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convergence are obtained, and sufficient conditions are presented under which the speed
of approzimations can be accelerated to any given order of convergence by Richardson’s
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1 Introduction

We study spatial discretizations

duf (x) = (L} (x)uf () + fi(x)) dt + Y (M uf (z) + gf (x)) dw, (L.1)
p=1
t € [0,T], z € Gy, for stochastic parabolic partial differential equations
dug(z) = (Lyu(z) + fo(@)) dt + > (Mfu(z) + gf () dwf, (1.2)
p=1

t €10,T], z € R? with initial condition
up(x) = (z), =R (1.3)

Here (w”)/‘jil is a sequence of independent %#-Wiener processes carried on a probability space
(Q,.#, P), equipped with the filtration F = (.%#;);>0. The operators L and M?, p=1,2,..., are
differential operators in x, with random time dependent coeflicients, adapted to the filtration F,

such that L is a second order differential operator and M? are first order operators, of the form

d d
L= Z a?ﬂ(x)DaDﬁ and M? = Zba”bt(m)Da, p=12 .,
a,B=0 a=0
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respectively. The stochastic parabolicity condition is assumed (cf. Assumption 2.1 below).
Such equations arise in filtering theory of partially observed diffusion processes Z = (X,Y), as
equations for the unnormalized conditional density of the signal process X at time t, given the
observation process Y until time t. Therefore, effective numerical algorithms for solving (1.2)-
(1.3) are of great practical importance. There are many methods introduced to solve (1.2)-(1.3)
numerically. We take here finite difference operators L" and M"" to approximate the solution
u of (1.2)-(1.3) by the solution u” of (1.1) with initial condition u} = v on a fixed grid Gy, of
mesh-size |h|.

Finite difference approximations for deterministic partial differential equations are studied
extensively in the literature (cf., for instance, [1] and the references therein). However, there are
only a few results published for degenerate equations. Sharp rate of convergence estimates are
obtained in [2] for deterministic (possibly) degenerate parabolic and elliptic SPDEs with mono-
tone finite difference schemes. Rate of convergence estimates of finite difference approximations
for stochastic parabolic partial differential equations are obtained under the strong stochastic
parabolicity condition, i.e., when there is a constant x > 0 such that

(267 — bPYP) 220 > k2SS
for allw € Q, t >0, and = € R%

About hundred years ago L. F. Richardson suggested a method of accelerating the conver-
gence of numerical approximations depending on a parameter, for example on the mesh-size |h|
of the grid in the case of finite difference approximations (cf. [3] and [4]). He demonstrated that
the accuracy of the approximations can be dramatically increased if one takes suitable mixtures
of approximations with different step-sizes. His idea is based on the existence of an expansion
of the finite difference approximation in powers of the step-size, which makes it possible to find
such mixtures where the lower order powers are cancelled out. Therefore, it is important to
find sufficient conditions under which numerical approximations admit power expansions with
respect to a parameter which is related to the error of the method. The possibility of such
expansions have been studied thoroughly in numerical analysis (cf., for example, the book [5] on
Richardson’s idea applied to finite difference approximations for deterministic partial differen-
tial equations). In [6], Richardson’s idea is implemented to a class of monotone finite difference
schemes for (possibly) degenerate parabolic and elliptic partial differential equations, and, in
[7], Richardson’s idea is implemented to stochastic partial differential equations satisfying the
strong parabolicity conditions. Both in[6] and [7], general conditions are obtained under which
the accuracy of finite difference approximations in the supremum norm can be made as high as
desired. In the present paper, we generalize some results from [6] and [7] to SPDEs satisfying
only the stochastic parabolicity conditions. We present sharp rate of convergence estimate and
give sufficient conditions under which the accuracy of the accelerated schemes is as high as we
wish. In the special case where the finite difference approximations are defined by replacing the
partial derivatives 9z’ by centered finite differences along the basis vector e;, our main theorem
reads as follows: The rate of convergence of the (spatial) finite difference approximations to
(1.2)-(1.3) can be accelerated to any order if the initial condition, coefficients, and free terms
are sufficiently smooth in x and the matrix

ay(z) == (249 — bPHIP)
can be decomposed as

ar(x) = or(x)oy (v) (1.4)
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by a sufficiently smooth matrix ¢ in . Clearly, requiring a sufficiently smooth factorization
(1.4) is a rather restrictive condition. Nevertheless this condition is easily applicable to the
equation of the unnormalized conditional density in nonlinear filtering since this factorization
condition is satisfied even in the general setting of correlated signal and observation noises when
the diffusion coefficients of the signal noise is sufficiently smooth.

For survey papers on the application of Richardson’s method to various numerical approxi-
mations we refer to [8] and [9].

The paper is organized as follows. In Section 2, basic notions and notation are introduced
and the main results are presented. In Section 3, the main tools are given. The proof of the
main theorems are given in the last section, Section 4

We fix a probability space (€2, %, P) equipped with an increasing family of o-algebras (.%;);>0
such that .%; contains the P-zero sets of .#. The o-algebra of predictable subsets of © x [0, c0)
is denoted by £2. We fix also a sequence of independent Wiener processes (v} )2‘3:1, such that w?
is .#-measurable and w} —wf is independent of . %, for 0 < s < t, for every integer p > 1. Unless
otherwise stated, the summation convention with respect to repeated integer-valued indices is
used throughout the paper.

2 Formulation of the Main Results
We consider the equation
duy = (L + fi) dt + (M + gf) dwf (2.1)
for w € Q, (t,z) € [0,T] x RY =: Hy with some initial condition
up(x) = Y(x), =€RY (2.2)

where
L0 =0a;"DoDpo, M{$=1b"Das.

Here and below, the summation with respect to « and § is performed over the set {0, 1, ..., d}
and with respect to p, over the positive integers {1,2,...}. Assume that ato‘ﬁ = af‘ﬂ(az) are
real-valued, b = (b;”(2))52, are lp-valued & x (R%)-measurable functions on Q x Hyp for all
a, B €{0,1,...}.

A necessary condition for the well-posedness of the Cauchy problem (2.1)-(2.2) is the condi-
tion of stochastic parabolicity:

Assumption 2.1. For all (w,t,z) € Q x Hp and z € R?

d
Z (2af = bPbIP) 227 > 0.
ij=1

To formulate an existence and uniqueness theorem for the generalized solution, we also require
smoothness conditions on the coefficients a®?, b®, the initial value 1, and free terms f and g.

Let m > 0 be an integer, and let W3 be the usual Hilbert-Sobolev space of functions on R
with norm || - [|w;n.
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ij Oz

Assumption 2.2. For each (w,t) the functions a; are max(m,2) times, the functions a;

al, % are m times continuously differentiable in z for i, € {1,...,d}. The lo-valued func—
tions bf = (b*7)52; are m-times continuously differentiable in x. There are constants Kj,

[ =0,...,max(m,2) such that
|D'a¥| < K; for I < max(m,?2),
D'a®| < K;, |D'a®| < K, |D'%|;, < Kj, D', <K forl<m
for all « € {0,1...,d} and i,j € {1,...,d}.

