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Finite difference approximations in the space variable for possibly degenerate stochastic

parabolic partial differential equations are investigated. Sharp estimates for the rate of

convergence are obtained, and sufficient conditions are presented under which the speed

of approximations can be accelerated to any given order of convergence by Richardson’s

method. The main theorems generalize some results of the author with N. V. Krylov.
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1 Introduction

We study spatial discretizations

duht (x) = (Lh
t (x)u

h
t (x) + ft(x)) dt+

∞∑

ρ=1

(Mhρ
t uht (x) + gρt (x)) dw

ρ
t , (1.1)

t ∈ [0, T ], x ∈ Gh, for stochastic parabolic partial differential equations

dut(x) = (Ltut(x) + ft(x)) dt+

∞∑

ρ=1

(Mρ
t ut(x) + gρt (x)) dw

ρ
t , (1.2)

t ∈ [0, T ], x ∈ R
d, with initial condition

u0(x) = ψ(x), x ∈ R
d. (1.3)

Here (wρ)∞ρ=1 is a sequence of independent Ft-Wiener processes carried on a probability space

(Ω,F , P ), equipped with the filtration F = (Ft)t�0. The operators L and Mρ, ρ = 1, 2, ..., are

differential operators in x, with random time dependent coefficients, adapted to the filtration F,

such that L is a second order differential operator and Mρ are first order operators, of the form

L =

d∑

α,β=0

aαβt (x)DαDβ and Mρ =

d∑

α=0

bαρbt(x)Dα, ρ = 1, 2, ...,
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respectively. The stochastic parabolicity condition is assumed (cf. Assumption 2.1 below).

Such equations arise in filtering theory of partially observed diffusion processes Z = (X,Y ), as

equations for the unnormalized conditional density of the signal process X at time t, given the

observation process Y until time t. Therefore, effective numerical algorithms for solving (1.2)-

(1.3) are of great practical importance. There are many methods introduced to solve (1.2)-(1.3)

numerically. We take here finite difference operators Lh and Mhρ to approximate the solution

u of (1.2)-(1.3) by the solution uh of (1.1) with initial condition uh0 = ψ on a fixed grid Gh of

mesh-size |h|.
Finite difference approximations for deterministic partial differential equations are studied

extensively in the literature (cf., for instance, [1] and the references therein). However, there are

only a few results published for degenerate equations. Sharp rate of convergence estimates are

obtained in [2] for deterministic (possibly) degenerate parabolic and elliptic SPDEs with mono-

tone finite difference schemes. Rate of convergence estimates of finite difference approximations

for stochastic parabolic partial differential equations are obtained under the strong stochastic

parabolicity condition, i.e., when there is a constant κ > 0 such that

(2aij − biρbjρ)zizj � κzizi

for all ω ∈ Ω, t � 0, and x ∈ R
d.

About hundred years ago L. F. Richardson suggested a method of accelerating the conver-

gence of numerical approximations depending on a parameter, for example on the mesh-size |h|
of the grid in the case of finite difference approximations (cf. [3] and [4]). He demonstrated that

the accuracy of the approximations can be dramatically increased if one takes suitable mixtures

of approximations with different step-sizes. His idea is based on the existence of an expansion

of the finite difference approximation in powers of the step-size, which makes it possible to find

such mixtures where the lower order powers are cancelled out. Therefore, it is important to

find sufficient conditions under which numerical approximations admit power expansions with

respect to a parameter which is related to the error of the method. The possibility of such

expansions have been studied thoroughly in numerical analysis (cf., for example, the book [5] on

Richardson’s idea applied to finite difference approximations for deterministic partial differen-

tial equations). In [6], Richardson’s idea is implemented to a class of monotone finite difference

schemes for (possibly) degenerate parabolic and elliptic partial differential equations, and, in

[7], Richardson’s idea is implemented to stochastic partial differential equations satisfying the

strong parabolicity conditions. Both in[6] and [7], general conditions are obtained under which

the accuracy of finite difference approximations in the supremum norm can be made as high as

desired. In the present paper, we generalize some results from [6] and [7] to SPDEs satisfying

only the stochastic parabolicity conditions. We present sharp rate of convergence estimate and

give sufficient conditions under which the accuracy of the accelerated schemes is as high as we

wish. In the special case where the finite difference approximations are defined by replacing the

partial derivatives ∂xi by centered finite differences along the basis vector ei, our main theorem

reads as follows: The rate of convergence of the (spatial) finite difference approximations to

(1.2)-(1.3) can be accelerated to any order if the initial condition, coefficients, and free terms

are sufficiently smooth in x and the matrix

ãt(x) := (2aij − biρbjρ)

can be decomposed as

at(x) = σt(x)σ
T
t (x) (1.4)
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by a sufficiently smooth matrix σ in x. Clearly, requiring a sufficiently smooth factorization

(1.4) is a rather restrictive condition. Nevertheless this condition is easily applicable to the

equation of the unnormalized conditional density in nonlinear filtering since this factorization

condition is satisfied even in the general setting of correlated signal and observation noises when

the diffusion coefficients of the signal noise is sufficiently smooth.

For survey papers on the application of Richardson’s method to various numerical approxi-

mations we refer to [8] and [9].

The paper is organized as follows. In Section 2, basic notions and notation are introduced

and the main results are presented. In Section 3, the main tools are given. The proof of the

main theorems are given in the last section, Section 4

We fix a probability space (Ω,F , P ) equipped with an increasing family of σ-algebras (Ft)t�0

such that F0 contains the P -zero sets of F . The σ-algebra of predictable subsets of Ω× [0,∞)

is denoted by P. We fix also a sequence of independent Wiener processes (wρ
t )

∞
ρ=1, such that wρ

t

is Ft-measurable and wρ
t −wρ

s is independent of Fs for 0 � s � t, for every integer ρ � 1. Unless

otherwise stated, the summation convention with respect to repeated integer-valued indices is

used throughout the paper.

2 Formulation of the Main Results

We consider the equation

dut = (Ltut + ft) dt+ (M ρ
t ut + gρt ) dw

ρ
t (2.1)

for ω ∈ Ω, (t, x) ∈ [0, T ]× R
d =: HT with some initial condition

u0(x) = ψ(x), x ∈ R
d, (2.2)

where

Ltφ = aαβt DαDβφ, M ρ
t φ = bαρt Dαφ.

Here and below, the summation with respect to α and β is performed over the set {0, 1, ..., d}
and with respect to ρ, over the positive integers {1, 2, ...}. Assume that aαβt = aαβt (x) are

real-valued, bαt = (bαρt (x))∞ρ=1 are l2-valued P × B(Rd)-measurable functions on Ω×HT for all

α, β ∈ {0, 1, ...}.
A necessary condition for the well-posedness of the Cauchy problem (2.1)-(2.2) is the condi-

tion of stochastic parabolicity:

Assumption 2.1. For all (ω, t, x) ∈ Ω×HT and z ∈ R
d

d∑

i,j=1

(2aijt − biρt b
jρ
t )zizj � 0.

To formulate an existence and uniqueness theorem for the generalized solution, we also require

smoothness conditions on the coefficients aαβ , bα, the initial value ψ, and free terms f and g.

Let m � 0 be an integer, and let Wm
2 be the usual Hilbert-Sobolev space of functions on R

d

with norm ‖ · ‖Wm
2
.
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Assumption 2.2. For each (ω, t) the functions aijt are max(m, 2) times, the functions a0it ,

a0it , a
00
t are m times continuously differentiable in x for i, j ∈ {1, ..., d}. The l2-valued func-

tions bαt = (bαρ)∞ρ=1 are m-times continuously differentiable in x. There are constants Kl,

l = 0, ...,max(m, 2) such that

|Dlaijt | � Kl for l � max(m, 2),

|Dlaα0| � Kl, |Dla0α| � Kl, |Dlbαt |l2 � Kl, |Dlbt|l2 � Kl for l � m,

for all α ∈ {0, 1..., d} and i, j ∈ {1, ..., d}.
Assumption 2.3. We have ψ ∈ L2(Ω,F0,W

m
2 ). The function ft is Wm

2 -valued, gρt , ρ =

1, 2, ..., are Wm+1
2 -valued predictable functions given on Ω× [0, T ]. Moreover, for gt := (gρt )

∞
ρ=1

and

‖gt‖2W l
2
:=

∞∑

ρ=1

‖gρt ‖2W l
2

we have

E

T∫

0

(‖ft‖2Wm
2

+ ‖gt‖2Wm+1
2

) dt+E‖u0‖2Wm
2

=: K 2
m <∞.

Remark 2.1. If Assumption 2.3 holds with m > d/2, then, by the Sobolev embedding of

Wm
2 into Cb, the space of bounded continuous functions, for almost all ω we can find a continuous

function of x which equals to u0 almost everywhere. Furthermore, for each t and ω we have

continuous functions of x which coincide with ft and gt, for almost every x ∈ R
d. Therefore,

when Assumption 2.3 holds with m > d/2, we always assume that ψ, ft, and gt are continuous

in x for all t.

