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ON ELASTIC WAVES IN A WEDGE
G. L. Zavorokhin* and A. I. Nazarov* UDC 517 958; 540 3

The ezistence of waves propagating along the edge of an elastic wedge has been established by many authors by
physically rigorous arguments on the base of numerical computations. A mathematically rigorous proof for a wedge
with aperture angle less than w/2 was presented by I. Kamotskii. We supplement the I. Kamotskii result and prove
the ezistence of fundamental modes for some range of aperture angles greater than /2. Bibliography: 7 titles.

1. INTRODUCTION

The existence of waves traveling along the edge of an isotropic elastic wedge (wedge waves) has been established
by many authors (for example, see [1 4]) on the “physical” level of rigor with the help of numerical calculations
These waves represent, the fundamental type of oscillations of a solid, along with volume and surface waves As
a rule, their velocities are less than the velocities of the Rayleigh wave on a plane surface [5] Localized near an
edge and possessing no dispersion, such waves realize waveguide propagation of oscillations

In paper [1], with the help of the method of finite elements, Lagasse approximately determined the phase
velocity as a function of the angle of a wedge for two lower antisymmetric modes An independent investigation
has been conducted by Maradudin with collaborators [2], who considered an unbounded wedge and, expanding
the displacement field in Laguerre polynomials, found a numerical solution of the problem The latter authors
have succeeded in computing the phase velocities of the symmetric mode and several antisymmetric modes,
depending on the angle of the wedge Together with the fundamental (of lower order) antisymmetric mode, the
symmetric mode has been studied in paper [3] Representing the displacements as a sum of two solutions of
equations of elasticity theory, each of which satisfies the boundary condition precisely only on one side of the
wedge and approximately on the other side, Tiersten and Rubin obtained a numerical solution with the help
of the projection method A rigorous proof of the existence of a localized waveguide mode for a wedge with
aperture angle less than 7 was given by I V Kamotskii in [6]

The idea of [6] is the reduction of the problem to studying the spectrum of a self adjoint operator in the
Hilbert space Lo(Q), where Q is an angle in R?> Having proved that the essential spectrum of this operator
coincides with the ray [¢%k?, +00), where cp is the velocity of the Rayleigh wave and k is the length of the wave
vector, I V Kamotskii then constructs a test function on which the Rayleigh quotient is less than ¢%k? and
thus the operator has at least one point of the discrete spectrum, to which corresponds a localized wedge wave
in the initial problem

Developing the method used in [6], we offer a more complicated ansatz for test functions As a result, we
prove the existence of localized wedge waves for some interval of values of angles greater than m/2 Moreover,
our ansatz enables one to separate the cases of existence of symmetric and antisymmetric modes For some

(negative) values of the Poisson coefficient o = 2(>\><\H¢)’ the existence of waves of both types is proved

2. STATEMENT OF THE PROBLEM. A RESULT DUE TO I. KAMOTSKII

Let
Q= {(1'1,1'2) > 0)¢) € (07()0)}

be an angle on the plane R2, (r, #) be polar coordinates

Assume that in the volume that is occupied by a wedge K = Q x R (see Fig 1), the equations of motion of
an isotropic solid are fulfilled If the dependence of the displacement on time is harmonic U(x)e~ !, then the
equations for U have the form

LU = L(8y,05,05)U := —0pm0pnm = pw*Up, n=1,2,3 (1)

Here p is the density of matter (in the sequel, without loss of generality, we set p = 1), U = (Uy,Us, Us) is the
displacement vector, and the o, are components of the stress tensor
where A and p are the Lamé coefficients and d,,,, is the Kronecker symbol Henceforth summation over repeating
indices is implied
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Fig. 1

On the surface 0K of the wedge, conditions of the absence of stresses are satisfied:
NUEN(61762763)U = OaumVm =0, n=12,3 (2)

Here, (v1,v2,v3) is the vector of the external normal
Multiplying the left hand side of (1) by U, (the bar means complex conjugation) and integrating by parts,
we obtain the identity

(LU, U)k + (NU,U)ox = axc(U,U) = / a(01, 0,0 U, U) da, 3)
K

where
a(ala 82: 83; U, U) = UnmamUn

We shall seek the solution of problem (1), (2) in the form

U(xl y L2, $3) = u(l.l) $2)eik13 )
where k is the wave number Then for the vector u(z1,z2) we get the following boundary value problem in the
domain €:
Lu = L(y,0s,ik)u =w?u in Q,

4
Nu=N(0,05,ik)lu=0 on 9 @

The following identity is derived similarly to (3):

(Lu,u)o + Nu,u)oq = aq(ik;u,u) = /a(@l,ag,ik; u,u) dzydey (5)
Q

The symmetric quadratic form on the right hand side in (5) is positive and closed in the Hilbert space
(H'(Q))® For this reason (for example, see [7, Chap 10]), to the boundary value problem (4) corresponds a
self adjoint operator A(ik) in the space L2(2) As is known, the greatest lower bound of the spectrum of the
operator A(ik) is equal to (H.}I(l(g)ﬁ ®(u), where

aqQ (Zka u, U)

