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ON THE DETERMINATION OF STRESS CONCENTRATION 
IN A STRETCHED PLATE WITH TWO HOLES 

V. V. Panasyuk  and  M. P. Savruk  UDC 539.3 

We present a short survey of studies of the elastic interaction of two holes in a stretched plate.  Special 
attention is paid to the study of the concentration of stresses on the contours of closely positioned holes.  
For two identical elliptic holes, numerical results are obtained by the method of singular integral equa-
tions.  With the help of the limit transition, we determined the stress intensity factors at the vertices of 
semi-infinite parabolic notches.  A comparison of the numerical data with known analytic solutions for 
two circular holes and collinear cracks is performed. 

The study of the concentration of stresses near holes in structural elements was begun by G. Kirsch as far 
back as in the year 1898.  In Lviv, such investigations were developed by G. M. Savin for 1945–1952.  The sci-
entific achievements of the Lviv school of mechanicians were presented and generalized in monographs [10, 
11].  These monographs give mainly the solution of the problems concerning the concentration of stresses near a 
single curvilinear hole with the use of the Kolosov–Muskhelishvili method [2], by constructing the functions of 
conformal mappings in the form of series.  The plane problem of the concentration of stresses near two identical 
circular holes in the infinite elastic isotropic plane was considered in [24] (see also [10]).  The solution of the 
problem was given in the form of Fourier series using of bipolar coordinates.  For two unequal circular holes, 
such a solution was first constructed by Ya. S. Pidstryhach [6, 9] (see also [7]). His candidate-degree thesis [8], 
carried out under the guidance of Academician G. M. Savin, was devoted to the investigation of this problem.  
At that time, this was a significant achievement in this branch of science. 

In the present paper, we consider the problem of the interaction of two elliptic holes in the elastic isotropic 
plane, using the method of singular integral equations.  Main attention is focused on the study of the concentra-
tion of stresses in the case where the distance between the contours of holes is small.  In this case, the maximum 
stresses on the contours of holes become unboundedly large.  In this connection, one meets significant difficul-
ties in the execution of calculations while studying the concentration of stresses near closely positioned holes.  
The asymptotic behavior of stresses upon approach of the holes to each other was studied by means of analytic 
methods only in the case of two identical circular holes and collinear cracks.  Modern computers and new nu-
merical methods of solution of integral equations allow one to numerically determine the order of singularity of 
maximum stresses and to find the numerical coefficient of this singularity for holes with various configurations.  
Knowledge of the singularity of stresses is important for the development of direct numerical methods of solu-
tion of similar problems.  Such studies can be useful for the derivation of numerical solutions of new problems 
using the limit transition.  Exactly in this way, we obtain the stress concentration factors at the tips of semi-
infinite parabolic notches in what follows. 

Two Circular Holes 

Consider the solution of the problem of the stress concentration near two unequal circular holes constructed 
by Ya. S. Pidstryhach [6, 9].  Let the elastic isotropic plate be weakened by two unequal circular holes  L1   and  
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L2   with radii  R1   and  R2 .  The centers of the holes lie on the  Ox   axis at the points  (� d2 ,0)   and  (0,d1)   

(Fig. 1).  We introduce the bipolar coordinates  �, �   by means of the relations 

 
 

x =
�asinh�

cosh�� cos�
,             y =

�asin�
cosh�� cos�

,  (1) 

where   �a   is a constant parameter with dimension of length. 
Consider the coordinate line  � = � .  By eliminating the parameter  �   from equalities (1), we find that the 

curve  � = �   is a circle 

 
 

(x � �acoth�)2
+ y2

= �a2 1
sinh2

�

 

with the center at the point  
 
( �a coth�, 0)   on the  Ox   axis and with the radius 

 
 

R = �a 1
sinh�

. (2) 

Thus, for the proper choice of  �i ,  the coordinate lines  
 
� = �� i ,  i = 1,2 ,  coincide with the contours of the 

holes  Li ,  i = 1,2 .  The values of  
 
��i   are given by the relations 

 
 

sinh ��1 =
M

2m�0
,      sinh ��2 = �

M
2�0

,      �0 =
d1 + d2
R1 + R2

,      m0 =
R1
R2

, 

 M = (m 0
2
+1)(�0

2
�1)2

+ 2m0 (� 0
4
�1) . 

