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Smoothness with respect to a parameter is established under mild assumptions on the

regularity of coefficients for Sobolev solutions of the Poisson equations in the whole R
d

in the “ergodic case.” An assertion of this kind serves as one of the key tools in diffusion

approximation and some other limit theorems. Bibliography: 12 titles.

1 Introduction

Let us consider the Poisson equation in R
d, d � 1,

L(x, y)u(x, y) = −f(x, y), x ∈ R
d, (1.1)

where y ∈ R
� (� � 1) is a parameter and

L(x, y) =

d∑

i,j=1

aij(x, y)
∂2

∂xi∂xj
+

d∑

i=1

bi(x, y)
∂

∂xi

with a = σσ∗/2. Such equations with a parameter and in the whole space R
d – not in a bounded

domain – are important for functional limit theorems in probability. To be well defined, this

equation requires some sort of boundary condition; the role of the latter takes a behavior of

solution at infinity which will be discussed shortly. Under such condition about growth, the

solution turns out to be defined up to an additive constant, which is also quite natural due

to L1 ≡ 0. To fix this constant, it is convenient to use the “centering” condition (cf., for

example, [1]) ∫

Rd

u(x, y)μy
∞(dx) = 0. (1.2)
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Here, μy∞(dx) is a (unique) invariant measure of the Markov process with a generator L(·, y) given
y. In order to guarantee the existence of solution, a necessary condition is again “centering” for

the right-hand side f , ∫

Rd

f(x, y)μy
∞(dx) = 0, (1.3)

for each y ∈ R
� (cf., for example, [2]). The meaning of the condition (1.3) is analogous to the

centering in the standard Central Limit Theorem.

The problem addressed in this paper is the smoothness of the solution u of the Poisson

equation (1.1) with respect to the parameter y, which would suffice for application of the Itô

formula with some diffusions plugged in at both variables, u(Xt, Yt), say, where Yt is another

diffusion. This is important in diffusion approximation and other limit theorems (cf. [3, 4, 1]).

Note that the most general Poisson equations which arise in relation to diffusion approximation

do not admit “potential term” of zero order, even though such equations may be also of a certain

theoretical interest. Hence we would like to have a simple sufficient condition for two derivatives

– either classical or, at least, Sobolev – with respect to y and, of course, in x as well. However,

derivatives with respect to x are not a problem because we have them for free by virtue of [2]

(cf. the reminder in Proposition 2 below). In the paper [1], Equation (1.1) was investigated

in the Hölder classes of functions via fundamental solutions, and all derivatives with respect

to the parameter and the state variable were classical. The approach suggested in that paper

required a certain regularity (at least, C2) of coefficients with respect to the state variable x,

which may be really desirable to relax. In this paper, we present another idea which provides

similar smoothness results in y (i.e., two derivatives in y) under quite different set of assumptions.

Namely, instead of the regularity of coefficients a, b we assume here the regularity of the right-

hand side f . This change allows us to tackle a much wider class of operators L, although the

class of right-hand sides becomes more narrow. In this respect note that, in the discrete time

theory, there is a series of results in Lipschitz classes, both for coefficients and right-hand sides

(cf. [5]). Hence it seems as if the “total regularity” of coefficients and of the right-hand side

in all known cases equals two, at least, informally (i.e., if we accept to assign regularity one to

the Lipschitz condition). So, it may be said that in this paper we relax conditions on regularity

with respect to x on the expense of regularity of the right-hand side f .

Note that under our assumptions derivatives of solution u with respect to the parameter

turn out to be classical. Another remark is that the assumptions on the right-hand side ((Hf ),

(H ′
f ), and (H ′′

f ) below) may be relaxed to similar growth of Lp norms of f and its derivatives

and the latter may be understood also in the Sobolev sense.

Unlike [1], in the present paper we do not consider transition densities, nor fundamental

solutions. However, the strategy implemented in [1] will be used essentially; just, now we will

be working with measures rather than with densities. Some new technicalities and difficulties

arise here, while some old ones become easier or even disappear, – such as, e.g., singularities at

time zero. All assumptions will be formulated in the next section.

In the proofs below, there will be a repeating reasoning about series with a general term that

consists of an exponentially decreasing value and another polynomially increasing (in x or in R)

multiplier. This polynomially increasing term may look as an extension which complicates the

calculus. However, in fact, we, apparently, cannot avoid this increasing term, broadly speaking,

because solution of an elliptic partial differential equation with a bounded right-hand side is,

generally speaking unbounded. In other words, those series below with power functions in R are
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natural and seem to be more or less unavoidable.

In order to tackle the problem (1.1), (1.2) in appropriate functional classes, we will need to

deal with the corresponding auxiliary SDE,

dXy
t = b(Xy

t , y)dt+ σ(Xy
t , y)dBt, t � 0, Xy

0 = X0, (1.4)

with some (nonrandom) initial data X0, where Xy
t takes values in R

d, and {Bt; t � 0} is a

standard d–dimensional Brownian motion σ(x, y) =
√

2a(x, y).

In the author’s opinion, it would be desirable to simplify the calculus below, which could

possibly allow to cover more general models. One of possible ways to that might be to use some

ideas from another forthcoming paper [6] based on the notion of extended Poisson equation and

weaker metrics. We postpone this task till further studies.

The paper consists of Introduction and three further sections: assumptions and the main

result are contained in Section 2, auxiliaries in Section 3, and the main technical part about

derivatives of the heat functions – solutions of some parabolic equations – in Section 4, the latter

being split itself into several subsections related to various derivatives. We deal with functions,

vector-valued functions and matrix-valued functions. However, for the notational simplicity all

Euclidean norms are denoted by mean of the same modulus. The crucial point is the derivative

representation (2.3) of Theorem 2: we guess this formula and then prove that the right-hand

side there serves as a derivative ∂yp(x, g, y). It is possible to study further smoothness under

further natural additional assumptions on the coefficients, but this is not the goal of this paper.

In the calculus below, all constants C and m may change from line to line.

2 Assumptions and the Main Result

Both coefficients a and b are assumed to be bounded (although this, of course, may be

considerably relaxed); a is uniformly continuous with respect to x and nondegenerate uniformly

with respect to (x, y), i.e. there exist two constants 0 < λ � Λ < ∞ such that the following

matrix inequalities hold (in the sense of nonnegative definiteness),

(Ha) λI � a(x, y) � ΛI,

The existence of an invariant probability measure μy∞ is ensured by the following recurrence

condition:

(Hb) lim
|x|→∞

sup
y
〈b(x, y), x〉 = −∞

(cf., for example, [7]. The assumptions (Ha) and (Hb) also ensure uniqueness of the invariant

measure, as well as uniqueness of solution of (1.4) in law and strong Markov property (cf. [8]

about the latter). For the function f , we assume that there exist C,m0 > 0 such that

(Hf ) sup
y

|f(x, y)| � C(1 + |x|m0), in addition to (1.3).

Throughout the paper, we assume that two derivatives of f with respect to x have moderate

growth: with some m0,

(H ′
f ) sup

y
|fx(x, y)| � C(1 + |x|m0),
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and

(H ′′
f ) sup

y
|fxx(x, y)| � C(1 + |x|m0).

By (Hg), (H
′
g), and (H ′′

g ) we understand the same conditions for a generic function (g(x), x ∈ R
d),

which does not depend on y (but no centering).

The family of regularity assumptions on all coefficients is as follows: we say that assumption

(H0,j) holds with some integer j � 0 if there exists m0 such that

(H0,j)

(a, b)(x, ·) ∈ Cj
b , f(x, ·) ∈ Cj ,

sup
y

∑

|k|�j

|∂k
yf(x, y)| � C(1 + |x|m0).

Without the lower index b in C, no boundedness is assumed: instead, moderate (as polynomial)

growth will be used in all such cases. (a, b)(x, ·) ∈ C0
b means bounded continuity in the variable

y, which is uniform with respect to x, i.e., with some modulus of continuity in y only. In the

sequel, only (H0,1) and (H0,2) will be used in Theorems 1–5.

Let us denote

pt(x, g(·); y) := 〈g(·), μy
x,t − μy

∞〉 ≡ Exg(Xt)−
∫

g(x′)μy
∞(dx′) (2.1)

assuming that all the integrals here exist. The same notation will be also applied in case of

centered functions depending on y, (f(x, y), x ∈ R
d, y ∈ R

�),

pt(x, f ; y) := 〈f(·, y), μy
x,t − μy

∞〉 = 〈f(·, y), μy
x,t〉. (2.2)

Further, let Li,2 := Ci
2 ∂

2−iL/∂y2−i. By induction introduce the vector-valued functions

p
(1)
t (x, g; y) ≡ qt(x, g; y) :=

t∫

0

Ex
∂L

∂y
(Xy

s , y)pt−s(X
y
s , g; y) ds, (2.3)

qt(x, f ; y) := qt(x, f(·, y∗); y)|y∗=y =

t∫

0

Ex
∂L

∂y
(Xy

s , y)pt−s(X
y
s , f ; y) ds (2.4)

and the matrix-valued functions

p
(2)
t (x, g; y) ≡ q

(1)
t (x, g; y) :=

t∫

0

ds ps (x, L0,2(·)pt−s(·, g))

+

t∫

0

ds
∑

|i|=1

qs (x, Li,2(·)pt−s(·, g)) , (2.5)

assuming that all the integrals are well defined.

