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FREE VIBRATIONS OF PIEZOCERAMIC HOLLOW CYLINDERS  
WITH RADIAL POLARIZATION  

I. �. Loza1 UDC 539.3 

We consider an axisymmetric problem of free longitudinal vibrations of hollow piezoelectric cylinders 
for some types of boundary conditions on the end faces.  The piezoceramic material is polarized in the 
radial direction.  The side faces of a cylinder are covered with short-circuited thin electrodes.  The 
method of solution of the problem is based on the combination of the spline collocation method along 
the longitudinal coordinate and the step-by-step search method along the radial coordinate.  We present 
results of a numerical analysis of a cylinder of PZT 4 ceramic in a wide range of changes in the geomet-
ric parameters of the cylinder. 

The solution of dynamic problems for thick-walled elements as spatial problems of the theory of elasticity is 
connected with substantial difficulties caused by the complexity of the system of initial partial differential equa-
tions and the necessity to satisfy boundary conditions on surfaces that bound a body.  These difficulties increase 
significantly under conditions of coupling of fields and the anisotropy of piezoelectric materials [1, 2, 8, 9]. 

It should be noted that, in the literature, only individual works devoted to the investigation of the problem of 
vibrations of piezoceramic cylinders of finite length performed within the framework of the three-dimensional 
theory of elasticity are known [10–12, 14, 15]. 

The method of solution based on the combination of the spline collocation method and step-by-step search 
method for investigating the stress-strain state and analyzing the spectrum of natural frequencies of vibrations of 
elastic bodies was used in [3–5, 7].  In [6], this approach was used for investigating free axisymmetric vibrations 
of hollow piezoceramic cylinders with the polarization of the piezoceramic in the axial direction. 

The aim of the present work is to investigate natural axisymmetric vibrations of piezoceramic cylinders of 
finite length of piezoceramic polarized in the radial direction.  In this case, the lateral surfaces of a cylinder are 
free from external actions and are covered with short-circuited thin electrodes.  On the end faces of the cylinder, 
rigid fixing is considered. 

The formulated problem is described by the a system of coupled equations, which consists of 

 – axisymmetric longitudinal motion equations, which, in the cylindrical coordinate system  (r, �, z) ,  

have the form 
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 – equations of electrostatics  
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 – geometric relations 
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Here  � ij   are the components of the stress tensor,  �   is the density of the material,  �   is the circular fre-

quency,   
�ui   are the components of the vector of displacements  ( u(r, �, z, t ) = �u(r, �, z)ei�t ,  Di   are the com-

ponents of the electric induction vector,  Ei   are the components of the electric field vector,  �   is the electro-

static potential, and  �ij   are the components of the strain tensor. 

Physical relations for a piezoceramic material polarized in the radial direction have the form 

 �rr = c33�rr + c13��� + c13�zz � e33Ez , 

 ��� = c13�rr + c11��� + c12�zz � e31Ez , 

 � zz = c13�rr + c12��� + c11�zz � e31Ez , 

 �rz = 2c55�rz � e15Er , 

 Dr = e33�rr + e13��� + e13�zz + �33Ez , 

 Dz = 2e15�rz + �11Ez .  (4) 

Here  cij   are the components of the tensor of the modulus of elasticity,  eij   are the components of the tensor of 

piezomodulus, and  �ij   are the components of the dielectric constant tensor of the material. 

We set the following boundary conditions on the surfaces of the cylinder: 

 – the lateral surfaces  r = R0 ± h   are free from external forces  �rr = �rz = 0   and covered by thin 

electrode that are short-circuited  � = 0 ; 

 – the end faces of the cylinder   z = ± L/2   are rigidly restrained   
�ur = 0 ,   

�uz = 0   and free from elec-

trodes  Dz = 0 . 

Here  R0   is the radius of the middle surface of the cylinder,  h   is the half-thickness of the cylinder, and  

L   is the length of the cylinder. 
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Substituting relations (3) and (4) into Eqs. (1) and (2)  and resolving them for  
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Here, we introduce the notation 

 � = e33
2 + c33�33, �1 �= (c12 � c13 )e33 + c33e13 , 

 �2 = c33 (e15 + e33 ) � (c13 + c55 )e33, �3 = c33�11 + e15e33 , 

 �4 = c33e15 � c55e33, �5 = (c12 � c13 )�33 � e13e33 , 

 �6 = (c13 + c55 )�33 + (e15 + e33 )e33, �7 = e33�11 � e15�33 , 

 �8 = e15e33 + c55�33 ,  (6) 

and dimensionless quantities 

 

 
� = �h

�
� , �cij �=

cij
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�0�
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�ij

�0
.  (7) 

Here,  �   is the circular frequency,  � = 1010  Pa,  and  �0   is the dielectric constant of vacuum. 
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We seek the functions  �(r, z) ,   
�ur (r, z) ,  and   

�uz (r, z)   in the form 
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where 

 x =
r � R0

h
, 

ui (x) ,  vi (x) ,  and  wi (x)   are the desired functions of the variable  x ,  and  � ji (z) ,  j = 1, 2 ,   i = 0, 1,… , N ,  

are linear combinations of  B -splines on a homogeneous mesh  � : � L
2

 = z0  < z1  < … < zn  = L
2

,  which take 

into account the boundary conditions on the end faces of the cylinder for  z = � L
2

  and  z = L
2

.  Note that de-

rivatives of the components of the solution vector not higher than derivatives of the second order enter into sys-
tem (5).  Consequently, we can restrict ourselves to the approximation by spline functions of the third order. 

