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We consider the small mass asymptotics (Smoluchowski–Kramers approximation) for

the Langevin equation with a variable friction coefficient. The limit of the solution in the

classical sense does not exist in this case. We study a modification of the Smoluchowski–

Kramers approximation. Some applications of the Smoluchowski–Kramers approxi-

mation to problems with fast oscillating or discontinuous coefficients are considered.
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1 Introduction

The Langevin equation

μq̈μt = b(qμt )− λq̇μt + σ(qμt )Ẇ t, qμ0 = q ∈ R
n, q̇μ0 = p ∈ R

n, (1.1)

describes the motion of a particle of mass μ in a force field b(q), q ∈ R
n, subject to random

fluctuations and to a friction proportional to the velocity. Here, W t is the standard Wiener

process in R
n, λ > 0 is the friction coefficient. The vector field b(q) and the matrix function

σ(q) are assumed to be continuously differentiable and bounded together with their first order

derivatives. The matrix a(q) = (aij(q)) = σ(q)σ∗(q) is assumed to be nonsingular.

Put pμ
t = q̇μt . Then (1.1) can be written as the first order system:

⎧
⎪⎨

⎪⎩

q̇μt = pμ
t ,

ṗμ
t =

1

μ
b(qμt )−

λ

μ
pμ
t +

1

μ
σ(qμt )Ẇ t.

(1.2)
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The diffusion process (pμ
t , q

μ
t ) = Xμ

t in R
2n is governed by the generator L:

Lu(p, q) =
1

2μ2

n∑

i,j=1

aij(q)
∂2u

∂pi∂pj
+

1

μ
(b(q)− λp) · ∇pu+ p · ∇qu.

Note that, since the functions qμt are continuously differentiable with probability one,

t∫

0

σij(q
μ
s )dW

j
s = σij(q

μ
t )W

j
t −

t∫

0

W j
s (∇qσij(q

μ
s ) · pμ

s ) ds.

This allows us to consider Equations (1.2) for each trajectory W t individually, and there is

no necessity in the introduction of a stochastic integral. In particular, if (1.2) is considered as a

stochastic differential equation, stochastic integrals in the Itô and Stratonovich senses coincide:

t∫

0

σ(qμs )dW s =

t∫

0

σ(qμs ) ◦ dW s.

It is usually assumed that the friction coefficient λ is constant. Under this assumption, one

can prove that qμt converges in probability as μ ↓ 0 uniformly on each finite time interval [0, T ]

to an n-dimensional diffusion process qt: for any κ, T > 0 and any pμ
0 = p ∈ R

n fixed,

lim
μ↓0

P
(
max
0�t�T

|qμt − qt|Rd > κ
)
= 0.

Here, qt is the solution of the equation

q̇t =
1

λ
b(qt) +

1

λ
σ(qt)Ẇ t, q0 = qμ0 = q ∈ R

n. (1.3)

The stochastic term in (1.3) should be understood in the Itô sense.

The approximation of qμt by qt for 0 < μ � 1 called the Smoluchowski–Kramers approxi-

mation. This is the main justification for replacement of the second order equation (1.1) by the

first order equation (1.3). The price for such a simplification, in particular, consists of certain

nonuniversality of Equation (1.3): the white noise in (1.1) is an idealization of a more regular

stochastic process Ẇ
δ
t with correlation radius δ � 1 converging to Ẇ t as δ ↓ 0. Let qμ,δt be the

solution of Equation (1.1) with Ẇ t replaced by Ẇ
δ
t . Then the limit of qμ,δt as μ, δ ↓ 0 depends

on the relation between μ and δ. Say, if first δ ↓ 0 and then μ ↓ 0, the stochastic integral in

(1.3) should be understood in the Itô sense; if first μ ↓ 0 and then δ ↓ 0, qμ,δt converges to the

solution of (1.3) with stochastic integral in the Stratonovich sense (cf., for example, [1].)

Consider the case of a variable friction coefficient λ = λ(q). We assume that λ(q) has

continuous bounded derivatives and 0 < λ0 � λ(q) � Λ < ∞. It turns out, as we will see in

the next section, that, in this case, the solution qμt of (1.1) does not converge, in general, to the

solution of (1.3) with λ = λ(q), so that the Smoluchowski–Kramers approximation should be

modified. In order to do this, we consider Equation (1.1) with Ẇ t replaced by Ẇ
δ
t described

above:

μq̈μ,δt = b(qμ,δt )− λ(qμ,δt )q̇μ,δt + σ(qμ,δt )Ẇ
δ
t , qμ,δ0 = q, q̇μ,δ0 = p. (1.4)
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We prove that after such a regularization, the solution of (1.4) has a limit q̃δt as μ ↓ 0, and

q̃δt is a unique solution of the equation obtained from (1.4) as μ = 0:

˙̃q
δ

t =
1

λ(q̃δt )
b(q̃δt ) +

1

λ(q̃δt )
σ(q̃δt )Ẇ

δ
t , q̃δ0 = q. (1.5)

Now we can take δ ↓ 0 in (1.5). As a result, we get the equation

˙̂qt =
1

λ(q̂t)
b(q̂t) +

1

λ(q̂t)
σ(q̂t) ◦ Ẇ t, q̂0 = q, (1.6)

where the stochastic term should be understood in the Stratonovich sense. So the regularization

leads to a modified Smoluchowski–Kramers equation (1.6). We prove this in Section 3.

Some applications of the Smoluchowski–Kramers approximation are considered in Sections 4

and 5: the case of fast oscillating in the spatial variable, periodic or stochastic, friction coefficient

is studied; gluing condition at the discontinuity points of the friction coefficient are considered.

In Section 6, we briefly consider some remarks and generalizations.

Notation. We use | • |Rd to denote the standard Euclidean norm in R
d. When d = 1,

we set | • |R1 = | • |. For a vector-valued function f(x) = (f1(x), . . . , fd(x)), x ∈ R
d, we set

‖f‖∞ = max
1�i�d

‖fi‖∞ = max
1�i�d

sup
x∈Rd

|fi(x)|. All the vectors are marked with either bold letters or

with an arrow on it.

2 Some Estimates. The Classical Smoluchowski–Kramers

Approximation Does not Work for Variable Friction

Coefficients

We consider the system

μq̈μt = b(qμt )− λ(qμt )q̇
μ
t + Ẇ t, qμ0 = q ∈ R

d, q̇μ0 = p ∈ R
d. (2.1)

Here, ∞ > Λ � λ(•) � λ0 > 0 is a function of qμt . We assume that the function λ(•) and vector

field b(•) are continuously differentiable and bounded together with their first derivatives. The

process W t is the standard Wiener process in R
d. For simplicity of calculations, we consider

here the case where the diffusion matrix a(•) is the identity (cf. (1.1)). The case of general

diffusion matrix can be considered in a similar way, and we will briefly mention it in Section 6.

Let pμ
t = q̇μt . Then (2.1) is equivalent to the system

⎧
⎪⎨

⎪⎩

q̇μt = pμ
t ,

ṗμ
t =

1

μ
b(qμt )−

λ(qμt )

μ
pμ
t +

1

μ
Ẇ t.

(2.2)

Then

d

dt

(

e
1
μ

t∫

0

λ(qμ
s )ds

pμ
t

)

= e
1
μ

t∫

0

λ(qμ
s )ds(

ṗμ
t +

1

μ
λ(qμt )p

μ
t

)
= e

1
μ

t∫

0

λ(qμ
s )ds( 1

μ
b(qμt ) +

1

μ
Ẇ t

)
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and

e
1
μ

t∫

0

λ(qμ
s )ds

pμ
t − p =

1

μ

t∫

0

e
1
μ

s∫

0

λ(qμ
r )dr

b(qμs )ds+
1

μ

t∫

0

e
1
μ

s∫

0

λ(qμ
r )dr

dW s. (2.3)

For notational convenience we introduce the function

A(μ, t) =

t∫

0

λ(qμs )ds.