Let us denote (assuming all expressions exist)

p
(1)
t (x, f, y) := qt(x, f(·, y∗), y)|y∗=y + 〈fy(·, y), μy

x,t − μy
∞〉, (2.6)

q
(1)
t (x, f(·, y), y) := q

(1)
t (x, f(·, y∗), y)|y∗=y, (2.7)
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and

p
(2)
t (x, f, y) := q

(1)
t (x, f(·, y), y) + 2qt(x, fy(·, y), y) + 〈fyy(·, y), μy

x,t − μy
∞〉. (2.8)

Here, qt(x, f(·, y), y) is treated so as if f(·, y∗) did not depend on y and then a substitution

y∗ = y is performed and q
(1)
t (x, f(·, y), y) is understood similarly. The existence of p

(1)
t (x, g, y)

and p
(2)
t (x, g, y) (and, hence, of p

(1)
t (x, f, y) and p

(2)
t (x, f, y)) will be established below under

the corresponding assumptions in Subsections 4.1 and 4.4 respectively. In the calculus, the

parameter y may be occasionally dropped for the sake of simplicity. If g is a vector-valued

function or a matrix-valued function, then any p
(i)
t (x, g, y) will be understood respectively (with

p
(0)
t (x, g, y) := pt(x, g, y)), i.e., as a vector-valued function or a matrix-valued function of the

corresponding dimension. We emphasize that fundamental solutions are not used in the paper

and notation like pt(x, g, y) mean some integration with respect to the distribution of Xt.

Theorem 1. Let assumptions (Hb), (Ha), (Hf ), (H
′
f ), (H

′′
f ), and (H0,2) be satisfied. Then

the unique centered solution u in the class
⋂

p>1W
2
p,loc

⋂
C possesses two continuous derivatives

with respect to y with the representations

uy(x, y) =

∞∫

0

p
(1)
t (x, f ; y) ds, (2.9)

and

uyy(x, y) =

∞∫

0

p
(2)
t (x, f ; y) ds. (2.10)

All the expressions and integrals in (2.9) and (2.10) are well defined and uy and uyy are mod-

erately growing in x functions uniformly with respect to y.

Proof. By Proposition 2 below, the unique centered solution u of Equation (1.1) in the class⋂
p>1W

2
p,loc

⋂
C, has a representation,

u(x, y) =

∞∫

0

Exf(X
y
s , y) ds ≡

∞∫

0

pt(x, f(·, y); y) ds. (2.11)

Note that convergence of all integrals in (2.9) and (2.10) and their continuity follow from the

Proposition 1 and Theorems 2, 3 and 5 below, in particular, from the bounds (3.1), (4.46) and

(2.5). The fact that both expressions for uy and uyy, indeed, represent the corresponding full

derivatives of the function u, is a consequence of convergence rate bounds and from standard

theorems of Analysis about differentiability under the integral. Polynomial growth of both

derivatives in x is proved in Theorems 2 and 5 below. Theorem 1 is proved. �
Remark 1. For the first derivative uy assumption (H0,1) suffices instead of (H0,2). More

generally, assumption (H0,j) (j � 3) would imply j derivatives with respect to y, which can

be proved by induction. Some of the conclusions might be interesting to extend under certain

growth conditions on b and a (or σ). We do not pursue either of these goals here.
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3 Auxiliaries

Before we proceed further, let us remind some previous results related to our problem. The

first estimate is a special case of mixing bounds established in [7]. Proposition 1 is the basis

for convergence of all integrals in (2.9), (2.10) and (2.11). Here, ‖ · ‖TV is the metric of total

variation.

Proposition 1 ([7]). Under assumptions (Ha) and (Hb), the following convergence bounds

hold for the process Xy
t , t � 0, uniformly with respect to y: for every k > 0, there exist C,m > 0

such that for any t � 0,

sup
y

‖μy
x,t − μy

∞‖TV � C
(1 + |x|m)

(1 + tk)
. (3.1)

Moreover, for every k > 0 and m > 0, there exist C,m′ > 0 such that

sup
y

sup
0�t<+∞

∫
|x′|mμy

x,t(dx
′) � C

1 + |x|m′

1 + tk
, (3.2)

and for every m > 0,

sup
y

∫
|x′|mμy

∞(dx′) < ∞. (3.3)

Moreover, for any k > 0 and n > 0, and every function g satisfying |g(x)| � C(1 + |x|n), there
exist C,m > 0 such that

sup
y

‖〈g, μy
x,t − μy

∞〉‖B � C
(1 + |x|m)

1 + tk
. (3.4)

The following result from [2] concerns the existence, uniqueness, and some estimates of

solutions of Equation (1.1), with a minor adjustment to our present setting, which is a bit less

general than in [2].

Proposition 2 ([2]). Under assumptions (Ha) and (Hb), the uniform continuity of the

matrix a and growth of f(x, y) in x not faster than polynomially for any y, there exists a

solution of Equation (1.1) in the class of functions from the Sobolev space
⋂

p>1W
2
p,loc

⋂
C

which are locally bounded and grow at most polynomially in |x|, as |x| → ∞, unique up to an

additive constant which can be chosen so that for any y the centering equality (1.2) holds.

Moreover, for this solution the representation (2.11) (cf. above) holds with the following

bounds:

• If for some β � 0

|f(x, y)| � C(y)(1 + |x|β),
then for any β′ > β + 2

(|u(x, y)|+ |∇xu(x, y)|) � C1(y)(1 + |x|)β′
(3.5)

with some C1(y).
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• If for some β < 0,

|f(x, y)| � C(y)(1 + |x|)β−2,

then solution u and its gradient ∇xu are both bounded; moreover,

|u(x, y)|(1 + |x|)−β+2 + |∇xu(x, y)| � C1(y) (3.6)

with some C1(y).

• If for some β > 4,

|f(x, y)| � C(y)(1 + |x|β−2),

then for some constant C1(y)

|u(x, y)|+ |∇xu(x, y)| � C1(y)(1 + |x|β). (3.7)

Remark 2. The gradient ∇xu is continuous due to the embedding theorem, see [9]. The

boundedness provided by (3.6) in some cases is a very desirable property, even though often a

moderate growth could be also sufficient. The representation (2.11) is a natural extension of

many earlier results, in particular, we refer to [10] (for bounded domains) and [5] (for discrete

equations in the whole space R
d).

4 Derivatives of Heat Functions

4.1 First derivatives ∂ypt(x, g; y) and Dypt(x, f ; y)

Remind the notation:

pt(x, g; y) := 〈g(·), μy
x,t − μy

∞〉
and

pt(x, f ; y) := 〈f(·, y), μy
x,t − μy

∞〉.
Under assumptions (Ha) and (Hb), this is a well defined operation, at least, for every g or f with

a moderate growth with respect to x, due to Proposition 1. Occasionally, it will be convenient

to use an equivalent semigroup notation for the same object,

pt(x, g; y) ≡ 〈g, μy
x,t〉 − 〈g, μy

∞〉 ≡ Tt(g − 〈g, μy
∞〉),

where Tt is a semigroup of linear operators with a generator L on the space of Borel functions

g with a moderate growth, with a weighted norm

‖g‖m = ess sup
x
(1 + |x|m)−1|g(x)| < ∞.

Note that the functions pt(x, g; y) and pt(x, g; y) are continuous in y, for example, due to the

probabilistic representation via the SDE (1.4), continuity of solution of this SDE in y in mean,

moment inequalities and the Lebesgue dominated convergence theorem. We now establish the

differentiability of pt(x, g; y) and pt(x, f ; y) with respect to y; Dyp, as usual, signifies the full

derivative function (as f also depends on y), while ∂y (or, occasionally, ∇y) – the partial deriva-

tive with respect to the third variable. For the purpose of growth control, let us introduce one
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more notation: we say that the function ϕ(x), x ∈ R
d, belongs to the space Lmod

p,loc (for moderate

growth) if and only if there exists m � 0 such that

sup
x
(1 + |x|)−m

( ∫

v: |v−x|�1

|ϕ(v)|p dv
)1/p

< ∞. (4.1)

Otherwise, this space may be defined as a family of functions for which there exists m such that

sup
x
(1 +R)−m

( ∫

v: |v|�R

|ϕ(v)|p dv
)1/p

< ∞. (4.2)

Similarly, the notation u ∈ W 1,2,mod
p,loc means that u, ut, ux, uxx ∈ Lmod

p,loc. Either expression (4.1)

or (4.2) may be chosen as a norm of the space Lmod
p,loc; we will call the elements of this space

functions of Lp with a moderate growth. Note that under (Hf ), solution given in Proposition 2

belongs to
⋂

p>1W
1,2,mod
p,loc , by virtue of a priori bounds (cf. [9, Lemma 2.3.3]).

In the following calculus, we treat expressions like ∂yp or Dyp as if they were functions, for

simplicity of notation. For second derivatives (in the next section), likewise, ∂2
yp is a matrix-

valued function, but again we will use simplified notation as it were a function with values in R1.

This simplification is not harmful; in particular, in a bit different manner, it could be understood

as derivatives with respect to some specific variables, e.g., ∂ykp, etc. Notations (Hg) and (H ′
g)

below signifies assumptions (Hf ) and (H ′
f ) applied to a function g, which does not depend on

y, i.e., a moderate growth of g and ∇g respectively. It is methodically convenient to prove all

estimates firstly for pt(x, g; y) and then expand them to more general pt(x, f ; y). Respectively,

all further theorems are split into two parts.

