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MAXIMUM LIKELIHOOD ESTIMATION FOR GENERAL HIDDEN SEMI-MARKOV
PROCESSES WITH BACKWARD RECURRENCE TIME DEPENDENCE

S. Trevezas® and N. Limnios* UDC 519

This paper concerns the study of asymptotic properties of the mazimum likelihood estimator (MLE) for the gen-
eral hidden semi-Markov model (HSMM) with backward recurrence time dependence. By transforming the general
HSMM into a general hidden Markov model, we prove that under some regqularity conditions, the MLE is strongly
consistent and asymptotically normal. We also provide useful expressions for asymptotic covariance matrices, in-
volving the MLE of the conditional sojourn times and the embedded Markov chain of the hidden semi-Markov chain.
Bibliography: 17 titles.

1. INTRODUCTION

Hidden Markov models (HMMs) were first introduced by Baum and Petrie (1966), where the consistency
and asymptotic normality of the maximum likelihood estimator (MLE) was proved for this model In their
study, Baum and Petrie consider both the observable and hidden process with a finite state space The hidden
process forms a Markov chain (MC), and the observable process conditioned on the MC forms a sequence of
conditionally independent random variables This class of HMMs is often referred to as probabilistic functions of
Markov chains The conditions for consistency had been weakened in Petrie (1969) Leroux (1992) and Bickel,
Ritov, and Ryden (1998) proved the consistency and asymptotic normality of the MLE, respectively, when the
observable process has a general state space

HMMs have a wide range of applications, including speech recognition (see Rabiner (1989) and Rabiner and
Juang (1993)), computational biology (see Krogh et al (1994)), and signal processing (see Elliott and Moore
(1995)) The reader is also referred to Ephraim and Merhav (2002) for an overview of statistical and information
theoretic aspects of hidden Markov processes (HMPs) Ferguson (1980) introduced hidden semi Markov models
(HSMMs), where the hidden process actually forms a semi Markov chain (SMC) This setting allows arbitrary
distributions for sojourn times in states of a SMC, rather than geometric distributions in the case of a HMM
Recent papers that concentrate on computational techniques for HSMMs are those of Guédon (2003) and Sansom
and Thomson (2001)

To the best of our knowledge, Barbu and Limnios (2006) were the first to study asymptotic properties of the
MLE for a HSMM In this paper, we present a different approach which can be summarized as follows:

(i) We generalize the results for HSMM found therein to the general HSMM, where the state space of the
observable process is assumed to be a subset of a Euclidean space For this purpose, we follow the lines of
Leroux (1992) and Bickel et al (1998);

(ii) we allow the values of the observable process (Y3,), conditioned on a SMC, to depend probabilistically not
only on the state Z, but also on the time for which the system has stayed at this current state (backward
recurrence time dependence);

(iii) we use minimal representations for parametric spaces which are involved in our analysis, taking into con
sideration dependence relations between parameters We also use for each ¢ and j, general constants n;; to
specify the support for conditional sojourn times, rather than extending the parametric space by identically
Zero parameters;

(iv) we perform a decomposition of elements of the semi Markov kernel that is different from that found in
Barbu and Limnios (2006)

Taken together, (iii) and (iv) open a way for explicit expressions for asymptotic covariance matrices (as func
tions of the semi Markov kernel) which appear in central limit theorems for the MLE of the basic characteristics
of the semi Markov chain

This paper is organized as follows In Sec 2, we introduce the mathematical notation and state the first set of
conditions In Sec 3, we give a representation of HSMMs as a subclass of HMMs In Sec 4, we prove the strong
consistency of the MLE of a HSMM, and also of the basic characteristics of a SMC, i e, conditional sojourn
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times and the embedded Markov chain In Sec 5, we prove the asymptotic normality of the MLE of a HSMM
and of the previously mentioned characteristics

2. PRELIMINARIES AND ASSUMPTIONS

Let (Z,,Y,)nen be a hidden semi Markov chain defined on a probability space (€2, .4, Py), where 8 € ©, and ©
is a Euclidean subset which parametrizes our model and will be specified later We assume that the SMC (Z,,)nen
has finite state space E = {1,2, s} and semi Markov kernel (q%(k))meE’keN If we denote by (Jy, Sp)nen-
the associated Markov renewal process to Z, then qu(k) =Py(Jpt1 = 5,841 —Spn =k | Jp =1), n > 1
The process (Sp)nen+ keeps track of successive time points at which changes of states in (Z,)nen occur (jump
times), and (J,)nen+ records the visited states at these time points Under this consideration, ¢%(k) = 0 for all
1 € E, k€ N We use the notation Z',zf to denote the vector (Zg,, Zk,+1, , Zky), k1 < ko, and iz denotes

