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We consider splitting type variational problems with general growth conditions and prove
the partial regularity (and the full regularity in 2D) of minimizers in the case of x-
dependence. The results obtained generalize the results of Bildhauer and Fuchs concern-
ing such problems with power growth conditions. Bibliography: 17 titles.

1. Introduction

The partial regularity and full regularity in 2D of minimizers of splitting type variational prob-
lems with general growth conditions were proved by the author in [1]. These results generalize
the corresponding results established by Bildhauer and Fuchs [3, 4] in the case of power growth
conditions. In this paper, we extend the statements from [1] to the case of x-dependence. Note
that the autonomous case was treated in the recent paper by the author [5].

The study of the regularity of minimizers u : Ω → R
N of the energy functionals

I[u,Ω] :=
∫

Ω

F (∇u) dx, (1.1)

where Ω is an open set in R
n and F : R

nN → [0,∞) satisfies an anisotropic growth condition

C1|Z|p − c1 � F (Z) � C2|Z|q + c2, Z ∈ R
nN (1.2)

with constants C1, C2 > 0, c1, c2 � 0 and exponents 1 < p � q < ∞, was pushed by Marcellini
[6, 7]. The research of Esposito, Leonetti, and Mingione [8] shows that the statements do not
stay true if one allows an additional x-dependence and considers minimizers of functionals

J [u,Ω] :=
∫

Ω

F (·,∇u) dx, (1.3)
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for F : Ω × R
nN → [0,∞). This is not only a technical extension of the autonomous situation,

and additional assumptions are often necessary.
As is known, in the autonomous case, we cannot expect the regularity of minimizers of

the functional (1.1) if p and q are too far apart (cf. counterexamples in [9, 10]). To get
better results, additional assumptions are necessary. Therefore, Bildhauer, Fuchs, and Zhong
considered decomposable integrands

F (Z) = f(Z̃) + g(Zn)

where Z = (Z1, . . . , Zn), Zi ∈ R
N , and Z̃ = (Z1, . . . , Zn−1). Under power growth conditions on

the C2-functions f and g, they get a very general theory in the case p � 2 (cf. [3, 4, 11]). In
[1, 5], we generalized these statements to the case

f(Z̃) = a(|Z̃|), g(Zn) = b(|Zn|)

where a and b are N -functions. Thereby the main assumptions were formulated as follows:

h′(t)
t

≈ h′′(t),

h has superquadratic growth,

where h denotes a or b. The following results were established in [1, 5] on the basis of higher
integrability theorems in [12]:

• the full C1,α-regularity in the case n = 2,

• the partial C1,α-regularity in the general vector case provided that

b(t) � ctωa(t), a(t) � ϑt
ω
2
(n−2) for ω � 2 and large t, (1.4)

• the full C1,α-regularity in the case N = 1 provided that

b(t) � ct2a(t), a(t) � ct2b(t) for t� 1.

Comparing with the power growth situation, one can see that the above conditions are
natural generalizations to the case of N -functions (except for the case N = 1, cf. [3, 4, 11]).

From now on, we consider minimizers of the functionals

T [w] :=
∫

Ω

[
a(·, |∇̃w|) + b(·, |∂nw|)

]
dx, (1.5)

where a and b are of class C2(Ω× [0,∞), [0,∞)) and possess the following properties (h denotes
a or b):

h(x, ·) is strictly increasing and convex,

lim
t→0

h(x, t)
t

= 0 and lim
t→∞

h(x, t)
t

= ∞
(A1)

for all x ∈ Ω. Furthermore, we assume that for all t � 0

ε̂
h

′
(x, t)
t

� h
′′
(x, t) � ĥ

h
′
(x, t)
t

(A2)
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uniformly with respect to x ∈ Ω, where ε̂, ĥ > 0 are constants. Assume that

a(x, t) � c1b(x, t) for all x ∈ Ω and large t, (A3)

where c1 > 0. To have the superquadratic growth condition, we assume that

h
′
(x, t)
t

� h0 > 0 ∀t � 0 (A4)

for all x ∈ Ω. To handle with terms involving derivatives in the spatial variable, we require

|∂γh
′
(x, t)| � c2h

′
(x, t) ∀ (x, t) ∈ Ω × R

+
0 (A5)

for all γ ∈ {1, . . . , n}, where c2 � 0 is a constant.

Remark 1.1. 1. Assumptions (A1)–(A4) can be regarded as generalizations of the corre-
sponding conditions in [1, 5] to the case of x-dependence. So, it is possible to show that the
(p, q)-growth condition is satisfied in the same way as in (1.2) for the function F .

2. A simple example is given by the function

F (x,Z) := α(x)a(|Z̃ |) + β(x)b(|Zn|), (x,Z) ∈ Ω × R
nN ,

where the functions a and b of class C2([0,∞), [0,∞)) satisfy the autonomous assumptions from
[1, 5] and strictly positive functions α, β belong to the class C1(Ω).

At the first step, we establish results on higher integrability.

Theorem 1.2 (higher integrability). Let Assumptions (A1)–(A5) hold, and let u ∈ W 1,2
loc ∩

L∞
loc(Ω,R

N ) be a local minimizer of the functional (1.5). Then the following assertions hold:

(a) b(·, |∂nu|)|∂nu|2 belongs to the space L1
loc(Ω),

(b) if

b(x, t) � ctωa(x, t) for large t and ω � 2, (A6)

then a(·, |∇̃u|)|∇̃u|2 belongs to the space L1
loc(Ω). Furthermore, u ∈W 2,2

loc (Ω,RN ).

Remark 1.3. 1. The main point of the proof of Theorem 1.2 is a regularization procedure:
if we work with an ordinary regularization (cf. [3], for example), we do not have the convergence
uδ → u, where uδ is a minimizer of the regularized problem, because of the x-dependence. Note
that the same problem was mentioned in [13, 14]. The approach of [14], which is based on a
regularization from below with hM � h, where h denotes a or b, does not resolve the problem
because it is impossible to get a uniform variant of Assumption (A2) for the function hM .
Therefore, we modify the regularization described in [15].