Theorem 2. Suppose that (Hb), (Ha), (Hg), (H ′
g), (H ′′

g ), and (H0,1) are satisfied and a

function g has an Lp moderate growth in the sense of (4.2) (say) with some p � d + 1. Then

for each t > 0, x, x′ ∈ R
d, y ∈ R

�, pt(x, g; y) is continuously differentiable in the variable y, and

the gradient ∂ypt(x, g; y) is given by formula (2.3),

∂ypt(x, g, y) = qt(x, g; y) (≡ p
(1)
t (x, g; y))

:=

t∫

0

Ex
∂L

∂y
(Xy

s , y)pt−s(X
y
s , g; y) ds.

The vector-valued function qt(·, g; ·) is continuous in y for any t, x, and it has a moderate growth

in x uniformly with respect to y and locally uniformly with respect to t.

Similarly, if (Hb), (Ha), (Hf ), (H
′
f ), (H

′′
f ) and (H0,1) are satisfied, then the following repre-

sentation holds:

Dypt(x, f, y) = qt(x, f(·, y); y) +Exfy(X
y
t , y)

≡ qt(x, f(·, y); y) + pt(x, fy(·, y); y)
≡ qt(x, f(·, y); y) + 〈fy(·, y), μy

x,t − μy
∞〉, (4.3)

and the vector-valued function qt(·, f ; ·) is continuous in y for any t, x and has a moderate growth

in x uniformly with respect to y and locally uniformly with respect to t.
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Remark 3. In the proof of this theorem below, t > 0 is fixed and some constants in the

calculus may depend on this value of t. Formula (4.3) itself is a consequence of an “educated

guess” due to a formal differentiation with respect to y of the equation on pt, i.e., ∂tpt−L(y)pt =

0, p0 = g(x). This should formally result in

∂t(∂ypt)− L(y)(∂ypt) = (∂yL(y))pt, ∂yp0 = 0,

or

∂t(qt)− L(y)(qt) = (∂yL(y))pt, q0 = 0. (4.4)

It is known that solution of the latter equation is given by (2.3).

Proof. 1. In coordinates, Equation (2.3) reads, for any i,

∂yipt(x, g, y) =

t∫

0

Ex
∂L

∂yi
(Xy

s , y)pt−s(X
y
s , g; y) ds.

All formulas in the following proof may be understood in this way in coordinates.

For any function g(x), x ∈ R
d, we introduce the notation denote

ĝ(x, y) := g(x)− 〈g, μy
∞〉,

wy(s, x) := Exĝ(X
y
t−s, y) ≡ pt−s(x, g; y).

(4.5)

For given t and y and the function g we set

v(s, x; y) :=

(
∂L

∂y
pt−s

)
(x, g; y)

=
( ∑

ij

aijy (x, y)∂
2
xixj +

∑

i

biy(x, y)∂xi

)
Exĝ(X

y
t−s, y). (4.6)

(Remind that here t is fixed; below we will use another notation for this function with any t,

f
(1)
t−s.) By virtue of (Hf ) and a priori bounds (cf. [9, Chapter 4, Section 10] and [11, Theorem 2])

‖Exĝ(X
y
t−s, y)‖W 1,2

p ([0,t]×BR)
≡ ‖wy‖

W 1,2
p ([0,t]×BR)

� C(‖wy‖Lp([0,t]×BR+1) + ‖ĝy‖W 2
p (BR+1))

and because

‖ĝy‖W 2
p (BR+1) � C(1 +R)m

(straightforward from the assumptions and integration if we take into account that the invariant

measure μy∞ integrates any power function |x|k; cf. Proposition 1) and

‖wy‖Lp([0,t]×BR+1) � C(1 +R)m,

(straightforward), we conclude that with some m > 0,

‖Exĝ(X
y
t−s, y)‖W 1,2

p ([0,t]×BR)
� C(1 +R)m,

and, consequently,

pt−s(x, g; y) = Exĝ(X
y
t−s, y) ∈ W 1,2,mod

p,loc ∀ p > 1, (4.7)
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as a function of the variables (s, x) ∈ [0, t] × R
d (see also [11]). Since functions ay and by are

bounded, we conclude that for every y,

v(s, x; y) ∈ Lmod
p,loc ∀ p > 1, (4.8)

i.e., more precisely,
t∫

0

ds

∫

BR

|v(s, x; y)|p dx � C(1 +R)m, (4.9)

where C may depend on t. Therefore, using Krylov’s estimate [12, Theorem 2.2.4] and Propo-

sition 1, it can be shown that for any t > 0, the function

qt(x, g; y) :=

t∫

0

Ex

(
∂L

∂y
(Xs, y)pt−s(Xs, g; y)

)
ds

≡
t∫

0

Exv(s,Xs; y) ds (4.10)

is well defined, bounded and continuous in y and has a moderate growth in x. For completeness

of presentation, we provide the details.

We use two values

p = d+ 1 and p′ = 2(d+ 1)

(here any p′ > d+ 1 could be used). Krylov’s estimate ensures that

Ex

t∧τR∫

0

v(s,Xs; y) ds < ∞ ∀ R > 0,

where

τR := inf(t � 0 : |Xt| � R).

Moreover,

Ex

t∧τR∫

0

v(s,Xs; y) ds � N‖v‖Ld+1([0,t]×BR).

By (4.8), we have

‖v‖Ld+1([0,t]×BR) � C

( t∫

0

ds

∫

BR

(1 + |x|m)d+1 dx

) 1
d+1

� Ct
1

d+1 (1 +R)md (4.11)

and

‖v‖L2(d+1)([0,t]×BR) � C

( t∫

0

ds

∫

BR

(1 + |x|m)2(d+1) dx

) 1
2(d+1)

� Ct
1

2(d+1) (1 +R)md. (4.12)
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Let R � |x|. Consider a sequence of hitting times,

τ0 = 0, τ1 := τR, τn+1 := inf(t � τn : |Xt −Xτn | � R), inf(∅) = ∞.

Then, using the Cauchy–Bunyakowsky–Schwarz inequality, we estimate,

Ex

t∫

0

|v|(s,Xs; y) ds = Ex

∞∑

k=0

1(τk < t � τk+1)

t∫

0

|v|(s,Xs; y) ds

� Ex

∞∑

k=0

1(τk < t � τk+1)

τk+1∧t∫

0

|v|(s,Xs; y) ds

=

∞∑

k=0

Ex 1(τ
k < t � τk+1)

τk+1∧t∫

0

|v|(s,Xs; y) ds

�
∞∑

k=0

(
Ex 1(τ

k < t � τk+1)
)1/2

(
Ex

( τk+1∧t∫

0

|v|(s,Xs; y) ds

)2)1/2

�
∞∑

k=0

(
Ex 1(τ

k < t � τk+1)
)1/2

(
Ex

( τ(k+1)R∧t∫

0

|v|(s,Xs; y) ds

)2)1/2

.

Now,

Ex 1(τ
k−1 < t � τk) � Px(τ

k−1 < t).

By the strong Markov property and induction,

sup
x

Px(τ
n < t) � qnt ,

qt := sup
x

Px( sup
0�s�t

|Xs − x| � R) < 1.
(4.13)

Next, by (4.12),

Ex

( t∧τ(k+1)R∫

0

|v|(s,Xs; y) ds

)2

� Ex

(
t

τ(k+1)R∫

0

|v|2(s,Xs; y) ds

)

� C t ‖v‖2L2(d+1)([0,t]×B(k+1)R) � C t1+
1

d+1 (1 +R)2md(k + 1)2md.

Now we can complete the estimate above as follows:

Ex

t∫

0

|v|(s,Xs; y) ds �
∞∑

k=0

(
Ex 1(τ

k < t � τk+1)
)1/2

(
Ex

( τ(k+1)R∫

0

|v|(s,Xs; y) ds

)2)1/2

�
∞∑

k=0

Cq
(k−1)/2
t t

d+2
2(d+1) (1 +R)md(k + 1)md � C(1 +R)md.
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This implies that, indeed, for any t > 0 the function qt(·, g; y) in (4.10) is well defined and (locally

uniformly in x and uniformly in y) bounded. Remind that R was chosen so as to satisfy the

only condition |x| � R. Hence, indeed, the function qt(·, g; y) defined in (4.10) has a moderate

growth in x.

2. Let us show the continuity of qt(x, g; ·) for every x and t. A natural idea is again to use

Krylov’s estimate with some p � d+ 1 (cf. [12, Theorem 2.3.4])

|qt(x, g; y)− qt(x, g; y
′)|

�
t∫

0

∣∣∣Ex(v(s,X
y
s , y)− v(s,Xy′

s , y′)
∣∣∣ ds

�
t∫

0

∣∣Ex(v(s,X
y
s , y)− v(s,Xy

s , y
′))
∣∣ ds+

t∫

0

∣∣∣Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′))

∣∣∣ ds

� C‖v(y)− v(y′)‖Lp([0,t]×Rd]) +

t∫

0

∣∣∣Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′))

∣∣∣ ds. (4.14)

Here, the first term looks small if |y′ − y| is small and the second term, apparently, tends to

zero as |y′ − y| → 0 because Ex(v(s,X
y
s , y′) ought to be a solution of some parabolic equation

for which continuity in y is more or less a standard result in the theory of partial differential

equations. Note, by the way, that despite the notation used above Ex(v(s,X
y
s , y′)−v(s,Xy′

s , y′)),
there is no need to deal with strong solutions, as the latter expression may be considered just

as a short notation for (Exv(s,X
y
s , y′)− Exv(s,X

y′
s , y′)).

Nevertheless, in this simple form the second inequality above is not very helpful, since the

right-hand side in (4.14) may just diverge (as v(y) may not be in Lp in the whole space, but

only locally). However, because of the polynomial growth condition in x, we may localize the

right-hand side and to tackle this localized version similarly to the previous step. So, let us

establish an upper bound

t∫

0

∫

BR

|v(s, x, y)− v(s, x, y′)|p dxds � Cρ(|y′ − y|)(1 +R)m (4.15)

with some bounded ρ such that ρ(0) = 0 and ρ(s) → 0, s → 0, and then apply an appropriate

version of Krylov’s estimate, from which the desired continuity of qgt (x, ·) would follow.