Assumption 2.3. We have ¢ € Ly(Q, Zo, W3"). The function f; is Wi'-valued, g7, p =
1,2,..., are W2m+1—valued predictable functions given on Q x [0,7]. Moreover, for g; := (gf )30:1
and

o
HgtHy%Vlg = Z HQfHI%Vé
p=1

we have

£ / il + o) + Bl = 2 < oc.

Remark 2.1. If Assumption 2.3 holds with m > d/2, then, by the Sobolev embedding of
W3 into (Y, the space of bounded continuous functions, for almost all w we can find a continuous
function of x which equals to ug almost everywhere. Furthermore, for each ¢ and w we have
continuous functions of  which coincide with f; and g;, for almost every z € R?. Therefore,
when Assumption 2.3 holds with m > d/2, we always assume that v, f;, and g; are continuous
in x for all ¢.

We look for the solution of (2.1)-(2.2) in H™(T'), the Banach space of W3"-valued weakly
continuous predictable processes u = (u)¢ec[o,7] With the norm defined by

[l ) = B sup_[Ju(®)[fyy < oc.
te[0,T)

We use the notation (¢, ¢) for the inner product of ¢ and ¢ in Ly(RY).

Definition 2.1. A Wji-valued weakly continuous predictable process u = (ut)iejo,r) is a
solution to (2.1)-(2.2) if almost surely for all ¢ € C$°(R?)

(b Dyus + b2, @) dw?

o _

t
(uta QD U(), +/ a D jUs, ZSO) + (anguSa 90) + (a'su37 SD) ds +
0

for all t € [0, 7], where a/ := —D;a" + a% + a’° and the summation in the repeated indices i, j
is performed over their range {1,2...,d}.

The following result is known from [10] (cf. also [8]).

Theorem 2.1. Let Assumptions 2.2, 2.3, and 2.1 hold. Then (2.1)-(2.2) has a unique
solution u. Moreover, uw € H™, it is a strongly continuous process with values in Wéﬂ_l, and
there exists a constant N depending only on T, d, m, and K;,j < max(m,2), such that

Esup [|ug[fyp < N (2:3)
t<T
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Remark 2.2. We are going to assume that m > d/2. Then, by the Sobolev embedding
theorems, the solution u;(z) from Theorem 2.1 is a continuous function of (¢,z) (a.s). More
precisely, with probability one, for any ¢ one can find a continuous function of x which equals
u¢(x) for almost all z and, in addition, this modification is continuous with respect to the couple
(t, ).

We are interested in approximating the solution by means of solving a semidiscretized version
of (2.1) when partial derivatives are replaced with finite differences. For A € R?\ {0} and
h € R\ {0} define

u(z + hA) — u(z)
5 ;

(5h,,\u(x) =

and let 0y, 9 be the unit operator.

Let A C R? be a finite set containing the zero vector and consider the following finite
difference equation

dul = (LIl + f) dt + (M ul + gf) dw?, (2.4)

ug =9, (2:5)
with

Ly = aohoh + > (0 0ha — a0nn), M =605k,
XS
where the summation is performed over A, u € A and in (2.4) also with respect to p € {1,2,... }.
Assume that a™ = a)*(z), p* = p)Mz), ¢* = q}(z) are real-valued, and b* = (bg\p(x))gil are
lo-valued, & x %(RY)-measurable bounded functions on Q x Hr, for all A\, u € A.
Introduce
Gy, = {)\1h + ..+ XNh:n=12,..,\€AU (—A)}
Let l2(Gy,) be the set of real-valued functions w on Gy, such that
[uliy,) =101 Y lu(@)? < co.
z€Gy,

The notation l3(Gy,) will also be used for ly-valued functions like g.

Remark 2.3. Note that Equation (2.4) is just an infinite system of ordinary Ité equations
for {us(z) : € Gy, }. Therefore, if, for instance, (a.s.)

T

[ +lorle, )t < .
0

and Assumption 2.5 (i) holds, then Equation (2.4) has a unique solution with continuous tra-
jectories in l5(Gy) provided that the initial data ul € l2(Gy) (a.s.). By the Sobolev embedding
of W3 into Cjp, we have W3 C la(Gy,) if r > d/2 (cf. Lemma 4.2 below). Therefore, if

T
11y + / 1£() g + llg(s) [y ds < o0 (as.),
0

then (2.4), (2.5) has a unique l3(Gy,)-valued F-adapted continuous solution (u?)te[o’T].
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It is easy to see that in order u/ approximate the solution of (2.1)-(2.2) the following con-
sistency condition is necessary.

Assumption 2.4. Forall¢,j =1,....,dand p=1,2,...

Z /\H)\zM _ atj Z bi\ﬁ)\i _ bip7

A€o AEAQ

Z a0 4 Z a4 Z PN — Z Pt = al + al, (2.6)
AEAg HEN neMo A€Ao

00 00 0 0
Clt — a’t 5 btp — btp.

There are many ways of constructing appropriate coefficients a, p, q, and b, satisfying this
condition.

Example 2.1. We set A = {eg, €1, ..., e4}, where eg = 0 and e; is the ith basis vector. Let
0" = a2 bl = a,8=0,1,...d, ¢ =p°=0 a,f=1,..4d
Thus, each derivative D; in (2.1) is approximated by the symmetric finite difference 522,.

Example 2.2. We take the same set A as in the previous example, and define p®*, q° for
a € {1,2,...,d} and define

a0 =q% o =0 a,B=1,..,db6°" =b «,f=01,..d.
We also take nonnegative & ® %(R%)-measurable functions p¢e, q° for a € {1, ..., d}, such that
pee — g% =a" +a™, a€{1,2,..,d}.

h

To formulate our theorem on the accuracy of the approximation u", we fix an integer [ > 1

constants Ag,..., A;+1 and impose the following condition.
Assumption 2.5. (i) For each (w,t), z € R?
A

p* >0, q*>0, AeA.