2. In the nonautonomous situation, the superquadratic growth condition is already required
for proving the higher integrability, unlike the autonomous case (cf. [12]).
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3. In comparison with [12], we need Assumption (A6) to get higher integrability. The reason
is that the condition

b(x, t) � ct2a(x, t2) for large t

required in [12] is not extended to the regularized functions aM and bM .

As in the proof in [1, 5], further assumptions are required in the general vector case

h′(x, t)
t

� h′′(x, t) for t � 0 if ω < 1, (A7)

where x ∈ Ω is arbitrary and h = a or h = b, and

a(x, t) � ϑt
ω
2
(n−2) for large t (A8)

for ϑ > 0, where ω is defined in (A6).

Theorem 1.4 (partial C1,α-regularity).

(a) Let Assumptions (A1)–(A6) with ω < 2, (A7), and (A8) hold. Suppose that for all B � Ω

argminy∈B a(y, t) is independent of t (A9)

and

a(x, t) � θ1 t
θ2|x−y|a(y, t) for all t� 1 and all x, y ∈ B, (A10)

where θ1 > 0 and θ2 � 0 are constants. Then for any local minimizer u ∈W 1,2
loc ∩L∞

loc(Ω,R
N )

of the functional (1.5) there exists an open subset Ω0 of Ω such that Ln(Ω0 − Ω) = 0 and
u ∈ C1,α(Ω0,R

N ) for all α < 1.

(b) If n = 2, then Ω0 = Ω without assuming (A3), (A6)–(A10), and the condition u ∈
L∞

loc(Ω,R
N ).

(c) If Assumptions (A1), (A2), and (A4)–(A6) hold with ω � 2 and N = 1, then any local
minimizer u ∈ W 1,2

loc ∩ L∞
loc(Ω) of the functional (1.5) belongs to the space C1,α(Ω) for all

α < 1 provided that

a(x, t) � ct2b(x, t) for large t (A11)

uniformly with respect to x ∈ Ω.

Remark 1.5. 1. The results of [1, 5] concerning partial regularity are extended to the
nonautonomous case with the only restriction that we should assume that b(x, t) � ctωa(x, t) for
ω really smaller than 2. The reason is that we cannot prove a uniform variant of the inequality

b(t) � ctωa(x, tω)

for our regularization (cf. Section 2).

2. The results are extended completely in the case n = 2 or N = 1.

3. As was mentioned in [5], we can remove the assumption u ∈ L∞
loc(Ω,R

N ) if n = 2.
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Remark 1.6. 1. From (A9) we get the existence of y∗ ∈ B such that

a(y∗, t) � a(y, t) for all (y, t) ∈ B × [0,∞).

This is necessary to prove the continuous growth condition in iteration of blow up. The corre-
sponding examples of density (cf. [14]), show that (A9) and (A10) are natural conditions in the
case of x-dependence.

4. Sharp conditions for the regularity of minimizers of nonautonomous anisotropic variational
integrals are indicated in [8], where a condition of the form (A9) was used (cf. (74)). Thus, we
can proceed that this assumption is necessary for regularity.

5. We cannot consider minimizers of the functional∫

Ω

[
(1 + |∇̃w|2)

p(x)
2 + (1 + |∂nw|2)

p(x)
2

]
dx

for p, q ∈W 1,∞
loc (Ω, [2,∞)) since the functions

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1

do not satisfy Assumption (A5).

2. Auxiliaries and Higher Integrability

First of all, we define a regularization. Let

hM (x, t) :=

t∫

0

sgM (x, s) ds, t � 0,

where M � 1, h denotes a or b, and

gM (x, t) := g(x, 0) +

t∫

0

η(s)g
′
(x, s) ds,

g(x, t) :=
h

′
(x, t)
t

.

Here, η ∈ C1([0,∞)) is a cut-off function such that 0 � η � 1, η
′ � 0, |η′ | � c/M , η ≡ 1 on

[0, 3M/2], and η ≡ 0 on [2M,∞).

Lemma 2.1. The sequence (hM ) satisfies the following conditions:

(1) hM ∈ C2(Ω × [0,∞)), hM (x, t) = h(x, t) for all t � 3M/2, and

lim
M→∞

hM (x, t) = h(x, t) ∀ (x, t) ∈ Ω × R
+
0 ,

(2) hM � h, gM � g, and h
′′
M � c(M) on Ω × R

+
0 by Assumption (A2),

(3) the same assertion holds for hM by Assumption (A1),

263



(4) by Assumption (A2),

ε
h

′
M (x, t)
t

� h
′′
M (x, t) � h

h
′
M (x, t)
t

uniformly with respect to M ,

(5) Assumption (A3) is uniformly extended to aM and bM :

aM (x, t) � c1bM (x, t) for all x ∈ Ω and large t,

(6) By Assumption (A4), the same inequality holds for hM uniformly with respect to M :

h
′
M (x, t)
t

� h0 > 0 for all t � 0

provided that, in addition, Assumption (A2) is satisfied,

(7) Assumption (A5) is extended to hM uniformly with respect to M :

|∂γh
′
M (x, t)| � c2h

′
M (x, t) for all (x, t) ∈ Ω × R

+
0 and all γ ∈ {1, . . . , n} ,

(8) if b(x, t) � ctωa(x, tω) for large t, then the same inequality holds for aM and bM uni-
formly with respect to M .

Proof. By the definition of hM , we get assertion (1) and the first two statements of assertion
(2). To prove the remaining assertions, we need the equalities

h′M (x, t)
t

= gM (x, t) = η(t)
h′(x, t)

t
+

t∫

0

{
−η

′(s)
s

}
h′(x, s) ds (2.1)

for (x, t) ∈ Ω × R
+
0 . By the definition of g, we have

g(x, 0) = h′′(x, 0).

