, Zhang, and Xiang [12], Gal 
and Dvorkin [5], Collin, Caillerie, and Chamlon [4], and Tsurkov and Drach [13]). 

Along with universal approaches used for solving boundary-value problems in mechanics and mathematical 
physics, such as the finite-difference technique, finite-element method, and other discrete methods, the new 
technique now finds wide application for this particular class of problems [2, 3, 14].  It allows reducing the ini-
tial problem to a system of ordinary differential equations, based on an approximation of the solution with re-
spect to other variables by analytical methods.  The exact reduction of multidimensional problems to one-
dimensional ones and the solution of the latter by the stable numerical method of discrete orthogonalization 
gives reasons to believe that the obtained results are highly accurate.  Due to cylindrical geometry, the method of 
finite elements, if used for calculating the mechanical behavior, is time-consuming and inefficient and requires 
large memory and processing speed of the computer. 

Recently, an approach based on spline approximations has been developed in several articles [6–9] in order 
to study the mechanical behavior of plate and shells.  Its main advantages are the following [1]: 

 • stability against local perturbations, i.e., the local behavior of splines in the neighborhood of a point 
does not influence their overall behavior, in contrast to, e.g., the polynomial approximation; 

 •  better convergence than that of the polynomial approximation; 

 •  simple and convenient computer implementation. 
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Fig. 1 

The main goal of this article is the development of an efficient numerical-analytical approach to the solution 
of the problems of finding the stress-strain state states of hollow composite cylinders in a three-dimensional 
loading case.  The proposed approach is a discrete–continuous one and is based on the combination of the 
spline-collocation method with the method of discrete orthogonalization.  It allows reducing three-dimensional 
problems to one-dimensional ones and solving the latter by the stable numerical method of discrete orthogonali-
zation with high degree of accuracy. 

Basic Equations 

We consider a hollow orthotropic cylinder of constant thickness (Fig. 1), inner radius  R − H ,  outer radius  
R + H   ( R   is the radius of the mid-surface and  2H   is the thickness of the cylinder), and length  L   described 
in a cylindrical coordinate system  r , θ , z .  The stress-strain state of this cylinder is described by the following 
equations of elasticity: 

  linear kinematic relations:  

 er =
∂ur

∂r
, ez =

∂uz

∂z
, 2erz =

∂ur

∂z
+
∂uz

∂r
; (1) 

  Hooke’s law for a more general orthotropic case: 

 σr = λ11er + λ12eθ + λ13ez , 

 σθ = λ12er + λ22eθ + λ23ez , 

 σ z = λ13er + λ23eθ + λ33ez , (2) 

  where the elements  λij = λij (r, z)   of the stiffness matrix are continuous and differentiable functions 

of the coordinates  r   and  z ;  
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  equations of equilibrium: 

 
∂σr

∂r
+
∂σrz

∂z
+
σr − σθ

r
= 0,

∂σrz

∂r
+
∂σ z

∂z
+
σrz

r
= 0 ; (3) 

  here,  ur (r, z)   and  uz (r, z)   are the projections of the total displacement of the cylinder onto the tan-

gents to the coordinate lines  r   and  z ,  respectively,  er ,  eθ ,  and  ez   are the relative linear strains 

along the coordinate lines,  erz   is the shear strain,  σr ,  σθ ,  and  σ z   are the normal stresses, and  

σrz   is the tangential stress. 

The elements  λij   of the stiffness matrix follow from the elements  cij   of the compliance matrix as 

 
  
λ11 = �c22 �c33 − �c23

2( ) 1Δ , λ12 = �c13 �c23 − �c12 �c33( ) 1Δ , 

 
 
λ13 = �c12 �c23 − �c13 �c22( ) 1

Δ , λ22 = �c11 �c33 − �c13
2( ) 1

Δ , 

 
 
λ23 = �c12 �c13 − �c11 �c23( ) 1

Δ , λ33 = �c11 �c22 − �c12
2( ) 1

Δ , λ55 = 1
c55

, 

 Δ = c11 c22c33 − c23
2( ) − c12 c12c33 − c13c23( ) + c13 c12c23 − c13c22( ) . (4) 

In turn, the elements of the compliance matrix can be expressed in terms of the engineering constants: 

 c11 = 1
Er

, c12 = −
νrθ
Eθ

, c13 = −
νrz

Ez
, 

 c22 = 1
Eθ

, c23 = −
νθz

Ez
, c33 = 1

Ez
, c55 = − 1

Grz
, (5) 

where  Er ,  Eθ ,  and  Ez   are the elastic moduli in the  r -,  θ -,  and  z -directions, respectively,  Grz   is the 

shear modulus, and  νrθ ,  νrz ,  and  νθz   are Poisson’s ratios. 

