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Random evolutions with locally independent increments on
increasing time intervals

Vladimir S. Korolyuk

Abstract. Three main schemes of limit theorems for random evolutions are discussed: averaging,
diffusion approximation, and the asymptotics of large deviations. Markov stochastic evolutions with locally
independent increments on increasing time intervals Tε = t/ε → ∞, ε → 0, are considered. The asymptotic
behavior of random evolutions is investigated with the use of solutions of the singular perturbation problems
for reducibly invertible operators.
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Introduction

Studies of the asymptotic behavior of random evolutions on increasing time intervals are based
on the use of solutions of the problem of singular perturbation for a reducibly invertible operator [4,
Chap. 5]. In this case, the substantiation of the limiting transition is realized with the use of a mar-
tingale characterization of Markov processes and the conditions of relative compactness of probability
measures [1].

The main object of the asymptotic analysis of a random evolution is the generator of a corresponding
two-component Markov process [4, Chap. 2].

The asymptotic analysis is performed for random evolutions in the scheme of series with small
parameter ε→ 0 (ε > 0) of a series [4, Chap. 3].

Results of the asymptotic analysis depend essentially on the conditions of normalization of a random
evolution with the small parameter of a series.

The theory of random processes includes three main schemes of limit theorems:

1. The law of large numbers or the averaging.

2. The central limit theorem or the diffusion approximation.

3. The asymptotics of large deviations or the estimation of exponentially small probabilities.

Each of the main schemes involves the own conditions of normalization with the parameter ε→ 0
of a series.

The available literature on limit theorems for random processes and, in particular, for random
evolutions, is vast.

Most simply, one should consider the main monographs devoted to the theory of limit theorems.
To study the asymptotic analysis of random evolutions on increasing time intervals, it is sufficient

to take the monographs in the list of references and references therein.
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1. Random evolutions with locally independent increments

A stochastic additive functional [4, § 2.6] is set by the relations

ξ(t) = ξ0 +

t∫

0

η(ds;x(s)), t ≥ 0, ξ0 ∈ Rd. (1.1)

The Markov switching process x(t), t ≥ 0, in the standard phase space (E, E) is set by the generator

Qϕ(x) = q(x)
∫

E

P (x, dy)[ϕ(y) − ϕ(x)], x ∈ E, (1.2)

on test-functions ϕ(x) ∈ BE , where BE is the Banach space of bounded functions with sup-norm:
‖ϕ(x)‖ := supx∈E |ϕ(x)|.

A random evolution in the Euclidean space Rd is set by the totality of processes with locally
independent increments η(t;x), t ≥ 0, x ∈ E, determined by the generators

Γ(x)ϕ(u) =
∫

Rd

[ϕ(u+ v) − ϕ(u)]Γ(u, dv, x), u ∈ Rd, x ∈ E. (1.3)

The Markov random evolution (1.1) is characterized by the generator [1, § 2.6]

Lϕ(u, x) = Qϕ(·, x) + Γ(x)ϕ(u, ·) (1.4)

of the two-component Markov process ξ(t), x(t), t ≥ 0.

2. Processes with locally independent increments in the scheme of series

The following three main schemes of series are considered: averaging, diffusion approximation, and
large deviations in the scheme of asymptotically low diffusion.

2.1. Averaging

Processes with locally independent increments in the averaging scheme are set by the generator

Γεϕ(u) = ε−1

∫

Rd

[ϕ(u+ εv) − ϕ(u)]Γ(u, dv), u ∈ Rd, (2.1)

which corresponds to the normalization

ηε(t) = εη(t/ε), t ≥ 0.

In this case, the processes with locally independent increments ηε(t), t ≥ 0, are considered on increasing
time intervals T ε = t/ε→ ∞, ε→ 0.
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On sufficiently smooth test-functions ϕ(u) ∈ C2(Rd), generator (2.1) admits the asymptotic repre-
sentation

Γεϕ(u) = b(u)ϕ′(u) + δεϕ(u), (2.2)

where

b(u)ϕ′(u) :=
d∑

k=1

bk(u)ϕ′
k(u),

ϕ′
k(u) := ∂ϕ(u)/∂uk, bk(u) :=

∫

Rd

vkΓ(u, dv), 1 ≤ k ≤ d,

with an insignificant term
‖δεϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C2(Rd). (2.3)

Here, b(u) :=
∫
Rd vΓ(u, dv) is the vector of the first moments of the process.

The asymptotic representation (2.2) of the generator of a process with locally independent incre-
ments serves as the base for the proof of the convergence

ηε(t) = εη(t/ε) ⇒ η0(t). ε→ 0,

Here, the limit process is set by a solution of the evolution equation [4, § 3.3.1]

dη0(t)/dt = b(η0(t)), η0(0) = η0.