3. Note that the function v given by (4.6) is a linear combination of the first and second

derivatives of solution of some parabolic partial differential equation (cf. Equation (4.19) below).

Hence, we may use a priori local bounds for Sobolev norms of such solutions. Remind that the

function ĝ was defined in (4.5). Slightly abusing notation, we have

v(s, x, y)− v(s, x, y′)

= (ay(x, y)∂
2
x + by(x, y)∂x)Exĝ(X

y
t−s, y)− (ay(x, y

′)∂2
x + by(x, y

′)∂x)Exĝ(X
y′
t−s, y

′)

= (ay(x, y)− ay(x, y
′))∂2

xExĝ(X
y
t−s, y) + (by(x, y)− by(x, y

′))∂xExĝ(X
y
t−s, y)

+ ay(x, y
′)∂2

x(Exĝ(X
y
t−s, y)− Exĝ(X

y′
t−s, y

′)) + by(x, y
′)∂x(Exĝ(X

y
t−s, y)− Exĝ(X

y′
t−s, y

′)).
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So, using the notation (eventually, the modulus of continuity in (4.15) may differ)

ρ(z) := sup
(y,y′: |y−y′|�z)

sup
x

(|ay(x, y)− ay(x, y
′)|+ |by(x, y)− by(x, y

′)|) , (4.16)

we estimate,

|v(s, x, y)− v(s, x, y′)| � ρ(y − y′)(|∂2
xExĝ(X

y
t−s)|+ |∂xExĝ(X

y
t−s)|

+ C|∂2
x(Exĝ(X

y
t−s, y)− Exĝ(X

y′
t−s, y

′))|

+ C|∂x(Exĝ(X
y
t−s, y)− Exĝ(X

y′
t−s, y

′))|. (4.17)

Thus,

( t∫

0

∫

BR

|v(s, x, y)− v(s, x, y′)|p dxds
)1/p

� C ρ(y − y′) ‖Exĝ(X
y
t−s, y)‖W 1,2

p ([0,t]×BR)

+ C

( t∫

0

∫

BR

dsdx |∂2
x(Exĝ(X

y
t−s, y)− Exĝ(X

y′
t−s, y

′))|p
)1/p

+ C

( t∫

0

∫

BR

dsdx |∂x(Exĝ(X
y
t−s, y)− Exĝ(X

y′
t−s, y

′))|p
)1/p

. (4.18)

Now we will use the fact that the function wy(s, x) := Exĝ(X
y
t−s, y) ≡ pt−s(x, g; y) is a solution

of the Cauchy problem in [0, t]× R
d,

wy
s (s, x) +

1

2

∑

i,j

aij(s, x)wy
xixj (s, x) +

∑

i

bi(s, x)wy
xi(s, x) = 0, wy(t, x) = ĝ(x, y). (4.19)

Therefore, the first term in the right-hand side of (4.18) contains a multiplier ρ(y − y′) – which

tends to zero as y′ → y – and another multiplier ‖Exĝ(X
y
t−s, y)‖W 1,2

p ([0,t]×BR)
, which admits a

bound (4.7), which is the first part leading to the estimate (4.15). Namely, we get,

t∫

0

∫

BR

|(ay(x, y)− ay(x, y
′))∂2

xExĝ(X
y
t−s, y)|pdsdx

+

t∫

0

∫

BR

|(by(x, y)− by(x, y
′))∂xExĝ(X

y
t−s, y)|pdsdx � Cρ(|y′ − y|)(1 +R)m.

4. The second part of this consideration leading to (31) is to establish the bound

( t∫

0

∫

BR

dsdx |∂2
x(Exĝ(X

y
t−s, y)− Exĝ(X

y′
t−s, y

′))|p
)1/p

� Cρ̃(|y′ − y|)(1 +R)m, (4.20)
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possibly with some new modulus of continuity ρ̃(|y′ − y|). We have,

∂2
x(Exĝ(X

y
t−s, y)− Exĝ(X

y′
t−s, y

′)) = ∂2
x(w

y(s, x)− wy′(s, x)).

Denote

z(s, x, y, y′) := wy(s, x)− wy′(s, x).

Then, z(·, y, y′) is a Sobolev solution (i.e, in ∩p>1W
1,2
p,loc) of the equation,

zs +
1

2
σσ∗(s, x, y)zxx + b(s, x, y)zx = −F (s, x, y, y′),

z(t, x, y, y′) = 〈g, μy′
∞ − μy

∞〉,
(4.21)

where

F (s, x, y, y′) =
1

2
(σσ∗(s, x, y′)− σσ∗(s, x, y))uxx(s, x, y′) + (b(s, x, y′)− b(s, x, y))ux(s, x, y

′).

Remind that

‖σσ∗(s, x, y′)− σσ∗(s, x, y)‖+ |b(s, x, y′)− b(s, x, y)| � ρ(|y − y′|).

By virtue of [9],

‖z(·, y, y′)‖
W 1,2

p ([0,t]×BR)
� C(‖z(·, y, y′)‖Lp([0,t]×BR+1)

+ ‖z(t, ·, y, y′)‖W 2
p (BR+1) + ‖F (·, y, y′)‖Lp([0,t]×BR+1)).

(We apply a slightly weaker bound with a stronger norm ‖ · ‖W 2 instead of ‖ · ‖W 2−2/p .) Here,

for example, due to Krylov’s estimates,

‖z(·, y, y′)‖L∞(BR) � N‖F (·, y, y′)‖Lp([0,t]×BR+1).

Hence also

‖z(·, y, y′)‖Lp(BR) � N(1 +R)m‖F (·, y, y′)‖Lp([0,t]×BR+1).

and

‖z(·, y, y′)‖W 1,2
p ([0,t]×BR) � C(1 +R)m(‖F (·, y, y′)‖Lp([0,t]×BR+1) + ‖z(t, ·, y, y′)‖W 2

p (BR+1)).

Note that the function z(t, ·, y, y′) at t does not depend on x, so that

‖z(t, ·, y, y′)‖W 2
p (BR+1) = ‖z(t, ·, y, y′)‖Lp(BR+1) � C(1 +R)m/p|〈g, μy′

∞ − μy
∞〉|.

Here,

〈g, μy′
∞ − μy

∞〉 → 0 as y′ − y → 0,

i.e., again with some m and some modulus of continuity ρ̃,

|〈g, μy′
∞ − μy

∞〉| � Cρ̃(|y′ − y|)(1 +R)m (4.22)
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by (3.4) and the locally uniform continuity of 〈g, μy
x,t〉 in y; the latter may be shown similarly

to the calculus above, but we postpone it till next step. Further, since

‖F (·, y, y′)‖Lp([0,t]×BR+1) � Cρ(|y′ − y|)‖u(·, y, y′)‖
W 1,2

p ([0,t]×BR)

� Cρ(|y′ − y|)(1 + (R+ 1))m,

we get the estimate (4.20), as required. Note that similarly and a bit easier the estimate with

the first derivatives follows, with some m and some modulus of continuity ρ̃,

( t∫

0

∫

BR

dsdx |∂x(Exĝ(X
y
t−s, y)−Exĝ(X

y′
t−s, y

′))|p
)1/p

� Cρ̃(|y′ − y|)(1 +R)m.

Thus, (4.15) is established.

5. Now let us show a more reasonable analogue of (4.14), starting from the preliminary

estimate,

|qt(x, g; y)− qt(x, g; y
′)| �

t∫

0

∣∣Ex(v(s,X
y
s , y)− v(s,Xy

s , y
′))
∣∣ ds

+

t∫

0

∣∣∣Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′))

∣∣∣ ds. (4.23)

Consider the first term on the right-hand side. By (4.15) and (4.13), we have

t∫

0

∣∣Ex(v(s,X
y
s , y)− v(s,Xy

s , y
′))
∣∣ ds

�
∑

n

Ex1(τn � t < τn+1)

t∫

0

∣∣(v(s,Xy
s , y)− v(s,Xy

s , y
′))
∣∣ ds

�
∑

n

Ex1(τn � t) 1(sup
s�t

|Xy
s | � (n+ 1)R)

t∫

0

∣∣(v(s,Xy
s , y)− v(s,Xy

s , y
′))
∣∣ ds

�
∑

n

q
n/2
t

⎛

⎝Ex

t∧τn+1∫

0

∣∣(v(s,Xy
s , y)− v(s,Xy

s , y
′))
∣∣ ds

⎞

⎠
1/2

�
∑

n

q
n/2
t N‖(v(s, ·, y)− v(s, ·, y′))‖1/2Ld+1([0,t]×B(n+1)(R+1))

�
∑

n

q
n/2
t Ct(1 + (n+ 1)(1 +R))mρ(|y′ − y|)

� C(t,m) (1 +R)m ρ1/2(|y′ − y|)

with some m > 0.
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6. Consider the second term in (4.23),

t∫

0

∣∣∣Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′))

∣∣∣ ds

Denote

z̃(s, x, y, y′) := Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′)), 0 � s � t,

z1(s, x, y, y′) := Ex(v(s,X
y′
s , y′).