(ii) For some integer d; > 1 for each A € Ag there are .# ® Z(Hr)-measurable real functions
oM., 0’ on Q x Hr such that for all (w,t,2) € Q x Hy

M= 20 — b bl = ZJ/\kU“k A, € Ao (2.7)

(iii) Let I > 1 be an integer. For A € Ay the functions o**, b*, and b® are I + 1 times

a0 400
P,

continuously differentiable in z, and a®*, and q° are [ times continuously differentiable

in . For all values of arguments
| DI 4+ | D76 + |DI6°| < A; for j <1+1,
|D7a*| + | D7a| + |Da™|| DIp?| + |Dq < A for j <1,

forall A € Ag, k=1,...,d;.
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Remark 2.4. It is clear that Assumption 2.5 (ii) implies

Z H’\“z,\zu >0 for (w,t,z) € Qx Hp, z)y € R, X € Ay,
A€o
which, together with (2.6), implies Assumption 2.1. If, in addition, Assumptions 2.2 and 2.3 are
also satisfied with m > 2 + d/2, then (2.1)-(2.2) admits a unique generalized solution, which,
by the Sobolev embedding, almost surely equals to a function u for every ¢ € [0,7] and almost
every € R?, such that u and its derivatives in  up to second order are continuous functions
on Hp and almost surely

duy(z) = (Lou(x) + fil)) dt + (Mue(x) + 97 (x)) dwf,  uo(x) = (x)
for all t € [0,7] and z € R,
Theorem 2.2. Let Assumptions 2.2 through 2.5 hold with m > 3+1 and |l > d/2. Then for

h >0

E sup sup |ul'(z) —u(t,z)|* < N2 A, (2.8)
t€[0,7] z€Gy,

where N is a constant depending only on T, A, 1, d, m, Ky,....,K,, and Ag,....,A41.

We prove this theorem after the next section. Now we are going to formulate the main result

of the paper. Namely, that under additional smoothness conditions, for a given integer k > 0
there exist random fields UEJ )(m), (t,x) € Hr, such that they are independent of h, u(®) is the

solution of (2.1)-(2.2), and for h # 0 almost surely

WG 0
ul(z) = Z ﬁut] (z) + Ry () (2.9)
§=0

for all t € [0, 7] and = € Gy, where u}' is the solution to (2.4), (2.5), and R" is an lo(Gy,)-valued
adapted continuous process such that

E sup sup |RP(z)]? < NR2FHD 2 (2.10)
t€[0,T] z€Gy,

with a constant NV independent of h.

Assumption 2.6. Let m > 0 be a fixed integer. For A\, € A the derivatives in z € R? of
aM and the lp-valued functions b* up to order max(m — 4,0), and for A € Ay the derivatives in
z of p*, g* up to order max(m — 2,0) are functions, bounded by a constant Cy, for all w € Q
and (t,z) € Hr.

Theorem 2.3. Let Assumptions 2.2 through 2.6 hold with
m=m22k+3+1 (2.11)

and | > d/2, where k > 0 is an integer. Then for h > 0 the expansion (2.9) and the estimate
(2.10) hold with a constant N depending only on d, m, I, T, A, Ko,...,K,, Ao,...,A1+1, and C,.

If p* = g = 0 for A € Ag, then (2.9)-(2.10) hold for all h # 0. Moreover, ul) = 0 for odd
Jj <k, and if k is odd then to have (2.9) and (2.10) we need only

m>2k+2+1
instead of (2.11).
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Remark 2.5. Actually u}(z) is defined for all z € R? rather than only on G; and, as we
will see from the proof of Theorem 2.3, one can replace Gy, in (2.10) with R?.

Equality (2.9) clearly yields

k

W A
Spaul(z) =3 Fah,xu?)(:c) + AR (x)
j=0 7"

for any A = (A1,..., \,) € A" and integer n > 0, where A° = {0} and
(5]17)\ = 5]17)\1 NETTIN 5]17)\”.
Theorem 2.3 can be generalized as follows.

Theorem 2.4. Let A € A™ for an integer n > 0. Let Assumptions 2.2 through 2.6 hold with
m=m>n+2k+3+I (2.12)
and 1> d/2. Then for h >0 (2.9) and

E sup sup |0 \RMz)[2 < NR2KHD 2 (2.13)
t€[0,T] z€Gy,

with a constant N depending only on d, m, n, k, I, T, A, Kq, ..., K, Cp, Ag,-..,A111.

Ifp* = q* = 0 for A € Ag, then v\ = 0 for odd j < k, and if k is odd, then, instead of
(2.12), we need only
m>n+2k+241

to have (2.9) and the estimate (2.13).

We prove Theorem 2.4 in Section 4 after some preliminaries presented in Section 3.

To accelerate the rate of convergence of u”, we fix an integer k > 0 and define

i i
o' =) bt A= bt (2.14)
j=0 j=0

where

1

(B0, b1, e br) = (1,0,0,..,00V ", (bo, b1, oy b7) := (1,0,0,...,00V 1, & =[£],

7! is the inverse of the matrix V" := 2~ (I=1(-1) i,7=1,...,k+1, and
V~1is the inverse of matrix Vi 1= 4=G-D0-1 4 =1, .. k+ 1.

Theorem 2.5. Let Assumptions 2.2 through 2.6 hold with
m=m2>2k+3+1 (2.15)

and | > d/2, where k > 0 is an integer. Then for h > 0

Esup sup [ul(x) — ugo) (2)|? < N2+ 2 (2.16)
t<T z€Gy,
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with a constant N = N(T,m,k,d,l,\, Ko, ..., Kin, Ao, ... Aj+1, Cn) -
Ifp = q* =0 for A € Ao, then

Esup sup | (z) — ugo) ()2 < N|h|?F+D) o2 (2.17)
t<T xeGy,

for h #0, and if k is odd, then to have (2.17), we need only
m=m>2k+2+1

instead of (2.15).

Proof. We prove only (2.17) since the estimate (2.16) can be obtained in the same way. By
Theorem 2.3,

7 .
—j h? , -
2-ih (0) (2i) | pk+1,279h
U =u"’ + ;:1 @) w4+ T , 7=0,1,...k,

with 72777 .= p=(W+D R27P . Hence with 7 := 3 r2770
=0

since

7=0 7=0
by the definition of (b, ;5'15) Thus, owing to (2.10), we have
E sup sup [a" —ul? < 2FVE sup sup [7(x)|? < NR2FHD 2
t€[0,T] z€Gy, te[0,T] z€Gy,
and the theorem is proved. O

Remark 2.6. Note that without acceleration, i.e., when k¥ = 0 and & = 1 in (2.15) and
(2.16) respectively, in the above theorem for A > 0 we have

E sup sup |uP — %) < NR2A2,
te€[0,T] z€Gy,

and when p* = q* = 0 for A\ € Ag we have

E sup sup |u" —u’)? < NR*#2
t€[0,T] z€Gy,

respectively. These are sharp estimates by virtue of Remark 2.21 in [2] on finite difference
approximations for deterministic parabolic partial differential equations.
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Remark 2.7. Let p* = ¢* = 0 for A € Ag. Let n > 0. Suppose that the assumptions of
Theorem 2.3 hold with
m>n+2k+3+d/2,

with an integer n > 0. Then for A € A™ (2.17) holds with (5h,>ﬁh and (5h,)\u(0) in place of @ and
u(9)| respectively, with a constant N depending on T, m, k, n, d, b, A, Ko,...,.Km, Ao, Apaa
and C,.