2.2. Diffusion approximation

The processes with locally independent increments in the scheme of diffusion approximation are
set by the normalization

ηε(t) = εη(t/ε2), t ≥ 0, (2.4)

under the additional balance condition:

b(u) =
∫

Rd

vΓ(u, dv) ≡ 0. (2.5)

The generator of the normed process (2.4) takes the form

Γεϕ(u) = ε−2

∫

Rd

[ϕ(u+ εv) − ϕ(u)]Γ(u, dv), u ∈ Rd. (2.6)

On sufficiently smooth test-functions ϕ(u) ∈ C3(Rd), generator (2.6) admits the asymptotic represen-
tation

Γεϕ(u) =
1
2
B(u)ϕ′′(u) + δεϕ(u), (2.7)

where

B(u)ϕ′′(u) :=
d∑

k,r=1

Bkr(u)∂2ϕ(u)/∂uk∂ur,

with an negligible term
‖δεϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).
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The principal terms in (2.7) sets the diffusion process with the covariance matrix

B(u) = [Bkr(u); 1 ≤ k, r ≤ d],

Bkr(u) =
∫

Rd

vkvrΓ(u, dv), 1 ≤ k, r ≤ d.

The asymptotic representation (2.7) serves as the base for the proof of the convergence of processes [4,
Chap. 6]

ηε(t) = εη(t/ε2) ⇒ ζ(t), ε→ 0.

Here, the limit diffusion process ζ(t), t ≥ 0, is set by the stochastic equation

dζ(t) = σ(ζ(t))dw(t), σ∗(u)σ(u) = B(u).

2.3. Asymptotically small diffusion

The processes with locally independent increments in the scheme of asymptotically small diffusion
are set by the normalization [5]

ηε(t) = ε2η(t/ε3), t ≥ 0. (2.8)

Under the additional condition of balance

b(u) =
∫

Rd

vΓ(u, dv) ≡ 0,

the relevant generator of process (2.8) takes the form

Γεϕ(u) = ε−3

∫

Rd

[ϕ(u+ ε2v) − ϕ(u)]Γ(u, dv), u ∈ Rd. (2.9)

On sufficiently smooth test-functions ϕ(u) ∈ C3(Rd), generator (2.9) admits the asymptotic represen-
tation

Γεϕ(u) = ε
1
2
B(u)ϕ′′(u) + εδεϕ(u) (2.10)

with the negligible term
‖δεϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).

The asymptotic representation (2.10) of generator (2.9) of process (2.8) means that the asymptotic
relation

ηε(t) = ε2η(t/ε3) 	 εζ(t), ε→ 0,
dζ(t) = σ(ζ(t)) dw(t)

(2.11)

is satisfied. The normed process with locally independent increments (2.8) can be asymptotically
represented as a small diffusion εζ(t), t ≥ 0, with the covariance matrix B(u) = σ∗(u)σ(u).
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3. Random evolutions in the scheme of series

Like the previous item, we consider three main schemes of the asymptotic analysis: averaging,
diffusion approximation, and asymptotically small diffusion.

3.1. Averaging

A random evolution in the averaging scheme is set by the generator

L
εϕ(u, x) = [ε−1Q+ Γε(x)]ϕ(u, x). (3.1)

Here, by definition (see i. 2.1),

Γε(x)ϕ(u) = ε−1

∫

Rd

[ϕ(u+ εv) − ϕ(u)]Γ(u, dv;x). (3.2)

The representation of the generator of a random evolution (3.1)–(3.2) means that the two-component
Markov process defining a random evolution in the averaging scheme has the following normalization:

εξ(t/ε), xε
t := x(t/ε), t ≥ 0, ε→ 0. (3.3)

Hence, a random evolution is considered on increasing time intervals T ε = t/ε→ ∞, ε→ 0.
The asymptotic analysis of a behavior of the random evolution (3.3) given by generator (3.1)–(3.2),

is performed by applying a solution of the problem of singular perturbation for the reducibly invertible
operator Q defining a switching Markov process x(t), t ≥ 0 (see [4, Chaps. 3, 5, and 6]).