the d dimensional vector with every component equal to the element ¢ € E The distribution of ZOS ! is selected

to be Pg(Ze ™' =iy, Zp = §,S1 = k) = pfjHio(k —1)/u;, where pf; refers to the (i, ) element of the transition

matrix of the embedded Markov chain (Jp)nen-, Hio(') is the survival function in state i, and p; is the mean
recurrence time in the ¢ renewal process associated to the semi Markov chain (Z,),eny We define later the above
quantities as functions of the semi Markov kernel The selection of the distribution of Zg ! is naturally justified
by the fact that it corresponds to the distribution of the same vector in a semi Markov system that has worked
for an infinite time period and is censored at an arbitrary time point, which can be considered as the beginning
of our observation In order to be well defined, it is enough that p;; < oo for alli € E

We state the following conditions concerning the subclass of SMCs to be considered:
(A1) There exists a minimal 7 € N such that qu (k)=0forallk>n, i,j€ E,and d € ©
(A2) The MC (Jp)nen is irreducible

In fact, conditions (A1) and (A2) imply that uf; < oo for alli € E It can easily be shown that the previously
defined distribution of Z(‘? ! implies that the SMC (Z,,),¢n is stationary Because of the stationarity, we can allow
(Zn)nen to be indexed by n € Z In this case, we denote Sy = —inf{k € N: Z_;_1 # Z_;} For the observable
process, we assume that (Y,),en takes values in a measured space (), B()),v), where usually ) C R? for some
g € N*, B(Y) denotes the Borel subsets on ), and v is a o finite measure defined on (¥, B())) Also, let the
conditional probability densities gg(y | 7, k) denote the densities that correspond to the conditional distribution
functions Pp(Y, <y | Z}_; = ip41,Zn—k-1 #0), t € E, n,k € N Under condition (Al), there exist constants
n;j,n; < 0o, such as n;; = max{k € N : qu(k) > 0} and n; = maxjepn;; The quantities n;; express the
maximum time period for which the SMC can stay at state i before a direct transition to state j For practical
purposes, these time bounds are assumed to be known from characteristics of the system to which this model
can be applied, or they can be imposed by the experimenter as an approximation to a more complicated system
The existence of these time bounds is all what we need for theoretical results which follow For some,j € E, n;;
may be equal to zero, and this means that no direct transitions from i to j are allowed Under condition (A1),
possible values of k, referring to the conditional densities gg(y | i, k), are those for 0 < k <mn; —1 In order to
simplify the notation, we denote D;; = {1,2, ,n;;} for i,j € E such that n;; > 0, and D; = {1,2, ,n;}

Let T be a finite index set Different parametric spaces will be used in the sequel For the moment, we specify
a natural parametric space for the HSMM, i e,

© :={q;;(k),0: : k € Dij,qi;(k) > U,Z(hg‘(k) =1LteT} (1)
gk

in order to distinguish between two different kinds of parameters, we denote

7k

and
Oy :={6;:tcT} (3)

The space ©; parametrizes elements of the semi Markov kernel; since qu(k) = prijr(8) = ¢;;(k) in the natural
parametrization, we can suppress the superindex 6 from qu (k) The space Oy refers to a set of parameters that
characterize the conditional densities go(y | ¢,k) It is possible that they distinguish densities from a specific
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parametric family, from different parametric families, or represent transition probabilities when ) is a finite state
space In the most simple case of a single parametric family, we have go(y | i, k) := g(y | 6(i, k)), (i, k) € A,
where A C R™ for some m € N In this case, the index set T" which appears in ©5 consists of all possible couples
(i, k)

From now on, we assume for simplicity that the cardinality of T', denoted d», is equal to > 7;, ie, one

2
one dimensional parameter corresponds to each conditional density (m = 1) Also, we denote di = > n;; and
i,
d=d +d, Then ©; C R%, ©, ¢ R%, and © = 0; x O, C R? Since ijqij(k) =1foralli € E,
there are s linear dependence relations between elements of the semi Markov kernel In order to have a minimal
representation of ©, we have to express s elements of the kernel as functions of the remaining ones For this
purpose, let J; = {j € E : nj; = n;} We can choose one element j; € J; for all ¢ € E and express the s elements

as follows:
G () =1— > gk = D aii(k) (4)