It is clear that tΛ � A(μ, t) � tλ0. Using (2.3), we find

pμ
t = e

− 1
μ
A(μ,t)

(

p+
1

μ

t∫

0

e
1
μ
A(μ,s)

b(qμs )ds+
1

μ

t∫

0

e
1
μ
A(μ,s)

dW s

)

.

Therefore,

qμt = q +

t∫

0

pμ
sds = q + p

t∫

0

e−
1
μ
A(μ,s)ds+

1

μ

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)

ds

+
1

μ

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)dW r

)

ds = q +α(μ) + β(μ) + γ(μ). (2.4)

Here, α(μ),β(μ),γ(μ) are three (vector) functions on the right-hand side of (2.4):

α(μ) = p

t∫

0

e
− 1

μ
A(μ,s)

ds,

β(μ) =
1

μ

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)

ds,

γ(μ) =
1

μ

t∫

0

e
− 1

μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)

dW r

)

ds.

In the following, we use the relation

d

dt

(
e
− 1

μ
A(μ,t)

)
= − 1

μ
e
− 1

μ
A(μ,t)dA(μ, t)

dt
= − 1

μ
e
− 1

μ
A(μ,t)

λ(qμt ). (2.5)

We also use the estimates

μ

cΛ
(1− e

− cΛt
μ ) =

t∫

0

e
− cΛs

μ ds �
t∫

0

e
− c

μ
A(μ,s)

ds �
t∫

0

e
− cλ0s

μ ds =
μ

cλ0
(1− e

− cλ0t
μ ) � μ

cλ0
, (2.6)
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μ

cΛ
(1− e

− cΛt
μ ) =

t∫

0

e
− cΛ(t−s)

μ ds �
t∫

0

e
− c

μ
(A(μ,t)−A(μ,s))

ds

�
t∫

0

e−
cλ0(t−s)

μ ds =
μ

cλ0
(1− e−

cλ0t
μ ) � μ

cλ0
. (2.7)

Here, c is a positive constant.

In this section, we get some bounds for α(μ), β(μ), γ(μ) which show, in particular, that the

classical Smoluchowski–Kramers approximation does not hold in the case of variable friction.

These bounds will be used to obtain a modified Smoluchowski–Kramers approximation.

2.1 Estimates of α(µ)

By (2.5), we have

α(μ) = p

t∫

0

e
− 1

μ
A(μ,s)

ds = p

t∫

0

(−μ)
1

λ(qμs )
d(e

− 1
μ
A(μ,s)

)

= −pμ

⎡

⎣
e
− 1

μ
A(μ,t)

λ(qμt )
− 1

λ(q)
−

t∫

0

e−
1
μ
A(μ,s)d(

1

λ(qμs )
)

⎤

⎦ .

Let

Rα(μ) = μ

[
e
− 1

μ
A(μ,t)

λ(qμt )
− 1

λ(q)

]

.

It is easy to estimate |Rα(μ)| � μ/λ0. Therefore, |Rα(μ)| → 0 as μ ↓ 0.

Let

(I) =

t∫

0

e−
1
μ
A(μ,s)d(

1

λ(qμs )
).

We have

(I) = −
t∫

0

e
− 1

μ
A(μ,s) 1

λ2(qμs )
∇λ(qμs ) · pμ

s ds = −
t∫

0

e
− 1

μ
A(μ,s) 1

λ2(qμs )
e
− 1

μ
A(μ,s)∇λ(qμs )

×
(

p+
1

μ

s∫

0

e
1
μ
A(μ,r)

b(qμr )dr +
1

μ

s∫

0

e
1
μ
A(μ,r)

dW r

)

ds = (I1) + (I2) + (I3).

Here,

(I1) = −p ·
t∫

0

e−
2
μ
A(μ,s)∇λ(qμs )

λ2(qμs )
ds,

(I2) = − 1

μ

t∫

0

e−
2
μ
A(μ,s) 1

λ2(qμs )
∇λ(qμs ) ·

⎛

⎝

s∫

0

e
1
μ
A(μ,r)b(qμr )dr

⎞

⎠ ds,
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(I3) = − 1

μ

t∫

0

e
− 2

μ
A(μ,s) 1

λ2(qμs )
∇λ(qμs ) ·

( s∫

0

e
1
μ
A(μ,r)

dW r

)

ds.

Using (2.6) and (2.7), we derive

|(I1)| � ‖∇λ‖∞
λ2
0

|p|Rd

t∫

0

e−
2
μ
λ0sds � ‖∇λ‖∞

λ2
0

|p|Rd

μ

2λ0
,

|(I2)| � ‖∇λ‖∞
λ2
0

‖b‖∞ 1

μ

t∫

0

e
− 2

μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)

dr

)

ds

� ‖∇λ‖∞
λ2
0

‖b‖∞ 1

μ

t∫

0

( s∫

0

e
− 1

μ
(s−r)λ0dr

)

e
− 1

μ
λ0sds

=
‖∇λ‖∞

λ2
0

‖b‖∞ 1

μ

t∫

0

μ

λ0
(1− e−

λ0s
μ )e−

λ0s
μ ds

� ‖∇λ‖∞
λ3
0

‖b‖∞
t∫

0

e
−λ0s

μ ds � ‖∇λ‖∞
λ3
0

‖b‖∞ μ

λ0
.

Since

|(I3)| � ‖∇λ‖∞
λ2
0

1

μ

∣
∣
∣
∣
∣

t∫

0

e
− 1

2μ
A(μ,s)

( s∫

0

e
− 1

2μ
A(μ,s)

e
− 1

μ
A(μ,s)+ 1

μ
A(μ,r)

dW r

)

ds

∣
∣
∣
∣
∣
Rd

,

we can estimate, by the Cauchy–Schwarz inequality and (2.6), (2.7),

E|(I3)|2 �
(‖∇λ‖∞

λ2
0

)2 1

μ2
E

∣
∣
∣
∣
∣

t∫

0

e−
1
2μ

A(μ,s)

( s∫

0

e−
1
2μ

A(μ,s)e−
1
μ
A(μ,s)+ 1

μ
A(μ,r)dW r

)

ds

∣
∣
∣
∣
∣

2

Rd

�
(‖∇λ‖∞

λ2
0

)2 1

μ2
E

( t∫

0

e
− 1

μ
A(μ,s)

ds

)( t∫

0

e
− 1

μ
A(μ,s)

∣
∣
∣
∣
∣

s∫

0

e
− 1

μ
A(μ,s)+ 1

μ
A(μ,r)

dW r

∣
∣
∣
∣
∣

2

Rd

ds

)

�
(‖∇λ‖∞

λ2
0

)2 1

μ2

( t∫

0

e
−λ0s

μ ds

)( t∫

0

e
−λ0s

μ E

∣
∣
∣
∣
∣

s∫

0

e
− 1

μ
A(μ,s)+ 1

μ
A(μ,r)

dW r

∣
∣
∣
∣
∣

2

Rd

ds

)

=

(‖∇λ‖∞
λ2
0

)2 1

μ2

( t∫

0

e−
λ0s
μ ds

)( t∫

0

e−
λ0s
μ

( s∫

0

Ee−
2
μ
A(μ,s)+ 2

μ
A(μ,r)dr

)

ds

)

�
(‖∇λ‖∞

λ2
0

)2 1

μ2

( t∫

0

e−
λ0s
μ ds

)( t∫

0

e−
λ0s
μ

( s∫

0

e−
2λ0s
μ

+
2λ0r
μ dr

)

ds

)
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�
(‖∇λ‖∞

λ2
0

)2 1

μ2

μ

λ0

( t∫

0

e
−λ0s

μ
μ

2λ0
ds

)

�
(‖∇λ‖∞

λ2
0

)2 μ

2λ3
0

.