The main assumption is as follows:
P1: A Markov process x(t), t ≥ 0, defined by generator (1.2) in the standard phase space (E, E)

is uniformly ergodic with stationary distribution π(A), A ∈ E .
Under this condition, the generator Q is reducibly invertible with the zero-space defined by the

projector [4, Chap. 5]

Πϕ(x) =
∫

E

π(dx)ϕ(x) =: ϕ̂1I(x), 1I(x) := 1, x ∈ E. (3.4)

In this case, there exists a bounded potential R0 prescribed by a solution of the equation

QR0 = R0Q = Π − I. (3.5)

Hence, the Poisson equation
Qϕ(x) = ψ(x), Πψ(x) = 0, (3.6)

has the unique solution in a subspace of values of the generator Q, which is set by the equality

ϕ(x) = −R0ψ(x). (3.7)

The asymptotic representation of generator (3.1)–(3.2) of the random evolution (3.3) is realized on the
perturbed test-function [4, Chap. 5]

ϕε(u, x) = ϕ(u) + εϕ1(u, x).
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Lemma 3.1. There exists the asymptotic representation

L
εϕε(u, x) = L̂ϕ(u) + δε

L(x)ϕ(u) (3.8)

with the negligible term
‖δε

L(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C2(Rd).

The limit operator is prescribed by the relations

L̂ϕ(u) = b̂(u)ϕ′(u),

b̂(u) = Πb(u;x) =
∫

E

π(dx)b(u;x),

b(u;x) :=
∫

Rd

vΓ(u, dv;x).

(3.9)

Hence, the limit operator (3.9) sets a determinate evolution û(t), t ≥ 0, that is described by a
solution of the evolution equation

dû(t)/dt = b̂(û(t)), û(0) = u0 ∈ Rd. (3.10)

The asymptotic representation (3.8)–(3.9) serves as the base for the proof of the convergence of random
evolutions in the averaging scheme [4, Chap. 6]:

ξε(t) := εξ(t/ε) ⇒ û(t), ε→ 0, (3.11)

under the condition of convergence of the initial values

εξε(0) ⇒ u0, ε→ 0. (3.12)

3.2. Diffusion approximation

A random evolution in the scheme of diffusion approximation is considered under the additional
condition of balance. As distinct from the situation concerning with the analysis of the process with
locally independent increments in Section 2, we distinguish two conditions of balance: local (LB) and
total (TB) ones.

3.2.1. Diffusion approximation under the condition of local balance

LB: b(u;x) :=
∫

Rd

vΓ(u, dv;x) ≡ 0. (3.13)

A random evolution is considered at the following normalization:

ξε(t) = εξ(t/ε2), xε
t = x(t/ε2). (3.14)

The generator of the random evolution (3.14) takes the form

L
εϕ(u, x) = [ε−2Q+ Γε(x)]ϕ(u, x), (3.15)
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Γε(x)ϕ(u) = ε−2

∫

Rd

[ϕ(u+ εv) − ϕ(u)]Γ(u, dv;x). (3.16)

On sufficiently smooth functions ϕ(u) ∈ C3(Rd), generator (3.16) admits the asymptotic representation

Γε(x)ϕ(u) =
1
2
B(u;x)ϕ′′(u) + δε

Γ(u;x)ϕ(u), (3.17)

with the negligible term

‖δε
Γ(u;x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).

The principal term in (3.17) takes the form

B(u;x)ϕ′′(u) :=
d∑

k,r

Bkr(u;x)ϕ′′
kr(u),

Bkr(u;x) :=
∫

Rd

vkvrΓ(u, dv;x), ϕ′′
kr(u) := ∂2ϕ(u)/∂uk∂ur.

(3.18)

The asymptotic representation of generator (3.15)–(3.16) of random evolution (3.14) is realized on the
perturbed test-function

ϕε(u, x) = ϕ(u) + ε2ϕ1(u, x).

Lemma 3.2. Under the conditions of local balance, there exists the asymptotic representation of
generator (3.15)–(3.16) of the random evolution (3.14)

L
εϕε(u, x) = L̂ϕ(u) + δε

L(u;x)ϕ(u), (3.19)

with the negligible term

‖δε
L(u;x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).

The limit generator

L̂ϕ(u) =
1
2
B̂(u)ϕ′′(u),

B̂(u) = [B̂kr(u); 1 ≤ k, r ≤ d],

B̂kr(u) =
∫

E

π(dx)Bkr(u;x), Bkr(u;x) =
∫

Rd

vkvrΓ(u, dv;x).