Proof. This assertion follows from Theorem 2.4 in the same way as Theorem 2.5 follows
from Theorem 2.3. U

By the above remark, one can construct fast approximations for the derivatives of u(®) via
suitable linear combinations of finite differences of @”.

Example 2.3. Assume that d =2, m = 10, and p* = q* =0 in A € Ag. Then

~h._ 4, h/2 1 h
u .—3u 3U

satisfies

E sup sup \ul(to)(:v) — M) < NhE.
t<T zeGy

Example 2.4. Consider the SPDE
dus = aD*uy dt +bDusdw, t>0,z€R

with initial data ug(x) = cosz, z € R, coefficients a = b = 2, and a one-dimensional Wiener
process w. Note that 2a — b?/2 = 0, i.e., this is a degenerate parabolic SPDE. The unique
bounded solution is

ug(x) = cos(z + 2wy).

The finite difference equation (2.4) is the following:

ul(x + 2h) — 2ul (z) + ul(z — 2h) gt ul(x + h) — uf(z — h)

h _
duy(z) = 572 -

dwt .

Its unique bounded solution with initial condition ug(z) = cosx is

ul'(x) = cos(x + 26p1),

where ¢y, =sinh/h. For t =1, h = 0.1, and w; = 1 we have

u1(0) ~ —0.4161468365, u/'(0) ~ —0.4131150562, u!”/*(0) ~ —0.415389039,

@ (0) = 4ul?(0) — Lul(0) ~ 0.4161470333.

Such a level of accuracy by u/(0) is achieved with h = 0.0008, which is more than 60 times
smaller than h/2.

Note that this example does not quite fit into our scheme because 1 is not square summable
over R, but one can extend our approach to weighted Sobolev spaces and then the above example
can be included formally.
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3 Auxiliary Facts

Recall the notation

1 1
Oy = E(Th,)\ —I), & =0= 5(5h,)\ +0-nx) = 77 (Thx — Th—2)s

for h # 0, A € RY, where for all h € R
Thrp(a) = o(a+hA), @ eR?

for functions ¢ on R?. We set

Ay = Ak = —(8pr +0n-2) = Onnd_nr = (52/2)2-

Sl

The following useful identities can easily be verified.

Lemma 3.1.
Ona(uv) = (Spau)v + (Op20)Thau = (Spau)v + (Spav)u + h(Opau)(Op2v),

1
Ox(uv) = (0xu)o + 5{(n,20) Thyu+ (3-p\0) Th,—ru}

h2
= (O u)v + (0xv)h\u + E(A,\v)&\u

h2
= (dru)v + (O\v)u + ?{((5,\U)A>\v + (Ayu)dyv}
For linear operators A and B we use the notation
[A,B] = BA— AB.

Lemma 3.2.

1 h?
5u(ady) = a8y + 5 (3,@) (na + ros) + 5 (8,0)00,

ads, 0,] = 1 (b(6u) — (38 brie + 5 (b(B) + a(Br0)0r
+ %Z(b(Aua) — a(Axb)x6y,

(@b, bTh ] = (b(0nra) — a(dh,ub)) Thrtp — b(Onxa)Th»,

—_

[ady, 6T 2] = 5 (b(0n2a) — a(0n,1.0)) (Thatp — Thor—p) — a(0n,ub) Thr—p

[\]

(3.2)

(3.4)
(3.5)

(3.6)

Let [ > 0 be an integer and K > 0 be a constant. In the next lemma .# and .4 denote
difference operators of the form .#Z = > b’\éh,)\ and A = > b6y, with functions by on RY,

A€o A€o
and (,) denotes the inner product in Ly(R?).

Lemma 3.3. The following estimates hold for all multiindices o, |a| < I, and functions

© € Wi on RY.
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(i) Ifb> = 0 for X € Ag, and they, together with their derivatives up to order IV1 are functions,

bounded by K, then for h >0

(DA o, D*0) < Nl

(3.7)

(i) If for each A € Ag, b and its derivatives up to order IV 1 are functions, bounded by K,

then for h # 0
(DA ¢, D%0)| < Nl

(3.8)

(iii) If for X € Ag the coefficients b and its derivatives up to order (I+1)V 2 are functions on
R?, bounded by K, and b° and its derivatives up to order | + 1 are functions, bounded by

K, then for h #0
(DN N p, D) + (DN 0, D* N 0)| < NIl 2

In these estimates N denotes a constant that depends only on Ag, d, I, and K.

Proof. To prove (i), we note that, by (3.1),

1 h 1
A _ A 2 A 2 A 2
> b e = 5 > bona(p?) - 5 > M ohap)® < 3 > 0ona(e?).

AEAY AEAg AEAy AEAy

Hence, taking into account that 5;)\, the adjoint of 0y, ) in Lo, is 0 —», we have

1
(M p,p) < 3 > (On-abt ¢?)
AEAQ

which yields (3.7) for [ = 0. For |a] =1>1
Y. D DD e, D) < Nl
1<y +B=a A€o

Hence
(D4 p, D) < Nl + (4 D*p, D),

which yields (3.7) since, by (3.10),
(D, D) < Nljgly

To prove (ii), we note that
(Ao, 0) = (T, ¢)
with
1 . 1
T=5W+A47)=~7 D (OrabA)Thn + (0—p2bA)Th,-),
AEAg
where 4* denotes the adjoint of 4" in Ly. Hence

K K
((He)l < > INUTaelzo + 1Thxellz) e, = 5 > Mllelz,,
AEAp AE€Ao

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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which proves (3.8) for a = 0. For |a| =1>1

S D D)o aD e, D¥)| < Nleliy-
1<y, y+B=a A€Ag

Hence
(DA 9, DY) < Nl + (N D%, D),

which implies (3.8) since due to (3.10) we have
(4" D%, DY) < Nl
Now we prove (iii). From (3.11) by polarization we get

(A, 0) + (N, ¥) = 2(Tp, 1))
for functions ¢, € Lo. Substituting here .4 ¢ in place of ¥, using T* =T and A™* = 2T — A,
we obtain
(NN, 0) + (Np, N p) = 2(Tp, Np) = (TN + N T)p, )
= (TN = AT +2T%)p,0) = ([N, Tlp,0) + 2(Tp, Tp).
Hence, using (3.12) and the identity (3.5), we easily get (3.9) for & = 0. To deal with the case

a # 0, we fix ¢ € WQZ and use the notation f ~ g for functions f,g € L1, which may depend
also on the parameter h if

/ (f(2) - glx)) da

Rd

< Nlely

with a constant N depending only on A, [, d and K. It is clear that
(DA ) D% ~ (N D%p) D%p.
For multiindices v, |y| < m, we set