We look for the solution of (2.1)-(2.2) in H
m(T ), the Banach space of Wm

2 -valued weakly

continuous predictable processes u = (ut)t∈[0,T ] with the norm defined by

‖u‖2Hm
2 (T ) = E sup

t∈[0,T ]
‖u(t)‖2Wm

2
<∞.

We use the notation (ϕ, φ) for the inner product of ϕ and φ in L2(R
d).

Definition 2.1. A W 1
2 -valued weakly continuous predictable process u = (ut)t∈[0,T ] is a

solution to (2.1)-(2.2) if almost surely for all ϕ ∈ C∞
0 (Rd)

(ut, ϕ) = (u0, ϕ) +

t∫

0

(−aijs Djus, Diϕ) + (ajsDjus, ϕ) + (asus, ϕ) ds+

t∫

0

(biρs Dius + bρs, ϕ) dw
ρ
s

for all t ∈ [0, T ], where aj := −Dia
ij + a0j + aj0 and the summation in the repeated indices i, j

is performed over their range {1, 2..., d}.
The following result is known from [10] (cf. also [8]).

Theorem 2.1. Let Assumptions 2.2, 2.3, and 2.1 hold. Then (2.1)-(2.2) has a unique

solution u. Moreover, u ∈ H
m, it is a strongly continuous process with values in Wm−1

2 , and

there exists a constant N depending only on T , d, m, and Kj , j � max(m, 2), such that

E sup
t�T

‖ut‖2Wm
2

� NK 2
m. (2.3)
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Remark 2.2. We are going to assume that m > d/2. Then, by the Sobolev embedding

theorems, the solution ut(x) from Theorem 2.1 is a continuous function of (t, x) (a.s). More

precisely, with probability one, for any t one can find a continuous function of x which equals

ut(x) for almost all x and, in addition, this modification is continuous with respect to the couple

(t, x).

We are interested in approximating the solution by means of solving a semidiscretized version

of (2.1) when partial derivatives are replaced with finite differences. For λ ∈ R
d \ {0} and

h ∈ R \ {0} define

δh,λu(x) =
u(x+ hλ)− u(x)

h
, δλ = δhλ =

1

2
(δh,λ + δ−h,λ),

and let δh,0 be the unit operator.

Let Λ ⊂ R
d be a finite set containing the zero vector and consider the following finite

difference equation

duht = (Lh
t u

h
t + ft) dt+ (Mh,ρ

t uht + gρt ) dw
ρ
t , (2.4)

uh0 = ψ, (2.5)

with

Lh
t = aλμt δhλδ

h
μ +

∑

λ∈Λ0

(pλδh,λ − qλδ−h,λ), Mh,ρ
t = bλρt δ

h
λ,

where the summation is performed over λ, μ ∈ Λ and in (2.4) also with respect to ρ ∈ {1, 2, . . . }.
Assume that aλμ = aλμt (x), pλ = pλt (x), q

λ = qλt (x) are real-valued, and bλ = (bλρt (x))∞ρ=1 are

l2-valued, P × B(Rd)-measurable bounded functions on Ω×HT , for all λ, μ ∈ Λ.

Introduce

Gh = {λ1h+ ...+ λnh : n = 1, 2, ..., λi ∈ Λ ∪ (−Λ)}.
Let l2(Gh) be the set of real-valued functions u on Gh such that

|u|2l2(Gh)
:= |h|d

∑

x∈Gh

|u(x)|2 <∞.

The notation l2(Gh) will also be used for l2-valued functions like g.

Remark 2.3. Note that Equation (2.4) is just an infinite system of ordinary Itô equations

for {ut(x) : x ∈ Gh}. Therefore, if, for instance, (a.s.)
T∫

0

(|ft|2l2(Gh)
+ |gt|2l2(Gh)

) dt <∞,

and Assumption 2.5 (i) holds, then Equation (2.4) has a unique solution with continuous tra-

jectories in l2(Gh) provided that the initial data uh0 ∈ l2(Gh) (a.s.). By the Sobolev embedding

of W r
2 into Cb, we have W r

2 ⊂ l2(Gh) if r > d/2 (cf. Lemma 4.2 below). Therefore, if

‖ψ‖2W r
2
+

T∫

0

‖f(s)‖2W r
2
+ ‖g(s)‖2W r

2
ds <∞ (a.s.),

then (2.4), (2.5) has a unique l2(Gh)-valued Ft-adapted continuous solution (uht )t∈[0,T ].
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It is easy to see that in order uh approximate the solution of (2.1)-(2.2) the following con-

sistency condition is necessary.

Assumption 2.4. For all i, j = 1, ..., d and ρ = 1, 2, ...

∑

λ,μ∈Λ0

aλμt λiμj = aijt ,
∑

λ∈Λ0

bλρt λ
i = biρt ,

∑

λ∈Λ0

aλ0λi +
∑

μ∈Λ0

a0μμi +
∑

μ∈Λ0

pλλi −
∑

λ∈Λ0

qλμi = ai0t + a0it ,

a00t = a00t , b0ρt = b0ρt .

(2.6)

There are many ways of constructing appropriate coefficients a, p, q, and b, satisfying this

condition.

Example 2.1. We set Λ = {e0, e1, ..., ed}, where e0 = 0 and ei is the ith basis vector. Let

a
eαeβ
t = aαβt , beαρt = bαρt , α, β = 0, 1, ..., d, qeα = peα = 0 α, β = 1, ..., d.

Thus, each derivative Di in (2.1) is approximated by the symmetric finite difference δhei .

Example 2.2. We take the same set Λ as in the previous example, and define peα , qeα for

α ∈ {1, 2, ..., d} and define

a00 = a00, a
eαeβ
t = aαβt , α, β = 1, ..., d, beαρt = bαρt , α, β = 0, 1, ..., d.

We also take nonnegative P ⊗B(Rd)-measurable functions peα , qeα for α ∈ {1, ..., d}, such that

peα − qeα = a0α + aα0, α ∈ {1, 2, ..., d}.

To formulate our theorem on the accuracy of the approximation uh, we fix an integer l � 1,

constants A0,..., Al+1 and impose the following condition.

Assumption 2.5. (i) For each (ω, t), x ∈ R
d

pλ � 0, qλ � 0, λ ∈ Λ0.

(ii) For some integer d1 � 1 for each λ ∈ Λ0 there are F ⊗B(HT )-measurable real functions

σλ1,..., σλd1 on Ω×HT such that for all (ω, t, x) ∈ Ω×HT

ãλμt := 2aλμt − bλρt bμρt =

d1∑

k=1

σλkσμk, λ, μ ∈ Λ0. (2.7)

(iii) Let l � 1 be an integer. For λ ∈ Λ0 the functions σλk, bλ, and b0 are l + 1 times

continuously differentiable in x, and a0λ, aλ0 a00 pλ, and q0 are l times continuously differentiable

in x. For all values of arguments

|Djσλk|+ |Djbλ|+ |Djb0| � Aj for j � l + 1,

|Djaλ0|+ |Dja0λ|+ |Dja00||Djpλ|+ |Djqλ| � Aj for j � l,

for all λ ∈ Λ0, k = 1, ..., d1.
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Remark 2.4. It is clear that Assumption 2.5 (ii) implies
∑

λ,μ∈Λ0

ãλμzλzμ � 0 for (ω, t, x) ∈ Ω×HT , zλ ∈ R, λ ∈ Λ0,

which, together with (2.6), implies Assumption 2.1. If, in addition, Assumptions 2.2 and 2.3 are

also satisfied with m > 2 + d/2, then (2.1)-(2.2) admits a unique generalized solution, which,

by the Sobolev embedding, almost surely equals to a function u for every t ∈ [0, T ] and almost

every x ∈ R
d, such that u and its derivatives in x up to second order are continuous functions

on HT and almost surely

dut(x) = (Ltut(x) + ft(x)) dt+ (M ρ
t ut(x) + gρ(x)) dwρ

t , u0(x) = ψ(x)

for all t ∈ [0, T ] and x ∈ R
d.

Theorem 2.2. Let Assumptions 2.2 through 2.5 hold with m � 3+ l and l > d/2. Then for

h > 0

E sup
t∈[0,T ]

sup
x∈Gh

|uht (x)− u(t, x)|2 � Nh2Km, (2.8)

where N is a constant depending only on T , Λ, l, d, m, K0,....,Km and A0,....,Al+1.

We prove this theorem after the next section. Now we are going to formulate the main result

of the paper. Namely, that under additional smoothness conditions, for a given integer k � 0

there exist random fields u
(j)
t (x), (t, x) ∈ HT , such that they are independent of h, u(0) is the

solution of (2.1)-(2.2), and for h �= 0 almost surely

uht (x) =
k∑

j=0

hj

j!
u
(j)
t (x) +Rh

t (x) (2.9)

for all t ∈ [0, T ] and x ∈ Gh, where u
h
t is the solution to (2.4), (2.5), and Rh is an l2(Gh)-valued

adapted continuous process such that

E sup
t∈[0,T ]

sup
x∈Gh

|Rh
t (x)|2 � Nh2(k+1)K 2

m (2.10)

with a constant N independent of h.

