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TWO-SIDED A POSTERIORI ERROR BOUNDS FOR ELECTRO-MAGNETOSTATIC
PROBLEMS

D. Pauly* and S. Repinf UDC 5179

This paper is concerned with the derivation of computable and guaranteed upper and lower bounds of the difference
between exact and approximate solutions of a boundary value problem for static Mazwell equations. Our analysis
s based upon purely functional argumentation and does not invoke specific properties of the approrimation method.
For this reason, the estimates derived in the paper at hand are applicable to any approximate solution that belongs
to the corresponding energy space. Such estimates (also called error majorants of the functional type) have been
derived earlier for elliptic problems. Bibliography: 24 titles.

Dedicated to Professor N. Uraltseva

1. INTRODUCTION AND NOTATION

The main goal of the present paper is to derive guaranteed and computable upper and lower bounds of the
difference between the exact solution of an electro magnetostatic boundary value problem and any approximation
from the corresponding energy space We discuss the method with the paradigm of a prototypical electro
magnetostatic problem Its generalized statement is given by integral identity (2 6) We show that (as in many
other problems of mathematical physics) certain transformations of (2 6) lead to guaranteed and fully computable
majorants and minorants of the approximation error However, the case considered here has specific features,
which make (at some points) the derivation procedure different from, e g, what has earlier been applied to
other elliptic type problems This is because the corresponding differential operator has a nonzero kernel (which
contains curl free vector fields) and the set of trial functions in (2 6) is restricted to a rather special affine manifold
For these reasons, the derivation of estimates is based on the Helmholtz Weyl decomposition of vector fields, on
properties of the operators of orthogonal projection onto subspaces, and on a version of the Poincaré Friedrichs
estimate for the operator curl

First, we show that the distance between the exact solution F and an approximate solution E (measured
through the norm generated by the operator curl) is equal to the norm of the so called residual functional ZE
(cf (32)) If E satisfies the boundary condition exactly, ie , TME = G, then the latter functional vanishes if
and only if curl E coincides with curl E- Lemma 9 shows that the error majorant can be expressed in terms of a
certain norm of KE (cf (32)) However, in general, the computation of this norm is hardly possible, because it
requires the supremum over an infinite number of functions

Theorem 12 provides a computable form of the upper bound The corresponding estimate (3 12) shows that
the error majorant is the sum of five terms, which can be thought of as penalties for possible violations of relations
(21) (24) and of the prescribed boundary condition It contains only known functions and global constants
depending on geometrical properties of the domain Moreover, it is easy to see that the upper bound vanishes if
and only if E _coincides with the exact solution E and the “free variable” Y occurring in the estimate coincides
with p~tcurl E Also, we show that the estimates derived are sharp in the sense that estimates (3 13) and (3 14)
have no irremovable gap between the left and right hand sides (Remark 14) Finally, in Sec 4, we derive lower
estimates of the difference between exact and approximate solutions The corresponding result is presented by
Theorem 18 This estimate is also computable, guaranteed, and sharp, provided that the approximation exactly
satisfy the prescribed boundary conditions

Throughout this paper, we consider an open bounded domain Q C R? with Lipschitz continuous boundary
v and denote the corresponding outward unit normal vector by n; E and H stand for electric and magnetic
vector fields, respectively, while ¢ and p denote positive definite, symmetric matrices with measurable, bounded
coefficients, which describe properties of media (dielectricity and permeability, respectively) For the sake of
brevity, the matrices (matrix valued functions) with such properties are called “admissible ” We note that the
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corresponding inverse matrices are admissible as well In particular, there exists a constant ¢, > 0 such that for
aa x € (), we have

Cull? < p(@)E- € forany ¢ € BP (1)

We denote by L?() the usual Hilbert space of square integrable functions over  and by H () the Hilbert space
of L2 vector fields, i e, L2(€2,R?) For the sake of simplicity, we restrict our analysis to the case of real valued
functions and vector fields The generalization to complex valued spaces is straightforward
The orthogonality and orthogonal sum with respect to the scalar product of H(2) is denoted by L and @,
respectively,ie, ®L W if
(®,W), = /‘I>~\I!d)\: 0,
Q

where A denotes the Lebesgue measure Moreover, by L, (®,) we indicate the orthogonality (orthogonal sum,
respectively) in terms of the weighted L? scalar product (v®, ¥), generated by an admissible matrix v
Throughout the paper we exploit the following functional spaces:

H(curl,Q):={Z e H(Q) | curlT e H(N)},
H (curly, Q) ;= {¥ € H(curl,Q) | curl ¥ =0},

H(curl®, Q) := Coo (), closure in H(curl, Q),
H (curlg, Q) := H (curl °, Q) N H(curly, Q)

We define similarily the spaces associated with the operators div and grad Furthermore, we introduce the
spaces (containing the so called Dirichlet and Neumann fields)

Hp,(2)
HN,;L(Q)

= H (curly, Q) Ne ™ H (divy, Q) = {T € H(Q) | curl ¥ =0, dive¥ =0, n x ¥|, = 0},
= H(curly, Q) N 'H (divg, Q) = {¥ € H(Q) | curl ¥ =0, divp¥ =0, n - p¥|, = 0}

Henceforth we write E € e71H (div, Q) if eE € H (div,, ) These are finite dimensional spaces whose dimen
sions are denoted by dp and dy, respectively In fact, these numbers are equal to the so called Betti numbers
of 2 and depend only on topological properties of the domain (for a detailed presentation, see [10]) A basis of
Hp(Q) shall be given by special vector fields {H;, ,Hg,}

Finally, we note that, being equipped with proper inner products, all the above introduced functional spaces
are Hilbert spaces

The classical statement of the electro magnetostatic problem for a given vector field F' (driving force) and
given ¢ and p reads as follows: Find a magnetic field

H € H(curl,Q) N p~tH (divg, Q) N Ha, . (Q) 1+
and the corresponding electric field
E € H(curl®, Q) ne ™ H (divy, Q) N Hp ()

such that in
curlH = F, cwlE=upH

In other words, the problem is to find vector fields

H € H(curl ,Q) Np~'H (div,Q) and E € H (curl,Q) Ne 'H (div, Q)

such that
curl H = F, curl E = uH in Q,
divuH =0, diveE=0 in Q,
n-uH|, =0, nxE|l,=0 on 7,

pHL Hy, (), eEl Hp(Q),
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where the homogeneous boundary conditions are to be understood in the weak sense

This coupled problem is equivalent to an electro magnetostatic Maxwell problem in second order form, which
in classical terms reads as follows: Find an electric field E € H (curl,, Q) Ne~*H (div, ) such that g~ tcurl E €
H (curl, ) and

curl g leurl E = F in Q, (12)
diveE =0 in 9, (13)
nxEl,=0 on 7, (14)

eE L Hp(Q) (15)

Once E has been found, the magnetic field is defined by the relation H = p~tcurl E
We note that the problem

curlp~teurl E + k’E = F in Q,
nxEl,=0 on vy

with positive k£ was considered in [2] in the context of functional type a posteriori error estimates From the
mathematical point of view, this problem is much simpler than problem (1 2) (1 5), since the zero order term
makes the overall operator positive definite

2. VARIATIONAL STATEMENT AND SOLUTION THEORY

Henceforth, we consider (12) (15) assuming that the boundary condition on v may be nonhomogeneous
(physically, such a condition is motivated by the presence of an electric current on the boundary) Hence, we
intend to discuss the following prototypical electro magnetostatic Maxwell problem in second order form: Find
an electric field £ such that

curl g tewrl E = F in Q, (21)
diveE =0 in Q, (22)
nxEl, =G on 7, (23)

eE L Hp(Q) (2 4)

There are at least two methods for proving the existence of the solution One is based upon Helmholtz Weyl
decompositions (e g, see [9, 14, 15, 17, 10, 11]) The second method consists of introducing and studying a
suitable generalized statement of problem (2 1) (24) In the present paper, we use the second method, because
it provides a natural way of deriving error estimates Both methods are based on Poincaré Friedrich estimates
(see Remark 1) and (if necessary) exploit suitable extension operators for the boundary data On this way, we
also need a certain version of the Poincaré Friedrichs estimate, namely,

[[¥||lq < ¢pllcurl ¥||, for any ¥ e H (curl®, divee, L., ), (25)

where we define
H (curl °, div e, L., Q) := H (curl®, Q) Ne ™ H (divy, Q) N Hp ()

Remark 1. More general variants of the Poincaré Friedrich estimate for vector fields (2 5) are known For
instance, we have

d
191 < ol B + i <l + 1,91 Yl ol ).