O = Z (D7by)6,

XS

and note that for multiindices 8 # 0, v # 0, p, such that 8+ v + p = a we have
((/V(ﬂ)(/j/('Y)DPSO)DQSO ~ 0.
Similarly, for multiindices 8 # 0, v # 0, 5 and 7 such that  + f = a and v +7 = o we have
(N O DB N DDV~ 0,
and if 5 =0 and 0 < v < o we have
(AN D) N DTip ~ (D) N * N DT ~ 0,

owing to

1
N =N+ 3 Z {(5h,)\0)\)Th,)\ + (5—h,)\c>\)Th,—)\}- (3.14)
AEAQ
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Thus, for
J = (DN N p)D%% + (DN @)D N ¢

we get
J ~ Joo + zg: be4— EE: Jﬁm

0<v<a 0<fB<
with _
Jgy = (AN BN DDVDPYDY + (N B DB )y ) DT,

where B+~y+p=a, B+ =a,and v +7 = a. By (3.9) with a = 0, we have
Joo ~ 0.
Using (3.14), we find
(AN AN DIDTR) DY ~ (N D D). * DY ~ (N D Do)/ D%,
which for v < «, |y] = 1 yields
Joy = (N N DIDI)Dp + (N D) N VDT ~ 0.

For 8 < a, |B] = 1 the identity (3.4) yields

(N DN DP)Dp ~ (N N D) DPip) D%,
which for 5 < «, |f| = 1 implies
Jgo ~ Jog ~ 0.

For v < a, |y] > 2 it is easy to see that
Joy ~ 0,
and similarly, for 8 < a, |5] > 2 it is easy to see that
Ja0 ~ 0.

Using (3.14) we get
(N A D)DY ~ —(N Dp) ¥ D,

that yields
Joa ~ 0.

It is clear that
(AN DN ) D ~ 0,

and

(N D) N D@~ (N * N D) D%~ —(N N W p) D ~ 0.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(This is the only place where we need that the coefficients of .4 have bounded derivatives up
to [ 4+ 1, not only up to [V 2 as in the rest of the proof.) Hence J,o ~ 0, that together with

(3.15)—(3.16) and (3.17)—(3.21) implies J ~ 0, which proves (3.9).

O
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Remark 3.1. Let (A7), be a sequence of operators of the form A7 = 6?6y, where
=1 AEA
€Mo

bt = (b)‘p);’;l is an lp-valued Borel function on RY for each A € Ag. Let I > 0 be an integer.
Then the following statements hold for all multiindices «, || <1 and functions o € Wi,

(i) If b* and their derivatives up to order max(l,1) are functions, bounded by K for all
A € Ag, then

o0

Z (DY AN Pp, DY) < NHSOH?/VQ
p=1

(ii) If b* and their derivatives up to order (I + 1) V 2 are ly-valued functions bounded by K
for all A € Ay, then

oo oo
(D> Y- AN PN P, D) + (DN Pi0, D* N P)| < Nl
p=1 p=1

In these estimates N is a constant depending only on K, [ and d.

Proof. Taking into account that > |[D*|? < K for |a| < max(l,1) and for |a| < max(l +
p

1,2) respectively, we can get these estimates in the same way as the estimates (3.8) and (3.9)
are obtained. i

Lemma 3.4. Let Assumption 2.5 hold. Then for multiindices o, |a| < I, we have

oo
Qf(¢)i= [ 2D"p()DLp(a) + 3 ID"MWpl@)] dz < Ny,
R4 p=1

where N depends only on l, K, d, and A.
Proof. We set .#" = > *6,. Then M" = 4" 4 % and, by Remark 3.1,
AEAg
S (D", Dt p) < — (DN MM, D) + N,
p p

where (, ) denotes the inner product in Lo and N is a constant depending only on K, I d, and
A. By the equality (3.3),
MM =N 6NBP6NG, + M

A €N
with
— 1 A
M= D 0P (5,6™) (Gxip + Orp)
A,u€Ag
1
+3 Z (8 + 0 )0 (Thori = Thoper — Thor—p + Thy—r—p)
A €A
+6%6% + > 6%0M5, + Y 6m6%0,
YNNG HEAo
1
5 D {09 (Gu0%) T + 040 (8,0 T )
HEAQ
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where the summation convention with respect to the repeated index p is used. By Lemma (3.3)
(i) and (ii), for A > 0 we have

(D zAj P g, D) < llollfy,
A€Ag

(D* AZA: 06 -ap, DY) < Il
€NMAo

and

(D" 0. D*0)| < Nllellyy.
(D%, D*(@™ + )r0)] < Nl
(Db, D) < Nl

for h # 0. Here and everywhere in this proof, N stands for constants depending only on [, K,
d, and A. Hence

Q*(9) < (D%, D% Y @M6x8up) + Nl (3.22)
)\HU‘GAO

Owing to Assumption 2.5 (ii) and the equality (3.3), we have

d1
S @GNS =D NN =N
Au€Ng r=1
with
di
NT=D"dNEN, N =D N,
A€EA r=1

where for each r =1, ..., d;

N == Z J)\T((S)\O'NT){(S)\JrM +0u-2}
A u€EAg

1
e > (Brn + 602" Thrtn = Thi—p—r — Thr— + Th-r—p).

A €A
By Lemma 3.3 (ii) and (iii) for » # 0
(DA, D0)| < Nl

(D* Y NN, D) = D (D NN, D) < Nl

r

Hence

(D%, D* Y @¥630u0) < Nl
>\7MEAO

which along (3.22) completes the proof. O
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We consider the finite difference scheme (2.4), (2.5) now on [0, T] x R rather than on [0, 7] x
Gp. We use the notation W5*(T") and WE5*(T', I2) for the Banach spaces of W3"-valued predictable
processes (ft)ieo,r] and sequences of W3 valued processes g = (Qf)te[O,T]a p =12, .., respec-
tively, with the norms defined by

T
2 _ 2
11 = [ 170y
0

T o0
I9lBog e = | 3 19Ol .
0

p=1
For the sake of brevity, we write also W5*(7") in place of W5*(T', l2).

Theorem 3.5. Let Assumption 2.5 hold. Let ¥ be a Wi-valued Fy-measurable random
variable, f € W5(T) and g € W5 (T, 15). Then for each h # 0 there exists a unique continuous

Lo-valued solution u = (U?)te[o,T] to (2.4), (2.5). Moreover, u" is a Wi-valued continuous

process, and for h > 0

Bsup [} [}y < NEluolfyy + NE / 17+ g2 1) (3.23)

with a constant N depending only on d, I, A, Ag, ..., Aiq, and T. If p» = ¢* = 0 for X € Aq,
then this estimate holds for all h # 0.