The boundary conditions on the internal  R − H   and external  R + H   surfaces of the cylinder are given by 

 σr (R − H , z) = 0, σr (R + H , z) = q, σrz (R ± H , z) = 0 . (6) 

We prescribe the following boundary conditions at the ends  z = 0   and  z = L :  

 (і) σr = 0, ur = 0     or    
∂uz

∂z
= 0, ur = 0 ; (7) 



138 A. YA. GRIGORENKO,  W. H. MÜLLER,  R. WILLE,  AND  S. N. YAREMCHENKO 

 (іі) uz = 0, σrz = 0     or    uz = 0,
∂ur

∂z
= 0 ; (8) 

 (ііі) ur = 0, uz = 0 .  (9) 

The following system of equations for the displacements results: 

 
∂2ur

∂r2
= − 1

λ11

∂λ12
∂r

1
r
+
λ22
λ11

1
r2

⎛
⎝⎜

⎞
⎠⎟ ur − 1

λ11

∂λ55
∂z

∂ur

∂z
−
λ55
λ11

∂2ur

∂z2
 

  – 1
λ11

∂λ11
∂r

+ 1
r

⎛
⎝⎜

⎞
⎠⎟
∂ur

∂r
− 1

λ11

∂λ13
∂r

−
λ23 − λ13
λ11

1
r

⎛
⎝⎜

⎞
⎠⎟
∂uz

∂z
 

  – 1
λ11

∂λ55
∂z

∂uz

∂r
−
λ13 + λ55
λ11

∂2uz

∂z∂r
, 

 
∂2uz

∂r2
= − 1

λ55

∂λ23
∂z

ur

r
− 1

λ55

∂λ55
∂r

+
λ23
λ55

1
r
+ 1

r
⎛
⎝⎜

⎞
⎠⎟
∂ur

∂z
− 1+

λ13
λ55

⎛
⎝⎜

⎞
⎠⎟
∂2ur

∂r∂z
 

  – 1
λ55

∂λ13
∂z

∂ur

∂r
− 1
λ55

∂λ33
∂z

∂uz

∂z
 

  – 
λ33
λ55

∂2uz

∂z2
− 1

r
+ 1
λ55

∂λ55
∂r

⎛
⎝⎜

⎞
⎠⎟
∂uz

∂r
. (10) 

We now reduce these equations to the form 

 
∂2ur

∂r2
= a11ur + a12

∂ur

∂z
+ a13

∂2ur

∂z2
+ a14

∂ur

∂r
+ a15

∂uz

∂z
+ a16

∂uz

∂r
+ a17

∂2uz

∂r∂z
, 

 
∂2uz

∂r2
= a21ur + a22

∂ur

∂z
+ a23

∂ur

∂r
+ a24

∂2ur

∂r∂z
+ a25

∂uz

∂z
+ a26

∂2uz

∂z2
+ a27

∂uz

∂r
, (11) 