(3.20)

Hence, the limit generator (3.20) sets the process of diffusion

dζ(t) = σ(ζ(t)) dw(t), t ≥ 0, ζ(0) = ζ0,

σ∗(u)σ(u) = B̂(u).
(3.21)

The asymptotic representation (3.19)–(3.20) of the generator of the random evolution (3.14) serves
as the base for the proof of the convergence of the random evolution in the scheme of diffusion approx-
imation

ξε(t) = εξ(t/ε2) ⇒ ζ(t), ε→ 0, (3.22)

under the additional condition of convergence of the initial values

εξε(0) ⇒ ζ0, ε→ 0.
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3.2.2. Diffusion approximation under the condition of total balance

TB: b(u;x) =
∫

Rd

vΓ(u, dv;x) 
≡ 0,

b̂(u) =
∫

E

π(dx)b(u;x) ≡ 0.
(3.23)

A random evolution is considered at the same normalization:

ξε(t) = εξ(t/ε2), xε
t := x(t/ε2), t ≥ 0. (3.24)

On sufficiently smooth test-functions ϕ(u) ∈ C3(Rd), the generator of the random evolution (3.15)–
(3.16) admits the asymptotic decomposition

L
εϕ(u, x) = [ε−2Q+ ε−1Γ(x) + B(x)]ϕ(u, x), (3.25)

Γ(x)ϕ(u) = b(u;x)ϕ′(u),

B(x)ϕ(u) =
1
2
B(u;x)ϕ′′(u).

(3.26)

Now, the asymptotic representation of the generator (3.25)–(3.26) is realized on the perturbed test-
functions

ϕε(u, x) = ϕ(u) + εϕ1(u, x) + ε2ϕ2(u, x).

Lemma 3.3. Under conditions of total balance, there exists the asymptotic representation of generator
(3.25)–(3.26) of the random evolution (3.24)

L
εϕε(u, x) = L̂ϕ(u) + δε

L(u;x)ϕ(u), (3.27)

with the negligible term

‖δε
L(u, x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).

The limit generator

L̂ϕ(u) =
1
2
B̂(u)ϕ′′(u) + b̂0(u)ϕ′(u),

B̂(u) = [B̂kr(u); 1 ≤ k, r ≤ d],
(3.28)

B̂kr(u) = B̂
(1)
kr (u) + B̂

(2)
kr (u),

B̂
(i)
kr (u) =

∫

E

π(dx)B(i)
kr (u;x), i = 1, 2,

B̂
(1)
kr (u;x) = 2b∗(u;x)R0b(u;x),

B̂
(2)
kr (u;x) =

∫

Rd

vkvrΓ(u, dv;x),

b̂0(u) =
∫

E

π(dx)b0(u;x), b0(u;x) = 2b∗(u;x)R0b
′
u(u;x).

(3.29)
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Hence, the limit generator (3.28)–(3.29) sets the diffusion process with drift

dζ(t) = σ(ζ(t))dw(t) + b̂0(ζ(t))dt, ζ(0) = ζ0, (3.30)

for which the covariance matrix B̂(u) = σ∗(u)σ(u) contains two terms:

B̂(1)(u) = [B̂(1)
kr (u); 1 ≤ k, r ≤ d] is determined by fluctuations of the first moments of the

random evolution;

B̂(2)(u) = [B̂(2)
kr (u); 1 ≤ k, r ≤ d] is determined by the second moments of the random evolution.

The asymptotic representation (3.27)–(3.29) serves as the base for the proof of the convergence of
random evolutions

εξ(t/ε2) ⇒ ζ(t), ε→ 0, (3.31)

under the additional condition of convergence of the initial values

εξ(0) ⇒ ζ0, ε→ 0.

3.3. Asymptotically small diffusion

A random evolution in the scheme of asymptotically small diffusion is considered at the following
normalization (compare with [5]):

ξε(t) = ε2ξ(t/ε3), xε
t := x(t/ε2), (3.32)

at the local condition of balance. At the total condition of balance, the normalization of the switching
Markov process is different:

ξε(t) = ε2ξ(t/ε3), xε
t := x(t/ε3). (3.33)

The random evolutions (3.32) and (3.33) are prescribed by the generators

L
ε
Λϕ(u, x) = [ε−2Q+ Γε(x)]ϕ(u, x), (3.34)

and
L

ε
Tϕ(u, x) = [ε−3Q+ Γε(x)]ϕ(u, x), (3.35)

respectively. The generator of the evolutionary component

Γε(x)ϕ(u) = ε−3

∫

Rd

[ϕ(u+ ε2v) − ϕ(u)]Γ(u, dv;x) (3.36)

admits the asymptotic decompositions

Γε(x)ϕ(u) = ε
1
2
B(u;x)ϕ′′(u) + εδε

T (x)ϕ(u) (3.37)

and
Γε(x)ϕ(u) = ε−1b(u;x)ϕ′(u) + ε

1
2
B(u;x)ϕ′′(u) + εδε

Λ(x)ϕ(u), (3.38)

respectively.
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The following problems of singular perturbation arise:

L
ε
Λϕ(u, x) = [ε−2Q+ εB(x)]ϕ(u, x) + εδε

Λ(x)ϕ(u, x),

L
ε
Tϕ(u, x) = [ε−3Q+ ε−1Γ(x) + εB(x)]ϕ(u, x) + εδε

T (x)ϕ(u, x).
(3.39)

Here, Γ(x)ϕ(u) := b(u;x)ϕ′(u).