Proof. Since (2.4) is an ordinary It6 equation with Lipschitz continuous coefficients for Lo-
valued processes, it has a unique Lo-valued continuous solution u” for each h # 0. Similarly, it
has a unique Wé-valued continuous solution and, since WQZ C Lo, it follows that u” is actually a
continuous W4-valued adapted process. One can easily get the estimate (3.23) with a constant N
which depends on h. In particular, the solution belongs to Wg’l(T ). We assume that F HuH%}Vl <

oo; otherwise, (3.23) is trivial. To prove (3.23) with a constant NV independent of h, we take any
multiindex «, |a| <1, and use the It6 formula for the Lo-valued process D®u” to find

d|D*uf |17, = {Qf (u)) +2(Duf’, D* f;) + 2(D*6¥éyugt, Dgf) + Y |D9f |17, } dt

+ 2(D%ul, D M"™Pul 4 Dg?) dw?, (3.24)
where Q is defined in Lemma 3.4. It is clear that
2(Dult, D J)| < el + 17l
and, by integration by parts,
2|(D0Y 8y, DgP) < Nluellwllgllyees < N(lluellfy + lgl13y2+0)-

Thus, using Lemma 3.4, from (3.24) we have

h
dy D%z, < N (a3 + 1fellfys + llgelyy) dt

|| <l

+2 > (DYuft, D*M™Puf + D*gf) dwf (3.25)

la|<l
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for h > 0 and if p* = g* = 0 for X\ € A, then it holds for all A # 0. Hence
By < Ellwollyy + NE [ (1 + 1l + ) ds < oo, (320

which, by the Gronwall lemma, yields

Elluf |, < NE|uoly; + NE / 7o+ 9oy 00) s (3.27)

for t € [0,T]. Now we return to (3.25) and use the Davis inequality to get

Bsup [uf By < Eluolfy + NE [ (1l + lorlfygon) i+ N, (3.28)

where
) 1/2
J= E(/Z S (Duff, D*M"Pul + D% ))( dt) .
=1 |al<l
By the Cauchy—Bunyakovsky—Schwarz inequality,
DO( 2 < h|2 2
Z Z utv 9))| < ||Ut||W21H9t||W2h
p=1 |al<l

and, by Remark 3.1 (i),

o0
2
Z‘ 3 (Dau?,DaMh’pu?)‘ < NJu -

p=1 ||l
Hence
J < J+ o,
where
T )
J1:E</Z} S (Dol DMl dt) <N /Ilu,’?ll dt)’
o P=1 |ol<i
T 1/2 )
< h h)|2 < - I hy2 h2
<xs(mptetg{ [ i) ) < gmap e + e 1y
0 0
and

1/2

T oo 1/2 T
2
J2=E</Z\ > (D%l D)) dt) <NE</||u?II%V5\gt!€V2l dt>
0 0

/2
1
E(supuutuwz( / ot zdt> ) T Fsup [l g+ NoE / oty .
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Thus, from (3.28) we get

Esupl!utll < Blluolly; + Esupllutllwz+NE/ 1F2llfyg + Nlgnllyr4) ds,

which proves (3.23). O

Lemma 3.6. Let n > 0 be an integer, let ¢ € Wi, o € W32, and A\, u € R\ {0}. Set

MG = AND;p, Iy = 0x0p.

Then
( aa}:) Sn2p(x / 003 p(x + hON) db, (3.29)
1
((an)nfSﬁsb(w) = % / 0" 0y ¢(x + hON) db, (3.30)
B 11
(fffj) S 111//(9@+928ﬂ>”‘9w/’(33+h(91A+92u))d91d92 (3.31)
15

for almost all x € R* and for each h € R. Hence

a" 1 a" B
———0p, oyt —5h mogytt 3.32
o" r4+1gn—r+1
on)" ——0\0u |, _, gAma e, (3.33)
where
o 0 . < odd
B, = { 0 z.fn " odd , Apr = ! z'fn OTZ; 5o . (3.34)
1 ifn is even (S ==y if n and r are even
Furthermore, if | >0 is an integer and ¢ € Wi and p € W33 then
H—l |h‘n n+2
ol < LR 26 (3.35)
hgp ”H‘l n+2
oo Ezj i ¢>H < ) 195720y, (3.36)
sl — thZA”ar“az r+1¢H < NI yaensa, (3.37)

=0 r=0

where N = N(|A|, ||, d,n).
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Proof. Clearly, it suffices to prove the lemma for ¢,v € Cg° (R%). For n = 0 formulas
(3.29) and (3.30) are obtained by applying the Newton—Leibnitz formula to ¢(x + 6h\) and
d(z + OhX) — ¢(x — OhA) as functions of 0 from [0, 1] and [—1, 1], respectively. Applying (3.30)
one more time derives (3.31) from (3.30) for n = 0. After that for n > 1 one obtains (3.29)—(3.31)
by differentiating both parts of these equations written with n = 1.

By the Taylor formula, for smooth f(h) we have

1
n B e ptl . qntl1
0 =3 O+ o 0/ (1= 0" e OR) o
Applying this to
Sprd(@ / Ond(a + hoN) do, e (x / Oro(x + hON) db

as functions of h and verifying (3.32), we see that

n i n+1 Ll
Shpd(z) = G ﬁ 1)'8;“ L h / / 02)" 0710V T2 (2 + hO1020) dB1dB2,  (3.38)
=0 ' 00
Rl h"+1 i
Sho(x) = ] B0l g(x) o / / (1 — 02) 07T OV 2p(x + hb1620) dO1df2. (3.39)
=0 ]

Hence we get (3.35) and (3.36) by noting that, by the Minkowski inequality, the Wi-norm of
the last terms in Equations (3.38) and (3.39) is less than the Wi-norm of 8I\L+2¢ times

1

1
“”n+1h/:/~ 1 “”n+l
1—62)"0""" df1dby = .
n! ( 2 1 (n+2)!

Similarly, to get (3.37) from (3.31), we need only verify (3.33) and see that the left-hand side of
(3.37) is the Wi-norm of

0 0

11
hn+1
4n) / / / (1= 05)" (6105 + 020,)" 1 0ru 10 (x + hb3 (1A + O2p1)) df1 dB2d63,
S0 14
and apply the Minkowski inequality. 0

Remark 3.2. Formula (3.29) with n = 1 and the Minkowski inequality implies
16n 20|y < [|OA|L,-

Applying this inequality to finite differences of ¢ and using induction, we easily conclude that
WQI’LT C W}llg, where for integers [ > 0 and r > 1 we denote by W,llg the Hilbert space of
functions ¢ on R? with the norm |||, defined by

lelfn =" > H5h,A1'---'5h,AT<PH%V2z- (3.40)
ALy ArEA
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We also set W,llg = WQI Then for any ¢ € WQHT we have
el < Nllellyzer,

where N depends only on |Ag|? := > |A|? and 7.
AEAQ

We set

29 =3 a0+ Y (0 — 0oy,
AREA A€

= 6 0)

A€A

and for integers n > 1 introduce the operators

iﬁ(n) — Z Q?NZAH7T8§+18Z_T+1 + (n+ 1)—1 Z( +at )B anJrl

A UEAQ r=0 €Ay
+n+D7 Y+ (D" eyt
AEAQ
M7 = (n+ 1) S 6B,
DX

h(n - : i
i=0

h(n h, “Nh G
%t( )p:Mt p_zi_'///t()p,
i=0

where A, , and B,, are defined by (3.34).