Therefore,

gM (x, t) = h′′(x, 0) +

t∫

0

η(s)
{
h′′(x, s)

s
− h′(x, s)

s2

}
ds = η(t)

h′(x, t)
t

+

t∫

0

{
−η

′(s)
s

}
h′(x, s) ds.

We have

h′′M (x, t) = gM (x, t) + tg′M (x, t)

and, consequently,

tg′M (x, t) = tη(t)g′(x, t) = η(t)
[
h′′(x, t) − h′(x, t)

t

]
.

By (2.1) and (A2), for ε := min {1, ε̂} we have

h′′M (x, t) = η(t)h′′(x, t) +

t∫

0

{
−η

′(s)
s

}
h

′
(x, s) ds

� ε

⎡
⎣η(t)h′(x, t)

t
+

t∫

0

{
−η

′
(s)
s

}
h′(x, s) ds

⎤
⎦ = εgM (x, t) = ε

h′M (x, t)
t

.
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By (A2) and (2.1), for h := max
{
1, ĥ

}
we have

h′′M (x, t) =
h′M (x, t)

t
+ η(t)

[
h′′(t) − h′(x, t)

t

]

� h′M (x, t)
t

+
[
ĥ− 1

]
η(t)

h′(x, t)
t

� h
h′M (x, t)

t
,

which proves assertion (4). Now,

h
′′
M (x, t) � cgM (x, t) � cg(x, 0) + c

2M∫

0

|g′
(x, s)| ds � c(M).

Since hM (x, 0) = 0, we have

lim
t→0

hM (x, t)
t

= h′M (x, 0) = 0.

Furthermore,

lim
t→∞

1
t

t∫

0

sgM (x, s) ds = lim
t→∞ tgM (x, t) = ∞

because

lim
t→∞ gM (x, t) =

2M∫

3M/2

{
−η′(s)

}
g(x, s) ds > 0,

which follows from (2.1) and the monotonicity of h. By Assumptions (A3) and (A2),

a
′
(x, t) � cb

′
(x, t) for t � t0.

Thus, by (2.1), for t � t0 we have

a′M (x, t)
t

= η(t)
a′(x, t)
t

+

t∫

0

{
−η

′(s)
s

}
a′(x, s) ds

� c

[
η(t)

b′(x, t)
t

+

t∫

0

{
−η

′(s)
s

}
b′(x, s) ds

]
= c

b′M (x, t)
t

provided that 3M/2 � t0.

(6) From Assumptions (A1) and (A4) we find that for t � 3M/2

h′′M (x, t) � h0.

In the case 3M/2 < t < 2M ,

h′′M (x, t) � εgM (x, t) � ε

[
h0η(t) + h0

t∫

3M/2

{
−η′(s)

}
ds

]
= h0ε,
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and for t > 2M we get

h′′M (x, t) � εh0

2M∫

3M/2

{
−η′(s)

}
ds = h0ε.

The proof of the estimate for ∂γhM can be found in [15, p. 14]. To prove the last assertion,
based on Assumptions (A6) and (A2), we find

b′(x, t) � ctωa′(x, t) for t � t0.

By (2.1), this relation remains valid for t � t0 provided that 3M/2 � t0 (note that η
′
(t) = 0 for

t � 3M/2):

b′M (x, t)
t

= η(t)
b′(x, t)
t

+

t∫

0

{
−η

′(s)
s

}
b′(x, s) ds

� ctω

⎡
⎣η(t)a′(x, t)

t
+

t∫

0

{
−η

′(s)
s

}
a′(x, s) ds

⎤
⎦ = ctω

a′M (x, t)
t

for all t � t0.

The lemma is proved. �

Remark 2.2. 1. By [13, Lemma A.1], from Assumptions (A1) and (A2) it follows that

h(x, 2t) � 2ĥ+1h(x, t) ∀ t � 0. (2.2)

Thus, by Lemma 2.1, (3) and (4), we obtain the uniform ∆2-condition on hM . Based on the
same quotation, we deduce

h′(x, 2t) � 2ĥh′(x, t) ∀t � 0,

which is extended to hM uniformly.

2. By the monotonicity of h′ and Assumptions (A1), (A2), for µ := 2ĥ+1 we have

µ−1th′(x, t) � h(x, t) � th′(x, t) ∀ t � 0,

which is extended to hM uniformly.

Now, we define uM as a unique minimizer of the functional

TM [w] :=
∫

B

FM (·,∇w) dx :=
∫

B

[
aM (·, |∇̃w|) + bM (·, |∂nw|)

]
dx

in u+W 1,2
0 (B,RN ), where B := BR(x0) � Ω is arbitrary. The following assertion concerns some

properties of the regularization uM .

Lemma 2.3. Let Assumptions (A1)–(A5) be satisfied. Then

(1) uM belongs to the space W 2,2
loc (B,RN ),

(2) aM (·, |∇ũM |)|∇̃uM |2 and bM (·, |∂nuM |)|∂nuM |2 belong to the space L1
loc(B),
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(3) if n = 2 or N = 1, then uM ∈W 1,∞
loc (B,RN ),

(4) for γ ∈ {1, . . . , n} ∂γuM is a solution to the equation∫

B

D2
PFM (·,∇uM )(∇w,∇ϕ) dx +

∫

B

∂γDPFM (·,∇uM ) : ∇ϕdx = 0

for all ϕ ∈W 1,2
0 (B,RN ) such that spt(ϕ) � B,

(5) uM belongs to W 1,2(B,RN ), is uniformly bounded, and

sup
M

∫

B

FM (·,∇uM ) dx <∞,

(6) if u ∈ L∞
loc(Ω,R

N ), then sup
M

‖uM‖∞ <∞.