J€E—{iji} 1<k<ny; 1<k<n;—1

Now, we are in the position to have a minimal representation by using ©* := © x @2 as a parametric space,
where OF results from ©; after extracting the parameters described above Then ©F C R% and ©* C R%, where
ds=d; —sanddy=d; +dy —s=d—s

3. REPRESENTATION OF THE HSMMS AS A SUBCLASS OF HMMSs

We claim that the general HSMMSs with backward recurrence time dependence can be represented as a subclass
of HMMs For this purpose, it is enough to represent the SMCs that satisfy condition (A1) as a special class of
MCs Let U = (U,)nen be the sequence of backward recurrence times of the SMC (Z,,),cz defined as follows:

Un =1~ Sn(n), (5)

where N(n) = max{k € N: S, <n}
Let H;(-) be the survival function at state ¢ defined by

Hi(n) :=P(Stq1 = Si>n| Jy=i)=1-3 > qij(k), n€N,l € N* (6)
JEE k=0

It can be shown that the stochastic process (Z,U) := (Zy,Up)nen is a Markov chain (see Limnios and Oprisan
(2001), Theorem 3 12) In a recent paper, Chryssaphinou et al (2008) study properties of the process (Z,U)
This process plays an important role in understanding of the semi Markov structure On one hand, it can be
used to study the probabilistic behavior and limit theorems for semi Markov chains, and on the other hand, it
can be used to make statistical inference for semi Markov chains This role is extended here in the framework
of the HSMMs

Condition (Al) implies that for all ¢ € E, the maximum time period for which (Z,)nen can stay at this
state is 17; Therefore, the backward recurrence time U,, € {0,1, n; — 1}, and direct transitions from i to j
are restricted to the maximum backward recurrence time n;; — 1 Also, it can easily be verified that conditions
(A1) and (A2) and the selection of the distribution of Z3" as previously mentioned render the process (Z,U) a
stationary MC with initial distribution given by Py ((Zo,Uo) = (i, k)) = H;(k)/pii, i € E, 0 <k <mn; —1 If
we denote by P = (P r,)(j,ks)) the d2 x do transition probability matrix of the MC (Z,U), then the following
proposition specifies transition probabilities of the above MC as a function of the semi Markov kernel (see also
Barbu and Limnios (to appear)) The proof is easy, and it is omitted here

Proposition 1. Under condition (Al), the transition probabilities of the Markov chain (Z,U) can be written

as:
and OSk‘lgﬁi]’—l;

P(ik1) (ko) =  Hilk +1)/Hi(k1) if t=7, ka— ki =1, (7)
and 0<k <n;—2;
0 otherwise,
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where H;(-) is given by relation (6)

We present here the matrix P in a block form P = (P;;); jer, where Pj; is an n; X n; matrix,

0 pai,0)i1) 0 0
0 0 D(i,1)(i,2) 0

o
(e]
o

P —2)(imi—1)
0

o
(e
o

for i = j, and

Pi0)Go) 0 0
PinGo) 0 0
Pig = pas—n6o 0 )
0 0
0 0 0
fori #j
Remarks.

(1) From relation (7) we conclude that with every semi Markov kernel that satisfies condition (Al) we can
associate a Markov transition matrix with the corresponding transition probabilities

(2) If we assume additionally (A2), then pg; p)ik+1) > 0,71 € E, 0 <k <n; —2

(3) If transitions from ¢ to j are not allowed (n;; = 0), then P;; is a null matrix, while if n;; = n;, then the
first column of P;; has no fixed zero elements

In Proposition 1, we considered the probabilities p(; x,)(j &) as functions of the semi Markov kernel which is
identified with ©; in the natural parametrization These probabilities will be denoted by p‘gi, k1) (o) whenever
we refer to this parametrization Additionally, we consider a setting where the parametrization fits from the
beginning the class of Markov chains described in Proposition 1 Let 0, = PGk Gka) ) C R% where all
identically zero elements which appear in P have been excluded, and the restrictions imposed on parameters
follow from the stochastic nature of the matrix P Notice that @1 can be regarded as a natural parametric
space of a subclass of d» state Markov chains with transition matrices which are given in block form by (8) and
(9) The number of parameters that appear in 0, equals dy Since P is a stochastic matrix, there are exactly
ds linear relations between elements of P If we exclude one parameter for each row of P, then the remaining
number of parameters equals the dimension of ©7,ie, ds

We denote by ©F C R% a minimal representation of ©; Similarly, we have ® = 0, x @, C R+ds and