Remark 3.3. Formally, for n > 1 the values .i”;f ¢ and ,///t(n)p ¢ are obtained as the values
at h = 0 of the n-th derivatives in h of L}'¢ and M,""¢.

Remark 3.4. Owing to Assumption 2.4, we have
9%(0) - %, '//{t(O)p _ ///tﬂ' (3.41)

Note also that, by (3.35)-(3.37), under Assumptions 2.2 and 2.6 with m = m, for ¢ € W2+
and 1 € Wi we have for | < m

h
167 %l < NIB s,

h(n) ntl (3.42)
12, Gllwy < NIR[" |l ypenses

where N denotes constants depending only on n, d, m, Ky, ..., Kmyva, Cn, and A.

Let k € [1,m/2] be an integer. The functions u(Y,..., u*) we need in the expansion (2.9)

will be obtained as the result of embedding in Cy,(R%) appropriate functions v(M,.... 0" with
(1) (k)

values in certain Sobolev spaces. We determine the functions v, ’,...,v;” as follows. We define
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(0)

vy’ as the solution of (2.1) from Theorem 2.1 and we are going to find v ..., ) by solving
the following system of stochastic partial differential equations:

do{™ = (.th")JrZ (M2 “) dt

+ (o™ + Z (A0 ) duwf, =1,k (3.43)
=1

Theorem 3.7. Let Assumptions 2.1, 2.2, 2.3, and 2.6 hold with m = m > 2k. Then there
exists a unique set vV, ... vk of solutions of (3.43) with initial condition v(()l) =..= v(()k) =
0 and such that v\ € H™2"(T), n = 1,....k. Furthermore, with probability one ™ are
continuous Wy~ 1=2n_yalued predictable processes and there exists a constant N depending only

onT, d, A, m, k, Ko,..., K;, and C,,,, such that forn=1,...,k
E sup Hvt(”)H?,Vm_gn < N2 (3.44)
t<T 2

for h > 0. Moreover, if py = q = 0 for X\ € Ao, then (3.44) holds for all h # 0, and hence
"):Oforoddnék.

(n)

Proof. Since for each n = 1,...,k the equation for v,” does not involve the unknown
functions v+ .. v | we can prove the theorem recursively on n < k. Denote
n n
g — Z (?)g(l)v(nﬂ)’ Z /{(Z pyy(n— l)
i=1 i=1

and first let n = 1. By Theorem 2.1, we have v(?) € H™(T') such that the estimate (2.3) holds.
Note that R = 0 and owing to Assumption 2.6

1 0 0
120 -2 < N e,

which, by Theorem 2.1, implies the existence of a unique v(!) € H™~2(T) satistying (3.43) with
() is a continuous Wi 3-valued function (a.s.) and (3.44)
holds with n = 1. Passing to higher n, we assume that m > k > 2 and for an n € {2,...,k} we
have found v ....,0("1) with the asserted properties. Then ///(1)1)(”_1) =0 and

zero initial condition. Furthermore, v,

1 —1 1 1
140"V lgn-an < Nlog" ™ ly-ansa = Nlog" ™[ mosnn,
and for i > 2

10 P lyg-an < Nloy™ ™l ggemansissn < Ny ym-ancs,
Z ||%( PU ne Z HWm 2n+1 X N”’U(n_Z)H?/VQm 2n+14(i4+1) X N”Utn ' H2 m 2(n—1i)

By the induction hypothesis,

B / IS o e < N2, B[R By di < N (3.45)
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which, by Theorem 2.1, yields the existence of a unique v € H™~2"(T) satisfying (3.43) with
zero initial condition. This theorem also yields the continuity property of vtn) and an estimate,
that combined with (3.45) yields (3.44) for h > 0. The proof of the existence of v(1),.... o) with
the stated properties is complete. We obtain the uniqueness by inspecting the above proof in
which each v(™ is found uniquely.

Note that .#( = 0 for odd n < k by (3.32). Assume now that p* = g* = 0 for A € Ag.
Then also .2 = 0 for odd n < k by (3.32) and (3.33). Hence SV) = 0 and R") = 0, which
implies v(©® = 0. Assume that & > 2 and that for an odd n < k we have v = 0 for all odd
| < n. Then "Dy = 0 and .2 D@ =0 for all i = 1,...,n since either i or n — i is odd.
Thus, S™ =0 and R™ = 0. Hence v(® = 0 for all n < k. O

Lemma 3.8. Let Assumptions 2.1, 2.2, 2.3, 2.5 (iii), and 2.6, hold with

m=1+2k+2
for some integers k > 0 and | > 0. Set
NN
== o (3.46)
=17

where v is the unique Ly-valued solution of (2.4), (2.5), v(%) is the solution of (2.1)-(2.2), and
(vM)E_ is the solution of (3.43), given by Theorem 3.7. Then rf =0, " € Wg’l(T), and

drlt = (Ll + EPY dt + (MPPr + GP) du? (3.47)
where i i
W hk—j) ( h, W h-j) G
Fth — Z ﬁﬁt ( J)UIEJ)’ Gl = ﬁ%t( J)Ugj)’
5=0 j=0

Finally, F" € WY(T) and G € W5T(T).

Proof. We have v(® € HY(T) due to Assumptions 2.1 and 2.5(iii), and v() € HY(T), for
j < k by Theorems 2.1 and 3.7. Hence r" € H!. Using the equations for v" and v(™ for
n=0,..., k, we can easily see that (3.47) holds with F' and G in place of F' and G, respectively,

where
~ N Y I
Fh— 1hy(0) _ g)(0) 4 Z Lho@ Z 72T Dy J
: J! : J! ’
1<j<k 1<j<k
N Y N Y
GhP = Nhry©) — e (0) 4 Z Mhpy() Z PO ghe
! J!
1<j<k 1<j<k
with

_ I
1<k i= J l)‘
: 1 (D)o, (i—1)
hp 0)p,, (=) pJ
= 2 g
1<k i=1
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where, as usual, summations over empty sets mean zero. Note that

E ok k k—i
1 N 1 4
h _ = op@),, i — () ,,() 3 1+i
I —E Ei!(j—i)!g vV hJ—E g i!l!g v\Wh
=1 j=1 i=1 =0
k=1, k-1 k k—j s
R ht J B
— il D op(d),,(1) — il 2 (i), (d)
— ' -2y _Zﬂ AR
=0 =1 7=0 i=1
and, similarly,
o — SRR
h.p _ —i - n i 1
I 3 SR SpUNEUVES L ST
j=1i=1 j=0 7" i=1

After that the fact that F = F and G = G follows by simple arithmetic. To prove the last
assertion, we note that for j = 0,1, ...,k

l+k—j+2<m—-25, I+k—j+1<m—-25—1
Thus, by Lemma 3.6 for j = 0,1, ..., k, (t,w) =[0,T] x Q

1670 gy < Nlo lyres-se < Nl ez,

12 o gy < Nl lyes-sin < N0 -2,

which implies F* € W5(T') and G € W5™(T) by Theorems 2.1 and 3.7. O

4 Proof of Theorems 2.2 and 2.4

First we present a theorem which, as we will see it later, is more general than Theorem 2.4.
Theorem 2.2 can be obtained similarly.