Assumption 2.6. Let m � 0 be a fixed integer. For λ, μ ∈ Λ the derivatives in x ∈ R
d of

aλμ and the l2-valued functions bλ up to order max(m− 4, 0), and for λ ∈ Λ0 the derivatives in

x of pλ, qλ up to order max(m − 2, 0) are functions, bounded by a constant Cm, for all ω ∈ Ω

and (t, x) ∈ HT .

Theorem 2.3. Let Assumptions 2.2 through 2.6 hold with

m = m � 2k + 3 + l (2.11)

and l > d/2, where k � 0 is an integer. Then for h > 0 the expansion (2.9) and the estimate

(2.10) hold with a constant N depending only on d, m, l, T , Λ, K0,...,Km, A0,...,Al+1, and Cm.

If pλ = qλ = 0 for λ ∈ Λ0, then (2.9)-(2.10) hold for all h �= 0. Moreover, u(j) = 0 for odd

j � k, and if k is odd then to have (2.9) and (2.10) we need only

m > 2k + 2 + l

instead of (2.11).
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Remark 2.5. Actually uht (x) is defined for all x ∈ R
d rather than only on Gh and, as we

will see from the proof of Theorem 2.3, one can replace Gh in (2.10) with R
d.

Equality (2.9) clearly yields

δh,λu
h
t (x) =

k∑

j=0

hj

j!
δh,λu

(j)
t (x) + δh,λR

h
t (x)

for any λ = (λ1, ..., λn) ∈ Λn and integer n � 0, where Λ0 = {0} and

δh,λ := δh,λ1 · ... · δh,λn .

Theorem 2.3 can be generalized as follows.

Theorem 2.4. Let λ ∈ Λn for an integer n � 0. Let Assumptions 2.2 through 2.6 hold with

m = m > n+ 2k + 3 + l (2.12)

and l > d/2. Then for h > 0 (2.9) and

E sup
t∈[0,T ]

sup
x∈Gh

|δh,λRh
t (x)|2 � Nh2(k+1)K 2

m, (2.13)

with a constant N depending only on d, m, n, k, l, T , Λ, K0, ..., Km, Cm, A0,...,Al+1.

If pλ = qλ = 0 for λ ∈ Λ0, then u(j) = 0 for odd j � k, and if k is odd, then, instead of

(2.12), we need only

m > n+ 2k + 2 + l

to have (2.9) and the estimate (2.13).

We prove Theorem 2.4 in Section 4 after some preliminaries presented in Section 3.

To accelerate the rate of convergence of uh, we fix an integer k � 0 and define

uh =

˜k∑

j=0

bju
2−jh , ũh =

˜k∑

j=0

b̃ju
2−jh , (2.14)

where

(b0, b1, ..., bk) := (1, 0, 0, ..., 0)V
−1
, (̃b0, b̃1, ..., b̃˜k) := (1, 0, 0, ..., 0)Ṽ −1, k̃ = [k2 ],

V
−1

is the inverse of the matrix V
ij
:= 2−(i−1)(j−1), i, j = 1, ..., k + 1, and

Ṽ −1 is the inverse of matrix V ij := 4−(i−1)(j−1), i, j = 1, ..., k̃ + 1.

Theorem 2.5. Let Assumptions 2.2 through 2.6 hold with

m = m � 2k + 3 + l (2.15)

and l > d/2, where k � 0 is an integer. Then for h > 0

E sup
t�T

sup
x∈Gh

|uht (x)− u
(0)
t (x)|2 � Nh2(k+1)K 2

m (2.16)
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with a constant N = N(T,m, k, d, l,Λ,K0, ...,Km, A0, ..., Al+1, Cm).

If pλ = qλ = 0 for λ ∈ Λ0, then

E sup
t�T

sup
x∈Gh

|ũht (x)− u
(0)
t (x)|2 � N |h|2(k+1)K 2

m (2.17)

for h �= 0, and if k is odd, then to have (2.17), we need only

m = m > 2k + 2 + l

instead of (2.15).

Proof. We prove only (2.17) since the estimate (2.16) can be obtained in the same way. By

Theorem 2.3,

u2
−jh = u(0) +

˜k∑

i=1

h2i

(2i)!4ji
u(2i) + hk+1r2

−jh, j = 0, 1, ..., k,

with r2
−jh := h−(k+1)R2−jh. Hence with r̃h :=

˜k∑
j=0

r2
−jh

ũh =

˜k∑

j=0

b̃ju
2−jh =

(
˜k∑

j=0

b̃j

)
u(0) +

˜k∑

j=0

˜k∑

i=1

b̃j
h2i

(2i)!4ij
u(2i) + hk+1r̃h

= u(0) +

˜k∑

i=1

h2i

(2i)!
u(2i)

˜k∑

j=0

b̃j
4ij

+ hk+1r̃h = u(0) + hk+1r̃h

since
˜k∑

j=0

b̃j = 1,

˜k∑

j=0

b̃j4
−ij = 0, i = 1, 2, ...k̃,

by the definition of (̃b0, ..., b̃˜k). Thus, owing to (2.10), we have

E sup
t∈[0,T ]

sup
x∈Gh

|ũh − u|2 � h2(k+1)E sup
t∈[0,T ]

sup
x∈Gh

|r̃ht (x)|2 � Nh2(k+1)K 2
m

and the theorem is proved.

Remark 2.6. Note that without acceleration, i.e., when k = 0 and k = 1 in (2.15) and

(2.16) respectively, in the above theorem for h > 0 we have

E sup
t∈[0,T ]

sup
x∈Gh

|uh − u0|2 � Nh2K 2
m,

and when pλ = qλ = 0 for λ ∈ Λ0 we have

E sup
t∈[0,T ]

sup
x∈Gh

|uh − u0|2 � Nh4K 2
m

respectively. These are sharp estimates by virtue of Remark 2.21 in [2] on finite difference

approximations for deterministic parabolic partial differential equations.
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Remark 2.7. Let pλ = qλ = 0 for λ ∈ Λ0. Let n � 0. Suppose that the assumptions of

Theorem 2.3 hold with

m > n+ 2k + 3 + d/2,

with an integer n � 0. Then for λ ∈ Λn (2.17) holds with δh,λũ
h and δh,λu

(0) in place of ũh and

u(0), respectively, with a constant N depending on T , m, k, n, d, b, Λ, K0,...,Km, A0,...,Al+1

and Cm.

Proof. This assertion follows from Theorem 2.4 in the same way as Theorem 2.5 follows

from Theorem 2.3.

By the above remark, one can construct fast approximations for the derivatives of u(0) via

suitable linear combinations of finite differences of ũh.

Example 2.3. Assume that d = 2, m = 10, and pλ = qλ = 0 in λ ∈ Λ0. Then

ũh := 4
3u

h/2 − 1
3u

h

satisfies

E sup
t�T

sup
x∈Gh

|u(0)t (x)− ũht (x)|2 � Nh8.

Example 2.4. Consider the SPDE

dut = aD2ut dt+ bDut dwt t > 0, x ∈ R

with initial data u0(x) = cosx, x ∈ R, coefficients a = b = 2, and a one-dimensional Wiener

process w. Note that 2a − b2/2 = 0, i.e., this is a degenerate parabolic SPDE. The unique

bounded solution is

ut(x) = cos(x+ 2wt).

The finite difference equation (2.4) is the following:

duht (x) =
uht (x+ 2h)− 2uht (x) + uht (x− 2h)

2h2
dt+

uht (x+ h)− uht (x− h)

h
dwt.

Its unique bounded solution with initial condition u0(x) = cosx is

uht (x) = cos(x+ 2φhwt),

where φh = sinh/h. For t = 1, h = 0.1, and wt = 1 we have

u1(0) ≈ −0.4161468365, uh1(0) ≈ −0.4131150562, u
h/2
1 (0) ≈ −0.415389039,

ũh1(0) =
4
3u

h/2
1 (0)− 1

3u
h
1(0) ≈ 0.4161470333.

Such a level of accuracy by u
˜h
1(0) is achieved with h̃ = 0.0008, which is more than 60 times

smaller than h/2.

Note that this example does not quite fit into our scheme because u0 is not square summable

over R, but one can extend our approach to weighted Sobolev spaces and then the above example

can be included formally.
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3 Auxiliary Facts

Recall the notation

δh,λ =
1

h
(Th,λ − I), δλ = δhλ =

1

2
(δh,λ + δ−h,λ) =

1

2h
(Th,λ − Th,−λ),

for h �= 0, λ ∈ R
d, where for all h ∈ R

Th,λϕ(x) = ϕ(x+ hλ), x ∈ R
d

for functions ϕ on R
d. We set

Iλ = Ihλ =
1

2
(Th,λ + Th,−λ),

Δλ = Δh
λ =

1

h
(δh,λ + δh,−λ) = δh,λδ−h,λ = (δ

h/2
λ )2.