0 = @}‘ X Oy C R Let P; be a generic element of this subclass of dy x dz stochastic matrices We prove
S
the existence of the inverse transformation that represents every MC with ds states (dz = > m;) and transition
i=1
matrix P5 as an s state SMC with a kernel that satisfies condition (A1)

Proposition 2. There exists a continuous function ¥y from (:)f into ©F that reparametrizes every ds» state
Markov chain with transition probability matriz given by Py by an s state semi Markov chain with a kernel
satisfying condition (A1), where the states of the SMC correspond to the blocks which the decomposition of P
indicates from relations (8) and (9)

Proof By Theorem 6 7 in Barbu and Limnios (to appear), modified by taking into consideration the constants
ﬁz] ) .
P(i,0)(j,0) if k=1,

qij (k) = k=2 . _ (10)
! P(i,k—1)(j,0) Ho PiryGrsr) i 2 <k < g,
r=

for i,j such that m;; > 0 The proof is completed by letting all the other elements ¢;;(k) = 0 for n;; = 0
For our statistical purposes, we need a specific minimal representation ©7 to consider this transformation as a
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continuous function from the domain @1 to ©] For this purpose, we find if convenient to express p(; r,)(j;,0) as
a function of the remaining parameters in the same row of P, where j; is defined before relation (4) Therefore,

L= 3 Plk)G0) —Plik)Gk+1) i 0 <k <7y —2,
j:;iijzk?l‘i’l
Plikr)(ji,0) = i (11)
1*21%1@1)]0) if klzﬁifl,
jeaq;
fOI'aHiEE,OSkl §ﬁi—1,whereGi:{j:j7§ji, ﬁ”:ﬁ,}
We define the desired transformation ¥y : ©7 — OF by

‘I’l(P(i,kl)(j,kz)) = (Qij(k)): (12)

where the component functions of ¥, are as follows:

P(i,0)(j,0) it j #ji,
¢ (1) = { 1- EZ P(i,0),(,0) — PG,o),ai,0) it J = Ji, (13)
JEGH
and
k2
Plik—1)(,0) 11 Pliry(ir+1) if 7 #ji,2 <k < ng,
4i (k) = = (14)

k—2
( Y P(ik1)(,0) —Plik1)(i, k1+1)) Hop(i,r)(i,r+1) if j=j;,2<k<ny,
r=

JEG:

for i,j € E such that n;; > 0 By (13) and (14), we conclude that ¥; is continuous

Remark. (1) The s parameters of ©; that have been excluded in order to obtain ©f can be written as follows:

ni—1

Qz]l ni) = (1— Zp (4,7 —1)(4,0) H Piiry(ir+1) (15)
jeG

4. CONSISTENCY RESULTS

Following the representation of the previous section, the initial HSMM can now be described by that special
kind of HMM, ((Z,U),Y)

The stationarity of (Z,U) implies the stationarity of ((Z,U),Y) In the sequel, we assume that the natural
parametric space ©* is a compact subset of R% Since O} is a compact subset of R% it is enough that O is
compact If this is not the case, we can use a standard compactification technique (see Leroux (1992) and Kiefer
and Wolfowitz (1956)) In the mostly simple case of a single parametric family, we have go(y | 7,k) = g(y |
(i, k)), 6(i, k) € A, where A C R Here ©, = A92 The likelihood function for an observation {Y0 =yy} can
be written as

n—1 n
po(¥o) = Z 7o (o, ko) Hp?ij,kj)(ijﬂ,kjﬂ H 9(y; |8, k;)),
(i,k)7 Jj=0 Jj=0

where my(i, k) is the stationary distribution of P5 We denote the real value of parameter by 6y and 50 when
it refers to ©* and (:)*, respectively Since for results on asymptotic normality of some characteristics of the
system we obtain asymptotic covariance matrices and calculate derivatives with respect to 6, we keep the minimal
representation The estimation problem is to draw inference about this value from a trajectory of (Y;,)nen The
MLE denoted by §n maximizes pp(yg) over ©* In the “best” case, this is a class which consists of parameters 6
which are induced by permutations of a specific value that maximizes the given likelihood For this reason, we
define an equivalence relation ~ in ©*, where 8; ~ 60, if Py, = Py, Then the results for estimators should be
understood in the context of ©®*/ ~, i e, in the quotient topology induced by this equivalence (see, e g, Leroux
(1992))