Combining these estimates, we see that E|(I)|2 → 0 as μ ↓ 0. So, E|α(μ)|2
Rd → 0 as μ ↓ 0 for

any |p|Rd < ∞.

2.2 Estimates of β(µ)

By (2.5), we have

β(μ) =
1

μ

t∫

0

e
− 1

μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)

ds

=
1

μ

t∫

0

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)(

− μ

λ(qμs )

)

d(e−
1
μ
A(μ,s))

=

t∫

0

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)(

− 1

λ(qμs )

)

d(e
− 1

μ
A(μ,s)

)

= −e
− 1

μ
A(μ,s)

λ(qμs )

s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

∣
∣
∣
∣
∣

s=t

s=0

+

t∫

0

e
− 1

μ
A(μ,s)

d

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr
1

λ(qμs )

)

= −e
− 1

μ
A(μ,t)

λ(qμt )

t∫

0

e
1
μ
A(μ,s)b(qμs )ds+

t∫

0

b(qμs )

λ(qμs )
ds

+

t∫

0

e
− 1

μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)

d

(
1

λ(qμs )

)

= Rβ(μ) +

t∫

0

b(qμs )

λ(qμs )
ds+ �(II).

It is easy to see that

|Rβ(μ)|Rd � ‖b‖∞
λ0

t∫

0

e
−λ0

μ
(t−s)

ds =
‖b‖∞
λ0

μ

λ0
.

We also have

�(II) = −
t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)
1

λ2(qμs )
∇λ(qμs ) · pμ

s ds

= −
t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)
1

λ2(qμs )
∇λ(qμs )
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e
− 1

μ
A(μ,s)

(

p+
1

μ

s∫

0

e
1
μ
A(μ,r)

b(qμr )dr +
1

μ

s∫

0

e
1
μ
A(μ,r)

dW r

)

ds

= �(II1) + �(II2) + �(II3).

Here,

�(II1) = −
t∫

0

e
− 2

μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)

∇λ(qμs ) · pds,

�(II2) = − 1

μ

t∫

0

e
− 2

μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)

∇λ(qμs ) ·
( s∫

0

e
1
μ
A(μ,r)

b(qμr )dr

)

ds,

�(II3) = − 1

μ

t∫

0

e
− 2

μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)

∇λ(qμs ) ·
( s∫

0

e
1
μ
A(μ,r)dW r

)

ds.

We conclude that

| �(II1)|Rd � ‖∇λ‖∞
λ2
0

|p|Rd‖b‖∞
t∫

0

e−
λ0s
μ

( s∫

0

e−
(s−r)λ0

μ dr

)

ds � ‖∇λ‖∞
λ2
0

|p|Rd‖b‖∞μ2

λ2
0

,

| �(II2)|Rd � 1

μ

‖∇λ‖∞
λ2
0

‖b‖2∞
t∫

0

( s∫

0

e
− (s−r)λ0

μ dr

)2

ds � ‖∇λ‖∞
λ2
0

‖b‖2∞
μt

λ2
0

;

E| �(II3)|2Rd �
(
1

μ

‖∇λ‖∞
λ2
0

‖b‖∞
)2

E

∣
∣
∣
∣
∣

t∫

0

e−
2
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)dr

)( s∫

0

e
1
μ
A(μ,r)dW r

)

ds

∣
∣
∣
∣
∣

2

Rd

=

(
1

μ

‖∇λ‖∞
λ2
0

‖b‖∞
)2

E

∣
∣
∣
∣
∣

t∫

0

( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dr

)( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW r

)

ds

∣
∣
∣
∣
∣

2

Rd

�
(
1

μ

‖∇λ‖∞
λ2
0

‖b‖∞
)2

E

( t∫

0

( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dr

)2

ds

)

×
( t∫

0

∣
∣
∣
∣
∣

s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dW r

∣
∣
∣
∣
∣

2

Rd

ds

)

�
(
1

μ

‖∇λ‖∞
λ2
0

‖b‖∞
)2

( t∫

0

( s∫

0

e−
(s−r)λ0

μ dr

)2

ds

)( t∫

0

E

∣
∣
∣
∣
∣

s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dW r

∣
∣
∣
∣
∣

2

Rd

ds

)
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�
(
1

μ

‖∇λ‖∞
λ2
0

‖b‖∞
)2

( t∫

0

( s∫

0

e
− (s−r)λ0

μ dr

)2

ds

)( t∫

0

( s∫

0

e
− 2(s−r)λ0

μ dr

)

ds

)

�
(‖∇λ‖∞

λ2
0

‖b‖∞
)2( t

λ0

)2( μt

2λ0

)

.

Combining these estimates we see that E| �(II)|2
Rd → 0 as μ ↓ 0. This implies that

E

∣
∣
∣
∣
∣
β(μ)−

t∫

0

b(qμs )

λ(qμs )
ds

∣
∣
∣
∣
∣

2

Rd

→ 0 as μ ↓ 0.

2.3 Estimates of γ(µ) - the reason why the classical Smoluchowski–Kramers
approximation does not work

We show that

E

∣
∣
∣
∣
∣
γ(μ)−

t∫

0

1

λ(qμs )
dW s

∣
∣
∣
∣
∣

2

Rd

,

in general, does not tend to 0 as μ ↓ 0. Therefore, the Smoluchowski–Kramers approximation

does not work in the case of purely white noise perturbation.

By (2.5), we have

γ(μ) =
1

μ

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)dW r

)

ds

=
1

μ

t∫

0

( s∫

0

e
1
μ
A(μ,r)

dW r

)
(
− μ

λ(qμs )

)
d(e

− 1
μ
A(μ,s)

)

= −
[ ∫ t

0 e
1
μ
A(μ,s)dW s

λ(qμt )
e
− 1

μ
A(μ,t) −

t∫

0

e
− 1

μ
A(μ,s)

d

(
1

λ(qμs )

s∫

0

e
1
μ
A(μ,r)

dW r

)]

= −
∫ t
0 e

1
μ
A(μ,s)

dW s

λ(qμt )
e−

1
μ
A(μ,t) +

t∫

0

1

λ(qμs )
dW s

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)dW r

)

d
( 1

λ(qμs )

)

= Rγ(μ) +

t∫

0

1

λ(qμs )
dW s + �(III).

It is easy to check that

E|Rγ(μ)|2Rd � 1

λ2
0

t∫

0

e
− 2λ0(t−s)

μ ds � μ

2λ3
0

.
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We have

�(III) =

t∫

0

e
− 1

μ
A(μ,s)

( s∫

0

e
1
μ
A(μ,r)

dW r

)(

− 1

λ2(qμs )

)

∇λ(qμs ) · pμ
sds

= �(III1) + �(III2) + �(III3)

where

�(III1) = −
t∫

0

e
− 2

μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)

dW r

)

∇λ(qμs ) · pds,

�(III2) = − 1

μ

t∫

0

e
− 2

μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)dW r

)

∇λ(qμs ) ·
( s∫

0

e
1
μ
A(μ,r)b(qμr )dr

)

ds,

�(III3) = − 1

μ

t∫

0

e−
2
μ
A(μ,s)

λ2(qμs )

( s∫

0

e
1
μ
A(μ,r)

dW r

)

∇λ(qμs ) ·
( s∫

0

e
1
μ
A(μ,r)

dW r

)

ds.