where the coefficients   ak� = ak� (r, z)   are defined by 

 a11 = − 1
λ11

∂λ12
∂r

1
r
+
λ22
λ11

1
r2

, a12 = − 1
λ11

∂λ55
∂z

, 

 a13 = −
λ55
λ11

, a14 = − 1
λ11

∂λ11
∂r

+ 1
r

⎛
⎝⎜

⎞
⎠⎟ , 
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 a15 = − 1
λ11

∂λ13
∂r

−
λ23 − λ13
λ11

1
r

⎛
⎝⎜

⎞
⎠⎟ , a16 = − 1

λ11
, 

 
∂λ55
∂z

a17 = −
λ13 + λ55
λ11

, a21 = − 1
λ55

∂λ23
∂z

1
r

, 

 a22 = − 1
λ55

∂λ55
∂r

+
λ23
λ55

1
r
+ 1

r
⎛
⎝⎜

⎞
⎠⎟ , a23 = − 1

λ55

∂λ13
∂z

, 

 a24 = − 1+
λ13
λ55

⎛
⎝⎜

⎞
⎠⎟ , a25 = − 1

λ55

∂λ33
∂z

, 

 a26 = −
λ33
λ55

, a27 = − 1
r
+ 1
λ55

∂λ55
∂r

⎛
⎝⎜

⎞
⎠⎟ . (12) 

In this case, the boundary conditions (6) on the inner and outer surfaces become 

 λ11
∂ur

∂r
+ λ12

ur

r
+ λ13

∂uz

∂z
= 0, λ55

∂ur

∂z
+
∂uz

∂r
⎛
⎝⎜

⎞
⎠⎟
= 0 . (13) 

Solving Technique 

The problem defined by Eq. (10) combined with appropriate boundary conditions can be solved by spline-
collocation and discrete-orthogonalization methods.  In preparation for the spline-collocation method, we write 
the unknown functions  ur (r, z) ,  uz (r, z)   as follows: 

 ur = uri (r)ϕi
(1) (z)

i=0

N

∑ , uz = uzi (r)ϕi
(2) (z)

i=0

N

∑ , (14) 

where  uri (r)   and  uzi (r)   are sought functions of the variable  r ,  and  ϕi
( j ) (z) ,  j = 1,2 ,   i = 0,1,… , N ,  are 

linear combinations of  B -splines on the uniform  mesh  Δ :  0 = z0 < z1 <… < zN = L   that must satisfy the 

boundary conditions at  z = 0   and  y = L .  System (10) includes derivatives of the unknown functions along 

the coordinate  z   of order no higher than 2.  In this case, we may restrict ourselves to approximations of the 
third power, i.e., 

 B3
i (z) = 1

6

0, −∞ < z < zi−2 ,

y3, zi−2 ≤ z < zi−1,

−3y2 + 3y2 + 3y +1, zi−1 ≤ z < zi ,

3y3 − 6y2 + 4, zi ≤ z < zi+1,

(1− y)3, zi+1 ≤ z < zi+2 ,

0, zi+2 ≤ z < ∞,

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (15) 
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where  y =
z − zk

hz
  on the interval  zk, zk+1[ ] ,   k = i − 2,… , i +1 ,   i = −1,… , N +1,  and  

hz = zk+1 − zk = const .  In this case, the functions  ϕi
( j ) (z)   are as follows: 

 (1°) If the relevant resolving function  (ur   or  uz )  is equal to zero at  z = 0   and  z = L ,  then 

 ϕ0
( j ) (z) = − 4B3

−1(z) + B3
0 (z), ϕ1

( j ) (z) = B3
−1(z) − 1

2
B3

0 (z) + B3
1 (z) , 

  ϕi
( j ) (z) = B3

i (z), i = 2, 3,… , N − 2 , 

 ϕN−1
( j ) (z) = B3

N−1(z) − 1
2

B3
N (z) + B3

N+1(z) , 

 ϕN
( j ) (z) = − 4B3

N+1(z) + B3
N (z) . (16) 

 (2°) If the derivative with respect to the resolving function is equal to zero at  z = 0   and  z = L ,  then 

 ϕ0
( j ) (z) = B3

0 (z), ϕ1
( j ) (z) = B3

−1(z) − 1
2

B3
0 (z) + B3

1 (z) , 

 
 
ϕ ji (z) = B3

i (z), i = 2, 3,… , N − 2 , 

 ϕN−1
( j ) (z) = B3

N−1(z) − 1
2

B3
N (z) + B3

N+1(z), ϕN
( j ) (z) = B3

N (z) . (17) 

 (3°) If the relevant resolving function is equal to zero at  z = 0   and the derivative of the resolving function 
with respect to  z   is also equal to zero at  z = L ,  then 