Now we state some extra conditions in order to deduce that the MLE is consistent These conditions are
found in Leroux (1992), and they are adapted here to our model
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B1) (Identifiability condition) The family of mixtures of at most d» elements of {g(y | 6),0 € A} is identifiable
B2) The density function g(y | -) is continuous in A for any y € R
B3) Ey,[llogg(Y1 | 6o(i, k))|] < oo for all i,k

B4) Ejy, [sup|9/79|<6(logg(Y1 |6))*] < 0o for any 6 € A and some & > 0, where 2+ = max(z, 0)

In this setting, the identifiability of our model is guaranteed if (A1), (A2), and (B1) hold, and additionally
the 0(i, k) are distinct (for details, see Leroux (1992)) We are now at the point where the results on consistency
for MLE concerning the general HSMMs can be deduced from the corresponding results for the general HMMs
We denote by (i (k,n),6(n)) the MLE of 6y = (¢%;(k),69) over ©*

Theorem 1. If conditions (A1) (A2) and (B1) (B4) hold, then the MLE 8,, is a strongly consistent estimator
of 6o in the quotient topology, and, consequently, (gi;(k,n)) is a strongly consistent estimator of (q?j(k)) in the
same sense

Proof By Proposition 1, the general HSMM (Z,Y) parametrized by ©* can be viewed as a type of a general
HMM ((Z,U),Y) with the same parametric space @* The result would follow from Theorem 3, Sec 6, in Leroux
(1992) if conditions 1 6 of that article hold Indeed, it is easy to verify that condition 1 of Leroux is deduced
from (A1) and (A2) Conditions 2 and 3 are identical to (B1) and (B2) Condition 4 is deduced from the fact
that the transition probabilities given in Proposition 1 are continuous functions of the semi Markov kernel, and
Conditions 5 and 6 are identical to (B3) and (B4)

Let matrix (p;;) denote the probability matrix of the embedded Markov chain (J,)nen, and let (f;;(k)) be
the conditional sojourn times, ie,

R k)i 7y >0,
py=q W (16)
0 if i =0,

and
Pij
0 if n;; =0,
for i,7 € E Since these quantities are expressed as functions of the semi Markov kernel, we refer to them as
p?. and f% (k) to show that they are parametrized over ©* Nevertheless, we omit superindex 6 for estimators
ij i
Therefore, we denote by (p;;(n)) and (ﬁj(k, n)) the corresponding MLE for the true values (p?j) and ( g(k)),

respectively (regarded as vectors), where we exclude identically zero parameters Also, let ¢; = card{j : n;; > 0}
foralli € E,andlet c= )", ¢;
Then the following asymptotic results hold

Corollary 3. Under conditions (A1) (A2) and (B1) (B4),
(i) the MLE of the embedded Markov chain (p;;(n)) is a strongly consistent estimator of (p?j) ;

ii) the MLE of the conditional sojourn time (ﬁ](k,n)> is a strongly consistent estimator of ( ?](k))

ai(k)f 70, 1<k <7
fij()z{ ! - (17)

Nij

Proof (i) We define a function ® : ©* — RZ, where ®(0) = ®(qi;(k),0:) = (X gij(k)) = (pf;) due to relation
k=1

— —~

(16) (for i,j € E such that 7;; > 0) We conclude that (p;;(n)) = ®(6)(n) = ®(6,) = (3.2, Gij(k,n)), where
the second equality holds by the property of MLE Consequently, we conclude from the continuous mapping
theorem, referring to Theorem 1 together with the continuity of ®, that

Bis(m) > ()

(ii) Let prijx(8) = ¢ij(k) denote the projection of § € ©* into the corresponding element of the semi Markov
kernel, and let ®;; be the component function of ® which corresponds to pfj Let also T : ©* — R%, where

T(0) = (Tijr(0)) = (prijr(0)/®i;(0)) Then

ij (k) prijr(0)
0 (k)) = ﬂL—:( # N _ 1)
(£58) ( Pl; ®4;(0)
for i,j € E such that n;; >0, 1 <k <m;; Since T is continuous, the result follows along the line of reasoning
of Theorem 1, (i)
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5. ASYMPTOTIC NORMALITY RESULTS

Two very useful notions for statistical inference, closely connected with MLE, are the rate of entropy of a
stochastic process and the generalized Kullback Leibler divergence Because of the stationarity of ((Z,U),Y),
we may allow ((Z,,,U,), Y, )nen to be indexed by n € Z In this case, the rate of entropy of the stochastic process
((Z,U),Y) is defined as