Pt
which holds for all ¥ € H (curl,Q)Ne tH (div,Q) Here 71 ., is the tangential trace and curl is the boundary curl
operator The exact definitions of these two operators are presented in Remark 7 This estimate can be proved
by an indirect argument using a “Maxwell compact embedding property” of €, which holds true not only for
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Lipschitz domains, but also, if the homogeneous boundary condition is considered, for more irregular domains
(cone properties) (see [18]) For nonhomogeneous boundary conditions, the Lipschitz assumption cannot be
weakened Actually, it is just the continuity of the solution operator of the corresponding electrostatic boundary
value problem (see [5 7])

Let E., be a vector field in
H (curl, divge, L, Q) := H (curl ,Q) Ne™*H (divy, Q) N Hp . (Q)*
satisfying boundary condition (2 3) (in a generalized sense) The generalized solution
E € H(curl®,divee, L, Q) + E, C H(curl,divoe, L., Q)
of (21) (24) is then defined by the relation
(pteurl B, curl W), = (F,W),, for any W € H (curl® dive, L, ) (2 6)

If F € H(Q), then, by the Cauchy Schwarz inequality, the right hand side of (2 6) is a linear and continu
ous functional over H (curl®,divee, L.,Q) By (25), the left hand side of (2 6) is a strongly coercive bilin
ear form over H(curl®,divoe, L.,Q) Thus, under these assumptions problem (2 6) is uniquely solvable in
H (curl®,dive, L., Q) + E, by Lax Milgram’s theorem

First, we note some Helmholtz Weyl decompositions of H (Q2), i e , decompositions into solenoidal and curl free
fields, which will be used frequently throughout our analysis

Lemma 2. H(Q) can be decomposed as

H(Q) = eH (curlg, Q) ®.-1 curlH (curl , ) = egrad H (grad °, Q) ®&.-1 H (div 5, )
= egrad H (grad °,Q) ®.-1 eHp, () ®.-1 curlH (curl, )

and

H(Q) = H (curl§, Q) @. e tcurlH (curl, Q) = grad H (grad °, Q) ®. e *H (div, Q)
= gradH (grad°, Q) ©. Hp -(Q) @. e *curlH (curl , Q),

where the closures are taken in H(Q)) and H (grad ®, Q) = H(Q) Moreover,
curlH (curl, Q) = H (divo, L,Q) :=H (divy, Q) N Hp(Q)*F

Remark 3. We denote the e orthogonal projection onto e *curl H (curl ,Q) in (2 8) by 7 Then we have
TeAT® =7 4@, curlm® =curl @ (29)
for all ® € H (curl, ) and
diver® =0, en¥lHp (), curl(l-m)T =0, 7~(1-—7m)T =0

for all ¥ € H(Q)
The latter line can be written in a more compact and precise form:

7H (Q) = e *curlH (curl , Q) = H (divg &, L., ),
(1 =m)H(Q) = H(curlg, Q)
Remark 4. Note that, by (21), F must be solenoidal and perpendicular in H () to H(curlg,Q) Using
Helmholtz Weyl decomposition (2 7), we represent the vector field F' € H(£2) in the form
F =¢Fp +5Fgrad + Feurl
Then, for any W € H (curl ®,div oe, L., Q) we compute
<F7 W>Q = <F(:ur1 ) W>Q

Hence, the functional on the right hand side of (2 6) cannot distinguish between F' and the projection Feyy

The following theorem provides the main existence result
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Theorem 5. Let F' € H (divg, L,Q), and let E, € H (curl,divoe, L, Q) satisfy boundary condition (2 3) Then
boundary value problem (2 1) (24) is uniquely weakly solvable in H(curl®,divoe, L., Q) + E, The solution
operator is continuous

Remark 6. The kernel of (21) (2 3) equals Hp(€2) We only need to show that curl E = 0, but this follows
immediately since E € H (curl®, ) and, thus,