Proof. (1), (3), (5). Assertion (1) follows from [13, Lemma 2.5], and assertion (3) is proved
in [15, Theorem 1.1, (ii), (iii)] for p = q = 2. For assertion (5) we refer to [14, Lemma 1.2].

(2). The minimization of TM is a variational problem with splitting condition and power
growth conditions with p = q = 2. As was noted in [12, Remark 3b], it is possible to extend the
approach of [12, Theorem 1] to the nonautonomous case. Hence we get ∇uM ∈ L4

loc(B,R
nN ).

By the quadratic growth of aM and bM , we obtain the required assertion.
(4). It is clear that ∂γuM is a solution if only ϕ ∈ C∞

0 (B,RN ) are allowed for test func-
tions. But D2

PFM (·,∇uM ) are bounded (cf. Lemma 2.1, (2)); moreover, ∂γDPFM (·,∇uM ) ∈
L2(B,RnN ) which follows from Lemma 2.1, (2) and (4), and Assumption (A5). Assertion (4) is
obtained by approximation.

(6). The uniform boundedness of uM is obtained by the maximum principle [16]. �

Proof of Theorem 1.2. We set

ΓM := 1 + |∇uM |2, Γ̃M := 1 + |∇̃uM |2, Γn,M := 1 + |∂nuM |2.

We want to estimate the integral∫

B

η2kbM (·, |∂nuM |)|∂nuM |2 dx

independently of M in the same way as in [12]. Hence we consider η ∈ C∞
0 (B) such that

0 � η � 1, η ≡ 1 on Br(x0) for r < R and |∇η| � c/(R− r). Integrating by parts and using the
uniform bound on uM (cf. Lemma 2.3), we see that it suffices to consider only the term∫

B

η2k|∂n [bM (·, |∂nuM |)] ||∂nuM | dx. (2.3)

Here, one can see

T2 � c

∫

B

η2k|∂nbM (·, |∂nuM |)||∂nuM | dx+ c

∫

B

η2kb′M (·, |∂nuM |)|∂nuM ||∂n∂nuM | dx

:= c T 1
2 + c T 2

2 .
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By Lemma 2.1, (7),

|∂nbM (x, t)| =

∣∣∣∣∣∣
t∫

0

∂nb
′
M (x, s) ds

∣∣∣∣∣∣ � c bM (x, t).

By the Young inequality,

T 1
2 � τ

∫

B

η2kbM (·, |∂nuM |)|∂nuM |2 dx+ c(τ)
∫

B

η2kbM (·, |∂nuM |) dx.

Furthermore, taking into account Remark 2.2, we get

T 2
2 � τ

∫

B

η2kbM (·, |∂nuM |)|∂nuM |2 dx+ c(τ)
∫

B

η2k b
′
M (·, |∂nuM |)
|∂nuM | |∂n∂nuM |2 dx.

Absorbing τ -terms in (2.3), we get∫

B

η2kbM (·, |∂nuM |)|∂nuM |2 dx � c(r) + c

∫

B

η2k b
′
M (·, |∂nuM |)
|∂nuM | |∂n∂nuM |2 dx, (2.4)

where c(r) is a constant such that c(r) → ∞ as r → R, but c(r) is independent of M . To
estimate the integral on the right-hand side of (2.4), we need a Caccioppoli type inequality,
similar to that in [12]. It suffices to consider only the term

−
∫

B

∂nDPFM (·,∇uM ) : ∇
{
η2k∂nuM

}
dx.

The first estimate yields the bound

c

∫

B

|a′
M (·, |∇̃uM |)||∇̃

{
η2k∂nuM

}
| dx+ c

∫

B

|b′M (·, |∂nuM |)||∂n

{
η2k∂nuM

}
| dx

:= c [W1 + W2]

in view of Lemma 2.1, (7). We consider the terms separately:

W1 � c

∫

B

η2k−1a
′
M (·, |∇̃uM |)|∇η||∂nuM | dx+ c

∫

B

η2ka
′
M (·, |∇̃uM |)|∂n∇̃uM | dx

:= c
[
W1

1 + W2
1

]
.

By the Young inequality,

W2
1 � τ

∫

B

η2k a
′
M (·, |∇̃uM |)
|∇̃uM |

|∂n∇̃uM |2 dx+ c(τ)
∫

B

η2ka
′
M (·, |∇̃uM |)|∇̃uM | dx,

which can be treated in the same way as in [13, Section 3]. For an upper bound for W1
1 we can

take ∫

B

η2ka
′
M (·, |∇̃uM |)|∇̃uM | dx+

∫

B

η2k−2|∇η|2 a
′
M (·, |∇̃uM |)
|∇̃uM |

|∂nuM |2 dx.
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The second integral can be estimated in the same way as in [3, Section 3] because all the
assumptions on a and b are extended uniformly to aM and bM . Taking into account Remark 2.2
and Lemma 2.3, (5), we can estimate the first integral independently of M . Thus,

∫

B

η2kbM (·, |∂nuM |)|∂nuM |2 dx � c(r). (2.5)

Now, we want to estimate the integral∫

B

η2kaM (·, |∇̃uM |)|∇̃uM |2 dx. (2.6)

As above, after integrating by parts, the only difference with the calculations of [13] is the
integral ∫

B

uMη
2k∂γ

[
aM (·, |∇̃uM |)

]
∂γuM dx.

We have

U2 � c

∫

B

η2k|∂γaM (·, |∇̃uM |)||∇̃uM | dx+ c

∫

B

η2ka′M (·, |∇̃uM |)|∇̃uM ||∂γ∂γuM | dx

:= cU1
2 + cU2

2 .