The following useful identities can easily be verified.

Lemma 3.1.

δh,λ(uv) = (δh,λu)v + (δh,λv)Th,λu = (δh,λu)v + (δh,λv)u+ h(δh,λu)(δh,λv), (3.1)

δλ(uv) = (δλu)v +
1

2
{(δh,λv)Th,λu+ (δ−h,λv)Th,−λu}

= (δλu)v + (δλv)Iλu+
h2

2
(Δλv)δλu

= (δλu)v + (δλv)u+
h2

2
{(δλu)Δλv + (Δλu)δλv} (3.2)

For linear operators A and B we use the notation

[A,B] = BA−AB.

Lemma 3.2.

δμ(aδλ) = aδμδλ +
1

2
(δμa)(δλ+μ + δλ−μ) +

h2

2
(Δμa)δλδμ, (3.3)

[aδλ, bδμ] =
1

2
(b(δμa)− a(δλb))δλ+μ +

1

2
(b(δμa) + a(δλb))δλ−μ

+
h2

2
(b(Δμa)− a(Δλb)δλδμ, (3.4)

[aδh,μ, bTh,λ] = (b(δh,λa)− a(δh,μb))Th,λ+μ − b(δh,λa)Th,λ, (3.5)

[aδμ, bTh,λ] =
1

2
(b(δh,λa)− a(δh,μb))(Th,λ+μ − Th,λ−μ)− a(δh,μb)Th,λ−μ (3.6)

Let l � 0 be an integer and K � 0 be a constant. In the next lemma M and N denote

difference operators of the form M =
∑

λ∈Λ0

bλδh,λ and N =
∑

λ∈Λ0

bλδλ, with functions bλ on R
d,

and (, ) denotes the inner product in L2(R
d).

Lemma 3.3. The following estimates hold for all multiindices α, |α| � l, and functions

ϕ ∈W l
2 on R

d.
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(i) If bλ � 0 for λ ∈ Λ0, and they, together with their derivatives up to order l∨1 are functions,

bounded by K, then for h > 0

(DαMϕ,Dαϕ) � N‖ϕ‖2
W l

2
. (3.7)

(ii) If for each λ ∈ Λ0, b
λ and its derivatives up to order l ∨ 1 are functions, bounded by K,

then for h �= 0

|(DαN ϕ,Dαϕ)| � N‖ϕ‖2W 2
l
. (3.8)

(iii) If for λ ∈ Λ0 the coefficients bλ and its derivatives up to order (l+1)∨ 2 are functions on

R
d, bounded by K, and b0 and its derivatives up to order l + 1 are functions, bounded by

K, then for h �= 0

|(DαN N ϕ,Dαϕ) + (DαN ϕ,DαN ϕ)| � N‖ϕ‖2W 2
l
. (3.9)

In these estimates N denotes a constant that depends only on Λ0, d, l, and K.

Proof. To prove (i), we note that, by (3.1),

∑

λ∈Λ0

ϕbλδh,λϕ =
1

2

∑

λ∈Λ0

bλδh,λ(ϕ
2)− h

2

∑

λ∈Λ0

bλ(δh,λϕ)
2 � 1

2

∑

λ∈Λ0

bλδh,λ(ϕ
2).

Hence, taking into account that δ∗h,λ, the adjoint of δh,λ in L2, is δh,−λ, we have

(Mϕ,ϕ) � 1

2

∑

λ∈Λ0

(δh,−λb
λ, ϕ2) (3.10)

which yields (3.7) for l = 0. For |α| = l � 1

∑

1�|γ|,γ+β=α

∑

λ∈Λ0

|((Dγbλ)δh,λD
βϕ,Dαϕ)| � N‖ϕ‖2

W l
2
.

Hence

(DαMϕ,Dαϕ) � N‖ϕ‖2
W l

2
+ (MDαϕ,Dαϕ),

which yields (3.7) since, by (3.10),

(MDαϕ,Dαϕ) � N‖ϕ‖2
W l

2
.

To prove (ii), we note that

(N ϕ,ϕ) = (Tϕ, ϕ) (3.11)

with

T =
1

2
(N + N ∗) = −1

4

∑

λ∈Λ0

((δh,λbλ)Th,λ + (δ−h,λbλ)Th,−λ), (3.12)

where N ∗ denotes the adjoint of N in L2. Hence

|(N ϕ,ϕ)| � K

4

∑

λ∈Λ0

|λ|(‖Th,λϕ‖L2 + ‖Th,−λϕ‖L2)‖ϕ‖L2 =
K

2

∑

λ∈Λ0

|λ|‖ϕ‖2L2
, (3.13)
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which proves (3.8) for α = 0. For |α| = l � 1

∑

1�|γ|,γ+β=α

∑

λ∈Λ0

|((Dγbλ)δh,λD
βϕ,Dαϕ)| � N‖ϕ‖2

W l
2
.

Hence

(DαN ϕ,Dαϕ) � N‖ϕ‖2
W l

2
+ (N Dαϕ,Dαϕ),

which implies (3.8) since due to (3.10) we have

(N Dαϕ,Dαϕ) � N‖ϕ‖2
W l

2
.

Now we prove (iii). From (3.11) by polarization we get

(N ψ, φ) + (N ϕ,ψ) = 2(Tϕ, ψ)

for functions ϕ,ψ ∈ L2. Substituting here N ϕ in place of ψ, using T ∗ = T and N ∗ = 2T −N ,

we obtain

(N N ϕ,ϕ) + (N ϕ,N ϕ) = 2(Tϕ,N ϕ) = ((TN + N ∗T )ϕ,ϕ)

= ((TN − N T + 2T 2)ϕ,ϕ) = ([N , T ]ϕ,ϕ) + 2(Tϕ, Tϕ).

Hence, using (3.12) and the identity (3.5), we easily get (3.9) for α = 0. To deal with the case

α �= 0, we fix ϕ ∈ W l
2 and use the notation f ∼ g for functions f, g ∈ L1, which may depend

also on the parameter h if ∣∣∣∣∣

∫

Rd

(f(x)− g(x)) dx

∣∣∣∣∣ � N |ϕ|2W 2
l

with a constant N depending only on Λ, l, d and K. It is clear that

(DαN ϕ)Dαϕ ∼ (N Dαϕ)Dαϕ.

For multiindices γ, |γ| � m, we set

N (γ) =
∑

λ∈Λ0

(Dγbλ)δλ,

and note that for multiindices β �= 0, γ �= 0, ρ, such that β + γ + ρ = α we have

(N (β)N (γ)Dρϕ)Dαϕ ∼ 0.

Similarly, for multiindices β �= 0, γ �= 0, β and γ such that β + β = α and γ + γ = α we have

(N (β)Dβϕ)N (γ)Dγϕ ∼ 0,

and if β = 0 and 0 < γ < α we have

(N Dαϕ)N (γ)Dγϕ ∼ (Dαϕ)N ∗N (γ)Dγϕ ∼ 0,

owing to

N ∗ = −N +
1

2

∑

λ∈Λ0

{(δh,λcλ)Th,λ + (δ−h,λcλ)Th,−λ}. (3.14)
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Thus, for

J := (DαN N ϕ)Dαϕ+ (DαN ϕ)DαN ϕ

we get

J ∼ J00 +
∑

0<γ�α

J0γ +
∑

0<β�α

Jβ0, (3.15)

with

Jβγ := (N (β)N (γ)Dρϕ)Dαϕ+ (N (β)D(β)ϕ)N (γ)Dγϕ,

where β + γ + ρ = α, β + β = α, and γ + γ = α. By (3.9) with α = 0, we have

J00 ∼ 0. (3.16)

Using (3.14), we find

(N N (γ)Dγϕ)Dαϕ ∼ (N (γ)Dγϕ)N ∗Dαϕ ∼ −(N (γ)Dγϕ)N Dαϕ,

which for γ � α, |γ| = 1 yields

J0γ = (N N (γ)Dγϕ)Dαϕ+ (N Dαϕ)N (γ)Dγϕ ∼ 0. (3.17)

For β � α, |β| = 1 the identity (3.4) yields

(N (β)N Dβϕ)Dαϕ ∼ (N N (β)Dβϕ)Dαϕ,

which for β < α, |β| = 1 implies

Jβ0 ∼ J0β ∼ 0. (3.18)

For γ < α, |γ| � 2 it is easy to see that

J0γ ∼ 0, (3.19)

and similarly, for β < α, |β| � 2 it is easy to see that

Jβ0 ∼ 0. (3.20)

Using (3.14) we get

(N N (α)ϕ)Dαϕ ∼ −(N (α)ϕ)N Dαϕ,

that yields

J0α ∼ 0. (3.21)

It is clear that

(N (α)N ϕ)Dαϕ ∼ 0,

and

(N (α)ϕ)N Dαϕ ∼ (N ∗N (α)ϕ)Dαϕ ∼ −(N N (α)ϕ)Dαϕ ∼ 0.