We can estimate

E| �(III1)|2Rd �
( |p|Rd‖∇λ‖∞

λ2
0

)2

E

∣
∣
∣
∣
∣

t∫

0

e−
1
μ
A(μ,s)

( s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dW r

)

ds

∣
∣
∣
∣
∣

2

Rd

�
( |p|Rd‖∇λ‖∞

λ2
0

)2

E

( t∫

0

e
− 2

μ
A(μ,s)

ds

)( t∫

0

∣
∣
∣
∣
∣

s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW r

∣
∣
∣
∣
∣

2

Rd

ds

)

�
( |p|Rd‖∇λ‖∞

λ2
0

)2
( t∫

0

e
− 2λ0s

μ ds

)( t∫

0

( s∫

0

e
− 2λ0(s−r)

μ dr

)

ds

)

�
( |p|Rd‖∇λ‖∞

λ2
0

)2( μ

2λ0

)(
μt

2λ0

)

.

The term �(III2) can be estimated in the same way as �(II3):

E| �(III2)|2Rd �
(‖∇λ‖∞

λ2
0

‖b‖∞
)2( t

λ0

)2( μt

2λ0

)

.

But, in general, one cannot estimate E| �(III3)|2 up to a term which goes to 0 as μ ↓ 0. As an

example, suppose that Λ = ‖λ‖∞ and for 0 � t � T < ∞ we have ∇λ(qμt ) = e1. Here e1 is

the unit basis vector e1 = (1, 0, . . . , 0) in R
d. Let W k

r be the kth (1 � k � d) component of the
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Wiener process W r. For 0 < t � T we have

E| �(III3)|Rd � 1

μΛ2
E

∣
∣
∣
∣
∣

t∫

0

( s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dW r

)( s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dW 1

r

)

ds

∣
∣
∣
∣
∣
Rd

=
1

μΛ2
E

[ ( t∫

0

( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW 1
r

)2

ds

)2

+

d∑

k=2

( t∫

0

( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW k
r

)( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW 1
r

)

ds

)2] 1
2

� 1

μΛ2
E

( t∫

0

( s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

dW 1
r

)2

ds

)

=
1

μΛ2

( t∫

0

( s∫

0

Ee−
2
μ
(A(μ,s)−A(μ,r))dr

)

ds

)

� 1

μΛ2

( t∫

0

( s∫

0

e−
2
μ
Λ(s−r)dr

)

ds

)

=
1

μΛ2

μ

2Λ

t∫

0

(1− e
− 2Λs

μ )ds =
t

2Λ3
− μ

4Λ4
(1− e

− 2Λt
μ ),

which does not tend to 0 as μ ↓ 0. Since

E| �(III3)|2Rd � (E| �(III3)|Rd)2,

we see that E| �(III3)|2Rd does not go to 0 as μ ↓ 0. Now, we have

E

∣
∣
∣
∣
∣
γ(μ)−

t∫

0

1

λ(qμs )
dW s

∣
∣
∣
∣
∣

2

Rd

� 1

4
E| �(III3)|2Rd −E|Rγ(μ)|2Rd −E| �(III1)|2Rd −E| �(III2)|2Rd .

Therefore,

E

∣
∣
∣
∣
∣
γ(μ)−

t∫

0

1

λ(qμs )
dW s

∣
∣
∣
∣
∣

2

Rd

is uniformly bounded from below by a positive constant as μ ↓ 0.

We can check that the process qμt , 0 � t � T , does not converge as μ ↓ 0 to the process qt,

q0 = q. We have

qμt = q +

t∫

0

b(qμs )

λ(qμs )
ds+

t∫

0

1

λ(qμs )
dW s

+α(μ) +

(

β(μ)−
t∫

0

b(qμs )

λ(qμs )
ds

)

+

(

γ(μ)−
t∫

0

1

λ(qμs )
dW s

)

,
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qt = q +

t∫

0

b(qs)

λ(qs)
ds+

t∫

0

1

λ(qs)
dW s.

Suppose that for any κ, T > 0, and any pμ
0 = p ∈ R

d fixed

lim
μ↓0

P
(

max
0�t�T

|qμt − qt|2Rd � κ
)
= 0.

For some A > 0 independent of μ and κ we have

E

∣
∣
∣
∣
∣
(qμt − qt)−

t∫

0

(
b(qμs )

λ(qμs )
− b(qs)

λ(qs)

)

ds−
t∫

0

(
1

λ(qμs )
− 1

λ(qs)

)

dW s

∣
∣
∣
∣
∣

2

Rd

� AE max
0�s�t

|qμs − qs|2Rd

� A
[
P
(
max
0�s�t

|qμs − qs|2Rd � κ
) ·E max

0�s�t
|qμs − qs|2Rd +P

(
max
0�s�t

|qμs − qs|2Rd < κ
) · κ

]

� A[κ+ o(μ, κ)]

since E max
0�s�t

|qμs − qs|2Rd < ∞. Here, the term o(μ, κ) converges to 0 as μ ↓ 0 for every fixed

κ > 0. Fix κ > 0. Letting μ ↓ 0, we see that

lim
μ↓0

E

∣
∣
∣
∣
∣
∣
(qμt − qt)−

t∫

0

(
b(qμs )

λ(qμs )
− b(qs)

λ(qs)

)

ds−
t∫

0

(
1

λ(qμs )
− 1

λ(qs)

)

dW s

∣
∣
∣
∣
∣
∣

2

Rd

� Aκ.

Since κ > 0 is arbitrary, we see that

lim
μ↓0

E

∣
∣
∣
∣
∣
∣
(qμt − qt)−

t∫

0

(
b(qμs )

λ(qμs )
− b(qs)

λ(qs)

)

ds−
t∫

0

(
1

λ(qμs )
− 1

λ(qs)

)

dW s

∣
∣
∣
∣
∣
∣

2

Rd

= 0.

On the other hand, let us suppose that ∇λ(qμt ) = e1 for 0 � t � T < ∞. Here, e1 is the

unit basis vector e1 = (1, 0, . . . , 0) in R
d. We have

E

∣
∣
∣
∣
∣
α(μ) +

(

β(μ)−
t∫

0

b(qμs )

λ(qμs )
ds

)

+

(

γ(μ)−
t∫

0

1

λ(qμs )
dW s

)∣
∣
∣
∣
∣

2

Rd

� 1

3
E

∣
∣
∣
∣
∣
γ(μ)−

t∫

0

1

λ(qμs )
dW s

∣
∣
∣
∣
∣

2

Rd

−E|α(μ)|2
Rd −E

∣
∣
∣
∣
∣
β(μ)−

t∫

0

b(qμs )

λ(qμs )
ds

∣
∣
∣
∣
∣

2

Rd

.

By our estimates, this leads to a contradiction.

3 Regularization via Approximation of the Wiener Process

We can regularize the problem via approximation of the Wiener process. FOr this purpose,

we introduce the process

W δ
t =

1

δ

∞∫

0

W sρ

(
s− t

δ

)

ds =
1

δ

δ∫

0

W s+tρ
(s

δ

)
ds,
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where ρ(•) is a smooth C∞ function whose support is contained in the interval [0, 1] such that

1∫

0

ρ(s)ds = 1.