0= <cur1/¢_10ur1E,E>Q = <;f1cur1E,curl E>Q

Remark 7. The boundary data G and its extension E., can be described in more detail Owing to papers [1, 3,
4] and the more general paper of Weck [23], we know that even for Lipschitz domains, where the nonscalar trace
business is a challenging task, there exist a bounded linear tangential trace operator 7 , and the corresponding
bounded linear tangential extension operator 7; ~ (right inverse) that map H (curl, Q) to special tangential vector
fields on the boundary, ie,

2ty o= {o € W20 | el 12 ),

and vice versa Here, curly denotes the surface curl Using Helmholtz Weyl decomposition (2 8), we even get
an improved extension operator We have
Tty : H(curl ,Q) — Ht_l/2(curls,7),

URE H;1/2(

curlg,v) — H(curl,div e, L, Q)
Applied to smooth vector fields, this yields 7,, = n x -|, Now, we may specify the boundary data G €
H ;1/2 (curly,y) and the extension
E, =17 ,G € H(curl,divee, L, ),
as well as our variational statement for F = E + 7t,4G: Find E€H (curl®,div e, L., Q) such that
b(E,W) = <,tfl(:u1r1E,cuerV>Q =(F,W), — <,u*1cur1%t7ﬂ,G,cuer>Q = LW)
holds for all W € H (curl ®,divoe, L, Q)

Remark 8. Henceforth, we assume that G is given by a tangential trace of a vector field T' € H (curl , Q)

3. UPPER BOUNDS FOR THE DEVIATION FROM THE EXACT SOLUTION

Let E be an approximation of
E € H(curl®,divoe, L., Q) + E, C H(curl,divge, L., Q)
We assume that E belongs to H (curl,Q) N e~'H (div,), which means that, in general, the boundary con

dition, the divergence free condition, and the orthogonality to the Dirichlet fields might be violated, i e, the
approximation field may be such that

roE#G, diveE #0, <5EH> £0 forsome H e Hp.(Q)

Moreover, for subsequent analysis and then also for a numerical application, which is even more important, it is
sufficient to assume just E € H (curl, )
Our goal is to obtain upper bounds for the difference between curl E and curl E in terms of the weighted norm

__ —1/2 _ /-1 1/2
1€l o= [ 20|| = (utw, @),

First, we use (2 6) and for all W € H (curl®, div e, L, Q) we get

<,u_1cur1 (E— E‘),cu1r1W>Q =(F,W)q, — <,u_1cu1r1§,cuerV>Q =:l=(W), (31)

Al
where £ is a linear and continuous functiona~1 over H (curl ®, div 0€; Le, ), as well as over H(curl, Q)

Obviously, £ vanishes if curl E' = curl E Furthermore, if E satisfies the boundary condition exactly, ie,
Tt E = G, then {z = 0 if and only if curl E = curl E (or, what is equivalent, if and only if £ = 7E)
With the help of the Helmholtz Weyl decomposition, this holds by the following argument: if 7 ,E = G, then
E—nE € H(cwl®,divoe, Le, Q) Thus, curl (B —7E) =0 by £z =0 But then £ — 7E is a Dirichlet field and
hence must vanish by orthogonality Finally, curlnE = curl E

The second step is based upon the following result
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Lemma 9. Let E € H(curl,divoe, L., Q), and let E€H (curl, Q) be as above Moreover, suppose there exists
ce > 0 such that the relation

</f1curl (B - E’),cuer>Q =LzW) < cellearl W[ -1 g
holds for all W € H (curl®,divoe, L.,Q) Then the inequality

chrl(E_E)H <o+ 2wl T,y o (32)
p=1,Q 22

is valid for all T € H (curl,Q) for which the tangential trace coincides with the tangential trace of E — E, ie,
G — 1t 4 E, on the boundary v If additionally 7 nE = G, then

chrl (E_E)Hw,n < (33)

Proof We use Helmholtz Weyl decomposition (2 8) and the projection 7 from Remark 3 We consider a vector
field T € H (curl , Q) with 7 ,T = G — 73 yE and define the vector field