We can determine now the parameter  �a   from equality (2), by setting  R = R1,  � = �1 . 

The biharmonic equation for the stress function  U   in the bipolar coordinates (1) is reduced to the linear 
differential equation with constant coefficients for the function  gU   [19] 

 

Fig. 1 
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(gU ) = 0 ,  (3) 

where  
  g = (cosh�� cos�) / �a . 

We assume that, on the contours of the holes  Li ,  i = 1,2 ,  the normal  �
�

(i )   and tangential  �
��

(i )   stresses 

are given.  We present them in the form of trigonometric series 

 �
�

(i )
= �n

(i )

n=0

�

� cosn�,           �
��

(i )
= �n

(i )

n=1

�

� sin n�  (4) 

and assume that the stresses are vanishing at the infinity: 

 (gU )
�
= 0 . (5) 

The solution of Eq. (3) can be obtained by the method of separation of variables.  Satisfying the conditions 
of uniqueness of displacements, we choose the solution in the form 

 1
a

gU = D1�cosh�+ K (cosh�� cos�) ln (cosh�� cos�) + fn (�)
n=1

�

� cosn� , 

where 

 fn (�) = Ancosh(n +1)�+ Bncosh(n �1)�+ Cnsinh (n +1)�+ Dnsinh (n �1)� , 

 f1(�) = A1cosh 2�+ B1 + C1sinh 2�� D1�,           n > 1. 

The arbitrary constants  An ,   Bn ,   Cn ,   and  Dn   should be chosen so that the boundary conditions (4) are 

satisfied.  The constant  K   is determined from condition (5), which is reduced to the equation 

 (An + Bn )
n=1

�

� = 0 , 

if we consider that the infinite point of the plane has the coordinates  � = � = 0 . 

Using the known formulas [19] for the normal  �
�

  and tangential  �
��

  stresses in bipolar coordinates in 

terms of the function  gU ,   we get that the boundary conditions (4) yield a system of linear algebraic equations 

for the unknown constants.  For specific external loads, the required constants  An , Bn , Cn , Dn   can be analyti-

cally given in terms of the known coefficients  �n
(i )   and  �n

(i ) .   Ya. S. Pidstryhach constructed the solutions in 

the cases where the edges of holes undergo the action of constant pressures that are different on different con-
tours, as well as in the case of the uniform tension of a plate without any load on the contours of holes. 
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We note that the analytic solution of this problem in the form of Fourier series can be obtained also by the 
Muskhelishvili method, by using the conformal mapping of an elastic region on a circular ring.  Just in this way, 
R. A. Haddon [22] constructed the solution of this problem under a uniaxial tension at infinity whose direction 
forms an arbitrary angle to the line of the centers of holes. 

 We now consider the case of a biaxial tension of an elastic plane with two identical holes with unloaded 

contours  (
 
R1 = R2 = R,  d1 = d2 = d,  ��1 = ��2 = � )  due to the forces applied at infinity  � y

�
= p   and  � x

�
= q .  

By using the bipolar coordinates (1), C.-B. Ling [24] constructed a solution of the problem in the form of Fou-
rier series and obtained the formula for determination of the circular stresses  �

�
  on the contours of the holes 

 �
�
= 2T (cosh� � cos�) K sinh� 1+ 4 sinhn� cosn�

sinh 2n� + nsinh 2�
n=1

�

�
�



	

�

�


�

�

�  

  � 2
n(nsinhn� sinh� � cosh n� cosh�) cosn�

sinh 2n� + n sinh 2�n=1

�

�
�

�

�

�

, (6) 

where 

 

 

K =

1
2
±

1
2

� 2sinh2
�

n
sinh2n� + nsinh2�

n=1

	

�

1
2
+ tanh� sinh2

� � 4
e�n�sinhn� + nsinh� (nsinh� + cosh n�)

n(n2 -1)(sinh2n� + nsinh2�)n=2

	

�

. (7) 

Here, the upper and lower signs correspond, respectively, to longitudinal tension from the forces  T = q (q �  
0, p = 0 )  and to transverse tension from the forces  T = p   ( p � 0, q = 0) . 