One can prove that (cf. [2] and the references therein)

lim
δ↓0

E max
t∈[0,T ]

|W δ
t −W t|2Rd = 0.

We have

Ẇ
δ
t = −1

δ

1∫

0

W t+δrρ̇(r)dr.

We can then introduce the following regularization of our problem: first we consider the system

μq̈μ,δt = b(qμ,δt )− λ(qμ,δt )q̇μ,δt + Ẇ
δ
t , qμ,δ0 = q ∈ R

d, q̇μ,δ0 = p ∈ R
d. (3.1)

Equivalently, it is the first order system
⎧
⎨

⎩

q̇μ,δt = pμ,δ
t ,

ṗμ,δ
t =

1

μ
b(qμ,δt )− λ(qμ,δt )

μ
pμ,δ
t +

1

μ
Ẇ

δ
t .

(3.2)

We can proceed with estimates similar to those in the previous sections. Since for fixed δ > 0

|Ẇ δ
t |Rd � 1

δ

(
max
0�r�1

|ρ̇(r)|)( max
t�s�t+δ

|W s|Rd

)
< ∞ a.s., (3.3)

we can prove that all the terms

E|α(μ)|Rd , E

∣
∣
∣
∣
∣
β(μ)−

t∫

0

b(qμs )

λ(qμs )
ds

∣
∣
∣
∣
∣
Rd

, E

∣
∣
∣
∣
∣
γ(μ)−

t∫

0

1

λ(qμs )
dW δ

s

∣
∣
∣
∣
∣
Rd

goes to zero as μ ↓ 0. (To be precise, we should write α(μ, δ), β(μ, δ), and γ(μ, δ) to indicate

the dependence on δ, but for the sake of brevity we neglect that.) In particular, with δ > 0

fixed, we can estimate the term �(III3) up to a term which tends to 0 as μ ↓ 0. We have

E| �(III3)|Rd � 1

μ

‖∇λ‖∞
λ2
0

t∫

0

E

∣
∣
∣
∣
∣

s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))Ẇ

δ
rdr

∣
∣
∣
∣
∣

2

Rd

ds

=
1

μ

‖∇λ‖∞
λ2
0

t∫

0

1

δ2
E

∣
∣
∣
∣
∣

s∫

0

e
− 1

μ
(A(μ,s)−A(μ,r))

( 1∫

0

W r+δmρ̇(m)dm

)

dr

∣
∣
∣
∣
∣

2

Rd

ds

=
1

μ

‖∇λ‖∞
λ2
0

t∫

0

1

δ2
E

∣
∣
∣
∣
∣

1∫

0

ρ̇(m)W r+δmdm

s∫

0

e−
1
μ
(A(μ,s)−A(μ,r))dr

∣
∣
∣
∣
∣

2

Rd

ds

� 1

μ

‖∇λ‖∞
λ2
0

t∫

0

1

δ2
(
max

0�m�1
|ρ̇(m)|)2E( max

0�l�s+δ
|W l|Rd

)2

( s∫

0

e−
λ0(s−r)

μ dr

)2

ds
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� μ
‖∇λ‖∞

λ4
0

t

δ2
(
max

0�m�1
|ρ̇(m)|)2E( max

0�l�s+δ
|W l|Rd

)2
.

Therefore, for fixed δ > 0 we have E| �(III3)|Rd → 0 as μ ↓ 0. By (2.4), we get

qμ,δt = q +

t∫

0

b(qμ,δs )

λ(qμ,δs )
ds+

t∫

0

1

λ(qμ,δs )
dW δ

s

+α(μ) +

(

β(μ)−
t∫

0

b(qμ,δs )

λ(qμ,δs )
ds

)

+

(

γ(μ)−
t∫

0

1

λ(qμ,δs )
dW δ

s

)

. (3.4)

Let the process q̃δt be governed by the equation

˙̃q
δ

t =
b(q̃δt )

λ(q̃δt )
+

1

λ(q̃δt )
Ẇ

δ
t , q̃δ0 = q ∈ R

d. (3.5)

Then

q̃δt = q +

t∫

0

b(q̃δs)

λ(q̃δs)
ds+

t∫

0

1

λ(q̃δs)
dW δ

s. (3.6)

Let

M(t, δ, μ) = E max
0�s�t

|qμ,δs − q̃δs|Rd .

By (3.4) and (3.6), using the estimate (3.3), we get

M(t, δ, μ) � K1

t∫

0

M(s, δ, μ)ds+K2(t, δ)

t∫

0

M(s, δ, μ)ds+ oμ(1).

Here, oμ(1) is a term which goes to 0 as μ ↓ 0. The positive constant K1 is independent of μ,

δ, and t. The positive constant K2 = K2(t, δ) may depend on t and δ, but is independent of μ.

Now, we use the Bellman–Gronwall inequality:

M(t, δ, μ) � oμ(1) exp((K1 +K2(t, δ))t).

We conclude that for any δ, κ, T > 0 fixed and any pμ,δ
0 = p fixed,

lim
μ↓0

P
(
max
0�t�T

|qμ,δt − q̃δt |Rd > κ
)
= 0.

Now we can take δ ↓ 0. Using Theorem 6.7.2 from [3] we obtain the following result.

Theorem 3.1. We have, as δ ↓ 0,

lim
δ→0

E max
t∈[0,T ]

|q̃δt − q̂t|Rd = 0,

where q̂t is the solution of the problem

˙̂qt =
b(q̂t)

λ(q̂t)
+

1

λ(q̂t)
◦ Ẇ t, q̂0 = q ∈ R

d. (3.6)
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Here, the stochastic term is understood in the Stratonovich sense.

In the general case,

μq̈μ,δt = b(qμ,δt )− λ(qμ,δt )q̇μ,δt + σ(qμ,δt )Ẇ
δ
t , qμ,δ0 = q, q̇μ,δ0 = p, (3.7)

where the matrix σ(•) satisfies the assumptions made in Section 1, for any δ, κ, T > 0 fixed and

any pμ,δ
0 = p fixed we have

lim
μ↓0

P
(
max
0�t�T

|qμ,δt − q̃δt |Rd > κ
)
= 0.

The process q̃δt is governed by the equation

˙̃q
δ

t =
b(q̃δt )

λ(q̃δt )
+

σ(q̃δt )

λ(q̃δt )
Ẇ

δ
t , q̃δ0 = q ∈ R

d. (3.8)

We conclude the section with the following assertion.

Theorem 3.2. Under the above assumptions,

lim
δ→0

E max
t∈[0,T ]

|q̃δt − q̂t|Rd = 0,

where q̂t is the solution of the problem

˙̂qt =
b(q̂t)

λ(q̂t)
+

σ(q̂t)

λ(q̂t)
◦ Ẇ t, q̂0 = q ∈ R

d. (3.9)

4 One-Dimensional Case

In the case of one spatial variable, the Smoluchowski–Kramers approximation leads to a one-

dimensional diffusion process qt which is defined by the following stochastic differential equation

written in the Itô form:

q̇t =
b(qt)

λ(qt)
− λ′(qt)

2λ3(qt)
+

1

λ(qt)
Ẇt, q0 = q ∈ R

1. (4.1)

We set

u(q) =

q∫

0

λ(x) exp

(

− 2

x∫

0

b(y)λ(y)dy

)

dx,

v(q) = 2

q∫

0

λ(x) exp

(

2

x∫

0

b(y)λ(y)dy

)

dx.