(This is the only place where we need that the coefficients of N have bounded derivatives up

to l + 1, not only up to l ∨ 2 as in the rest of the proof.) Hence Jα0 ∼ 0, that together with

(3.15)–(3.16) and (3.17)–(3.21) implies J ∼ 0, which proves (3.9).
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Remark 3.1. Let (N ρ)∞ρ=1 be a sequence of operators of the form N ρ =
∑

λ∈Λ0

bλρδλ, where

bλ = (bλρ)∞ρ=1 is an l2-valued Borel function on R
d for each λ ∈ Λ0. Let l � 0 be an integer.

Then the following statements hold for all multiindices α, |α| � l and functions ϕ ∈W l
2.

(i) If bλ and their derivatives up to order max(l, 1) are functions, bounded by K for all

λ ∈ Λ0, then ∞∑

ρ=1

|(DαN ρϕ,Dαϕ)|2 � N‖ϕ‖4
W l

2
.

(ii) If bλ and their derivatives up to order (l + 1) ∨ 2 are l2-valued functions bounded by K

for all λ ∈ Λ0, then

|(Dα
∞∑

ρ=1

N ρN ρϕ,Dαϕ) +
∞∑

ρ=1

(DαN ρϕ,DαN ρϕ)| � N‖ϕ‖2
W l

2
.

In these estimates N is a constant depending only on K, l and d.

Proof. Taking into account that
∑
ρ
|Dαbλρ|2 � K for |α| � max(l, 1) and for |α| � max(l+

1, 2) respectively, we can get these estimates in the same way as the estimates (3.8) and (3.9)

are obtained.

Lemma 3.4. Let Assumption 2.5 hold. Then for multiindices α, |α| � l, we have

Q
α
t (ϕ) :=

∫

Rd

2Dαϕ(x)DαLhϕ(x) +
∞∑

ρ=1

|DαMhρϕ(x)|2 dx � N‖ϕ‖2
W l

2
,

where N depends only on l, K, d, and Λ.

Proof. We set M hρ =
∑

λ∈Λ0

bλρδλ. Then M
hρ = M hρ + b0ρ, and, by Remark 3.1,

∑

ρ

(DαM hρϕ,DαM hρϕ) � −
(
Dα

∑

ρ

M hρM hρ, Dαϕ
)
+N‖ϕ‖2

W l
2
,

where (, ) denotes the inner product in L2 and N is a constant depending only on K, l d, and

Λ. By the equality (3.3),

M hρM hρ =
∑

λ,μ∈Λ0

bλρbμρδλδμ + M̃

with

M̃ =
1

2

∑

λ,μ∈Λ0

bμρ(δμb
λρ)(δλ+μ + δλ−μ)

+
1

8

∑

λ,μ∈Λ0

((δh,μ + δh,−μ)b
λρ)(Th,λ+μ − Th,μ−λ − Th,λ−μ + Th,−λ−μ)

+ b0ρb0ρ +
∑

λ∈Λ0

b0ρbλρδλ +
∑

μ∈Λ0

bμρb0ρδμ

+
1

2

∑

μ∈Λ0

{bμρ(δh,μb0ρ)Th,μ + bμρ(δh,−μb
0ρ)Th,−μ},
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where the summation convention with respect to the repeated index ρ is used. By Lemma (3.3)

(i) and (ii), for h > 0 we have

(Dα
∑

λ∈Λ0

pλδh,λϕ,D
αϕ) � ‖ϕ‖2

W l
2
,

(Dα
∑

λ∈Λ0

qλδh,−λϕ,D
αϕ) � ‖ϕ‖2

W l
2

and

|(DαM̃ϕ,Dαϕ)| � N‖ϕ‖W l
2
,

|(Dαϕ,Dα(a0λ + aλ0)δλϕ)| � N‖ϕ‖W l
2
,

(Dαb0ρϕ,DαM hρϕ) � N‖ϕ‖W l
2

for h �= 0. Here and everywhere in this proof, N stands for constants depending only on l, K,

d, and Λ. Hence

Q
α(ϕ) � (Dαϕ,Dα

∑

λ,μ∈Λ0

ãλμδλδμϕ) +N‖ϕ‖2
W l

2
. (3.22)

Owing to Assumption 2.5 (ii) and the equality (3.3), we have

∑

λ,μ∈Λ0

ãλμδλδμ =

d1∑

r=1

N rN r − Ñ

with

N r =
∑

λ∈Λ0

σλrδλ, Ñ =

d1∑

r=1

Ñ r,

where for each r = 1, ..., d1

Ñ r =
1

2

∑

λ,μ∈Λ0

σλr(δλσ
μr){δλ+μ + δμ−λ}

+
1

8

∑

λ,μ∈Λ0

((δh,λ + δh,−λ)σ
μr)(Th,λ+μ − Th,−μ−λ − Th,λ−μ + Th,−λ−μ).

By Lemma 3.3 (ii) and (iii) for h �= 0

|(DαÑ ϕ,Dαϕ)| � N‖ϕ‖2
W l

2
,

(Dα
∑

r

N rN r, Dαϕ) =
∑

r

(DαN rN r, Dαϕ) � N‖ϕ‖2
W l

2
.

Hence

(Dαϕ,Dα
∑

λ,μ∈Λ0

ãλμδλδμϕ) � N‖ϕ‖2
W l

2
,

which along (3.22) completes the proof.
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We consider the finite difference scheme (2.4), (2.5) now on [0, T ]×R
d rather than on [0, T ]×

Gh. We use the notation W
m
2 (T ) and W

m
2 (T, l2) for the Banach spaces ofWm

2 -valued predictable

processes (ft)t∈[0,T ] and sequences of Wm
2 valued processes gt = (gρt )t∈[0,T ], ρ = 1, 2, ..., respec-

tively, with the norms defined by

‖f‖2
Wm

2 (T ) =

T∫

0

‖f(t)‖2Wm
2
dt,

‖g‖2
Wm

2 (T,l2)
=

T∫

0

∞∑

ρ=1

‖gρ(t)‖2Wm
2
dt.

For the sake of brevity, we write also W
m
2 (T ) in place of Wm

2 (T, l2).

Theorem 3.5. Let Assumption 2.5 hold. Let ψ be a W l
2-valued F0-measurable random

variable, f ∈ W
l
2(T ) and g ∈ W

l+1
2 (T, l2). Then for each h �= 0 there exists a unique continuous

L2-valued solution uh = (uht )t∈[0,T ] to (2.4), (2.5). Moreover, uh is a W l
2-valued continuous

process, and for h > 0

E sup
t�T

‖uht ‖2W l
2
� NE‖u0‖2W l

2
+NE

T∫

0

(‖ft‖2W l
2
+ ‖gt‖2W l+1

2

)
dt, (3.23)

with a constant N depending only on d, l, Λ, A0, . . . , Al+1, and T . If pλ = qλ = 0 for λ ∈ Λ0,

then this estimate holds for all h �= 0.

Proof. Since (2.4) is an ordinary Itô equation with Lipschitz continuous coefficients for L2-

valued processes, it has a unique L2-valued continuous solution uh for each h �= 0. Similarly, it

has a unique W l
2-valued continuous solution and, since W l

2 ⊂ L2, it follows that u
h is actually a

continuousW l
2-valued adapted process. One can easily get the estimate (3.23) with a constant N

which depends on h. In particular, the solution belongs to W
0,l
2 (T ). We assume that E‖u‖2

W l
2
<

∞; otherwise, (3.23) is trivial. To prove (3.23) with a constant N independent of h, we take any

multiindex α, |α| � l, and use the Itô formula for the L2-valued process Dαuh to find

d‖Dαuht ‖2L2
= {Qα

t (u
h
t ) + 2(Dαuht , D

αft) + 2(Dαbλρδλu
h
t , D

αgρt ) +
∑

ρ

‖Dαgρt ‖2L2
} dt

+ 2(Dαuht , D
αMh,ρuht +Dαgρt ) dw

ρ
t , (3.24)

where Q
α is defined in Lemma 3.4. It is clear that

2|(Dαuht , D
αft)| � ‖ut‖2W l

2
+ ‖ft‖2W l

2

and, by integration by parts,

2|(Dαbλρδλu
h
t , D

αgρt )| � N‖ut‖W l
2
‖g‖W l+1

2
� N(‖ut‖2W l

2
+ ‖g‖2

W l+1
2

).