7H(90) = 7E90 [logpt% (YO | Y,l,YLQ, )]7

and the generalized Kullback Leibler divergence is defined as
IH:['90 (0) = E90 [logpé‘(YO | YflaY72) )]7 #ecor

More details about their use in proofs of consistency can be found in Leroux (1992) We denote by o(fp) the
opposite of the Hessian matrix of Hy, () calculated at 6y, ie,
900) u,v

The third set of conditions which we impose is based on the paper of Bickel et al (1998) and ensures
asymptotic normality of the MLE The conditions, adapted to our model, can be stated as follows:
(C1) The MC (Z,,, Up)nen is aperiodic
(C2) The conditional densities g(y | (i, k)) have two continuous derivatives with respect to § € ©* in some
neighborhood of 6, for all possible values of i, k,y
(C3) There exists a § > 0 such that

(i) Eo, [Sup|9—9o(i7k)|<5 | 4o log g(" |0)ﬂ < 0,

(ii) Ep, {SUP\H—Oo(i,k)K:S ’fwlogg(iﬁ |9)H < oo, and
(iii) [ sup ‘

10—00(i,k)| <6
(C4) For 6y € ©* there exists a 6 > 0 such that if

di;]rg(y | 0)’ v(dy) < oo forl <j<2and forall i,k

y 1001, k1))
r = sup max =«
o0 () 10—0o]|<5 (i1:k1),(42,kz2) g(y | 8(iz, k2))
then Py, (rp, (Y1) = 00 | (Z1,U1) = (i, k)) < 1 for all 4,k
(C5) The true value 6, is an interior point of ©*
(C6) The matrix o(fp) is nonsingular

Remark. Conditions (C1) (C3) which involve the densities g(y | 8(i, k)) can be replaced by similar conditions
for more general conditional densities gy (y | ¢, k), as they appear in Bickel et al (1998)

Theorem 2. Under conditions (Al) (A2), (B1) (B4), and (C1) (C6), the MLE B, of 0y is asymptotically
normal, i e,

\/n(an - 00) i) N(Oaa(GO)_l)
n—oo
Proof Since Proposition 1 holds, the result would follow from Theorem 1, Sec 3 of Bickel et al (1998) if the
conditions for asymptotic normality which are stated there hold Indeed, conditions (A1), (A2), and (C1) render
the process (Z,U) an ergodic Markov chain with finite state space; therefore, condition (A1) of Bickel et al
(1998) is satisfied Conditions (B1) (B4), combined with (A1) and (A2) imply condition (A6) of Bickel et al
(1998) The remaining conditions are adapted naturally to our model

At this point, we connect the two natural parametric spaces ©* and ©* for the general HSMM and the
type of the general HMM which we already have considered, respectively, by giving a connection between the
two asymptotic covariance matrices of the MLE of the HMM and the MLE of the associated HSMM given by
Proposition 1

As we can see from relation (12), ¥, is differentiable on ©F By extending the domain of ¥, in order to
include dy parameters for conditional densities but keeping the same range, we define ¥ : or — O*, where
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U = (¥y,prg,), and prg, is the projection function on @y This function is differentiable at 6 € (:)*, and we
denote by ¥ the total derivative of ¥ calculated at 6, Let also o(0o)~! be the asymptotic covariance matrix of

the MLE 6 ,, of f When necessary, we use the following decomposition of the matrix 0(50)’1:

o(f) ' = [0 o(fo)iy | s 1)

o(fo)s (B0)ky | Yo

The following theorem expresses the asymptotic covariance matrix of the MLE corresponding to the HSMM in
terms of the natural parametric space ®* associated to the HMM

Theorem 3. Under conditions (A1) (A2), (B1) (B4), and (C1) (C6), the MLE 8, of o which corresponds to
the natural parametric space of the general HSMM satisfies the following relation:

V(B —80) 2 N0, a(B) 1 (T)T)

as n — oo
Consequently,

V(@i (k,n) — a% (k) B N(0, 50 (80) 7 (2) ),

where the matriz U is given analytically by relations (31) (35), and \Il'1 is the submatriz of ¥ formed by its first
ds rows and columns

Proof For any i € E, let N, (1), Mir;(2),  »Miry(c;) b€ the ordered sequence of n;; for j such that n;; > 0 If
some of the elements are equal, the ordering is performed according to the order of indices j as natural numbers
Note that since n;,,(c,) = i, Ti(c;) € Ji; therefore, we can choose j; = 7;(c;)