W:=E—-n(T+E)=E—E+(1—n)E—7T €H(curl®, div e, L., ),
which holds by (29) Hence, curl W = curl (£ — E) —curlT Using Cauchy Schwarz’ inequality, we obtain
||cu1r11/1/'||i_1’Q = <,u*1cur1 (E— E),cuerV>Q —(p teurlT, curlT/V>Q < (C[ + ||cur1T||u_1’Q) |[curl W[ -1 o

and, thus, [[curlW{|,—. o < ¢+ |[curlT|[,-. o By the triangle inequality, we get (3 2); (3 3) is trivial if we
set T':=0 g

Using the trace and extension operators from Remark 7, we can also represent the estimate in the following
form

Corollary 10. Let the assumptions of Lemma 9 be satisfied Then

chrl (E— E)Hlfl’Q <cr+2 chrli'tw(G - Tt”YE)Hp,*l,Q <ecr+2c, |G- Tt”yE‘ ‘H;l/z(curls,y) (34)
Here, ¢, > 0 is the constant in the inequality
lleurl 7o, ol 10 < e 16l 12 gy, ) for any v € 72 (curly, ) (35)

Proof Setting T := 7 (G — TME) in (3 2) and using (3 5), we have (34) We note that (3 3) follows directly
from the corollary as well O

Corollary 10 implies the following result

Theorem 11. Let E and E be as in Lemma 9 Then

chrl (E - E)Hu—m < % IF — curl Y]], + Hy _ u—lcuﬂEHm +2e, ||a - TMEHH;W(M]M) . (36)
where Y is an arbitrary vector field in H (curl , Q)
Proof For any Y € H(curl, Q) and any W € H (curl °,Q), we have
— (curlY, W) + (Y,curl W), =0 (37
Combining (3 1) and (3 7), for all W € H (curl®,divoe, L, Q) we obtain
</flcurl (B - E’),cuer>Q =(F —curlY, W), + <Y —p teurl B, cuer>Q =Lz(W) (38)
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By the Cauchy Schwarz inequality, Poincaré Friedrichs estimate (2 5), and (1 1), we estimate the right hand
side £=(W) of (3 8):

[ (F —curlY,W)q, | < ||F — curlY||g [[W||g < ¢ ||F — curl Y| [|curl W||q,

¢ (39)
< E [|F — curlYl|q, ||cu1r1W'||”,17Q ,
‘<Y - ,u_lcurlf],cuer> ’ < HY - ;flcurlEH |lcurl W] -1 g (310)
Q 14,9 '
Now, Lemma 9 completes the proof O

We note that the latter estimate is unable to measure adequately the deviation of the divergence of eE t0 0
(this is obvious, since eE even does not need to have any divergence) On the other hand, even if div cE # 0,
then the semi norm |[[curl -[| -, o could not feel the lack of the constraint div eE =0 However, it is not difficult
to transform the estimate into a form in which the estimate is represented in terms of the seminorm

d
%[l = lleurl ¥l 1 o + [|dive®|lo + > (¥, Hy)g| (311)
n=1
on H (curl ,Q) Ne~H (div, ), which obviously is a norm on
H(curl®, Q) Ne™H (div,Q)

Theorem 12. Let E be as in Lemma 9 and

E € H(curl,Q) e 'H (div, Q)
Then for any Y € H (curl, ),

~ ~ c _ ~
|2 - E’HQ < My (E,Y) := \/_; IF = curl Ylg, + ||v = 4 lcurlEHMQ

+ 2¢,

@ ””EHH ;i

(curls,y

>+HdiVEEHQ+§:’<5E,Hn>Q’ (312)

IfE—E even belongs to H (curl®, Q)Ne™*H (div,Q), i e, if the approzimation E satisfies the boundary condition
exactly, then ||| |||q is a norm for E — E, and we have

|z - EH)Q < M, (B,Y) = % IF = curl Y [l + ||y - u1cur1EHm+Hdiv5EHQ+§: (<E, Hn>Q) (313)

for all' Y € H(curl, Q)

Remark 13. If E satisfies the prescribed boundary condition and eFE is solenoidal and perpendicular to Dirichlet
fields, then, for all Y € H (curl, §2), (3 6) or (3 12), (3 13) imply