Theorem 4.1. Let Assumptions 2.2, 2.3, 2.4, 2.5, and 2.6 hold with
m=m=1+2k+3 (4.1)
for some integer k = 0. Then for r¥, defined as in Lemma 3.8, we have
Esup [[rf|[3; < NpPPFHD 22 (4.2)
t<T 2
for h >0, where N depends only on T, d, A, m, 1, Ko,...,Kmm, Cn, and Ag,..., Aj11. Moreover,

if pt = =0 for A € A, then v9) = 0 in (3.46) for odd j < k, and sz: s odd then it is
suﬂicz’ent to assume m > 1+2k+2 in place of m = 1+ 2k+3 in (4.1) to have the estimate (4.2).

Proof. By Lemma 3.8, we have F" ¢ W,(T) and G" € W.S™(T)), which, by Lemma 3.8
and Theorem 3.5, yields

T
Esup (e[ /(HFZ‘H + 1GE ) dt (4.3)
0
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with a constant N depending only on d, I, T, and Ay,...,A;11 Let (4.1) hold. Then for
j=0,..k
< .

l+k—j7+3
2<m-2j+1

I+k—j+
and, by Remark 3.4,
1650 g < NIBETH ol frei-ss < NIAFI 0|y,

NG , . . A (4.5)
||<@Zl(k J)’UF)HWQI < N|h|k_J+1||U(])HW21+’€*J'+2 < N]h\k_]'HHv(])||W2m—2j—1-

Using Theorem 3.7, we see that
T
B [ NE g+ 16" o de < NP2,
0

which, by Theorem 3.5, implies the estimate (4.2). If p* = ¢* = 0 for A € Ag, then, by Theorem
3.7, v) = 0 for odd j < k. (Note that it follows also from (4.2) valid now for all h # 0 since
v" = v~ due to that v" and v™" are the unique Ly solutions of the same problem (2.4), (2.5).)
If, in addition, k is odd then v*) = 0. Thus (4.5) obviously holds for j = k and to have it also

for <k —1 we need only m =1+ 2k + 2. O

By the Sobolev theorem on embedding of W} into Cy for I > d/2, there exists a linear
operator I : Wi — Cy such that Ip(x) = ¢(x) for almost every x € R? and

sup [To| < Ny
R4

for all o € WY, where N is a constant depending only on d. One has also the following lemma
on the embedding Wi C I5(Gy,), that we have already referred to, when we used Remark 2.3 on
the existence of a unique l3(Gy)-valued continuous solution {u(z) : € G} to Equation (2.4).

Lemma 4.2. For all o € WA(R?), I > d/2, h € (0,1)
> Ho(@)Ph? < Nllell,, (4.6)
z€Gy,

where N is a constant depending only on d.

Proof. This lemma is a straightforward consequence of the Sobolev theorem on embedding
of Wi functions on the unit ball By of R?, into C(By), the space of continuous functions on By
(cf., for example, [6].) O

Set R = Ir!'. Recall that A% = {0}, On,0 is the identity operator and dy \ = 0p ;- - - Opx
for (A1,...,A\n) € A, n > 1. Then we have the following consequence of Theorem 4.1

n

Corollary 4.3. If for some integer n > 0 we have | > n + d/2 in Theorem 4.1. Then for
AeEA"

E sup sup [daRf ()] < NR*ETD o0

for h > 0 with a constant N depending only on A, d, m, l, T, Ky, ..., Ky, Ao,...,A1+1, and Cp,.
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Proof. We set j =n —[. Then j > d/2 and, by the Sobolev theorem on embedding of WQJ
into C and Remark 3.2, from Theorem 4.1 we get

E sup sup |6 \R(z)]> < CLE sup | R H]hn CyF sup HRtH2 < NR2EHD 2
t€[0,T] zeR4 te(0,T te[0,T)

Similarly, by Lemma 4.2 and Remark 3.2,

E sup Z 0n AR () [*h? < C1E sup H(Sh,)\R?H‘QW < C2F sup HR?HIQ/VZ < NR2EHD 2 O
te0.7] e, te[0,7] 2 te[0,7] 2

Now we show that Theorem 2.4 follows from the above corollary. We define
" =10", WO =1, j=o0,.. k,

where v" is the unique .#;-adapted continuous Lg(R?)-valued solution of Equation (2.4) with
initial condition 1, the processes v(@ ... v(*) are given by Theorem 3.7, I is the embedding
operator from W' into Cy. By Theorem 3.5, v is a continuous Wé—valued process, and, by
Theorem 3.7, v9), j = 1,2, ...k, are Wgnf%—valued continuous processes. Since | > d/2 and
hence m — 2k > d/2, the processes 4" and ul) are well-defined and clearly (3.46) implies (2.9).
To show that Corollary 4.3 yields Theorem 2.4, we need only show that almost surely

@ (z) = ul(x) forall t € [0,T] (4.7)

for each z € Gy, where u” is the unique .%;-adapted lo-valued continuous solution of (2.4). To
see this, let  be a compactly supported nonnegative smooth function on R? with unit integral,
and for a fixed =z € Gy, set

e=(y) = o((y —x)/¢)

h'is a continuous Lo-valued solution of (2.4), for each e almost

for y € R? and € > 0. Since u

surely
/amym(y)dy—/ W)eey dy+//Lh ) + Fo())p=(y) dy ds

Rd 0 Rd

+ / 03l 0) + g2 w)e-t) dydug
0 Rd
for all t € [0,T]. Letting here ¢ — 0 we see that both sides converges in probability, uniformly
in ¢t € [0,7], and thus we get that almost surely

¢
u? +/LhAh )+ fs(z ds—i—/Mh’pu()—i-g()dwp
0

for all ¢t € [0,T]. (Remember that ug, f and g are continuous in = by virtue of Remark 2.1.)
Moreover, owing to Lemma 4.2 the restriction of @; onto Gy, is a continuous la(Gp,)-valued
process. Hence, because of the uniqueness of the lo(Gyp,)-valued continuous .%;-adapted solution
of (2.4) for any ls-valued .#p-measurable initial condition, we have (4.7), which completes the
proof of Theorem 2.4.
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