 ϕ0
( j ) (z) = − 4B3

−1(z) + B3
0 (z), ϕ1

( j ) (z) = B3
−1(z) − 1

2
B3

0 (z) + B3
1 (z) , 

  ϕi
( j ) (z) = B3

i (z), i = 2, 3,… , N − 2 , 

 ϕN−1
( j ) (z) = B3

N−1(z) − 1
2

B3
N (z) + B3

N+1(z), ϕN
( j ) (z) = B3

N (z) . (18) 

Substituting Eqs. (14) into (10), we now require them to be satisfied at the specified collocation points  

 ξk ∈[0, L ] ,  k = 0, N .  We consider the case where the number of mesh nodes is even, i.e.,  N = 2n +1,  n ≥ 3 .  

The selection of the collocation points   ξ2i ∈[z2i , z2i+1 ] ,   ξ2i+1 ∈[z2i, z2i+1 ] ,   i = 0, 1,2,… , n ,  in the form  

ξ2i = z2i + s1hz ,  ξ2i+1 = z2i + s2hz ,  where   s1 = 1/2 − 3/6   and   s2 = 1/2 + 3/6   are the roots of the sec-

ond-order Legendre polynomial, is optimal and essentially increases the degree of accuracy of the approxima-
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tion.  In this case, the number of collocation points is  N = N +1.  As a result, we obtain a system of  4(N +1)   

linear differential equations for the functions  uri ,   
�uri ,  uzi ,  and   

�uzi ,   i = 0,… , N ,  where   
′uri = �uri   and  

 
′uzi = �uzi .  Using the notation 

 
 
Φ j = ϕi

( j ) (ξk )⎡⎣ ⎤⎦ , k, i = 0,… , N , j = 1,2 , 

    ur = {ur0, ur1,… , urN }� , �ur = { �ur0, �ur1,… , �urN }� , 

    uz = {uz0, uz1,… , uzN }� , �uz = { �uz0, �uz1,… , �uzN }� , 

     ak�
� = {ak� (r, ξ0 ),  ak� (r, ξ1 ),… , ak� (r, ξN )}  (19) 

and representing the matrix   
[ciaij ]   in the form  c ∗A   for the matrix  A = [aij ] ,   i, j = 0,… , N ,  and vector  

   c = {c0, c1,… , cN }� ,  we write the system of ordinary differential equations for  uri ,   
�uri ,  uzi ,  and   

�uzi   in the 

form 

 
 

dur

dr
= �ur , 

 
 

duz

dr
= �uz , 

 
 

d �ur

dr
= Φ1

−1 a11 ∗Φ1 + a12 ∗ ′Φ1 + a13 ∗ ′′Φ1( )ur + Φ1
−1 a14 ∗Φ1( ) �ur  

  +  Φ1
−1(a15 ∗ ′Φ2 )uz + Φ1

−1 a16 ∗Φ2 + a17 ∗ ′Φ2( ) �uz , 

 
 

d �uz

dy
= Φ2

−1 a21Φ1 + a22 ′Φ1( )ur + Φ2
−1 a23 ∗ ′Φ1( ) �ur  

  +  Φ2
−1 a24 ∗Φ2 + a25 ∗ ′Φ2 + a26 ∗ ′′Φ2( )uz + Φ2

−1(a27 ∗Φ2 ) �uz , (20) 

which can be represented as 

 dY
dr

= A(r)Y , R − H ≤ r ≤ R + H , (21) 

where 

   Y = ur0,… , urN , �ur0,… , �urN ,  uz0,… , uzN ,  �uz0,… , �uzN{ }�
   

is a vector function depending on  r ,  and  A(r)   is a square matrix of the  4(N +1)× 4(N +1) th order. 
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Boundary conditions for this system of ordinary differential equations are defined by 

 
 
λ11Φ1 �ur + λ12Φ1

1
r

ur + λ13 ′Φ2uz = q , λ55 ′Φ1ur + λ55Φ2 �uz = 0 , (22) 

where 

    λ1�
� = λ1� (r, ξ0 ), λ1� (r, ξ1 ),… , λ1� (r, ξN ){ }, � = 1,2, 3 , 

   λ55
� = λ55 (r, ξ0 ), λ55 (r, ξ1 ),… , λ55 (r, ξN ){ } , 

or by 

 B1Y (R − H ) = b1, B2Y (R + H ) = 0 , (23) 

where  B1   and  B2   are rectangular matrices of the  2(N +1)× 4(N +1) th order and  b1   is the corresponding 

vector. 
The boundary-value problem (21), (23) can be solved using a discrete-orthogonalization method. 