Using Remark 2.2 and Lemma 2.1, (7), we find

U1
2 � τ

∫

B

η2kaM (·, |∇̃uM |)|∇̃uM |2 dx+ c(τ)
∫

B

η2kaM (·, |∇̃uM |) dx

and

U2
2 � τ

∫

B

η2kaM (·, |∇̃uM |)|∇̃uM |2 dx+ c(τ)
∫

B

η2k a
′
M (·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2 dx.

We absorb the first term in (2.6) and use a Caccioppoli type inequality like in [12] for the second
term. Then it remains to consider∫

B

∂γDPFM (·,∇uM ) : ∇
{
η2k∂γuM

}
dx.

By Lemma 2.1, (7), we obtain the upper bound

c

∫

B

a′M (·, |∇̃uM |)|∇̃
{
η2k∂γuM

}
| dx+ c

∫

B

b′M (·, |∂nuM |)|∂n

{
η2k∂γuM

}
| dx

:= c [U1 + U2] .
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Consequently,

U1 � c

∫

B

η2k−1a′M (·, |∇̃uM |)|∇η||∂γuM | dx+ c

∫

B

η2ka′M (·, |∇̃uM |)|∂γ∇̃uM | dx

:= c
[
U1

1 + U2
1

]
.

By the Young inequality, we obtain the inequality

U2
1 � τ

∫

B

η2k a
′
M (·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2 dx+ c(τ)
∫

B

η2kaM (·, |∇̃uM |) dx

which can be treated in a standard way. Furthermore,

U2 �
∫

B

η2k−1|∇η|b′M (·, |∂nuM |)|∇̃uM | dx+
∫

B

η2kb′M (·, |∂nuM |)|∂γ∂nuM | dx.

From the Young inequality and Remark 2.2 we obtain the upper bound for the second integral:

τ

∫

B

η2k b
′
M (·, |∂nuM |)
|∂nuM | |∂γ∂nuM |2 dx+ c(τ)

∫

B

η2kbM (·, |∂nuM |) dx

which is uncritical. For the first one we see∫

B

η2k−1|∇η|b′M (·, |∂nuM |)|∇̃uM | dx

�
∫

B

η2k−2|∇η|2 b
′
M (·, |∂nuM |)
|∂nuM | |∇̃uM |2 dx+

∫

B

η2kbM (·, |∂nuM |) dx

which can be bound in the same way as in [12, Section 3]. Therefore, we need the inequality

bM (x, t) � ct2aM (x, t2).

However, we have the stronger inequality

bM (x, t) � ct2aM (x, t).

Thus, we get ∫

B

η2kaM (·, |∇̃uM |)|∇̃uM |2 dx � c(r). (2.7)

By Lemma 2.1, (1), (6),∫

B

η2|∇2uM |2 dx �
∫

B

D2
PFM (·,∇uM )(∂γ∇uM , ∂γ∇uM ) dx.

Using a Caccioppoli type inequality as in [12], we can obtain an estimate independent of M
(note that the right-hand side of the inequality is bounded in the rest of the proof). Thus, we
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obtain the uniform boundedness of uM in W 2,2
loc (B,RN ) (cf. Lemma 2.3, (5)). By arguments

similar to those at the end of Section 2 in [14], we find

uM ⇁ u in W 2,2
loc (B,RN ),

∇uM → ∇u in L2
loc(B,R

nN ),

∇uM → ∇u a.e.

(2.8)

as M → ∞. This implies u ∈ W 2,2
loc (Ω,RN ). By the Fatou lemma, (2.5), and (2.7), we obtain

the assertion of Theorem 1.2. �

3. Partial C1,α-Regularity

We define the excess function

E(x, r) := −
∫

Br(x)

|∇u− (∇u)x,r|2 dy + −
∫

Br(x)

a(·, |∇u− (∇u)x,r|) dy,

where
a(x, t) := a(x, t)tω

and ω ∈ (0, 2) is taken from Assumption (A6). If r � R0, where χ + θ2R0 � 2, then Theorem
1.2 and Assumption (A10) guarantee the existence of E(x, r). To show this we estimate

−
∫

Br(x)

a(·, |∇u− (∇u)x,r|) dy � −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(y) −∇u(z)|) dydz

� c −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(y)|) dydz + c −
∫

Br(x)

−
∫

Br(x)

a(y, |∇u(z)|) dydz.

For the second term we use (A10) and without loss of generality assume that |∇u(z)| � 1:

a(y, |∇u(z)|) � c|∇u(z)|θ2|y−z||∇u(z)|ωa(z, |∇u(z)|) � |∇u(z)|2a(z, |∇u(z)|).

Considering the integration over the set where [|∂nu| � |∇̃u|] and its complement, we prove the
existence of the excess.

Lemma 3.1. Let Assumptions (A1)–(A10) hold for ω < 2, and let L > 0 be fixed. Then
there is C∗(L) such that for every τ ∈ (0, 1/4) there exists ε = ε(τ, L) > 0 possessing the
following property: if

|(∇u)x,r| � L,

E(x, r) + rγ∗ � ε
(3.1)

for a ball Br(x) � Ω, then
E(x, τr) � C∗τ2[E(x, r) + rγ∗

] (3.2)

where γ∗ ∈ (0, 2) is arbitrary.
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Proof. We extend the ideas of [1, 5]. For z ∈ B1 := B1(0) we set

um(z) :=
1

λmrm

(
u(xm + rmz) − am − rmAmz

)
,

am := (u)xm,rm,

Am := (∇u)xm,rm;

(f)x,r denotes the mean value of a function f over the ball Br(x). For λ2
m := E(xm, rm) + rγ∗

m

from (3.1) we deduce that

|Am| � L, −
∫

B1

|∇um|2 dz + λ−2
m −

∫

B1

a(xm + rmz, λm |∇um|)dz + λ−2
m rγ∗

m = 1. (3.3)

Scaling, we can write (3.2) in the form

−
∫

Bτ

|∇um − (∇um)0,τ |2 dz + λ−2
m −

∫

Bτ

a(xm + rmz, λm |∇um − (∇um)0,τ |)dz > C∗τ2. (3.4)