Lemma 3.4. Generators (3.39) admit the following asymptotic representations:

L
ε
Λϕ

ε
Λ(u, x) = ε

1
2
B̂(u)ϕ′′(u) + εδε

Λ(x)ϕ(u) (3.40)

on the perturbed test-functions
ϕε

Λ(u, x) = ϕ(u) + ε2ϕ1(u, x)

and

L
ε
Tϕ

ε(u, x) = ε

[
1
2
B̂T (u)ϕ′′(u) + b̂0(u)ϕ′(u)

]
+ εδε

T (x)ϕ(u) (3.41)

on the perturbed test-functions

ϕε
Λ(u, x) = ϕ(u) + ε2ϕ1(u, x) + ε3ϕ2(u, x).

Here,

B̂(u) =
∫

E

π(dx)B(u;x), B(u;x) =
∫

Rd

v∗vΓ(u, dv;x),

B̂T (u) =
∫

E

π(dx)BT (u;x), BT (u;x) = B(u;x) +B0(u;x),

B0(u;x) = 2b∗(u;x)R0b(u;x),

b̂0(u) =
∫

E

π(dx)b0(u;x), b0(u;x) = b(u;x)R0b
′
u(u;x).

(3.42)

Proof. The proof of Lemma 3.4 is based on the use of solutions of the problems of singular perturbation
for the reducibly invertible operator Q [4, Chap. 5].

Below, we present the results of relevant necessary calculations.
For the operator L

ε
Λ in (3.39), we have

L
ε
Λϕ

ε(u, x) = [ε−2Q+ εB(x)][ϕ(u) + ε2ϕ1(u, x)] + εδε
Λ(x)ϕ(u)

= ε−2Qϕ(u) + [Qϕ1 + εB(x)ϕ(u)] + εδε
Λ(x)ϕ(u)

= [Qϕ1 + εB(x)ϕ(u)] + εδε
Λ(x)ϕ(u) = ε

1
2
B̂(u)ϕ′′(u) + εδε

Λ(x)ϕ(u),

which coincides with (3.40).
Then, for the operator L

ε
T in (3.39), we have

L
ε
Tϕ

ε(u, x) = [ε−3Q+ ε−1Γ(x) + εB(x)][ϕ(u) + ε2ϕ1(u, x) + ε3ϕ2(u, x)]

= ε−3Qϕ(u) + ε−1[Qϕ1 + Γ(x)ϕ(u)] + [Qϕ2 + ε[Γ(x)ϕ1 + B(x)ϕ(u)]]
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= [Qϕ2 + ε

[
1
2
BT (u;x)ϕ′′(u) + b0(u;x)ϕ′(u)

]
+ εδε

T (x)ϕ(u)

= ε

[
1
2
B̂T (u)ϕ′′(u) + b̂0(u)ϕ′(u)

]
+ εδε

T (x)ϕ(u),

which coincides with (3.41).

The asymptotic representations (3.40) and (3.41) serve as the base for the proof of the asymptotic
relations

ξε
T (t) 	 εζT (t), ξε

Λ(t) 	 εζΛ(t), t ≥ 0, ε→ 0,

dζΛ(t) = σΛ(ζΛ(t)) dw(t), dζT (t) = σT (ζT (t)) dw(t) + b̂0(ζT (t)) dt,

σ∗T (u)σT (u) = BT (u), σ∗Λ(u)σΛ(u) = BΛ(u).

4. Large deviations for random evolutions in the scheme of
asymptotically small diffusion

Random evolutions with locally independent increments are considered in the scheme of series
with the small parameter ε→ 0 (ε > 0) of a series on increasing time intervals with the normalization
admitting the approximation with asymptotically small diffusion (see Subsection 3.3). Large deviations
for random evolutions with locally independent increments are studied within the method of asymptotic
analysis of an exponential generator of large deviations, which was developed in [2]. The exponential
generator H of large deviations of the Markov process prescribed by the generator Lε is determined
by the relation [2, Part I]:

Hεϕ(u) := e−ϕ(u)/εεLεeϕ(u)/ε. (4.1)

As shown in Subsection 3.3, the approximation of random evolution in the case of the asymptotically
small diffusion depends on the additional condition of balance (total or local).

4.1. Large deviations under the condition of local balance

Random evolutions in the scheme of series are considered at normalization (3.32). The generator
of a random evolution is given by relations (3.34) and (3.36).