(4.2)

Since λ(x) > 0, the functions u(q) and v(q) are strictly increasing. Following [4], we introduce

an operator DvDu, where Du means the differentiation with respect to the monotone function

u(q): Duf(q) = lim
h→0

f(x+ h)− f(x)

u(x+ h)− u(x)
; the operator Dv is defined in a similar way. One can check

that DvDu is the generator of the diffusion process qt defined by (4.1).
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Suppose that the friction coefficient λ(q) = λε(q) depends on a parameter ε > 0. We

assume that for each ε ∈ (0, 1] the function λε(q) has a bounded continuous derivative λ′
ε(q)

and 0 < λ � λε(q) � λ < ∞. Let uε(q) and vε(q) be the functions defined by (4.2) with λ(q)

replaced by λε(q). Consider the stochastic process qμ,δ,εt in R
1 defined by the equation

μq̈μ,δ,εt = b(qμ,δ,εt )− λε(qμ,δ,εt )qμ,δ,εt + Ẇ δ
t , qμ,δ,ε0 = q, q̇μ,δ,ε0 = p, (4.3)

where Ẇ δ
t is, as above, a “smoothed” white noise converging to Ẇt as δ ↓ 0.

Theorem 4.1. Assume that λε(q) converge weakly as ε ↓ 0 on each finite interval [α, β] ⊂ R
1

to a function λ(q) (possibly, discontinuous). Then the processes qμ,δ,εt converge weakly on each

finite time interval to the diffusion process qt governed by the generator DvDu (where u(q) and

v(q) defined by (4.2) with λ = λ(q)) as, first μ ↓ 0, then δ ↓ 0, and then ε ↓ 0.

Proof. According to Section 3, the processes qμ,δ,εt converge weakly as first μ ↓ 0 and then

δ ↓ 0 to the process q̂δt which solves Equation (4.1) with λ(q) = λε(q). By assumptions, the

functions uε(q) and vε(q) converge as ε ↓ 0 to functions u(q) and v(q) respectively for each

q ∈ R
1. The functions u(q) and v(q) are continuous and strictly increasing. Therefore (cf. [4]),

there exists a diffusion process qt governed by DvDu. As was shown in [5], the convergence of

uε(q) and vε(q) as ε ↓ 0 to u(q) and v(q) respectively implies the weak convergence of processes

qεt to the process corresponding to DvDu as ε ↓ 0.

Theorem 4.2. Let λε(q) = λ̃(q/ε), and let one of the following conditions be satisfied:

(1) λ̃(q) is a continuously differentiable positive 1-periodic function,

(2) λ̃(q) is an ergodic stationary process (independent of the process Wt in (4.3)) with contin-

uously differentiable trajectories and 0 < λ− � λ̃(q) � λ+ < ∞ for some constants λ−,
λ+,

Put λ =

1∫

0

λ̃(q)dq if condition (1) is satisfied and λ = Eλ̃(q) is condition (2) is satisfied.

Then the process qμ,δ,εt defined by (5.3) converges weakly as first μ ↓ 0 and then ε ↓ 0 to the

process qt defined by the equation

qt =
1

λ
b(qt) +

1

λ
Ẇt, q0 = q.

The proof of this theorem follows from Theorem 4.1 since each of conditions (1) and (2)

implies the validity of the assumptions of Theorem 4.1 and λ(q) = λ.

Assume that λε(q) is a bounded and separated from zero uniformly in ε ∈ (0, 1] positive

function such that lim
ε↓0

λε(q) = λ1 for q < 0 and lim
ε↓0

λε(q) = λ2 for q > 0. Assume that λε(q) is

continuously differentiable for each ε > 0. Let λ̂(q) be the step function equal to λ1 for q � 0

and λ2 for q > 0. Let functions û(q) and v̂(q) be defined by formula (4.2) with λ(q) = λ̂(q);

û(q) and v̂(q) are continuous strictly increasing functions. Denote by q̂t the diffusion process
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in R
1 governed by the generator A = Dv̂Dû. The process q̂t behaves as

1

λ1
Wt on the negative

part of the q-axis and as
1

λ2
Wt on the positive part. Its behavior at q = 0 is defined by the

domain of definition DA of the generator A: a continuous bounded function f(q), q ∈ R
1, twice

continuously differentiable at q ∈ {R1 \ {q = 0}} belongs to DA if and only if its left and right

derivatives at q = 0, f ′−(0) and f ′
+(0) respectively, satisfy the equality

1

λ1
f ′
−(0) =

1

λ2
f ′
+(0)

and Af(q) is continuous.

It is easy to see that the functions uε(q) and vε(q) defined by (4.2) with λ(q) = λε(q) converge

as ε ↓ 0 to û(q) and v̂(q) respectively for each q ∈ R
1. This implies the following result.

Theorem 4.3. Let the friction coefficient λε(q) satisfy the above conditions. Then the

stochastic process qμ,δ,εt defined by (4.3) converges weakly to the diffusion process q̂t in R
1 gov-

erned by A = Dv̂Dû as first μ ↓ 0, then δ ↓ 0, and then ε ↓ 0.

This means, roughly speaking, that, if the friction coefficient is close to the step-function

λ̂(q), then the process qμt , for 0 < μ � 1, can be approximated by the diffusion process q̂t.

5 Multidimensional Case

In this section, we consider the problem of fast oscillating periodic environment in multidi-

mensional case. We consider the system

μq̈μ,δ,εt = b(qμ,δ,εt /ε)− λ(qμ,δ,εt /ε)q̇μ,δ,εt + Ẇ
δ
t , qμ,δ,ε0 = q ∈ R

d, q̇μ,δ,ε0 = p ∈ R
d. (5.1)

Here, as in Section 3, the process W δ
t is the approximation of the Wiener process in R

d.

We make the same assumptions on the functions λ(•) and b(•) as in Section 2. In addition, we

assume that the functions λ(•) and b(•) are 1-periodic, i.e., λ(x+ ek) = λ(x) and b(x+ ek) =

b(x) for x ∈ R
d and ek = (0, 0, . . . , 1(kth coordinate), . . . , 0), 1 � k � d. Under this assumption,

the system (5.1) can be regarded as a system on the d-torus T
d = R

d/Zd. Fix ε > 0. We can

proceed as in Section 3 to see that first as μ ↓ 0, then as δ ↓ 0 the process qμ,δ,εt converges in

probability to the process qεt such that

q̇εt =
b(qεt/ε)

λ(qεt/ε)
+

1

λ(qεt/ε)
◦ Ẇ t, qε0 = q ∈ R

d.

The above equation, written in the form of the Itô integral, takes the form

q̇εt =
b(qεt/ε)

λ(qεt/ε)
− 1

2ε

∇λ(qεt/ε)

λ3(qεt/ε)
+

1

λ(qεt/ε)
Ẇ t, qε0 = q ∈ R

d. (5.2)

The generator corresponding to (5.2) is the second order differential operator

Lεu(x) =

(
b(x/ε)

λ(x/ε)
− 1

2ε

∇λ(x/ε)

λ3(x/ε)

)

· ∇u(x) +
1

2

1

λ2(x/ε)
Δu(x). (5.3)
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Our goal is to study the homogenization properties of (5.3) in the general multidimensional

case. Homogenization problems were considered by many authors (cf., for example, [6]–[10].)

However, we provide here an elementary probabilistic way of doing this. Our method follows [6]

and [11, pp. 104–106].

We first make the change of variable
q

ε
= y and

t

ε2
= s. The process yε

s =
1

ε
qεt corresponds

to the generator

Aε =
1

2λ2(y)
Δy − ∇λ(y)

2λ3(y)
· ∇y + ε

b(y)

λ(y)
· ∇y.