Thus, using Lemma 3.4, from (3.24) we have

d
∑

|α|�l

‖Dαuht ‖2L2
� N

(‖uht ‖2W l
2
+ ‖ft‖2W l

2
+ ‖gt‖2W l

2

)
dt

+ 2
∑

|α|�l

(Dαuht , D
αMh,ρuht +Dαgρt ) dw

ρ
t (3.25)
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for h > 0 and if pλ = qλ = 0 for λ ∈ Λ0, then it holds for all h �= 0. Hence

E‖uht ‖2W l
2
� E‖u0‖2W l

2
+NE

t∫

0

(‖uhs‖2W l
2
+ ‖fs‖2W l

2
+ ‖gs‖2W l+1

2

)
ds <∞, (3.26)

which, by the Gronwall lemma, yields

E‖uht ‖2W l
2
� NE‖u0‖2W l

2
+NE

t∫

0

(‖fs‖2W l
2
+ ‖gs‖2W l+1

2

)
ds (3.27)

for t ∈ [0, T ]. Now we return to (3.25) and use the Davis inequality to get

E sup
t�T

‖uht ‖2W l
2
� E‖u0‖2W l

2
+NE

T∫

0

(‖ft‖2W l
2
+ ‖gt‖2W l+1

2

)
dt+N1J, (3.28)

where

J = E

( T∫

0

∞∑

ρ=1

∣∣∣
∑

|α|�l

(Dαuht , D
αMh,ρuht +Dαgρt ))

∣∣∣
2
dt

)1/2

.

By the Cauchy–Bunyakovsky–Schwarz inequality,

∞∑

ρ=1

∣∣∣
∑

|α|�l

(Dαuht , D
αgρt ))

∣∣∣
2
� ‖uht ‖2W l

2
‖gt‖2W l

2
,

and, by Remark 3.1 (i),

∞∑

ρ=1

∣∣∣
∑

|α|�l

(Dαuht , D
αMh,ρuht )

∣∣∣
2
� N‖ut‖4W l

2
.

Hence

J � J1 + J2,

where

J1 = E

( T∫

0

∞∑

ρ=1

∣∣∣
∑

|α|�l

(Dαuht , D
αMh,ρuht )

∣∣∣
2
dt

)1/2

� NE
( T∫

0

‖uht ‖4W l
2
dt
)1/2

� NE

(
sup
t�T

‖uht ‖W l
2

( T∫

0

‖uht ‖2W l
2
dt

)1/2)
� 1

4N1
E sup

t�T
‖uht ‖2W l

2
+N2E

T∫

0

‖uht ‖2W l
2
ds

and

J2 = E

( T∫

0

∞∑

ρ=1

∣∣∣
∑

|α|�l

(Dαuht , D
αgρt ))

∣∣∣
2
dt

)1/2

� NE

( T∫

0

‖uht ‖2W l
2
‖gt‖2W l

2
dt

)1/2

� E

(
sup
t�T

‖uht ‖W l
2

( T∫

0

‖ght ‖2W l
2
dt

)1/2)
� 1

4N1
E sup

t�T
‖uht ‖2W l

2
+N2E

T∫

0

‖gt‖2W l
2
ds.
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Thus, from (3.28) we get

E sup
t�T

‖uht ‖2W l
2
� E‖u0‖2W l

2
+

1

2
E sup

t�T
‖uht ‖2W l

2
+NE

T∫

0

(‖ft‖2W l
2
+ ‖gt‖2W l+1

2

)
ds,

which proves (3.23).

Lemma 3.6. Let n � 0 be an integer, let φ ∈W n+1
2 , ψ ∈Wn+2

2 , and λ, μ ∈ R
d \ {0}. Set

∂λφ = λiDiφ, ∂λμ = ∂λ∂μ.

Then

∂n

(∂h)n
δh,λφ(x) =

1∫

0

θn∂n+1
λ φ(x+ hθλ) dθ, (3.29)

∂n

(∂h)n
δhλφ(x) =

1

2

1∫

−1

θn∂n+1
λ φ(x+ hθλ) dθ, (3.30)

∂n

(∂h)n
δλδμψ(x) =

1

4

1∫

−1

1∫

−1

(θ1∂λ + θ2∂μ)
n∂λμψ(x+ h(θ1λ+ θ2μ)) dθ1dθ2 (3.31)

for almost all x ∈ R
d and for each h ∈ R. Hence

∂n

(∂h)n
δh,λφ

∣∣
h=0

=
1

n+ 1
∂n+1
λ φ,

∂n

(∂h)n
δhλφ

∣∣
h=0

=
Bn

n+ 1
∂n+1
λ φ, (3.32)

∂n

(∂h)n
δλδμψ

∣∣
h=0

=

n∑

r=0

An,r∂
r+1
λ ∂n−r+1

μ ψ, (3.33)

where

Bn =

{
0 if n is odd

1 if n is even
, Anr =

{
0 if n or r is odd

n!
(r+1)!(n−r+1)! if n and r are even

. (3.34)

Furthermore, if l � 0 is an integer and φ ∈W n+2+l
2 and ψ ∈Wn+3+l

2 , then

∥∥∥δh,λφ−
n∑

i=0

hi

(i+ 1)!
∂i+1
λ φ

∥∥∥
W l

2

� |h|n+1

(n+ 2)!
‖∂n+2

λ φ‖W l
2
, (3.35)

∥∥∥δhλφ−
n∑

i=0

hi

(i+ 1)!
Bi∂

i+1
λ φ

∥∥∥
W l

2

� |h|n+1

(n+ 2)!
‖∂n+2

λ φ‖W l
2
, (3.36)

∥∥∥δhλδhμψ −
n∑

i=0

hi
i∑

r=0

Ai,r∂
r+1
λ ∂i−r+1

μ ψ
∥∥∥
W l

2

� N |h|n+1‖ψ‖W l+n+3
2

, (3.37)

where N = N(|λ|, |μ|, d, n).
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Proof. Clearly, it suffices to prove the lemma for φ, ψ ∈ C∞
0 (Rd). For n = 0 formulas

(3.29) and (3.30) are obtained by applying the Newton–Leibnitz formula to φ(x + θhλ) and

φ(x+ θhλ)− φ(x− θhλ) as functions of θ from [0, 1] and [−1, 1], respectively. Applying (3.30)

one more time derives (3.31) from (3.30) for n = 0. After that for n � 1 one obtains (3.29)–(3.31)

by differentiating both parts of these equations written with n = 1.

By the Taylor formula, for smooth f(h) we have

f(h) =
n∑

i=0

hi

i!

di

(dh)i
f(0) +

hn+1

n!

1∫

0

(1− θ)n
dn+1

(dh)n+1
f(θh) dθ.

Applying this to

δh,λφ(x) =

1∫

0

∂λφ(x+ hθλ) dθ, δhλφ(x) =
1

2

1∫

−1

∂λφ(x+ hθλ) dθ

as functions of h and verifying (3.32), we see that

δh,λφ(x) =

n∑

i=0

hi

(i+ 1)!
∂i+1
λ φ(x) +

hn+1

n!

1∫

0

1∫

0

(1− θ2)
nθn+1

1 ∂n+2
λ φ(x+ hθ1θ2λ) dθ1dθ2, (3.38)

δhλφ(x) =

n∑

i=0

hi

(i+ 1)!
Bi∂

i+1
λ φ(x) +

hn+1

2n!

1∫

0

1∫

−1

(1− θ2)
nθn+1

1 ∂n+2
λ φ(x+ hθ1θ2λ) dθ1dθ2. (3.39)

Hence we get (3.35) and (3.36) by noting that, by the Minkowski inequality, the W l
2-norm of

the last terms in Equations (3.38) and (3.39) is less than the W l
2-norm of ∂n+2

λ φ times

|h|n+1

n!

1∫

0

1∫

0

(1− θ2)
nθn+1

1 dθ1dθ2 =
|h|n+1

(n+ 2)!
.

Similarly, to get (3.37) from (3.31), we need only verify (3.33) and see that the left-hand side of

(3.37) is the W l
2-norm of

hn+1

4n!

1∫

0

1∫

−1

1∫

−1

(1− θ3)
n(θ1∂λ + θ2∂μ)

n+1∂λμψ(x+ hθ3(θ1λ+ θ2μ)) dθ1dθ2dθ3,

and apply the Minkowski inequality.

Remark 3.2. Formula (3.29) with n = 1 and the Minkowski inequality implies

‖δh,λφ‖L2 � ‖∂λφ‖L2 .

Applying this inequality to finite differences of φ and using induction, we easily conclude that

W l+r
2 ⊂ W l,r

h,2, where for integers l � 0 and r � 1 we denote by W l,r
h,2 the Hilbert space of

functions ϕ on R
d with the norm ‖ϕ‖l,r,h defined by

‖ϕ‖2l,r,h =
∑

λ1,...,λr∈Λ
‖δh,λ1 · ... · δh,λrϕ‖2W l

2
. (3.40)
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We also set W l,0
h,2 =W l

2. Then for any φ ∈W l+r
2 we have

‖ϕ‖l,h,r � N‖ϕ‖W l+r
2
,

where N depends only on |Λ0|2 :=
∑

λ∈Λ0

|λ|2 and r.