Numerical Results 

The modulus of elasticity  E   is supposed to vary along the radial coordinate  r   according to the power 
law 

 E(r) =
E0

1+ α 1+ α r
R − H( )β⎛

⎝⎜
⎞
⎠⎟

. (24) 

The following parameters were used in context with the cylinder:  L = 10 ,  R = 10 ,  H = 1,  and Poisson’s 
ratio  ν = 0.34 .  The ends of the cylinder are clamped. 

The dependences of the radial displacement   ûr = ur E0/q   and the circumferential stress   σ̂θ = σθ/q   on 

the parameters used for the variation of Young’s modulus [see Eq. (24)] are shown in Figs. 2–5  (α = 1  for 
varying values of  β ,  and  β = 1   for varying values of  α ).  The displacements and stresses in the middle sec-

tion of the cylinder, i.e., at   z = L/2 ,  are shown for the inner surface for  r = R − H   (solid lines),  

 r = R − H/2   (dashed line),  r = R   (dotted line), and   r = R + H/2   (dashed-dotted line), and for the outer sur-

face for  R = R + H   (dashed-double dotted line). 
The radial displacement  ûr   decreases when the parameter  β   increases from  −5   to  5   (Fig. 2).  The 

difference between the displacements on the inner and outer surfaces decreases as  β   increases.  

Figure 3 shows that the circumferential stress  σ̂θ   on the inner surface decreases as  β   increases.  On the 

outer surface, it behaves in the opposite way.  In contrast to this, the stress in the mid-surface (when  r = R )  
changes only slightly.  Also, when  β   is negative, the circumferential stress on the inner surface is greater than 

on the outer surface, and vice versa for positive values of  β .  
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Fig. 2.  Displacement  ûr   and its dependence on the parameter  β . 

 

Fig. 3.  Stress  
 
σ̂θ   and its dependence on the parameter  β . 

 

Fig. 4.  Displacement  ûr   and its dependence on the parameter  α . 
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Fig. 5.  Stress  
 
σ̂θ   and its dependence on the parameter  α . 

 

Fig. 6.  Radial stress  σ̂θ   distribution as a function of radius  r   for various values of  β . 

It follows from Fig. 4 that the displacement  ûr   decreases as the parameter  α   increases from 0 to 10.  The 

figure also shows that the greatest changes in the displacement occur within the interval  0 ≤ α ≤ 5 ,  whereas for  
5 ≤ α ≤ 10   the displacement varies only slightly.  The same effect is observed in the case of the stress (Fig. 5).  

Moreover, the circumferential stress  σ̂θ   increases on the outer surface and decreases on the inner surface as  

α   increases, exactly as in the case of  β .  Also, the maximum circumferential stress  σ̂θ   shifts from the inner 

surface to the outer one as  α   increases. 

Figure 6 shows how the radial stress   σ̂r = σr /q   varies from the inner to the outer cylinder surface in the 

middle section of the cylinder   (z = L/2) ,  depending on the value of the parameter  β .  The following notation 

was used: solid line for  β = −10 ,  dashed line for  β = −5 ,  dotted line for  β = 0 ,  dashed-dotted line for  

β = 5 ,  and dashed-double dotted line for  β = 10   (α = 1) .  Predictably (as follows from the boundary condi-

tions), the radial stresses on the inner and outer surfaces are  −1  and  0 ,  respectively.  The curves change from 

concave to convex as  β   increases.  The dependence of the stresses on the radius comes close to a straight line 

for  β = 5 .  
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Thus, by varying the physical parameters of the construction material, it is possible to influence the stress-
strain distribution within the cylinder and to choose optimum parameters for its strength. 
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