Theorem 4.1. Under the condition of local balance and condition P1 (see Subsection 3.1), the expo-
nential generator of large deviations for the random evolutions (3.32) is determined by the relations

Hϕ(u) =
1
2
B(u)[ϕ′(u)]2, (4.2)

B(u) =
∫

E

π(dx)B(u;x), B(u;x) =
∫

Rd

v∗vΓ(u, dv;x). (4.3)

Proof. Consider the exponential generator (4.1) on the perturbed test-function

ϕε(u, x) = ϕ(u) + ε log[1 + εϕ1(u, x)]. (4.4)
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Lemma 4.1. The exponential generator (4.1) on the perturbed test-function (4.4) admits the asymp-
totic representation

Hεϕε(u, x) = Qϕ1 + B̃(x)ϕ(u) + δε
H(x)ϕ(u), (4.5)

with the negligible term
‖δε

H(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd).

The operator

B̃(x)ϕ(u) =
1
2
B(u;x)[ϕ′(u)]2. (4.6)

Proof. The proof of Lemma 4.1 is based on the asymptotic analysis of the terms

Hε
Qϕ

ε(u, x) = e−ϕ(u)/ε[1 + εϕ1]−1ε−1Q[1 + εϕ1]eϕ(u)/ε

= e−ϕ(u)/ε[1 − εϕ1]ε−1Q[1 + εϕ1]eϕ(u)/ε + δε
Q(x)ϕ(u)

= Qϕ1 + δε
Q(x)ϕ(u) (4.7)

and

Hε
Γϕ

ε(u, x) = e−ϕ(u)/ε[1 + εϕ1]−1εΓε(x)[1 + εϕ1]eϕ(u)/ε

= e−ϕ(u)/ε[1 − εϕ1]−1εΓε(x)[1 + εϕ1]eϕ(u)/ε + δε
Γ(x)ϕ(u)

= ε−2

∫

Rd

[e∆
ε
vϕ(u) − 1]Γ(u, dv;x) + δε

Γ(x)ϕ(u).

Here,
∆ε

vϕ(u) = ε−1[ϕ(u+ ε2v) − ϕ(u)] = εvϕ′(u) + ε3ϕ̃′′
v(u).

Hence,
Hε

Γϕ
ε(u, x) = B̃(x)ϕ(u) + δε

Γ(x)ϕ(u) (4.8)

with the principal term (4.6).

The completion of the proof of Theorem 4.1 is realized with the use of a solution of the problem
of singular perturbation

Qϕ1(u, x) + B̃(x)ϕ(u) = B̃ϕ(u) (4.9)

in which the condition of solvability of Eq. (4.9) means

B̃ =
∫

E

π(dx)B̃(x). (4.10)

Finally, the relation
Hεϕε(u, x) = Hϕ(u) + δε

H(x)ϕ(u) (4.11)

completes the proof of Theorem 4.1.
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4.2. Large deviations under the condition of total balance

Consider random evolutions in the scheme of series at normalization (3.33). The generator of a
random evolution is given by relations (3.35)–(3.36).

Theorem 4.2. Under the condition of total balance and condition P1, the exponential generator of
large deviations for the random evolution (3.33) is given by the relations

Hϕ(u) =
1
2
BT (u)[ϕ′(u)]2, BT (u) = B(u) +B0(u), (4.12)

B(u) :=
∫

E

π(dx)B(u;x), B0(u) :=
∫

E

π(dx)B0(u;x),

B(u;x) =
∫

Rd

v∗vΓ(u, dv;x), B0(u;x) = 2b∗(u;x)R0b(u;x).
(4.13)

Proof. The exponential generator (4.1) is considered on the perturbed test-function

ϕε(u, x) = ϕ(u) + ε log[1 + εϕ1(u, x) + ε2ϕ2(u, x)]. (4.14)

Lemma 4.2. The exponential generator (4.1) on the perturbed test-function (4.14) admits the asymp-
totic representation

Hεϕε(u, x) = ε−1[Qϕ1 + Γ(x)ϕ(u)] + [Qϕ2 − ϕ1Qϕ1 + B̃(x)ϕ(u)] + δε
H(x)ϕ(u), (4.15)

with the negligible term
‖δε

H(x)ϕ(u)‖ → 0, ε→ 0, ϕ(u) ∈ C3(Rd),

Γ(x)ϕ(u) := b(u;x)ϕ′(u).