We regard yε
s as a process on T

d. Then we have the bound
∣
∣
∣
∣
∣
Eq/εf(y

ε
s)−

∫

Td

f(x)με(x)dx

∣
∣
∣
∣
∣
< Ke−as.

Here, K > 0 and a > 0 are independent of ε for small ε. The function f is bounded and

measurable. The function με(x) is the density of the unique invariant measure of yε
s on T

d and
∫

Td

με(x)dx = 1.

We have

lim
ε↓0

με(x) = μ(x), lim
ε↓0

∫

Td

f(x)με(x)dx =

∫

Td

f(x)μ(x)dx

for f ∈ C(Td), where μ(x) is a unique invariant measure for the process with generator A0 on

T
d and ∫

Td

μ(x)dx = 1.

Combining these estimates, we conclude that for any n and t � δ > 0 there exists ε0(n, δ) > 0

such that for any 0 < ε < ε0(n, δ)
∣
∣
∣
∣
∣
Eqf

(
qεt
ε

)

−
∫

Td

f(x)μ(x)dx

∣
∣
∣
∣
∣
<

1

n
.

This implies that for any f ∈ C(Td)

lim
ε↓0

sup
t�δ

∣
∣
∣
∣
∣
Eqf

(
qεt
ε

)

−
∫

Td

f(x)μ(x)dx

∣
∣
∣
∣
∣
= 0.

Finally, we calculate the density μ(x). Since

A0 =
1

2λ2(y)
Δy − ∇λ(y)

2λ3(y)
· ∇y =

1

2λ2(y)
(Δy −∇(lnλ(y)) · ∇y),

we see that

μ(x) = Cλ(x), C =

( ∫

Td

λ(x)dx

)−1

,
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and we have the following result.

Lemma 5.1. For any f ∈ C(Td)

lim
ε↓0

sup
t�δ

∣
∣
∣
∣
∣
∣
∣
∣

Eqf

(
qεt
ε

)

−

∫

Td

f(x)λ(x)dx
∫

Td

λ(x)dx

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (5.4)

Corollary. For any bounded continuous function f(x) on T
d, q ∈ T

d,

Eq

⎡

⎢
⎢
⎣

t∫

0

f

(
qεs
ε

)

ds−
t

∫

Td

f(x)λ(x)dx
∫

Td

λ(x)dx

⎤

⎥
⎥
⎦

2

→ 0

as ε ↓ 0, for 0 < t < ∞.

The proof of this corollary is the same as that of the corollary after Lemma 1 in [6].

Now, let us consider auxiliary functions Nk(y), k = 1, . . . , d, which are periodic bounded

solutions (i.e., on T
d) of the equation

1

2λ2(y)
ΔyNk(y)− ∇yλ(y)

2λ3(y)
· ∇yNk(y) = A0(Nk(y)) =

1

2λ3(y)

∂λ

∂yk
(y), y ∈ T

d. (5.5)

The solvability of this equation comes from the fact that (A0)∗λ(y) = 0 and
∫

Td

1

2λ3(y)

∂λ

∂yk
(y)λ(y)dy = 0.

The boundedness of a solution comes from our assumptions on the function λ(•). Now, we apply

the Itô formula:

εNk

(
qεt
ε

)

− εNk

(q

ε

)
= ε

[ t∫

0

∇Nk

(
qεs
ε

)

· 1
ε

(
b

λ

(
qεs
ε

)

− 1

2ε

∇λ

λ3

(
qεs
ε

)

+
Ẇ s

λ(qεs/ε)

)

ds

+
1

2

t∫

0

ΔNk

(
qεs
ε

)
1

ε2
1

λ2(qεs/ε)
ds

]

=

t∫

0

∇Nk

(
qεs
ε

)

·
(
b

λ

(
qεs
ε

)

+
Ẇ s

λ(qεs/ε)

)

ds+
1

2ε

t∫

0

∂λ

∂yk

(
qεs
ε

)

λ3(qεs/ε)
ds. (5.6)

Let N(y) = (N1(y), . . . , Nd(y)). Using (5.5), we have

qεt − q =

t∫

0

(
b

λ(qεs/ε)
+

Ẇ s

λ(qεs/ε)

)

ds

+

t∫

0

(DN)

(
qεs
ε

)(
b

λ

(
qεs
ε

)

+
Ẇ s

λ(qεs/ε)

)

ds− ε

(

N

(
qεt
ε

)

−N
(q

ε

))

.

202



Here,

(DN)(y) =

(
∂Ni

∂yj

)

1�i,j�d

, y = (y1, . . . , yd) ∈ T
d.

Therefore, using the corollary after Lemma 5.1, we see that qεt converges weakly to a process

qt, q0 = q ∈ R
d governed by the operator

L =
1

2

d∑

i,j=1

aij
∂2

∂yi∂yj
+

d∑

i=1

bi
∂

∂yi
(5.7)

with the coefficients

aij =

∫

Td

(∇Ni(y) · ∇Nj(y)

λ(y)
+

1

λ(y)

(
∂Nj

∂yi
(y) +

∂Ni

∂yj
(y)

)

+ δij
1

λ(y)

)

dy

/( ∫

Td

λ(y)dy

)

,

bi =

∫

Td

bi(y)dy
∫

Td

λ(y)dy
+

d∑

k=1

∫

Td

bk(y)
∂Ni

∂yk
(y)dy

∫

Td

λ(y)dy
. (5.8)

Here, δij = 1 if i = j and δij = 0 otherwise.

We can simplify the expression for aij : using (5.5), we get

aij =

∫

Td

(∇Ni(y) · ∇Nj(y)

λ(y)
+

1

λ(y)

(
∂Nj

∂yi
(y) +

∂Ni

∂yj
(y)

)

+ δij
1

λ(y)

)

dy

/( ∫

Td

λ(y)dy

)

=

∫

Td

(

div

(
Ni(y)

λ(y)
∇Nj(y)

)

− Ni(y)

λ(y)
ΔNj(y)−Ni(y)∇Nj(y) · ∇

(
1

λ(y)

)

+
1

λ(y)

(
∂Nj

∂yi
(y) +

∂Ni

∂yj
(y)

)

+ δij
1

λ(y)

)

dy

/( ∫

Td

λ(y)dy

)

=

∫

Td

(
∂

∂yj

(

Ni(y)
1

λ(y)

)

− 1

λ(y)

∂Ni

∂yj
(y)

+
1

λ(y)

(
∂Nj

∂yi
(y) +

∂Ni

∂yj
(y)

)

+ δij
1

λ(y)

)

dy

/( ∫

Td

λ(y)dy

)

=

∫

Td

∂Nj

∂yi
(y)

1

λ(y)
dy

∫

Td

λ(y)dy

+ δij

∫

Td

1

λ(y)
dy

∫

Td

λ(y)dy

. (5.9)

So, we have the following assertion.

Theorem 5.1. As ε ↓ 0, the process qεt converges weakly to the process qt, q0 = q ∈ R
d,

governed by the operator (5.7) with coefficients given by (5.8) and (5.9).
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This Theorem implies a homogenization result for the process qμ,δ,εt defined by (5.1).

6 Remarks and Generalizations

6.1 Small mass – large friction asymptotics

Let the friction coefficient in (1.1) be as follows: λε(q) = ε−1λ(q), q ∈ R
n, 0 < ε � 1. As it

follows from Theorem 3.1, the Smoluchowski–Kramers approximation in this case has the form

q̇
ε
t =

εb(qεt )

λ(qεt )
− ε2∇λ(qεt )

2λ3(qεt )
+

ε

λ(qεt )
Ẇ t, qε0 = q.