Then z̃ is a Sobolev solution (i.e., in W 1,2
p,loc) of the equation

∂sz̃(s, x, y, y
′) + Ly z̃(s, x, y, y′) = (Ly − Ly′)z1(s, x, y, y′),

z̃(0, x, y, y′) = 0.
(4.24)

Note that z1 has a moderate growth in W 1,2
p,loc, which implies that the right-hand side in (4.24)

has a moderate growth in Lp,loc. Hence, arguing similarly to the step 4 above, we can see that

‖z̃(·, y, y′)‖
W 1,2

p,loc([0,t]×BR)
� Ct ρ(|y′ − y|) (1 +R)m (4.25)

with some m > 0. In particular, due to embedding theorems (cf., for example, [9]),

‖z̃(·, y, y′)‖L∞([0,t]×BR) � Ct ρ(|y′ − y|) (1 +R)m. (4.26)

So, integrating with respect to s, we obtain,

t∫

0

∣∣∣Ex(v(s,X
y
s , y

′)− v(s,Xy′
s , y′))

∣∣∣ ds � Ct ρ(|y′ − y|) (1 +R)m. (4.27)

Here, we may take any R � |x|. Hence, we get a desired estimate,

|qt(x, g; y)− qt(x, g; y
′)| � Cρ̃(|y′ − y|)(1 + |x|)m. (4.28)

7. Let us show that

qt(x, g; y) = ∂ypt(x, g; y),

i.e., the function qt(x, g; y) is, indeed, derivative (gradient) of pt(x, g; y) with respect to y. We

apply the hint from [1], used there in a slightly different setup. For 1 � i � �, let ei denote the

unit vector in the ith direction of R�, and let h �= 0. We define

qh,gt (x; y) :=
pt(x, g; y + hei)− pt(x, g; y)

h
,
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omitting the index i for brevity. Note that qh,g0 = 0 and

∂qh,gt

∂t
=

∂tpt(x, g; y + hei)− ∂tpt(x, g; y)

h

=
L(y + hei)pt(x, g; y + hei)− L(y)pt(x, g; y)

h

= L(y)
pt(x, g; y + hei)− pt(x, g; y)

h

+
L(y + hei)pt(x, g; y + hei)− L(y)pt(x, g; y + hei)

h

= L(y)qh,gt +
L(y + h)− L(y)

h
pt(x, g, y + h). (4.29)

So, treating ((L(y+ h)−L(y))/h) pt(x, g, y+ h) as a right-hand side of the equation on qh,gt , we

get the representation

qh,gt (x; y) =

t∫

0

dsEx

(
L(y + h)− L(y)

h
pt−s(X

y
s , g; y + h)

)
, (4.30)

where we can pass to the limit as h → 0 to get the desired assertion, due to the Lebesgue

dominated convergence theorem. Indeed,

t∫

0

dsEx

(
L(y + h)− L(y)

h
pt−s(X

y
s , g; y + h)

)

=

t∫

0

dsEx

(
b(Xy

s , y + h)− b(Xy
s , y)

h
Dxpt−s(X

y
s , g; y + h)

)

t∫

0

dsEx

(
a(Xy

s , y + h)− a(Xy
s , y)

h
Dxxpt−s(X

y
s , g; y + h)

)
,

and the applicability of the Lebesgue theorem is due to the condition (4.7) and Proposition 1.

Hence

∂yipt(x, g; y) =

t∫

0

Ex

(
∂L

∂yi
(Xs, y)pt−s(Xs, g; y)

)
ds.

Since the right-hand side here is continuous in y, the desired result follows.

8. Now consider pt(x, f, y) and show formula (4.3) and continuity in y. Due to (2.6),

p
(1)
t (x, f, y) := qt(x, f(·, y), y) + 〈fy(·, y), μy

x,t − μy
∞〉

So, in comparison to pt(x, g, y), the only difference is a new term:

Ex∂y(f(X
y′
t , y))|y′=y ≡ pt(x, fy(·, y); y) ≡ 〈fy(·, y), μy

x,t − μy
∞〉. (4.31)
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First of all, this expression is well defined, i.e., the integral converges. Since f has a moderate

growth in x, this follows straightforward from Proposition 1.

The continuity in y will be proved if we show that the function given by (4.31) is continuous

in this variable, because (locally uniform) continuity of the first term in (4.3) is tackled by the

first part of the theorem (about g). Continuity of the term 〈fy(·, y), μy
x,t〉 follows from the same

calculus, too. Hence, it remains to show that 〈fy(·, y), μy∞〉 is continuous in y. But the latter

follows from the former, from assumption (H0,1) and from the estimate (3.4) of Proposition

1. Moderate growth of (4.31) also follows from the same estimates. Finally, (4.3) is a direct

consequence of the differentiation rule for the composite function along with the first part of the

theorem about g. Theorem 2 is proved. �

4.2 Behavior of ∂ypt(x, g; y) and Dypt(x, f ; y) at t → ∞
Starting from this section, we will be concerned with large time behavior. Hence, we ought

to take care about all constants in the calculus, which should not depend on time. The base for

that will be the bounds from [9] and [11], Krylov’s estimate from [12] and the inequality (3.4),

in all of which the constants do not depend on time. Recall that

qt(x, g; y) =

t∫

0

Ex
∂L

∂y
(Xs, y)pt−s(Xs, g; y) ds.

We use the notation

f1
t (x, g; y) :=

∂L

∂y
pt(x, g; y). (4.32)

Note that, in fact, this is the same function as v from (4.6), but for the latter the value t was

fixed. Now it is convenient to work with reversed time and we change notation. Let us establish

some simple auxiliary bounds with any p � d+ 1. Denote

ht(x, y) := 〈fy(x, y), μy
x,t − μy

∞〉.

Lemma 1. Under the assumptions of Theorem 1 with (H0,1) instead of (H0,2) – including

both for g and f – for any k there exist C and m such that for any t > 0 the function u(s, x) :=

ps(x, g; y) satisfies

‖u‖
W 1,2

p ([0,t]×BR)
� C(1 + |R|m). (4.33)

In particular, uniformly with respect to y

‖f1
· (·; g, y)‖Lp([0,t]×BR) � C(1 + |R|m). (4.34)

Also, for any t1 > 0 and k there exist m,K > 0 such that for any t > t1

‖u‖
W 1,2

p ([t1,t]×BR)
� C

(1 + |R|m)

1 + tk1
, (4.35)

and, in particular,

‖f1‖Lp([t1,t]×BR) � C
(1 + |R|m)

1 + tk1
, (4.36)

In addition, for any k there exist m,C > 0 such that for any x, t � 0,

|ht(x, y)| � C
1 + |x|m
1 + tk

. (4.37)
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Proof. By [11, Theorem 2] and [9, Chapter 4, Section 10], we have

‖u‖
W 1,2

p ([0,t]×BR)
� C(‖u‖Lp([0,t]×BR+1) + ‖g‖W 2

p (BR+1)). (4.38)

By the assumption on g, there exist C,m such that

‖g‖W 2
p (BR+1) � C(1 + |R|m).

Further,

‖u‖L∞([0,t]×BR) � C
(
1 + sup

0�s�t
Ex|g(Xs)|

)
� C(1 + |R|m + tm).

Whence, a similar bound holds – with some new C,m – for the norm ‖u‖Lp([0,t]×BR+1), too. So,

by (4.38), we obtain the provisional estimates

‖u‖
W 1,2

p ([0,t]×BR)
� C(1 + |R|m + tm) (4.39)

and

‖f1
· (·; g, y)‖Lp([0,t]×BR) � C(1 + |R|m + tm). (4.40)

Now let us establish (4.35). Remind the estimate (3.4); we need similar bounds for ∂xpt and

∂2
xpt. Remind a priory bounds (of which we show a particular case) for 0 < T0 < T ,

‖u‖
W 1,2

p ([T0,T ]×BR)
� C

(‖u‖Lp([0,T ]×BR+1)

+ ‖(∂s − L)u‖Lp([0,T ]×BR+1) + ‖u(T0, ·)‖W 2
p (BR+1)

)
(4.41)

and also, for 0 < δ < T0 < T ,

‖u‖
W 1,2

p ([T0,T ]×BR)
� C

(‖u‖Lp([T0−δ,T ]×BR+1) + ‖(∂s − L)u‖
Lp([T0−δ,T ]×BR+1

)) (4.42)

(cf. [11, Theorem 2] and [9, Chapter 4, Section 10]). In our case, (∂s − L)u = 0. By (3.4),

‖u‖Lp([t1,t]×BR) � C
(1 + |R|m′

)

1 + tk1
.

By (4.42),

‖u‖
W 1,2

p ([t1,t]×BR)
� C

(1 + |R|m′
)

1 + tk1
.