We set

L
(0)
t =

∑

λ,μ∈Λ
aλμt ∂λ∂μ +

∑

λ∈Λ0

(pλt − qλt )∂λ,

M
(0)ρ
t =

∑

λ∈Λ
bλρt ∂λ

and for integers n � 1 introduce the operators

L
(n)
t =

∑

λ,μ∈Λ0

aλμt

n∑

r=0

An,r∂
r+1
λ ∂n−r+1

μ + (n+ 1)−1
∑

λ∈Λ0

(aλ0t + a0λt )Bn∂
n+1
λ

+ (n+ 1)−1
∑

λ∈Λ0

(pλt + (−1)n+1qt)∂
n+1
λ ,

M
(n)ρ
t = (n+ 1)−1

∑

λ∈Λ0

bλρt Bn∂
n+1
λ ,

O
h(n)
t = Lh

t −
n∑

i=0

hi

i!
L

(i)
t ,

R
h(n)ρ
t =Mh,ρ

t −
n∑

i=0

hi

i!
M

(i)ρ
t ,

where An,r and Bn are defined by (3.34).

Remark 3.3. Formally, for n � 1 the values L
(n)
t φ and M

(n)ρ
t φ are obtained as the values

at h = 0 of the n-th derivatives in h of Lh
t φ and Mh,ρ

t φ.

Remark 3.4. Owing to Assumption 2.4, we have

L
(0)
t = Lt, M

(0)ρ
t = M ρ

t . (3.41)

Note also that, by (3.35)-(3.37), under Assumptions 2.2 and 2.6 with m = m, for φ ∈ W n+2+l
2

and ψ ∈Wn+3+l
2 we have for l � m

‖Oh(n)
t ψ‖W l

2
� N |h|n+1‖ψ‖W l+n+3

2
,

‖Rh(n)
t φ‖W l

2
� N |h|n+1‖φ‖W l+n+2

2
,

(3.42)

where N denotes constants depending only on n, d, m, K0, . . . ,Km∨2, Cm, and Λ.

Let k ∈ [1,m/2] be an integer. The functions u(1),..., u(k) we need in the expansion (2.9)

will be obtained as the result of embedding in Cb(R
d) appropriate functions v(1),...,v(k), with

values in certain Sobolev spaces. We determine the functions v
(1)
t ,...,v

(k)
t as follows. We define
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v
(0)
t as the solution of (2.1) from Theorem 2.1 and we are going to find v(1),..., v(k) by solving

the following system of stochastic partial differential equations:

dv
(n)
t =

(
Ltv

(n)
t +

n∑

l=1

(
n
l

)
L

(l)
t v

(n−l)
t

)
dt

+
(
M ρ

t v
(n)
t +

n∑

l=1

(
n
l

)
M

(l)ρ
t v

(n−l)
t

)
dwρ

t , n = 1, ..., k. (3.43)

Theorem 3.7. Let Assumptions 2.1, 2.2, 2.3, and 2.6 hold with m = m � 2k. Then there

exists a unique set v(1), ..., v(k) of solutions of (3.43) with initial condition v
(1)
0 = ... = v

(k)
0 =

0 and such that v(n) ∈ H
m−2n(T ), n = 1, ..., k. Furthermore, with probability one v(n) are

continuous Wm−1−2n
2 -valued predictable processes and there exists a constant N depending only

on T , d, Λ, m, k, K0,...,Km and Cm, such that for n = 1, ..., k

E sup
t�T

‖v(n)t ‖2
Wm−2n

2
� NK 2

m (3.44)

for h > 0. Moreover, if pλ = qλ = 0 for λ ∈ Λ0, then (3.44) holds for all h �= 0, and hence

v(n) = 0 for odd n � k.

Proof. Since for each n = 1, . . . , k the equation for v
(n)
t does not involve the unknown

functions v(l+1),..., v(n) , we can prove the theorem recursively on n � k. Denote

S(n) =

n∑

i=1

(n
i

)
L (i)v(n−i), R(n)ρ =

n∑

i=1

(n
i

)
M (i)ρv(n−i),

and first let n = 1. By Theorem 2.1, we have v(0) ∈ H
m(T ) such that the estimate (2.3) holds.

Note that R(1) = 0 and owing to Assumption 2.6

‖L (1)
t v

(0)
t ‖Wm−2

2
� N‖v(0)t ‖Wm

2
,

which, by Theorem 2.1, implies the existence of a unique v(1) ∈ H
m−2(T ) satisfying (3.43) with

zero initial condition. Furthermore, v
(1)
t is a continuous Wm−3

2 -valued function (a.s.) and (3.44)

holds with n = 1. Passing to higher n, we assume that m � k � 2 and for an n ∈ {2, ..., k} we

have found v(1),...,v(n−1) with the asserted properties. Then M (1)v(n−1) = 0 and

‖L (1)
t v

(n−1)
t ‖Wm−2n

2
� N‖v(n−1)

t ‖Wm−2n+2
2

= N‖v(n−1)
t ‖

W
m−2(n−1)
2

,

and for i � 2

‖L (i)
t v

(n−i)
t ‖Wm−2n

2
� N‖v(n−i)

t ‖
W

m−2n+(i+2)
2

� N‖v(n−i)
t ‖

W
m−2(n−i)
2

,

∞∑

k=1

‖M (i)ρv(n−i)‖2
Wm−2n+1

2
� N‖v(n−i)‖2

W
m−2n+1+(i+1)
2

� N‖v(n−i)
t ‖2

W
m−2(n−i)
2

.

By the induction hypothesis,

E

T∫

0

‖S(n)
t ‖2

Wm−2n
2

dt � NK 2
m, E

T∫

0

‖R(n)
t ‖2

Wm−2n+1
2

dt � NK 2
m, (3.45)
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which, by Theorem 2.1, yields the existence of a unique v(n) ∈ H
m−2n(T ) satisfying (3.43) with

zero initial condition. This theorem also yields the continuity property of v
(n)
t and an estimate,

that combined with (3.45) yields (3.44) for h > 0. The proof of the existence of v(1),...,v(k) with

the stated properties is complete. We obtain the uniqueness by inspecting the above proof in

which each v(n) is found uniquely.

Note that M (n) = 0 for odd n � k by (3.32). Assume now that pλ = qλ = 0 for λ ∈ Λ0.

Then also L (n) = 0 for odd n � k by (3.32) and (3.33). Hence S(1) = 0 and R(1) = 0, which

implies v(0) = 0. Assume that k � 2 and that for an odd n � k we have v(l) = 0 for all odd

l < n. Then L (n−i)v(i) = 0 and M (n−i)v(i) = 0 for all i = 1,...,n since either i or n − i is odd.

Thus, S(n) = 0 and R(n) = 0. Hence v(n) = 0 for all n � k.

Lemma 3.8. Let Assumptions 2.1, 2.2, 2.3, 2.5 (iii), and 2.6, hold with

m = l + 2k + 2

for some integers k � 0 and l � 0. Set

rht = vht −
k∑

j=1

hj

j!
v
(j)
t , (3.46)

where vh is the unique L2-valued solution of (2.4), (2.5), v(0) is the solution of (2.1)-(2.2), and

(v(n))kn=1 is the solution of (3.43), given by Theorem 3.7. Then rh0 = 0, rh ∈ W
0,l
2 (T ), and

drht = (Lh
t r

h
t + F h

t ) dt+ (Mh,ρ
t rht +Gh,ρ

t ) dwρ
t , (3.47)

where

F h
t :=

k∑

j=0

hj

j!
O

h(k−j)
t v

(j)
t , Gh,ρ

t :=

k∑

j=0

hj

j!
R

h(k−j)
t v

(j)
t .

Finally, F h ∈ W
l
2(T ) and G

h,· ∈ W
l+1
2 (T ).

Proof. We have v(h) ∈ H
l(T ) due to Assumptions 2.1 and 2.5(iii), and v(j) ∈ H

l(T ), for

j � k by Theorems 2.1 and 3.7. Hence rh ∈ H
l. Using the equations for vh and v(n) for

n = 0, ..., k, we can easily see that (3.47) holds with F̂ and Ĝ in place of F and G, respectively,

where

F̂ h = Lhv(0) − L v(0) +
∑

1�j�k

Lhv(j)
hj

j!
−

∑

1�j�k

L v(j)
hj

j!
− Ih,

Gh,ρ =Mh,ρv(0) − M ρv(0) +
∑

1�j�k

Mh,ρv(j)
hj

j!
−

∑

1�j�k

M ρv(j)
hj

j!
− Jh,ρ

with

Ih =
∑

1�j�k

j∑

i=1

1

i!(j − i)!
L (i)v(j−i)hj ,

Jh,ρ =
∑

1�j�k

j∑

i=1

1

i!(j − i)!
M (i)ρv(j−i)hj ,
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where, as usual, summations over empty sets mean zero. Note that

Ih =
k∑

i=1

k∑

j=i

1

i!(j − i)!
L (i)v(j−i)hj =

k∑

i=1

k−i∑

l=0

1

i!l!
L (i)v(l)hl+i

=
k−1∑

l=0

hl

l!

k−l∑

i=1

hi

i!
L (i)v(l) =

k∑

j=0

hj

j!

k−j∑

i=1

hi

i!
L (i)v(j)

and, similarly,

Jh,ρ =
k∑

j=1

j∑

i=1

1

i!(j − i)!
M (i)ρv(j−i)hj =

k∑

j=0

hj

j!

k−j∑

i=1

hi

i!
M (i)ρv(j).