Put q̃εt = qεt/ε. Then q̃εt satisfies the equation

˙̃q
ε

t =
b(q̃εt )

λ(q̃εt )
− ε∇λ(q̃εt )

2λ3(q̃εt )
+

√
ε

λ(q̃εt )

˙̃
W t, q̃ε0 = q, (6.1)

where W̃ t is a Wiener process.

Assume that the vector field b(q), q ∈ R
n, has a finite number of compact attractors

K1, . . . ,Kl. Let, for the sake of brevity, each Ki be an asymptotically stable equilibrium, and let

each point of Rn, except for a separatrix set E ⊂ R
n, be attracted to one of these equilibriums.

The separatrix set E is assumed to have dimension less than n. Then, if q̃ε0 = q �∈ E , q̃εt first

comes to a small neighborhood of a stable equilibrium Ki, i = i(q), with the probability close

to 1 as ε ↓ 0 and spends in this neighborhood a long time. Because of the large deviations,

the trajectory will switch to the neighborhood of another attractor, then to another, and so on.

We see from (6.1) that the long-time behavior of the system with a large friction is similar to

the behavior of a system with small noise. Applying the results of [12, Chapters 4 and 6], we

see that for 0 < ε � 1 the sequence of transitions between the attractors, the main term of

transition time logarithmic asymptotics, and the most probable transition paths are not random

for generic systems. These characteristics of the long-time behavior are defined by the function

V (x,y) = inf

{
1

2

T∫

0

|λ(ϕs)ϕ̇s − b(ϕs)|2ds : ϕ0 = x, ϕT = y, T � 0

}

, x,y ∈ R
n

and the extremals of this variational problem.

Assume that the dynamical system q̇t = b(qt) has a first integral. Assume that, say, n = 2

and b(q) = ∇H(q) for some smooth generic function H(q), q ∈ R
2, such that lim

|q|→∞
H(q) = ∞.

In this case, H(qt) ≡ H(q0).

Assume that the friction is strong: λε(q) = ε−1λ(q). Making the time change q̂εt = qt/ε2 , we

have
˙̂q
ε

t =
1

ε2
∇H(q̂εt )−

∇λ(q̂εt )

2λ3(q̂εt )
+

1

λ(q̂εt )
Ẇ t, q̂ε0 = q ∈ R

2.

We identify points of each connected component of every level set ofH(q). The set obtained after

such an identification is homeomorphic in the natural topology to the graph Γ. Let Y : R2 → Γ

be the identification mapping. Then the long-time evolution of the system can be characterized

by the stochastic process Y ε
t = Y (q̂εt ) on Γ. The process Y ε

t , in general, is not Markovian. But
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Y ε
t converges weakly in the space of continuous functions ϕ : [0, T ] → Γ as ε ↓ 0 to a diffusion

process on the graph Γ (cf. [12, Chapter 8]). This limiting process is defined by a family of

second order differential operators, one on each edge of Γ, and by the gluing conditions at the

vertices. Following [12], one can evaluate these operators and the gluing conditions.

6.2 Fast oscillating random friction in multidimensional case

Let us consider the case of fast oscillating in the space variable, random friction, in dimension

d � 2. Let (Ω,F ,P) be a probability space. Let λ(x, ω), ω ∈ Ω be a random field in R
d with

the following properties:

(i) For any fixed ω ∈ Ω and x ∈ R
d, the function ∞ > Λ � λ(x, ω) � λ0 > 0.

(ii) For every x ∈ R
d the random variable λ(x, ω) is independent of the Wiener process W t.

(iii) The random field λ(x, ω) has the form λ(x, ω) = λ(T (x)ω) where T (x) : Ω → Ω is a

d-dimensional dynamical system which preserves the measure P and is ergodic with respect to

P.

Let us now consider an analogue of (5.1):

μq̈μ,δ,εt = −λ

(
qμ,δ,εt

ε
, ω

)

q̇μ,δ,εt + Ẇ
δ
t , qμ,δ,ε0 = q ∈ R

d , q̇μ,ε,δ0 = p ∈ R
d . (6.2)

For each fixed ω ∈ Ω, as we proved in Section 3, we have that qμ,δ,εt (ω) converges weakly to

a process qεt (ω) as first μ ↓ 0 and then δ ↓ 0. The process qεt is subject to

q̇εt = − 1

2ε

∇λ

(
qεt
ε
, ω

)

λ3

(
qεt
ε
, ω

) +
1

λ

(
qεt
ε
, ω

)Ẇ t , qε0 = q ∈ R
d . (6.3)

We conjecture that as ε ↓ 0, qεt converges weakly to a process qt, q0 = q ∈ R
d subject to the

operator L =
1

2

d∑

i,j=1
aij

∂2

∂xi∂xj
with effective diffusivity

aij = E

⎡

⎢
⎢
⎣

∫

Td

∂Nj

∂yi
(x, ω)

1

λ(x, ω)
dx

∫

Td

λ(x, ω)dx

+ δij

∫

Td

1

λ(x, ω)
dx

∫

Td

λ(x, ω)dx

⎤

⎥
⎥
⎦ . (6.4)

Here the functions Nk(x, ω) (1 � k � d) shall satisfy certain auxiliary problem. (We actually

have a formulation of this problem but we are not sure about its validity: we let Nk(x, ω) be

the solution of the equation

E[(∇xNk(x, ω)− ek) · ∇xϕ(x, ω)] = 0 ,

for all ϕ(x, ω) smooth and compactly supported in x ∈ R
d and measurable with respect to

ω ∈ Ω. The existence of solutions to this problem is guaranteed by the Lax-Milgram lemma.)

However, we are not aware of the validity of this conjecture nor a proof of it. We are also

not sure about the correct reference of such a problem. (We thank E.Kosygina for pointing out

to us two relevant papers [13] and [14].)
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6.3 Motion of charged particles in a magnetic field

One can expect that, using the regularization by smoothed white noise, it is possible to get

the Smoluchowski–Kramers approximation for the equation

μq̈μt = b(qμt )−A(qμt )q̇
μ
t + σẆ t, qμ0 = q, q̇μ0 = p, q,p ∈ R

n, (6.5)

Here, σ > 0 and A(q) are matrix-valued functions having strictly positive eigenvalues for each

q ∈ R
n. In particular, if A(q) = λ(q)A, where λ(q) > 0 and A is a constant positive defi-

nite symmetric matrix, the problem can be reduced to the case considered in Section 3 by an

appropriate linear change of variables.

If A has a negative eigenvalue, the Smoluchowski–Kramers approximation is not applicable.

The case of A with pure imaginary eigenvalues is of interest since such equations describe the

motion of charged particles in a magnetic field. In the case λ = const, n = 2, and A =

(
0 −1

1 0

)

,

the problem was considered in [2]. In this case, the Smoluchowski–Kramers approximation holds

after a regularization. If b(q) = −∇F (q), q ∈ R
2, and A =

(
0 −1

1 0

)

, one can show that the

regularization by the smoothed white noise leads to the equation

q̇t =
1

λ(qt)
∇F (qt)− σ2∇λ(qt)

2λ3(qt)
+

σ

λ(qt)

˙̃
W t q0 = q ∈ R

2. (6.6)

If the noise in (6.5) is small (0 < σ � 1), the motion described by (6.6) has a fast component

and a slow component. Applying the results of [12, 15], one can describe the limiting (as σ ↓ 0)

slow component of q̂σt = qt/σ2 as a diffusion process on the graph corresponding to the potential

F (q) (the graph is homeomorphic to the set of connected components of the level sets of F (q)

provided with the natural topology).
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