So, we obtain (4.35) which implies (4.36) as well. Finally, combining (4.35) and (4.36) with

(4.39) and (4.40), we get (4.33) and (4.34). The last inequality holds due to (3.4). Lemma 1 is

proved. �

Our next task is to show that the following integral converges,

∞∫

0

dt [qt(x, g; y)− q∞(g, y)] ,

where

q∞(g, y) = lim
t→∞ qt(x, g; y) = ∂yp∞(g, y), (4.43)
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and that we have a representation

q∞(g, y) =

∞∫

0

(∫
f1
s (x

′′, g; y)μy
∞(dx′′)

)
ds. (4.44)

This representation may be considered as an “educated guess,” given (2.3). So, let us define q∞
by (4.44); then, of course, (4.43) is to be proved. Since, clearly, 〈fy(x, y), μy

t −μy∞〉 → 0, t → ∞,

let us also set

p(1)∞ (f, y) := q∞(f(·, y∗), y)|y∗=y =

∞∫

0

(∫
f1
s (x

′′, g; y)μy
∞(dx′′)

)
ds. (4.45)

Theorem 3. Assume that (Hb), (Ha), (Hg), (H
′
g), (H

′′
g ), and (H0,1) hold. Then for each k

there exist C,m > 0 such that for all y ∈ R
�, t � 1,

|qt(x, g; y)− q∞(g; y)| � C
(1 + |x|m)

(1 + t)k
, (4.46)

|q∞(g, y)| � C; (4.47)

moreover,

q∞(g, y) = ∂yp∞(g, y). (4.48)

Furthermore, if (Hb), (Ha), (Hf ), (H
′
f ), (H

′′
f ), and (H0,1) hold and also for each k there exist

C,m > 0 such that for all y ∈ R
�, t � 1,

|p(1)t (x, f ; y)− p(1)∞ (f ; y)| � C
(1 + |x|m)

(1 + t)k
, (4.49)

|p(1)∞ (f, y)| � C; (4.50)

moreover,

p(1)∞ (f, y) = ∂yp∞(f, y). (4.51)

Proof. 1. Assuming (4.46) is established, the statement (4.48) follows from taking the limit

as t → ∞ in the identity

pt(x, g; y + hei)− pt(x, g; y) =

h∫

0

qit(x, g; y + αei) dα

since the function

qit(x, g, ·) := ∂yipt(x, g; y) =

t∫

0

Ex
∂L

∂yi
(Xs, y)pt−s(Xs, g; y) ds

is continuous, being a component of the vector function qt. Existence of q∞ and the bound

(4.47) follow from the calculus in last step of this proof and due to Lemma 1.
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2. Let us establish (4.46). We drop y for simplicity. We have

qt(x, g)− q∞(x, g) =

t∫

0

ds

∫
f1
s (x

′′, g)μy
x,t−s(dx

′′)−
∞∫

0

ds

∫
f1
s (x

′′, g)μ∞(dx′′)

=

t/2∫

0

ds

∫
f1
s (x

′′, g) (μy
x,t−s(dx

′′)− μy
∞(dx′′))

+

t∫

t/2

ds

∫
f1
s (x

′′, g)μy
x,t−s(dx

′′)−
∞∫

t/2

ds

∫
f1
s (x

′′, g)μy
∞(dx′′). (4.52)

Now, the assertion (4.46) follows from the estimates of Lemma 1 – in particular, applied with

t1 = t/2 – and Proposition 1. Indeed, we have with any a−1+ b−1 = 1, by the Hölder inequality

and having in mind (3.1), (3.2) and (3.3):

|qt(x, g)− q∞(x, g)| �
t/2∫

0

ds

(∫
|f1

s (x
′′, g)|a |μy

x,t−s(dx
′′)− μy

∞(dx′′)|
)1/a

||μy
x,t−s − μy

∞‖1/bTV

+

t∫

t/2

ds

∫
|f1

s (x
′′, g)|μy

x,t−s(dx
′′) +

∞∫

t/2

ds

∫
|f1

s (x
′′, g)|μy

∞(dx′′).

3. The term with 0 � s � t/2 we may estimate similarly to the calculus in the proof of

Theorem 2 (cf. step 1). We have

(∫
|f1

s |a(x′′, g) |μy
x,t−s(dx

′′)− μy
∞(dx′′)|

)1/a

�
(
Ex|f1

s |a(Xt−s, g, y)
)1/a

+

(∫
Ez|f1

s |a(Xt−s, g, y)μ
y
∞(dz)

)1/a

. (4.53)

Let us consider the first expression here integrated with respect to s:

t/2∫

0

(
Ex|f1

s |a(Xt−s, g, y)
)1/a

ds =
t

2

2

t

t/2∫

0

(
Ex|f1

s |a(Xt−s, g, y)
)1/a

ds

� t

2

(
2

t

t/2∫

0

Ex|f1
s |a(Xt−s, g, y) ds

)1/a

=
t1−1/a

21−1/a

( t/2∫

0

Ex|f1
s |a(Xt−s, g, y) ds

)1/a

.

According to Krylov’s estimate, the latter integral admits the bound:

t/2∫

0

Ex|f1
s |a(Xt−s, g, y) ds � N‖f1

s ‖La(d+1)([0,t/2]×Rd).
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So, if the last norm were finite, we would have achieved our goal to estimate this term. However,

since the norm of f1 is only locally bounded with a possible moderate growth in the appropriate

Lp sense, the last bound is, generally speaking, useless and we ought to repeat our localization

procedure. Given t, we modify stopping times as follows:

τ0 = 0, τn+1 := inf(s � τn : |Xs −Xτn | � Rt), inf(∅) = ∞.

The value of R we assume here large enough, but independent on x, so that

sup
x

Px(τ
n < t/2) � qn, q := sup

t
sup
x

Px( sup
0�s�t

|Xs − x| � Rt) < 1. (4.54)

The second inequality here for R large enough (say, R > (‖b‖L∞ ∨ ‖σ‖L∞) follows from the

Chebyshev–Markov and Burkholder–Davis–Gundy inequalities,

Px

(
sup

0�s�t/2
|Xs − x| � Rt

)

� Px

(
sup

0�s�t/2

∣∣∣∣∣

t/2∫

0

b(Xr)dr

∣∣∣∣∣ � Rt/2

)
+ Px

(
sup

0�s�t/2

∣∣∣∣∣

t/2∫

0

σ(Xr)dWr

∣∣∣∣∣ � Rt/2

)

� (Rt/2)−1Ex sup
0�s�t/2

∣∣∣∣∣

s∫

0

σ(Xr) dWr

∣∣∣∣∣ � (Rt/2)−1

√√√√√Ex

t/2∫

0

‖σ(Xr)‖2 dr � ‖σ‖L∞
R

< 1.

Now,

Ex

t/2∫

0

|f1
s |a(Xt−s; g, y) ds

= Ex

∞∑

k=0

1(τk < t/2 � τk+1)

t/2∫

0

|f1
s |a(Xt−s; g, y) ds

�
∞∑

k=0

(
Ex 1(τ

k < t/2 � τk+1)

)1/2(
Ex

( τk+1∧(t/2)∫

0

|f1
s |a(Xt−s; g, y) ds

)2)1/2

.

Further,

Ex

( (t/2)∧τk+1∫

0

|f1
s |a(Xt−s; g, y) ds

)2

� Ex

⎛

⎜⎝t

τk+1∫

0

|f1
s |2a(Xt−s; g, y) ds

⎞

⎟⎠

� C t ‖f1‖2L2a(d+1)([0,t]×B|x|+(k+1)Rt)
� C t1+

1
d+1 (1 + |x|+Rt)2md(k + 1)2md.

Hence, simplifying a little bit the formulas, we may write

Ex

t/2∫

0

|f1
s |a(Xt−s; g, y) ds � C(1 + tm

′
)(1 + |x|+R)m

′
∞∑

k=0

(qk/2 (k + 1)2md)1/2

= C(1 + tm
′
)(1 + |x|+R)m

′
. (4.55)
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The point is that the right-hand side here increases as a fixed power function (in time), while

convergence in total variation to the stationary distribution is faster than any polynomial rate.

But before turning to the details, we ought to consider the second term in (4.53).

4. We estimate, as above,

t/2∫

0

( ∫
Ez|f1

s |a(Xt−s, g, y)μ
y
∞(dz) ds

)1/a

� t1−1/a

21−1/a

( ∫ ( t/2∫

0

Ez|f1
s |a(Xt−s, g, y) ds

)
μy
∞(dz)

)1/a

� C(1 + tm
′
)

∫
(1 + |z|m′

+Rm′
)μy

∞(dz) � C(1 + tm
′
)(1 +Rm′

),

where we used (4.55).

5. Returning to (4.52), we conclude that

t/2∫

0

ds

∫
|f1

s |(x′′, g) |μy
x,t−s(dx

′′)− μy
∞(dx′′)| � C

(1 + |x|m′′
)(1 +R)m

′
(1 + tm

′′
)

(1 + tk′)
, (4.56)

where R, m′, and m′′ are some fixed values while k′ may be chosen as large as we like; the choice

of k′ here affects only the multiplier C.

6. The next integral in (4.52) may be estimated by virtue of the bounds (4.36), (3.2) and

(3.3) as follows, by Krylov’s estimate (p = d+ 1),

t∫

t/2

ds

∫
|f1

s |(x′′, g)μy
x,t−s(dx

′′) = Ex

t∫

t/2

|f1
s |(Xt−s) ds � N‖f1‖Lp([t/2,t]×Rd).

As earlier in similar expressions, the right-hand side here may diverge, so, again a localization

procedure is needed. Given t, let

τ0 = t/2, τn+1 := inf(s � τn : |Xs −Xτn | � Rt), inf(∅) = ∞.

The value of R we assume to be large enough, R > ‖b‖ ∨ ‖σ‖, so that

sup
x

Px(τ
n < t/2) � qn, q := sup

t
sup
x

Px( sup
t/2�s�t

|Xs −Xt/2| � Rt) < 1 (4.57)

and R � |x|. Then

Ex

t∫

t/2

|f1
s |(Xt−s; g, y) ds = Ex

∞∑

k=0

1(τk < t � τk+1)

t∫

t/2

|f1
s |(Xt−s; g, y) ds

�
∞∑

k=0

(
Ex 1(τ

k < t/2 � τk+1)

)1/2(
Ex

( τk+1∧t∫

t/2

|f1
s |(Xt−s; g, y) ds

)2)1/2

.
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Further, due to (4.36),

Ex

( t∧τk+1∫

t/2

|f1
s |(Xt−s; g, y) ds

)2

� Ex

(
t

2

τk+1∫

t/2

|f1
s |2(Xt−s; g, y) ds

)

� C t ‖f1‖2L2a(d+1)([t/2,t]×B(k+1)Rt)
� C

t1+
1

d+1 (1 +Rt)2md(k + 1)2md

1 + (t/2)k
,

where k may be chosen arbitrarily large. Hence

Ex

t∫

t/2

|f1
s |(Xt−s; g, y) ds � C

(1 + tm
′
)(1 +R)m

′

1 + (t/2)k

∞∑

k=0

(
qk/2 (k + 1)2md

)1/2

= C
(1 + tm

′
)(1 +R)m

′

1 + tk
� C

(1 +R)m
′

1 + tk
.