Using (3.3) and passing to subsequences, if necessary, we have

Am →: A, um ⇁: u in W 1,2(B1,R
N ), (u)0,1 = 0, (∇u)0,1 = 0, (3.5)

λm∇um → 0 in L2(B1,R
nN ) and a.e. on B1. (3.6)

Analyzing the proof in [1, 5], we see that it is not difficult to verify the limit equation. Thus,
to complete the proof of Lemma 3.1, we need to show that

∇um → ∇u in L2
loc(B), (3.7)

lim
m→∞λ−2

m −
∫

Br

a(xm + rmz, λm |∇um − (∇um)0,r|)dz = 0 ∀ r < 1. (3.8)

If we want to establish a Caccioppoli type inequality as in [1, 5], we need to estimate, in addition,
the integral

∫

B

∂γDPFM (·,∇uM ) : ∇
{
η2 [∂γuM − P ]

}
dx,

where P ∈ R
nN is arbitrary. By Lemma 2.1, (7), we find

T 1
M :=

∫

B

a′M (·, |∇̃uM |)|∂γ∇̃uM |η2 dx,

T 2
M :=

∫

B

a′M (·, |∇̃uM |)|∇uM − P |η|∇η| dx,
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T 3
M :=

∫

B

b′M (·, |∂nuM |)|∂γ∂nuM |η2 dx,

T 4
M :=

∫

B

b′M (·, |∂nuM |)|∇uM − P |η|∇η| dx.

Using the Young inequality and taking into account Remark 2.2, we find

T 1
M � τ

∫

B

a′M (·, |∇̃uM |)
|∇̃uM |

|∂γ∇̃uM |2η2 dx+ c(τ)
∫

B

aM (·, |∇̃uM |)η2 dx

for τ > 0. For T 2
M the same arguments lead to the upper bound

c(η)
∫

B

a′M (·, |∇̃uM |) dx+ c(η)
∫

B

aM (·, |∇̃uM |) dx+ c(η)
∫

B∩spt η

a′M (·, |∇̃uM |)
|∇̃uM |

|∂nuM |2 dx.

Similarly,

T 3
M � τ

∫

B

b′M (·, |∂nuM |)
|∂nuM | |∂γ∂nuM |2η2 dx+ c(τ)

∫

B

bM (·, |∂nuM |)η2,

T 4
M � c(η)

∫

B

b′M (·, |∂nuM |) dx+ c(η)
∫

B

bM (·, |∂nuM |) dx+ c(η)
∫

B∩spt η

b′M (·, |∂nuM |)
|∂nuM | |∇̃uM |2 dx.

After absorption of τ -integrals we need to justify that we can interchange integrals in the re-
maining terms as M → ∞. We follow arguments of [1, 5]. For arbitrary κ > 0 we choose a
subset S ⊂ B such that ∇uM → ∇u uniformly on S and Ln(B − S) � κ (here, we need (3.6)
and the Egorov theorem). Arguing in the same way as in [1, 5], we see that the integrals over
B−S are less than cκµ. Furthermore, we need to establish the convergence almost everywhere,
based on

ψ̃M :=

|∇̃uM |∫

0

√
a′M (x, t)

t
dt,

ψ
(n)
M :=

|∂nuM |∫

0

√
b′M (x, t)

t
dt

against ψ̃ and ψ(n) (with a suitable definition). By the arguments at the end of Section 2,
∇uM → ∇u a.e. Thus, we need to establish the convergence almost everywhere of

χ̃M (x, s) :=

s∫

0

√
a′M (x, t)

t
dt,

χ
(n)
M (x, s) :=

s∫

0

√
b′M (x, t)

t
dt.

273



By Lemma 2.1, (2), this is true in view of the Lebesgue dominated convergence theorem. In
addition,

ψ̃M,x :=

|∇̃uM |∫

0

∇x

√
a′M (x, t)

t
dt,

ψ
(n)
M,x :=

|∂nuM |∫

0

∇x

√
b′M (x, t)

t
dt.

But, by Lemma 2.1, (7), these terms can be bounded by ψ̃M and ψ
(n)
M which can be estimated

in the same way as in [1, 5]. In the limit version of the essential Caccioppoli type inequality, it
is necessary to add

T 1 :=
∫

B

a(·, |∇̃u|)η2 dx,

T 2 :=
∫

B

a′(·, |∇̃u|)|∇u− P |η|∇η| dx,

T 3 :=
∫

B

b(·, |∂nu|)η2 dx,

T 4 :=
∫

B

b′(·, |∂nu|)|∇u− P |η|∇η| dx

on the right-hand side. To prove (3.7), we scale and set

T 1
m :=

r2m
λ2

m

∫

B1

a(xm + rmz, |Ãm + λm∇̃um|)η2 dz,

T 2
m :=

r2m
λ2

m

∫

B1

a′(xm + rmz, |Ãm + λm∇̃um|)|λm∇um|η |∇η|
rm

dz,

T 3
m :=

r2m
λ2

m

∫

B1

b(xm + rmz, |A(n)
m + λm∂num|)η2 dz,

T 4
m :=

r2m
λ2

m

∫

B1

b′(xm + rmz, |A(n)
m + λm∂num|)|λm∇um|η |∇η|

rm
dz.