~ ~ ~ c _ ~
H’E— E’HQ - chrl(E—E)HVl’Q < My (E,Y) = 7; IF — curl Y|, + HY —u 1cur1EHth (3 14)

and the left hand side is a norm for E — E Estimates (3 6) (3 14) show that deviations from exact solutions
contain weighted residuals of basic relations with weights given by constants in the corresponding embedding
inequalities These are typical features of the so called functional a posteriori error estimates

Remark 14. We see that M, (E,Y) = 0 if and only if

E:=E€cH (curl,divoe, L., Q)
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and Y := p~tcurl E € H (curl, Q) in view of Lemma 17 Moreover, we note that (3 14) is sharp, which can easily
be seen by setting
Y :=p tewrl E € H (curl , Q)

In other words, if E € H (curl,div e, L., ) and satisfies the boundary condition exactly, then

H‘E_E’HS inf  My(E,Y)
Q YeH (curl ,Q)

Remark 15. In Theorems 11 and 12, we can replace the boundary term on the right hand side by 2 |[curl T[] ,-. o
or 2 chrl T4 (G — TME)H Lo using Lemma 9 and Corollary 10

u=t,
Remark 16. If the domain is “simple” in terms of the vanishing second Betti number, ie, there are no

“handles,” then no Dirichlet fields exist Thus, for instance, in Theorem 12 the last summand in the respective
estimates does not occur

4. LOWER BOUNDS FOR THE ERROR

Now, we proceed to deriving computable lower bounds of the error First, we present the following subsidiary
result

Lemma 17. If E satisfies (2 6), then p~tcurl E € H (curl, Q) and curlptcurl E = F
Proof We need to show that

</f1cur1E,curl‘I>>Q = (F,®), forany &€ E‘X’(Q) (41)

Using 7 from Remark 3, we get W = 7#® € H (curl °,divoe, L, ), provided that & € E"O(Q) Thus, by (2 6)
and the fact that curl (1 — 7)® = 0, we obtain

<;f1cur1E,curl‘I>>Q = <u_1curlE,cur17r‘I>>Q = (F,n®), forany ®c E‘X’(Q) (4 2)

Since F' € H(divo,L,Q) = curlH(curl, ), we get (by approximation) (F,n®), = (F,®), and (4 1) follows
To be more precise, we select F,, € H(curl, ), for which (curl F,,)nen converges in H(2) to F, using 7@ €
H(curl®, Q) and curl (1 — 7)® =0 Then

(curl Fp, @), = (Fp,curlm®) = (Fp,, curl @), = (curl F,, @), forany @€ EOO(Q) O

Theorem 18. Let E € H (curl, Q) be an approzimation Then

2 ~

chrl(E—E)H > sup M_(E, W),
w

1w

where _ N
M_(E,W) :=2(F,W), — <,f1cur1 (2F + W),cur1W>Q

and the supremum is taken over H (curl®,Q) This estimate is sharp if E — E belongs to the latter space, i e , if
the approzimation E satisfies the boundary condition exactly

Proof We begin with the obvious identity

2 -
chrl (E — E)H = sup (2 <,Lflcur1 (E — E),Y> — ||Y||i_1 Q)
L2 yeH () @ ’
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Thus, for all W € H (curl, Q) we obtain the estimate

2

chrl (B - E’)H >2 <;flcur1 (E - E), cur1W>Q - ||cur1W||l2L_1’Q

p—1,Q

=2(p 'cwrl £, curl W), — <p‘1cur1 2E + W), curlI/V>Q

Clearly, this estimate is sharp, because we can always put W = E — E However, to exclude the unknown exact
solution E from the right hand side we need W € H (curl®, divoe, L, ) Then, by (2 6),

(p~'eurl E, cuerV>Q =(F,W)q, (43)

and by Lemma 17, (4 3) even holds for all W € H (curl®, ) Thus, for all W € H (curl®, )

chrl (E — E)H;Q > M_(E, W)

Obviously, this lower bound is sharp if we can set

W =E—FE eH(curl®,divoe, L.,Q) or W =E—E eH(curl®,Q) O

The authors express their gratitude to the Department of Mathematical Information Technology of the Uni
versity of Jyvéskyld (Finland) for financial support
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