Introducing the notation 
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we transform system (5) into the system of  6(N +1)   linear differential equations for the functions  u ,   �u ,  v ,  

 �v ,  w ,   �w : 
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Here, 
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We can write this system in the matrix form 

 
 
dR
dx

= A(x,�)R .  (11) 

The nonzero elements of the matrix  A   are as follows: 

 A12 = 1, A21 �= �2
�1 a11�2 + a12 ���2( ), A22 = �2

�1a13�2 , 

 A23 = �2
�1a14 ���2 , A24 = �2

�1a15 ��1, A25 = �2
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 Table 1 

Ordinal  
number  

of frequency 
N = 24  N = 32  

Values of natural  
frequencies obtained  

in [13] 

1 0.7072 0.6738 0.6737 

2 0.9264 0.8951 0.8970 

3 1.0513 1.024 1.020 

4 1.3522 1.350 1.354 

5 1.8775 1.874 1.874 

6 1.9135 1.941 1.938 

 Table 2 

Ordinal  
number  

of frequency 

Natural frequencies 
of an elastic  

cylinder  N = 20  

Natural frequencies  
of a piezoceramic  
cylinder  N = 24  

1 0.7787 0.7787 

2 0.8061 0.8060 

3 1.0321 1.0330 

4 1.2421 1.2410 

5 1.6565 1.6520 

6 1.7410 1.7430 

The boundary conditions take the form 

  B1R(�1) = 0, B2R(1) = 0 . 

The results of numerical investigations obtained by the spline approximation method for  N = 24   and  
N = 32   were compared with results obtained in [13].  We considered PZT 4 piezoceramics as a material of the 
cylinder.  On the end faces, conditions of hinge support were considered.  The results of comparison are pre-
sented in Table 1. 

For the case where, on the end faces of the cylinder, rigid fixing is set, we performed a comparison of natu-
ral frequencies with results obtained on the basis of an analogous technique developed for an elastic cylinder and 
described in [3].  As a material of the cylinder, we considered PZT 4 piezoceramic with piezomodulus equal to 
zero.  The results of the comparison are presented in Table 2. 

In Fig. 1, we show dependences of the first five frequencies  ( i   is the ordinal number of the frequency) on 
the relative length of the cylinder   L/h   (for  � = h/R0 = 0.25 ).  As a material of the cylinder, we considered 
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PZT 4 piezoceramic.  We show the values of the natural frequencies with regard to the piezoeffect by solid lines 

and the values of the natural frequencies without regard to the piezoeffect  eij = 0( )   by dashed lines.  In Fig. 1, 

it is seen that the influence of the piezoeffect leads to the rigidifying of the material, i.e., an increase in the value 
of the natural frequencies.  In this case, in the determination of the first natural frequency, the influence of the 
piezoeffect can be neglected up to a relative length   L/h = 5 .  For the second frequency, a noticeable influence 

of the piezoeffect is observed for fairly long cylinders   L/h < 8( ) .  For higher frequencies, this influence is pro-

nounced for larger cylinders. 
In Fig. 2, we show dependences of the first five natural frequencies on the relative internal diameter of the 

cylinder  R�   for the fixed length of the cylinder   L/h = 5   and external diameter  R+ = 5 .  The change of the 

internal diameter is considered in the wide range from  0.05   to  4.95   units, i.e., from a practically solid cylin-
der to a very thin cylindrical shell.  As a material of the cylinder, PZT 4 piezoceramic was again chosen.  It fol-
lows from the analysis of the shown curves that, with increase in the thickness of the cylinder, the natural fre-
quencies of vibrations increase abruptly.  It should be noted that, for the first three frequencies, with increase in 
the thickness of the cylinder, the natural frequency of vibrations increases.  For higher frequencies, after an 
abrupt increase in the frequency with increasing thickness, it decreases smoothly, which is not observed when 
the relative length of the cylinder increases (Fig. 1).  As the relative length of the cylinder increases, the natural 

 

Fig. 1 

 

Fig. 2 
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frequency of vibrations always increases.  The influence of the piezoeffect for the second natural frequency and 
higher ones manifests itself even in fairly thin cylinders.  Only in the determination of the first natural frequency 
can it be neglected practically without loss of accuracy in the calculation of the frequency in the segment  
R� � 4 . 

Analyzing the demonstrated figures, we can note that only the first and third branches in Fig. 1 and the first 
two branches in Fig. 2 are relatively simple curves.  For the dependences of the higher natural frequencies, the 
structure of the spectrum is complicated.  Segments with small changes in frequencies depending on the geomet-
rical parameters (we call them plateau) with further approach of the values of frequencies (we call these points 
“points of attraction”) are characteristic.  Note that these “plateaus” in both Fig. 1 and 2 are located along some 

characteristic lines.  For instance, in Fig. 1, it is the segment  1 � L
h
� 3  for the second, third, fourth, and fifth 

frequencies, the segment  4 � L
h
� 6   is for the fourth and fifth frequencies, and  L

h
� 5   is for the fourth and 

fifth natural frequencies.  In Fig. 2, these are the domain  4 � R� � 5  for the third, fourth, and fifth frequencies, 

and segments  R� � 3   and  R� � 1   for the fourth and fifth frequencies.  It can be assumed that the described 

“points of attraction” of the natural frequencies are “unfavorable” for the material because to a small change in 
the frequency there corresponds a substantial reconstruction of the geometry of vibrations.  However, this state-
ment calls for additional investigations. 
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