(U)U)Q

P(u) =

is the Rayleigh quotient
If u(z1,22) € L2(Q) is a nontrivial eigenfunction of the operator A(ik), k > 0, then the function U(z,t) =
u(xy, arg)ei(k”’m), w > 0, will be called a waveguide mode Since there is a plane of symmetry in the problem,
the operator is reduced by the decomposition of the space (H'())? into the subspaces of antisymmetric (H,) and
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symmetric (H;) displacements, which makes it possible to exist both antisymmetric (bending) and symmetric
modes

As was mentioned in the Introduction, in paper [6] it is shown that the essential spectrum of the operator
A(ik) coincides with the ray [c%k?, +00), where cg is the velocity of the Rayleigh wave For this reason, below
the frequency w% = c%k?, only the discrete spectrum may occur, the presence of which corresponds to the
existence of localized waveguide modes of the wedge

To prove the existence of a discrete spectrum, it is sufficient to present a function ut®** € (H'(Q))? such that

B(u'*") <k’ (6)

test

n B

In [6], as a test function it was taken uf¢s*(x1,2,) = e~ » uF(z3), n is a large parameter, where

UR(azl,a:Q,wg,t) = e_iwt"'ikmuR(:Ug) (7)

is the Rayleigh wave traveling in the direction (0,0,1) and leaving the plane x5 = 0 free of stresses It turns out
that

P (ulest) = chk* —en ' +0(n™ %), n — oo,

where ¢ > 0 for ¢ < 7 Taking n large enough, we obtain (6), which proves the existence of a waveguide mode
for o < 7 and for all values of o

3. A GENERALIZATION OF I. KAMOTSKII’S RESULT

Together with (8), we consider the Rayleigh wave

VE(xy, 29, 23,1) = e kT B(sin )z — cos(p)zs), (8)
traveling in the direction (0,0,1) and leaving the other side sin(p)z1 — cos(p)zs = 0 of the wedge free of stresses
As a test function, we take a linear combination of “truncated” profiles of the Rayleigh waves (7) and (8):

test

o cos(p)e] +sin(p)z
vl (21, m0) = ae” W ul(zy) + Be e

uf? (sin(p)z1 — cos(p)z2)

It is obvious that

Bn(a, B)’

where 2, and 9B,, are quadratic forms on R? For this reason, the inequality ®(vi¢*") < ¢%k? for some a and 3
is equivalent to the presence of a negative eigenvalue of the form 2, — c%k*B),
An immediate calculation shows that

(I)(Utest) _

n

Un(a, B) — kB (a, B) = M(, f) + O(n™), 1 — oo,

mp

where 901 is a quadratic form the matrix of which {m
2

22} does not depend on n and has a complicated but
1
closed form expression

It is obvious that the form 997 has eigenvectors [ } ] and [_11} It is also easy to see that if to a negative

, then for n large enough the inequality ®(vi¢*") < c%k? is achieved

eigenvalue corresponds the eigenvector "

1
-1
on an antisymmetric function, which yields i7111f ®(u) < ckhk? and thus proves the existence of an antisymmetric
mode Similarly, the presence of a negative eigenvalue with the eigenvector [ 1 ] proves the existence of a

symmetric mode
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With the help of elementary facts of linear algebra, we obtain the following sufficient conditions of the existence
of waveguide modes'

I | |mi|<my | antisymmetric mode

IT | |jmy|<-my| symmetric mode

III | jmy| < —my | both antisymmetric
‘ and symmetric modes

A further complication of the ansatz with the use of more that two Rayleigh waves does not extend the
domains of existence of an antisymmetric mode The range of the values of parameters for which a symmetric
mode exists can be somewhat extended by adding in the test function to the Rayleigh waves propagating along
both sides of the wedge a third wave traveling along the plane cos(yp/2)z; + sin(¢/2)x2 =0

The results of computations are shown in Fig 2 In the figure it is seen that a fundamental antisymmetric
mode may propagate as localized in a wedge with aperture angle ¢ < @y ~ 101 25°, which agrees well with
the results in [2] The existence of a symmetric mode is proved, in addition to unreal (negative) values of o,
only for ¢ < o1 =~ 0139 for some intervals of angles greater than /2 (to the value o1 =~ 0139 corresponds
1 =~ 116 65°), which agrees with the results in [3] It is curious that in a rectangular wedge (¢ = 7/2), for o > 0
an antisymmetric mode may propagate and for ¢ < 0 a symmetric mode may travel

It should be mentioned the case where the quadratic form m is identical zero for A = 0 and ¢ = 7 In this
case, as in [6], we failed to prove the existence of any mode, and we believe that it merely does not exist

We are very grateful to V.M Babich for his attention to our paper

The work of the second author was partially supported by the FCP “Scientific and pedagogical specialists in
innovative Russia” (2010 1 1 111 128 033)

Translated by N B Lebedinskaya

IThe boundary between zones I and IIT (IT and IIT) belongs to zone I (to II, respectively).
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