After that the fact that F̂ = F and Ĝ = G follows by simple arithmetic. To prove the last

assertion, we note that for j = 0, 1, ..., k

l + k − j + 2 � m− 2j, l + k − j + 1 � m− 2j − 1.

Thus, by Lemma 3.6 for j = 0, 1, ..., k, (t, ω) = [0, T ]× Ω

‖Oh(k−j)
t v

(j)
t ‖W l

2
� N‖v(j)t ‖

W l+k−j+2
2

� N‖v(j)t ‖
Wm−2j

2
,

‖Rh(k−j)
t v

(j)
t ‖W l

2
� N‖v(j)t ‖

W l+k−j+1
2

� N‖v(j)t ‖
Wm−2j−1

2
,

which implies F h ∈ W
l
2(T ) and G

h,· ∈ W
l+1
2 (T ) by Theorems 2.1 and 3.7.

4 Proof of Theorems 2.2 and 2.4

First we present a theorem which, as we will see it later, is more general than Theorem 2.4.

Theorem 2.2 can be obtained similarly.

Theorem 4.1. Let Assumptions 2.2, 2.3, 2.4, 2.5, and 2.6 hold with

m = m = l + 2k + 3 (4.1)

for some integer k � 0. Then for rkt , defined as in Lemma 3.8, we have

E sup
t�T

‖rht ‖2W l
2
� N |h|2(k+1)K 2

m (4.2)

for h > 0, where N depends only on T , d, Λ, m, l, K0,...,Km, Cm, and A0,..., Al+1. Moreover,

if pλ = qλ = 0 for λ ∈ Λ0, then v(j) = 0 in (3.46) for odd j � k, and if k is odd then it is

sufficient to assume m � l+2k+2 in place of m = l+2k+3 in (4.1) to have the estimate (4.2).

Proof. By Lemma 3.8, we have F h ∈ W
l
2(T ) and Gh,· ∈ W

l+1
2 (T ), which, by Lemma 3.8

and Theorem 3.5, yields

E sup
t�T

‖rht ‖2W l
2
� NE

T∫

0

(‖F h
t ‖2W l

2
+ ‖Gh

t ‖2W l+1
2

) dt (4.3)
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with a constant N depending only on d, l, T , and A0, . . . , Al+1 Let (4.1) hold. Then for

j = 0, ..., k
l + k − j + 3 � m− 2j,

l + k − j + 2 � m− 2j + 1
(4.4)

and, by Remark 3.4,

‖Oh(k−j)
t v

(j)
t ‖W l

2
� N |h|k−j+1‖v(j)t ‖

W l+k−j+3
2

� N |h|k−j+1‖v(j)t ‖
Wm−2j

2
,

‖Rh(k−j)
t v

(j)
t ‖W l

2
� N |h|k−j+1‖v(j)‖

W l+k−j+2
2

� N |h|k−j+1‖v(j)‖
Wm−2j−1

2
.

(4.5)

Using Theorem 3.7, we see that

E

T∫

0

‖F h
t ‖2W l

2
+ ‖Gh‖2

W l+1
2

dt � N |h|2(k+1)K 2
m,

which, by Theorem 3.5, implies the estimate (4.2). If pλ = qλ = 0 for λ ∈ Λ0, then, by Theorem

3.7, v(j) = 0 for odd j � k. (Note that it follows also from (4.2) valid now for all h �= 0 since

vh = v−h due to that vh and v−h are the unique L2 solutions of the same problem (2.4), (2.5).)

If, in addition, k is odd then v(k) = 0. Thus (4.5) obviously holds for j = k and to have it also

for j � k − 1 we need only m = l + 2k + 2.

By the Sobolev theorem on embedding of W l
2 into Cb for l > d/2, there exists a linear

operator I :W l
2 → Cb such that Iϕ(x) = ϕ(x) for almost every x ∈ R

d and

sup
Rd

|Iϕ| � N‖ϕ‖W l
2

for all ϕ ∈ W l
2, where N is a constant depending only on d. One has also the following lemma

on the embedding W l
2 ⊂ l2(Gh), that we have already referred to, when we used Remark 2.3 on

the existence of a unique l2(Gh)-valued continuous solution {ut(x) : x ∈ Gh} to Equation (2.4).

Lemma 4.2. For all ϕ ∈W l
2(R

d), l > d/2, h ∈ (0, 1)

∑

x∈Gh

|Iϕ(x)|2hd � N‖ϕ‖2
W l

2
, (4.6)

where N is a constant depending only on d.

Proof. This lemma is a straightforward consequence of the Sobolev theorem on embedding

of W l
2¡ functions on the unit ball B1 of Rd, into C(B1), the space of continuous functions on B1

(cf., for example, [6].)

Set Rh
t = Irht . Recall that Λ

0 = {0}, δh,0 is the identity operator and δh,λ = δh,λ1 · ... · δh,λn

for (λ1, . . . , λn) ∈ Λn, n � 1. Then we have the following consequence of Theorem 4.1

Corollary 4.3. If for some integer n � 0 we have l > n + d/2 in Theorem 4.1. Then for

λ ∈ Λn

E sup
t∈[0,T ]

sup
x∈Rd

|δh,λRh
t (x)|2 � Nh2(k+1)K 2

m

for h > 0 with a constant N depending only on Λ, d, m, l, T , K0, ..., Km, A0,...,Al+1, and Cm.
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Proof. We set j = n− l. Then j > d/2 and, by the Sobolev theorem on embedding of W j
2

into Cb and Remark 3.2, from Theorem 4.1 we get

E sup
t∈[0,T ]

sup
x∈Rd

|δh,λRh
t (x)|2 � C1E sup

t∈[0,T ]
‖Rh

t ‖2j,h,n � C2E sup
t∈[0,T ]

‖Rh
t ‖2W l

2
� Nh2(k+1)K 2

m.

Similarly, by Lemma 4.2 and Remark 3.2,

E sup
t∈[0,T ]

∑

x∈Gh

|δh,λRh
t (x)|2hd � C1E sup

t∈[0,T ]
‖δh,λRh

t ‖2W j
2

� C2E sup
t∈[0,T ]

‖Rh
t ‖2W l

2
� Nh2(k+1)K 2

m.

Now we show that Theorem 2.4 follows from the above corollary. We define

ûh = Ivh, u(j) = Iv(j), j = 0, ..., k,

where vh is the unique Ft-adapted continuous L2(R
d)-valued solution of Equation (2.4) with

initial condition ψ, the processes v(0),...,v(k) are given by Theorem 3.7, I is the embedding

operator from W l into Cb. By Theorem 3.5, vh is a continuous W l
2-valued process, and, by

Theorem 3.7, v(j), j = 1, 2, ..., k, are Wm−2k
2 -valued continuous processes. Since l > d/2 and

hence m− 2k > d/2, the processes ûh and u(j) are well-defined and clearly (3.46) implies (2.9).

To show that Corollary 4.3 yields Theorem 2.4, we need only show that almost surely

û
(h)
t (x) = uht (x) for all t ∈ [0, T ] (4.7)

for each x ∈ Gh, where u
h is the unique Ft-adapted l2-valued continuous solution of (2.4). To

see this, let ϕ be a compactly supported nonnegative smooth function on R
d with unit integral,

and for a fixed x ∈ Gh set

ϕε(y) = ϕ((y − x)/ε)

for y ∈ R
d and ε > 0. Since ûh is a continuous L2-valued solution of (2.4), for each ε almost

surely
∫

Rd

ûht (y)ϕε(y) dy =

∫

Rd

û(y)ϕε(y) dy +

t∫

0

∫

Rd

(Lh
s û

h
s (y) + fs(y))ϕε(y) dy ds

+

t∫

0

∫

Rd

(Mh,ρ
s ûhs (y) + gρs (y))ϕε(y) dy dw

ρ
s

for all t ∈ [0, T ]. Letting here ε → 0 we see that both sides converges in probability, uniformly

in t ∈ [0, T ], and thus we get that almost surely

ûht (x) = u0(x) +

t∫

0

Lh
s û

h
s (x) + fs(x) ds+

t∫

0

Mh,ρ
s ûhs (x) + gρs (x) dw

ρ
s

for all t ∈ [0, T ]. (Remember that u0, f and g are continuous in x by virtue of Remark 2.1.)

Moreover, owing to Lemma 4.2 the restriction of ût onto Gh is a continuous l2(Gh)-valued

process. Hence, because of the uniqueness of the l2(Gh)-valued continuous Ft-adapted solution

of (2.4) for any l2-valued F0-measurable initial condition, we have (4.7), which completes the

proof of Theorem 2.4.
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parabolic equations” [in Russian], Tr. Semin. Im. I. G. Petrovskogo, 8, 153-168 (1982).

Submitted on September 19, 2011

126


	Abstract
	1 Introduction
	2 Formulation of the Main Results
	3 Auxiliary Facts
	4 Proof of Theorems 2.2 and 2.4
	References