For all i € F, let

(@ir () D), @i () (2)s 3 ims(y) (Miri(y))) i 1< G <ei—1,

_ . (19)
(qiji (1)’ qij; (2)7 s Qij; (nwz - 1)) if j=e¢,

4(im () = {
and
a00) = (alin (V) ain(@)  a(ii) (20)

Then, if we denote by 6 the parameters that correspond to ©2, the arrangement of parameters of ®* can be
presented as follows:

(¢i5(k),6) = (a(1),4(2), ,a(s),6®) (21)
We need the corresponding arrangement of elements of ©* For this purpose, foralli € Eand 1 < j <¢; —1, let
p(ii) = (p(i,O)(i,l)ap(i,l)(i,Q)a ’p(z’,ﬁﬁz),(i,ﬁi—l)) (22)
and
p(i7i(7)) = (P.0)(r:(7).0) PGOE D0 Plimer. ) -1)(m(1).0)) (23)
Then, denoting
p(l) = (p(iTi(l))ap(iTi(Q))a 7p(i7-i(ci - ].)),p(ii)), (24)
the expression for arrangement of parameters of 0" is given by
(p(i,kl)(j,k:g)a at) = (p(]-)ap(2)’ 7p(8)7 0(2)) (25)
Using relations (13), (14), (21), and (25), we get the following block decomposition for ¥’
M® 0 0 o0
0o M® 0 o
v = , (26)
0 0 M® 0
0 0 0 I,
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dq (%)

where M) = ( ) for i € E Using relations (13), (14), (20), and (24), we decompose M) into blocks as

ap(4)
follows: . )
My o 0o
0 M) 0 M)
MO = : (27)
0 0 Mcgil)—l,cl—l Mc(:)—'l,cl
My M M M
Where . . . . .
MO = (311(1.77(].))) T <aQ(ZTi.(‘]))) and MU = <aQ(l‘Ti(C.i))> ,
& op(iTi(5)) Je op(ii) J ap(iTi(j))

for1<j<¢ —1,and
MO — 9q(ii(c;))
cici Op(it)
These four different types of matrices summarize all the information which we want in order to have an explicit

matrix form for ¥, and we study each of them
Forallie E, 1<k <mn; —1,let

k=1
a;(k) = H D(i,r) (ir+1) (28)
r=0

ki) =—% B o (29)

and
b (k1) = Pliu)(ri ()0 @i (ks 1), 1<T <k, 1 <u <) —1 (30)

Recall that j; = 7(c;), and we also use the abbreviations ¢;; = 1., ;) — 2 and c;; =c¢;;+1 Then

M](]tj) = diag{1,a;(1),ai(2), ,ai(c};)} (31)
and (1) 4T
i A0
where '
AY = —diag{1,ai(1),ai(2), ,aileij)}, (33)
0 0 0 0 0
b\ (1;1) 0 0 0 0
. (4) (9. (4) (9.
o i) B (i) b () 00
and
=1 0 0 0
b7 (1;1) —a;(1) 0 0
Mc(le bz(';i)@; 1) bg%i)@a 2) 0 0 (35)
bE,Jclz)h (Ciji; 1) bg?;?]l (Cijl- ) 2) bE’JCll)h (ciji ) ciji) —ai(cm)
Since ~
V0, —60) = Vn(¥(6,,) — ¥(do)), (36)
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where ¥ is differentiable at 6 0, Theorem 3 follows from Theorem 2 by an application of the delta method

Remark. In order to find the asymptotic covariance matrix of \/n(qi;(k,n) — ¢j;(k)) considered at ©; instead
of ©F, we add parameters g;j, (7;) given by (15); using relation (4), we conclude that \/n(g;(k,n) — ¢} (k)) —
N(0,C%,0(8p) 1 (¥,)TCT), where

Ci
O = diag{C;,i € E}, C; = ( fl ) coand r =) g — 1
Jj=1

Let ®; and 77 be ® and T, respectively, considered as functions with the domain ©F, where ® and T are defined
in Corollary 3 The following two propositions state asymptotic normality results for the MLE of characteristics
of the semi Markov system defined by (16) and (17)

Proposition 4. Under conditions (Al) (A2), (B1) (B4), and (C1) (C6), the MLE of the embedded Markov
chain is asymptotically normal, i e ,