To bound these expressions uniformly with respect to M , we separate into the sets [|Ãm +
λm∇̃um| � K] and [|Ãm +λm∇̃um| > K] and use the uniform boundedness of λ−2

m r2m. By (3.3),

T 1
m � c(K) + c(K)

∫

B1

a(xm + rmz, λm |∇um|)dz � c(K).
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By Assumption (A6), we obtain the same estimate for T 3
m. Taking into account Remark 2.2, we

deduce

T 2
m � c(η,K)

∫

B1

|∇um| dz + c(η,K)
∫

B1∩[...>K]

a(xm + rmz, λm |∇um|)dz

� c(η,K) + c(η,K)
∫

B1

a(xm + rmz, λm |∇um|)dz

� c(η,K),

where the L2-bound for ∇um and (3.3) were used. We estimate T 4
m in a similar way with the

help of Assumption A6). Proving (3.8), we define

ψ̃m :=
1
λm

|Ãm+λm∇̃um|∫

|Ãm|

√
a′(x, t)
t

dt,

ψ(n)
m :=

1
λm

|A(n)
m +λm∂num|∫

|A(n)
m |

√
b′(x, t)
t

dt.

Following the argument of [1, 5], we again get uniform W 1,2
loc -bounds (additionally to the terms

T 1
m, . . . , T

4
m) and can complete the proof of the blow up lemma just in the same way as in [1, 5].

Now, we can iterate this lemma as in [17], for example. The only difference is connected with
the inequality

E(x0, r) � c(τ)E(x0, τ
kR), τk+1R � r � τkR.

However, by Assumption (A9),

E(x0, r) � c(τ)E(x0, τ
kR) + c(τ)r. (3.9)

By the convexity and ∆2-condition on a,

−
∫

Br(x0)

a(y, |∇u(y) − (∇u)r,x0|) dy � c −
∫

Br(x0)

a(y, |∇u(y) − (∇u)τkR,x0
|) dy

+c −
∫

Br(x0)

a(y, |(∇u)τkR,x0
− (∇u)r,x0|) dy.

It is obvious that the first integral is estimated by

c(τ) −
∫

B
τkR

(x0)

a(y, |∇u(y) − (∇u)τkR,x0
|) dy.

For the second integral we introduce

y∗ := argminBr(x0) a(y, t) (3.10)
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which is independent from t by Assumption (A9). Then we get the bound

−
∫

Br(x0)

∣∣a(y, |(∇u)τkR,x0
− (∇u)r,x0|) − a(y∗, |(∇u)τkR,x0

− (∇u)r,x0|)
∣∣ dy

+ −
∫

Br(x0)

a(y∗, |(∇u)τkR,x0
− (∇u)r,x0|) dy.

The first term can be estimated by

sup
t∈[0,1]

∣∣∇xa
(
y + t(y∗ − y), |(∇u)τkR,x0

− (∇u)r,x0|
)∣∣ |y∗ − y| � c(τ)r.

By Assumption (A5), we have the inequality

|(∇u)τkR,x0
− (∇u)r,x0 | � −

∫

Br(x0)

|∇u− (∇u)τkR,x0
| dz

� c(τ) −
∫

B
τkR

(x0)

|∇u− (∇u)τkR,x0
| dz � c(τ)

[
E(x0, τ

kR) + 1
]

� c(τ)

because
E(x0, τ

kR) � ε

which follows by iterating the blow up lemma (cf. [17]). By the Jensen inequality and Assump-
tion (A9),

−
∫

Br(x0)

a(y∗, |(∇u)τkR,x0
− (∇u)r,x0 |) dy � −

∫

Br(x0)

a(y∗, |∇u(y) − (∇u)τkR,x0
|) dy

� −
∫

Br(x0)

a(y, |∇u(y) − (∇u)τkR,x0
|) dyc(τ) −

∫

B
τkR

(x0)

a(y, |∇u(y) − (∇u)τkR,x0
|) dy

with an appropriate choice of y∗. Hence we obtain (3.9). �

Proof of Theorem 1.4, (b). As was noted in [5], a 2D-result can be deduced from the
proof of [15]. �

4. Regularity Results for N = 1

Let N = 1.

Lemma 4.1. For all t <∞ and Bρ � B

sup
M

‖∇uM‖Lt(Bρ) <∞.
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We want to estimate the integral
∫

B

η2kbM (·, |∂nuM |)Γ
α+2

2
n,M dx, (4.1)

where η ∈ C∞
0 (B) is a cut-off function such that η ≡ 1 on Br(x0) for ρ < R and 0 � η � 1.

Following [12], we integrate by parts and, using uniform local bounds for uM (cf. Lemma 2.3,
(6)), find

∫

B

η2kbM (·, |∂nuM |)Γ
α+2

2
n,M dx � c(η) [1 + I1 + I2 + I3 + I4] , (4.2)

where

I1 :=
∫

spt(η)

bM (·, |∂nuM |)Γ
α
2
n,M dx,

I2 :=
∫

spt(η)

aM (·, |∇̃uM |)
|∇̃uM |2

[
bM (x, ·)−1

(
aM (·, |∇̃uM |)
τ |∇̃uM |2

)]α+2

dx,

I3 :=
∫

B

η2k|∂nbM (·, |∂nuM |)|Γ
α+1

2
n,M dx,

I4 :=
∫

B

|∂γDPFM (·,∇uM ) : ∇[∂nuMη
2Γ

α
2
n,M ]| dx.

Note that, comparing with [12], we have additionally I3 and I4 because of x-dependence. Since

aM (x, t) � ct2bM (x, t) for large t

(cf. Lemma 2.1, (6)), I2 can be bound by

c(τ)

⎡
⎢⎣1 +

∫

spt(η)

aM (·, |∇̃uM |)Γ̃
α
2
M dx

⎤
⎥⎦ ,

where we used the uniform ∆2-condition on b−1
M . This fact follows from the uniform variant of

Assumption (A2). From Lemma 1.1 (7) and the Young inequality we find

I2 � c

∫

B

η2kbM (·, |∂nuM |)Γ
α+1

2
n,M dx

+ τ

∫

B

η2kbM (·, |∂nuM |)Γ
α+2

2
n,M dx+ c(τ)

∫

B

η2kbM (·, |∂nuM |)Γ
α
2
n,M dx.
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We absorb the first term on the right-hand side of (4.1). Furthermore, we write

I4 �
∫

B

|η2∂γDPFM (·,∇uM ) : ∂n∇uMΓ
α
2
n,M | dx

+2k
∫

B

|η2k−1∂γDPFM (·,∇uM ) : ∇η∂nuMΓ
α
2
n,M | dx

+α
∫

B

|η2k∂γDPFM (·,∇uM ) : ∂n∇uMΓ
α−2

2
n,M∂nu

2
M | dx

:= I1
4 + I2

4 + I3
4 .