Proof. The proof of Lemma 4.2 is based on the asymptotic analysis of the terms

Hε
Qϕ

ε(u, x) = e−ϕ/ε[1 + εϕ1 + ε2ϕ2]−1ε−2Q[1 + εϕ1 + ε2ϕ2]eϕ/ε

= e−ϕ/ε[1 − εϕ1 − ε2ϕ2]ε−2Q[1 + εϕ1 + ε2ϕ2]eϕ/ε + δε
Q(x)ϕ(u)

= ε−1Qϕ1 − ϕ1Qϕ1 + δε
Q(x)ϕ(u),

Hε
Γϕ

ε(u, x) = e−ϕ/ε[1 + εϕ1 + ε2ϕ2]−1εΓε(x)[1 + εϕ1 + ε2ϕ2]e−ϕ/ε

= e−ϕ/ε[1 − εϕ1]εΓε(x)[1 + εϕ1]e−ϕ/ε + δε
Γ(x)ϕ(u)

= ε−1Γ(x)ϕ(u) + B̃(x)ϕ(u) + δε
Γ(x)ϕ(u).

Hence,
Hεϕε(u, x) = Hε

Qϕ
ε(u, x) +Hε

Γϕ
ε(u, x),

so that

Hεϕε(u, x) = ε−1[Qϕ1 + Γ(x)ϕ(u)] + [Qϕ2 − ϕ1Qϕ1 + B̃(x)ϕ(u)] + δε
H(x)ϕ(u),

which coincides with (4.15).
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The completion of the proof of Theorem 4.2 is realized with the use of solutions of the problems
of singular perturbation [4, Chap. 5]:

Qϕ1 + b(u;x)ϕ′(u) = 0, Πb(u;x) ≡ 0, (4.16)

ϕ1(u, x) = R0b(u;x)ϕ′(u). (4.17)

Then we have
Qϕ2 − ϕ1Qϕ1 + B̃(x)ϕ(u) = Bϕ(u). (4.18)

The condition of solvability of Eq. (4.18) with regard for solution (4.17) yields assertion (4.12)–(4.13)
of Theorem 4.2.

4.3. Large deviations with shift

Large deviations under the condition of balance (local or total) are characterized by the evolutionary
operator that is generated by the quadratic form (4.2)–(4.3) in Subsection 4.1 and (4.12)–(4.13) in
Subsection 4.2.

At the same time, the scheme of asymptotically small diffusion can involve “small jumps” generating
the linear term in the exponential generator (see [3]). In this case, the linear generator of a random
evolution must contain the component of a slow shift generated by small jumps (compare with (3.38)):

Γε(x)ϕ(u) = [ε−1b(u;x) + b1(u;x)]ϕ′(u) + ε
1
2
B(u;x)ϕ′′(u) + εδε

Γ(x)ϕ(u). (4.19)

In this case, it is sufficient to assume that the Lévy measure Γε(u, dv;x) depends on the parameter ε
of a series so that the following asymptotic representation of the first moments of an evolution is valid:

bε(u;x) :=
∫

Rd

vΓε(u, dv;x) = b(u;x) + εb1(u;x) + εδε
b(u;x). (4.20)

Under the additional condition of small shift (4.20), the generator of the evolutionary component
admits the asymptotic decomposition (compare with (3.39))

Γε(x)ϕ(u) = ε−3

∫

Rd

[ϕ(u+ ε2v) − ϕ(u)]Γε(u, dv;x)

= [ε−1b(u;x) + b1(u;x)]ϕ′(u) + ε
1
2
B(u;x)ϕ′′(u) + εδε

Γ(x)ϕ(u). (4.21)

There arises the problem of singular perturbation for the truncated linear generator of a random evo-
lution

L
εϕ(u, x) = [ε−3Q+ ε−1Γ(x) + Γ1(x) + εB(x)]ϕ(u, x). (4.22)

Lemma 4.3. Generator (4.22) admits the asymptotic representation

L
εϕε(u, x) = [̂b1(u) + εb̂0(u)]ϕ′(u) + ε

1
2
B̂(u)ϕ′′(u) + εδε

L(x)ϕ(u) (4.23)

on the perturbed test-functions

ϕε(u, x) = ϕ(u) + ε2ϕ1(u, x) + ε3ϕ2(u, x).
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Here, the function of variations B̂(u) is given by formulas (3.42), the coefficient of shift is given by
formulas

b̂1(u) =
∫

E

π(dx)b1(u;x),

b̂0(u) =
∫

E

π(dx)b∗(u;x)R0b
′
u(u;x).

(4.24)

The slow shift in the asymptotic representation (4.23) prescribed by the operator

Γ̂1ϕ(u) := b̂1(u)ϕ′(u) (4.25)

arises also in the exponential generator of large deviations for random evolutions with shift.