Here, R > ‖b‖ ∨ ‖σ‖ ∨ |x|, so we finally get,

Ex

t∫

t/2

|f1
s |(Xt−s; g, y) ds � C

(1 + |x|m′
)

1 + tk
. (4.58)

7. Now consider the last integral in (4.52),

∞∫

t/2

∫
|f1

s |(x′′, g)μy
∞(dx′′) ds =

∫ ( ∞∫

t/2

Ez|f1
s |(Xs, g) ds

)
μy
∞(dz)

=

∫ ( ∞∑

j=1

(j+1)t/2∫

jt/2

Ez|f1
s |(Xs, g) ds

)
μy
∞(dz).

Quite similarly to the previous step (cf. (4.58)), each term in the above sum admits the estimate

(j+1)t/2∫

jt/2

Ez|f1
s |(Xs, g) ds � C

(1 + |z|)m′

1 + (jt)k
.

Therefore, we get,

∞∫

t/2

∫
|f1

s |(x′′, g)μy
∞(dx′′) ds �

∫ ⎛

⎝
∞∑

j=1

C
(1 + |z|)m′

1 + (jt)k

⎞

⎠μy
∞(dz) � C

1 + tk
,

as required. All estimates for qt(x, g; y) are established.

8. The claims about p
(1)
t (x, f ; y) follow straightforward from the corresponding inequalities

for qt(x, g; y) by virtue of (2.6), (4.37), (4.44) and (4.45). Theorem 3 is proved. �
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4.3 Derivatives ∂xqt(x, g; y) and ∂xp
(1)
t (x, f ; y) at t → ∞

We now study the derivative ∂xqt(x, g; y). The assumptions of Theorem 1 with (H0,2) relaxed

to (H0,1). are satisfied throughout this subsection about the coefficients of the SDE and the

function g. Recall that

qt(x, g; y) =

t∫

0

Ex
∂L

∂y
(Xs, y)pt−s(Xs, g; y) ds.

We have

∂xqt(x, g; y) = ∂x

t∫

0

Ex
∂L

∂y
(Xs, y)pt−s(Xs, g; y) ds

= ∂x

t/2∫

0

Ex
∂L

∂y
(Xs, y)pt−s(Xs, g; y) ds+ ∂x

t∫

t/2

Ex
∂L

∂y
(Xs, y)pt−s(Xs, g; y) ds

=: I1 + I2. (4.59)

To estimate both integrals I1,2, let

v1(s, x) := Ex

t∫

s

∂L

∂y
u(t− r,Xr) dr, 0 � s � t,

v2(s, x) := Ex

t/2∫

s

∂L

∂y
u(t− r,Xr) dr, 0 � s � t/2.

Note that I1 = ∂xv
2(t/2, x) and I2 = ∂xv

1(0, x). The idea of estimation is that the value

v1(t/2, x) is small in some W 1,2
p space because uxx(t− s, ·) is small when t− s is large. On the

other hand, the value v2(0, x) is small in a similar Sobolev sense because of the integration with

respect to μy
s over large values of s, the latter measure being close to μy∞. Both functions are

solutions of certain parabolic partial differential equations. So, estimates in Sobolev spaces will

be based on a priori bounds from [9]. Let us now show the details.

Lemma 2. Under assumptions (Hb), (Ha), (Hg), (H
′
g), (H

′′
g ), and (H0,1), for any k > 0

there exist C,m > 0 such that for every t � 0,

‖v1‖
W 1,2

p ([0,t]×BR)
� C(1 +Rm), (4.60)

‖v1‖
W 1,2

p ([0,t−t1]×BR)
� C(1 +Rm)

1 + tk1
. (4.61)

Proof. The function (v1(s, x) : 0 � s � t, x ∈ R
d) solves the equation

v1s(s, x) + Lv1(s, x) = −∂L

∂y
u(t− s, x), v1(t, x) = 0. (4.62)
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Note that for any t1 � t2 and D ∈ B(Rd),

‖∂L
∂y

u(t− ·, ·)‖Lp([t1,t2]×D) � C‖u(t− ·, ·)‖
W 1,2

p ([t1,t2]×D)
.

Due to a priori bounds (4.41) and/or (4.42) and taking into account the terminal condition

v1(t, x) ≡ 0, we have

‖v1‖
W 1,2

p ([0,t]×BR)
� C

(‖v1‖Lp([0,t]×BR+1) + ‖u‖
W 1,2

p ([0,t]×BR+1)

)
,

and with 0 < t1 < t,

‖v1‖
W 1,2

p ([0,t1]×BR)
� C

(‖v1‖Lp([0,t1+δ]×BR+1) + ‖u‖
W 1,2

p ([t−t1−δ,t]×BR+1)

)
.

Here, as we know, for any 0 < t1 � t with arbitrarily large k and some C,m

‖u‖
W 1,2

p ([0,t]×BR)
� C(1 +Rm)

and

‖u‖
W 1,2

p ([t1,t]×BR)
� C

(1 +Rm)

1 + tk1
.

On the other hand, due to Krylov’s estimate (with some new m),

‖v1‖Lp([0,t]×BR+1) � CRd/p t1/p ‖v1‖L∞([0,t]×BR+1)

� CRd/p t1/p ‖u‖
W 1,2

p ([0,t]×BR+1)
� Ct1/p (1 +Rm) (4.63)

and, similarly,

‖v1‖Lp([0,t−t1]×BR+1) � CRd/p t1/p ‖v1‖L∞([0,t−t1]×BR+1)

� CRd/p t1/p ‖u‖
W 1,2

p ([t1,t]×BR+1)
� C

(1 +Rm)

1 + tk1
.

Note that the latter two inequalities imply the following improvement of (4.63):

‖v1‖Lp([0,t]×BR+1) � C(1 +Rm).

Hence we obtain (4.60) and (4.61). Lemma 2 is proved. �

Lemma 3. Under assumptions (Hb), (Ha), (Hg), (H
′
g), (H

′′
g ), and (H0,1), for any k > 0

there exist C,m > 0 such that for every t � 0,

‖∂xv2‖Lp([0,t/2]×BR) + ‖∂2
xv

2‖Lp([0,t/2]×BR) �
C(1 +Rm)

1 + tk
. (4.64)

Proof. Let us use the representation

v2(s, x) := Ex

t/2∫

s

∂L

∂y
u(t− r,Xr) dr

=

t/2∫

s

Ex
∂L

∂y
u(t− r,Xr) dr =

t/2∫

s

〈∂L
∂y

u(t− r, x′), μy
x,r(dx

′)
〉
dr.
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So,

∂xv
2(s, x) = ∂x

t/2∫

s

〈∂L
∂y

u(t− r, x′), μy
x,r(dx

′)
〉
dr

= ∂x

t/2∫

s

〈∂L
∂y

u(t− r, x′), (μy
x,r − μy

∞)(dx′)
〉
dr.

Hence

‖∂xv2‖Lp([0,t/2]×BR) � ‖ṽ2‖
W 1,2

p ([0,t/2]×BR)
,

where

ṽ2(s, x) :=

t/2∫

s

〈∂L
∂y

u(t− r, x′), (μy
x,r − μy

∞)(dx′)
〉
dr.

Repeating our localization arguments and using the estimate (3.4) as in the previous theorem,

we get the bound

‖ṽ2‖
W 1,2

p ([0,t/2]×BR)
� C(1 +Rm)

1 + tk
.

The same bound also guarantees a similar estimate for the second derivative,

‖∂2
xv

2‖Lp([0,t/2]×BR) � ‖ṽ2‖
W 1,2

p ([0,t/2]×BR)
.

Lemma 3 is proved. �

Theorem 4. Let assumptions (Hb), (Ha), (Hg), (H
′
g), (H

′′
g ), and (H0,1) hold. Then for all

k � 0 there exist real numbers C and m such that for all y ∈ R
�, x, x′ ∈ R

d and all t � 1

|∂xqt(x, g; y)| � C
1 + |x|m
(1 + t)k

. (4.65)

Moreover, under assumptions (Hb), (Ha), (Hg), (H ′
f ), (H ′′

f ), and (H0,1), for all k � 0 there

exist real numbers C and m such that for all y ∈ R
�, x, x′ ∈ R

d and all t � 1

∣∣∣∂xp(1)t (x, f ; y)
∣∣∣ � C

1 + |x|m
(1 + t)k

. (4.66)

Proof. 1. The proof of (4.65) follows straightforward from Lemmas 2 and 3 by virtue of the

embedding theorems [9, Lemma 2.3.3].

2. Due to (2.6), the difference between p
(1)
t (x, f, y) and qt(x, f(·, y∗), y)|y∗=y consists of the

integral 〈fy(·, y), μy
x,t − μy∞〉 ≡ pt(x, fy; y) (cf. (2.2)). So, it suffices to show the estimate

|∂xpt(x, fy; y)| � C
1 + |x|m
(1 + t)k

. (4.67)

This follows straight away from (4.35) and embedding theorems (cf. again [9, Lemma 2.3.3]).