Taking into account the splitting type structure and Lemma 2.1 (7), we deduce

I1
4 � c

∫

B

η2ka′M (·, |∇̃uM |)|∂n∇̃uM |Γ
α
2
n,M dx+ c

∫

B

η2kb′M (·, |∂nuM |)|∂n∂nuM |Γ
α
2
n,M dx.

Taking into account Remark 2.2, we obtain the following upper bound for the first integral:

τ

∫

B

η2k a
′
M (·, |∇̃uM |)
|∇̃uM |

|∂n∇̃uM |2Γ
α
2
n,M dx+ c(τ)

∫

B

η2kaM (·, |∇̃uM |)Γ
α
2
n,M dx.

For the second integral we use the same arguments. We can absorb τ -terms in a Caccioppoli
type inequality (cf. [12, Section 5]). Similarly,

I2
4 � c

∫

B

η2k−2a′M (·, |∇̃uM |)|∇η|Γ
α+1

2
n,M dx+ c

∫

B

η2k−1b′M (·, |∂nuM |)|∇η|Γ
α+1

2
n,M dx.

By Remark 2.2, the first term is estimated by∫

B

η2kaM (·, |∇̃uM |)Γ
α
2
n,M dx+

∫

B

η2k−2 a
′
M (·, |∇̃uM |)
|∇̃uM |

|∇η|2Γ
α+2

2
n,M dx.

The second term exactly corresponds to the term S3 in [12, Section 3], and the estimation of
this term leads us to I2. The second integral in the estimate for I2

4 is bounded by

c(η) [1 + I1]

(cf. Lemma 2.3, (5)). Combining all the above estimates and taking into account Remark 2.2,
we finally obtain the inequality∫

B

η2kbM (·, |∂nuM |)Γ
α+2

2
n,M dx

� c(η)

[
1 +

∫

spt(η)

bM (·, |∂nuM |)Γ
α
2
n,M dx+

∫

spt(η)

aM (·, |∇̃uM |)Γ̃
α
2
M dx

]

+ c

∫

B

η2kaM (·, |∇̃uM |)Γ
α
2
n,M dx. (4.3)
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Now, we separate the integrand in the last term =: I. Therefore, for τ > 0 we define an
N -function Kτ by the formula (we can ignore the case α = 0)

Kτ (x, t) := τt
α+2

α bM (x, t
1
α ). (4.4)

The conjugate function K∗
τ satisfies the inequality

K∗
τ (x, s) � sb̂M(x, ·)−1

( s
τ

)
,

where

b̂M (x, t) := t
2
α bM (x, t

1
α ).

By Lemma 2.1, (8), for t � 1 we have

aM (x, t)
τ

� ct2bM (x, t)
τ

=
ĉbM (x, tα)

τ
. (4.5)

It is obvious that

b̂M (x, t) = λM (x, t
1
α ) for λM (x, t) := t2bM (x, t)

and

b̂M (x, ·)−1(t) =
[
λM (x, ·)−1(t)

]α
.

Using Lemma 2.1, (4), we obtain the uniform ∆2-condition on λM (x, ·)−1 and thereby on
b̂M (x, ·)−1. Thus, from (4.5) it follows that

b̂M (x, ·)−1

(
aM (x, t)

τ

)
� c(τ)tα.

By the Young inequality for N -functions, we get

I � c

[
1 +

∫

B

η2kKτ (|∂nuM |α) dx+
∫

B

η2kK∗
τ (aM (·, |∇̃uM |)) dx

]

� c

[
1 + τ

∫

B

η2kbM (·, |∂nuM |)|∂nuM |α+2 dx+ c(τ)
∫

B

η2kaM (·, |∇̃uM |)|∇̃uM |α dx
]
.

Inserting this expression into (4.3) and absorbing τ -terms, we find
∫

B

η2kbM (·, |∂nuM |)|Γ
α+2

2
n,M dx

� c(η)

[
1 +

∫

spt(η)

bM (·, |∂nuM |)|Γ
α
2
n,M dx+

∫

spt(η)

aM (·, |∇̃uM |)Γ̃
α
2
M dx

]
. (4.6)

279



Note that the relation between aM and bM is symmetric and they have the same properties.
Therefore, using the same arguments, we can show that∫

B

η2kaM (·, |∇̃uM |)|Γ̃
β+2

2
M dx

� c(η)

⎡
⎣1 +

∫

B

bM (·, |∂nuM |)|Γ
β
2
n,M dx+

∫

B

aM (·, |∇̃uM |)Γ̃
β
2
M dx

⎤
⎦ .

(4.7)

Now, we iterate (4.6) and (4.7) with the induction base α = 0. Using Lemma 2.3, (5), we arrive
at the assertion of Lemma 4.1.

Now, to obtain assertion (c) of Theorem 1.4, we need to show that

sup
M

‖∇uM‖L∞(Bρ) <∞, (4.8)

where Bρ � B. Note that

λ|X|2 � D2
PFM (x,Z)(X,X) � Λ(1 + |Z|2)

q−2
2 |X|2

and

|∂γDPFM (Z)| � c(1 + |Z|2)
q−1
2

for all Z,X ∈ R
nN , x ∈ Ω, γ ∈ {1, . . . , n} uniformly with respect to M . Using this growth

estimates and Lemma 4.1, we can obtain (4.8) by the same arguments as in [14, Lemma 5.4].
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