V(i (n)) — (0%)) 2 N(0,8,%,0(6p) "' (,8)7),

where ® W' is given by relations (41) and (42)
Proof For alli € E, let

pe (7’) = (pi‘ri(l)api‘ri(Q)a 7pi‘ri(ci)) (37)
Then the arrangement of parameters (p;;) of the embedded MC can be represented as follows:
(pij) = (pe(]-)ape(Q)a ,pe(s)) (38)
ap® (i1) Opiyj _ i) . (P9,
Denote ( 5a(2) ) = (m) =&, and VO := (8q(i) >, then
&, = diag{V i e E}, (39)
where
190 0 0
o 1% 0 0
v — : (40)
0 0 12)71,&71 0
-9 18 -1 0

and 1;? and 121)1, are 7r,(;) dimensional row vectors with entries 1 for all j such that 1 <j <¢; —1
Since /n ((Di,;(n)) — (0Y;)) = v/n (®1(Gij(k,n)) — ®1(qY;(k))), we use Theorem 3, the differentiability of &,
on OF, and apply the delta method to conclude that

v (Big(n) — %)) — N (0,881 0(6,) " (8, 8)7),

where o ‘ ‘
®, 0, = diag{VW MW e E}, (41)

and V) and M are given by (40) and (27), respectively
The explicit form of their product for all 7 € E is as follows:

d? 0 0 0
0o d 0 0
v — : (42)
0 0 a0
—d —d —d\), 0

—~

where d/) = (1,ai(1),a;(2), ,ai(cjj)), and the a;(k) are given by (28)
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Proposition 5. Under conditions (A1) (A2), (B1) (B4), and (C1) (C6), the MLE of conditional sojourn times
is asymptotically normal, i e,

Vi ((Fis(km) = (F5 () 2 N(O,T(®0(60) (T{))")

Proof Forallie Fand1<j <g,let

f61:(9) = (FirnyV)s fin(n @) firi) Pirs(3))5 (43)
for all i € E, let
FG) = (FGm(1)), f(ims(2)), , f(iTiles))) (44)
Then the arrangement of parameters (f;;(k)) of conditional sojourn times can be represented as follows:
(fij(R) = (f(1),£(2), . f(s)) (45)
If we denote (g;g;;) = (gg;gg:;;) =T, and F() := (%),
then
T, = diag{ F" i € E}, (46)
where ,
F9 o 0 0
o FY 0 0
FO = : (47)
0 o F, .., 0
FiF Fily Fi

and the matrices Fj( .=
1J2

] of(iti(j . . . . . .
QA (%) for different values of j; and j which correspond to nonzero matrices in

(47) are given by

—kgl Gire) (k) Giry()(1) Tir; () (1)
TGir()(2) = Qir(j (k) Giri () (2)
@ ___1 k#2 4
F = - , (48)
it (7)
Qir; (5) (nm(j)) dir; (5) (nm(j)) - Z Qir; (j) (k)
k#nir, ()
gij: (1) qij; (1) gij: (1)
@ _ 1 _ _ -
Fa= | an@i-1) G- 1) g, (i —1) | (49)
=2 Gip(k) = X aiji (k) - > (k)
k#n; k#n; k#n;
and
FO = L L, where s; = ¢ (50)
cici Dij: -1/ g ©Ji

Since /n ((ﬁj(k)) (50 (k))) = /n (Ty(G;(k,n)) — Ty (¢ (K))) , we use Theorem 3, the differentiability of T}

7]
on ©7F, and apply the delta method to conclude that

Vi ((Fis(8) = (£5(R))) = N (O, T{}0(60) (T, ¥) ),
where

T, ¥, = diag{FO M i e E} (51)
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and F and M are given by (47) and (27), respectively The explicit form of these matrices for all i € E is

as follows: '
D o 0 0
o D 0 0
FO 0 = : (52)
0 0 ng),17ci,1 0
D DY) DYy D,
where +
*];1 Qir; (j) (k) ai(l)Qm () (1) ai(cij)qi'ri () (1)
. 1 dir; (j) (2) —a; (1) k§2 Qir; (j) (k) a; (Cz;')(hn— (5) (2)
D =—~ , (53)
Pir(j)
Girs () Mirs () @i(D)ir, () Miry () —ai(cl;) 3 dir() (k)
k#nir, ()
- k; aij: (k) ai(1)gij; (1) ai(ci;)qij (1)
o1 %: (2)  —ai(1) X s (K) ai(cf;)aij. (2)
cij T 02 y (54)
Pij;
Gij; (M) a;i(1)qij; (1:) —ai(cl;) X aiji (k)
and .
D =D FajMy:) (55)
j=1

for 1 <j<e¢;—1,and F.') and M\.) are given by (34) (35) and (49) (50), respectively

~N
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11

12

13
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