Theorem 4 is proved. �
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4.4 Second derivatives ∂2
ypt(x, g; y) and D2

ypt(x, f ; y)

We now study the matrix-valued functions q
(1)
t (x, g, y) and p

(2)
t (x, g, y) defined in (2.5) and

(2.8). Remind that

p
(2)
t (x, g; y) ≡ q

(1)
t (x, g; y)

:=

t∫

0

ds ps (x, L0,2(·, y)pt−s(·, g; y)) +
t∫

0

ds
∑

|i|=1

qs (x, Li,2(·, y)pt−s(·, g; y))

and

p
(2)
t (x, f, y) := q

(1)
t (x, f(·, y), y) + 2qt(x, fy(·, y), y) + 〈fyy(·, y), μy

x,t − μy
∞〉.

Here, (H0,2) is assumed instead of (H0,1). The function p(2)(x, g; y) formally should satisfy the

equation

∂tp
(2)
t (x, g; y) = Lp

(2)
t (x, g; y) +

∑

0�|i|�1

Li,2p
(i)
t (x, g; y), p

(2)
0 (x, g; y) = 0, (4.68)

with

Li,2 := Ci
2

∂2−iL

∂y2−i
.

This follows from the (formal) differentiation with respect to y of Equation (4.4) on p(1) ≡ q.

This is a reason to define p
(2)
t (x, g; y) ≡ q

(1)
t (x, g; y) by formula (2.5),

p
(2)
t (x, g; y) :=

t∫

0

ds ps (x, L0,2(·)pt−s(·, g)) +
t∫

0

ds
∑

|i|=1

qs (x, Li,2(·)pt−s(·, g)) .

Then we have the following result.

Theorem 5. (I). Suppose that (Ha), (Hb), (Hg), (H
′
g), (H

′′
g ), and (H0,2) hold. Then the

matrix-valued function p
(2)
t (x, g; y) ≡ q

(1)
t (x, g; y) is well defined by (2.5), continuous with respect

to y, has a moderate growth in x uniformly with respect to y and the equality holds for every

x, y, t,

∂2
ypt(x, g; y) = p

(2)
t (x, g; y) ≡ q

(1)
t (x, g; y). (4.69)

Moreover, there exists a limit

lim
t→∞ q

(1)
t (x, g; y) =: q(1)∞ (g; y), (4.70)

this limit admits a representation

q(1)∞ (g; y) =

∞∫

0

ds ps (x, L0,2(·, y)p∞(·, g; y)) +
∞∫

0

ds
∑

|i|=1

qs (x, Li,2(·)p∞(·, g)) , (4.71)

and for any k > 0 there exist C,m > 0 such that (uniformly over y)

|q(1)t (x, g; y)− q(1)∞ (g; y)| � C
1 + |x|m
(1 + t)k

, t � 0. (4.72)
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Moreover, for any k > 0 there exist C,m′ > 0 such that

|∂xq(1)t (x, g; y)| � C(1 + |x|m′
)

(1 + t)k
, t � 0. (4.73)

Moreover, for any T > 0, (q
(1)
t (x, g), 0 � t � T ) has a moderate growth in x in the sense of

W 0,1
p,loc for any p > 1, i.e.,

‖q(1)t (x, g; y)‖
W 0,1

p ([0,t]×BR)
� C(1 +Rm′

), t � 0, (4.74)

and, moreover, for any k > 0 there exist C,m′ > 0 such that

‖∂xq(1)t (x, g; y)‖
W 0,1

p ([t1,t]×BR)
� C(1 +Rm′

)

(1 + t1)k
, t � 0, (4.75)

(II). Let assumptions (Ha), (Hb), (Hf ), (H ′
f ), (H ′′

f ), and (H0,2) hold. Then the matrix-

valued function p
(2)
t (x, f ; y) is well defined by (2.8), is continuous with respect to y, has a mod-

erate growth in x uniformly with respect to y and the equality holds for every x, y, t

∂2
ypt(x, f ; y) = p

(2)
t (x, f ; y). (4.76)

Moreover, there exists a limit

lim
t→∞ p

(2)
t (x, f ; y) =: p(2)∞ (f ; y), (4.77)

this limit admits a representation (cf. above (4.71) and (4.45))

p(2)∞ (f ; y) = q(1)∞ (f ; y) + 2q∞(x, fy(·, y), y) (4.78)

and for any k > 0 there exist C,m > 0 such that (uniformly over y)

|p(2)t (x, f ; y)− p(2)∞ (f ; y)| � C
1 + |x|m
(1 + t)k

, t � 0. (4.79)

Moreover, for any k > 0 there exist C,m′ > 0 such that

|∂xp(2)t (x, f ; y)| � C(1 + |x|m′
)

(1 + t)k
, t � 0. (4.80)

Moreover, for any T > 0, (p
(2)
t (x, f), 0 � t � T ) has a moderate growth in x in the sense of

W 0,1
p,loc for any p > 1, i.e.,

‖p(2)t (x, f ; y)‖
W 0,1

p ([0,t]×BR)
� C(1 +Rm′

), t � 0, (4.81)

and, moreover, for any k > 0 there exist C,m′ > 0 such that

‖∂xp(2)t (x, f ; y)‖
W 0,1

p ([t1,t]×BR)
� C(1 +Rm′

)

(1 + t1)k
, t � 0, (4.82)
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Remark 4. Here, the main assertions are (4.69), (4.70), and (4.72), i.e., the existence of

the second derivative ∂2
yu, its continuity and some properties at t → ∞, which all, in particular,

may help apply Itô’s (in our case, more precisely, Itô–Krylov’s) formula in the corrector method

(cf., for example, [1]). However, (4.74) and (4.75) may be helpful in further studies such as

establishing higher derivatives.

Proof. 1. If we denote

f2
t (x; g; y) :=

∑

0�|i|�1

Li,2(x, y)p
(i)
t (x, g; y),

then formula (2.5) may be written in the form,

p
(2)
t (x, g; y) :=

t∫

0

Exf
2
t−s(Xs, g; y) ds.

Now let us remind which properties of the functions v and f1 (cf. (4.6) and (4.32)) have been

used in the proofs of Theorems 2 and 3, which guarantee similar properties for p
(1)
t (x, g; y).

Clearly, if we show the same properties of f2, then the desired results about p
(2)
t (x, g; y) will

follow. The crucial about v were inequalities (4.9) and (4.15), while about f1 the estimates

(4.34) and (4.36) sufficed; also notice that practically (4.9) follows from (4.34). So, all we need

to know about f2 now is the following four assertions:

‖p·(·; g)‖W 1,2
p ([0,t]×BR)

+ ‖∂xp(1)· (·; g)‖
W 0,1

p ([0,t]×BR)
� C(1 + |R|m), (4.83)

‖p·(·; g)‖W 1,2
p ([t1,t]×BR)

+ ‖∂xp(1)· (·; g)‖
W 0,1

p ([t1,t]×BR)
� C

(1 + |R|m′
)

1 + tk1
, (4.84)

t∫

0

∫

BR

|ps(x, g; y)− ps(x, g; y
′)|p dxds � Ctρ(|y′ − y|)(1 +R)m, (4.85)

t∫

0

∫

BR

|qs(x, g; y)− qs(x, g; y
′)|p dxds � Ctρ̃(|y′ − y|)(1 +R)m, (4.86)

the latter one with some modulus of continuity (even depending on R). Note that, in fact, (4.83)

follows from the estimates (4.33) from Lemma 1, (4.60) from Lemma 2 and (4.64) from Lemma

3; (4.84) also holds due to (4.35) from Lemma 1, (4.61) from Lemma 2 and again (4.64) from

Lemma 3; and (4.85) have been established above in (4.15). So, it only remains to check (4.86).

2. The function q satisfies the equation

∂tqt − L(x, y)qt = (∂yL(x, y))pt, q0 = 0

(cf. (4.4)). Hence the difference

zt(x, y, y
′) := p

(1)
t (x, g; y)− p

(1)
t (x, g; y′)
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solves

∂t(p
(1)
t (x, g; y)− p

(1)
t (x, g; y′))− L(y)(p

(1)
t (x, g; y)− p

(1)
t (x, g; y′))

= (L(y)− L(y′))p(1)t (x, g; y′) + (∂yL(y))pt(x, g; y)− (∂yL(y
′))pt(x, g; y′), (4.87)

p
(1)
0 (x, g; y)− p

(1)
0 (x, g; y′) = 0.

Denote

−Ft(x, y, y
′) := (L(y)− L(y′))p(1)t (x, g; y′) + (∂yL(y))pt(x, g; y)− (∂yL(y

′))pt(x, g; y′).

Then

∂tzt(x, y, y
′)− L(y)zt(x, y, y

′) = −Ft(x, y, y
′), z0(x, y, y

′) ≡ 0. (4.88)

It is already known that the right-hand side in Equation (4.88) is continuous with respect to

the parameter y in the sense of Lp locally in (x, t) (with a moderate growth in x). Hence, we

may conclude similarly to the step 3 in the proof of Theorem 2 that, indeed, (4.86) holds.

3. The claims about p
(2)
t (x, f ; y) follow due to the first part of Theorem (about q

(1)
t (x, f ; y))

and by Theorems 2–4, which guarantee all similar bounds for the second and third terms in the

right-hand side of (2.8), i.e., for 2qt(x, fy(·, y), y) and 〈fyy(·, y), μy
x,t − μy∞〉. Thus, Theorem 5 is

proved. �
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