Theorem 4.3. The exponential generator of large deviations for random evolutions with locally inde-
pendent increments prescribed by the linear generator

L
εϕ(u, x) = [ε−3Q+ Γε(x)]ϕ(u, x), (4.26)

Γε(x)ϕ(u) = ε−3

∫

Rd

[ϕ(u+ ε2v) − ϕ(u)]Γε(u, dv;x),

under the additional condition of small shift (4.20) is prescribed by the relation

Hϕ(u) =
1
2
B̂(u)[ϕ′(u)]2 + b̂1(u)ϕ′(u). (4.27)

Here, the function of variations B̂(u) is given by formulas (4.3) under the condition of local balance
and by formulas (4.13) under the condition of total balance.

The proof of Theorem 4.3 is based on the asymptotic representation of the exponential generator
of a random evolution on the perturbed test-functions (4.14).

Lemma 4.4. The exponential generator (4.1) for a random evolution that is prescribed by generator
(4.19) admits the asymptotic representation (compare with (4.15))

Hεϕε(u, x) = ε−1[Qϕ1 + Γ(x)ϕ(u)] + [Qϕ2 − ϕ1Qϕ1 + [Γ1(x) + B̃(x)]]ϕ(u) (4.28)

on the perturbed test-functions

ϕε(u) + ε log[1 + εϕ1(u, x) + ε2ϕ2(u, x)].

The proof of Lemma 4.4 coincides, in essence, with that of Lemma 4.2.
The exponential generator of a random evolution under the condition of local balance (3.13) is

calculated analogously.
It is worth noting that the algorithms of calculation of exponential generators under the conditions

of local balance (3.13) and total balance (3.23) are significantly different. It is sufficient to compare
Lemmas 4.1 and 4.2.
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5. Concluding remarks

Remark 5.1. The exponential generators of large deviations (4.2)–(4.3) and (4.12)–(4.13) in the
Euclidean space Rd, d ≥ 1, can be represented by the quadratic form

Hϕ(u) =
1
2

d∑
k,r=1

Bkr(u)ϕ′
k(u)ϕ

′
r(u), (5.1)

ϕ′
k(u) := ∂ϕ(u)/∂uk, 1 ≤ k ≤ d.

In addition, the exponential generator (5.1) can be extended on the space of absolutely continuous
functions [2]

C1
b (Rd) =

{
ϕ : ∃ lim

|u|→∞
ϕ(u) = ϕ(∞), lim

|u|→∞
ϕ′(u) = 0

}
. (5.2)

The variational representation of the compensating function of deviations is realized in the space
C1

b (Rd).

Remark 5.2. The problems of large deviations for random processes are realized in four stages [2,
Part I].

Stage 1. Limit behavior of an exponential operator in the scheme of series.
Stage 2. Exponential density of Markov processes.
Stage 3. The principle of comparison for a limit exponential generator.
Stage 4. Variational representation of the functional of action.
The exponential generator of large deviations for random evolutions in the scheme of asymptotically

small diffusion in Theorems 4.1–4.3 is given by the univalent function

H(u; p) =
1
2

d∑
k,r=1

Bkr(u)pkpr +
d∑

k=1

bkpk (5.3)

for which stages 2–4 are considered in monograph [2] (see also [3]). Hence, the function of deviations
is prescribed by the Frechét–Legendre transformation

L(u; q) = sup
p∈Rd

{p · q −H(u; p)}. (5.4)

The functional of action is determined by the relation

JT (u) =

T∫

0

L(u(t), u̇(t)) dt. (5.5)

Remark 5.3. The exponential generators for random evolutions with locally independent increments
in the scheme of asymptotically small diffusion that are presented by Theorems 4.1–4.3 coincide with
the exponential generators for random processes with locally independent increments in the same
scheme of asymptotically small diffusion. This natural fact can be formulated with the use of heuristic
arguments. However, the problem of substantiation of heuristic arguments remains open. The simplest
is the procedure of averaging of the measure Lévy of a random evolution over the stationary distribution
of the switching Markov process (see [4, Chap. 3])

Γ̂(u, dv) :=
∫

E

π(dx)Γ(u, dv;x).
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In this case, the problem of connection of a random evolution characterized by the Lévy measure
Γ(u, dv;x) with the random process characterized by the averaged Lévy measure Γ̂(u, dv) remains open.
With the same success, it is possible to assert (on the heuristic level) that the principle of averaging for
a random evolution prescribed by the evolution equation is valid. However, in order to substantiate
the principle of averaging, we need to use a solution of the problem of singular perturbation (see [4,
Chap. 5]) or at least the ergodic Birkhoff–Khinchin theorem. The seeming complexity of efforts aimed
at the substantiation of the principle of averaging at the heuristic obviousness of the principle only
confirms the presence of heuristically simple assertions in mathematics, which require a complicated
mathematical apparatus for their substantiation.
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