The given solution is not valid for the values of the dimensionless parameter  � =
d
R
�1 < 1 .  On the basis of 

solution (6), Yu. A. Ustinov [17, 18] deduced the approximate formulas for the stress intensity factors  kA , kB   

at the points  A   and  B   (Fig. 1) on the contours of the holes for small values of the parameter  � : 

 
 

kA =
�A

p
= 2 2

��
2

sinh2
�� (K1 + �mK2 ) +1� �m�

�
�

�

	



cosh ��
cosh �� +1

sinh 2 �� + 2 ��
,     0 < �� � 1, 

 
 

kB =
�B
p

= 3.87 �1.49 �� +1.23 ��
2
� �m (0.981� 0173 �� � 0018 ��

2 ) ,       0 � �� � 0.3 , (8) 

where 

 
  
�� = ln(1+ � + 2� + �

2 ) and �m =
p
q

. 

The constants  K1   (transverse tension) and  K2   (longitudinal tension) are determined from the equations 
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Fig. 2 

 
 

Ks 0.716 � 0.0393 ��
2
+

2sinh4
��

��
2 (sinh 2 �� + 2 ��)

�

�
�

�

	
�

 

  
 

=
1
2
+ (�1)s 1

2
+ (�1)s sinh2

��

sinh 2 �� + 2 ��
� (�1)s sinh2

��

��
2

(0.769 � 0.179 ��
2
+ 0.341��

4 ), s = 1,2 . (9) 

This implies that  
 
kA � 2.22 � �1/2  ( q = 0 )  and  

 
kA � 1.97 � �1/2  ( q = p )  as  ��0 .  In formulas (7) and 

(9), we corrected some mistakes in [18]. 
We note that the method of bipolar coordinates allows one not only to consider the limiting case where the 

parameter  � � 0 ,  but also to obtain solutions of problems in the case where the contours of two circular holes 

intersect each other, i.e., to consider a curvilinear hole with nonsmooth edge formed by two arcs with the same 
[5, 10, 11, 19, 25] or different [19] radii.  In particular, these solutions obtained in a closed form (in terms of a 
Fourier integral) yield the stress intensity factor at the corner tip of a symmetric lune-shaped hole [1]. 

Two Collinear Cracks with the Same Length [4] 

Let the plate stretched at infinity be weakened by two collinear cracks of the same length   2�   (Fig. 2).  The 

exact solution of this problem is available.  The formulas for the stress intensity factors at the near  ( KI
� )  and 

remote  ( KI
+ )  tips of the cracks take the form 

 
 

KI
±
= ±

p ��

� 1± �

�

��
1± � �

E(�)
K (�)

�

	

, (10) 

where  K (�), E(�)   are complete elliptic integrals of the first and second kind, respectively;    � = � / d ; 2d   is 

the distance between the centers of the cracks. 
Using the expansion of the ratio   E(�) / K (�)   for small values of the parameter  � , 

 
E(�)
K (�)

= 1� 1
2
�

2
�

1
16

�
4
+O(�6 ) , 

and its asymptotic behavior as  �� 1 , 
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Fig. 3 

 
E(�)
K (�)

� �
1

ln 1� �
, 

we can write a closed approximate formula for this ratio, 

 
E(�)
K (�)

=
1� (1� �)ln 1� �

1� ln 1� �
, 

which agrees with the exact expression (10) as  �� 0   and  �� 1 . 
The approximate formulas for the stress intensity factors (10) take the form 

 
 

KI
+
=

p �� (1� 2 ln 1� � )

1+ � (1� ln 1� � )
, 

 
 

 KI
�
=

p ��

1� � (1� ln 1� � )
. (11) 

The relative errors of these formulas do not exceed 0.3% for  KI
+   and 1.1% for  KI

�   in the whole range of 

variation of the parameter � . 
Relations (11) yield the following asymptotics as  �� 1 : 

 
 

KI
+
� p 2�� ,           KI

�
� �

p ��

1� � ln 1� �
.   (12) 

Let the elastic plane contain two semi-infinite cracks, whose tips are positioned at the distance  2a .  Con-
sider the symmetric tension of the plane by concentrated forces  P   applied at the points  (0, b)   and  (0, � b)   
on the  Oy   axis (Fig. 3). 

The stress intensity factor at the crack tip 

 KI =
Pb

�a a2
+ b2

1� 2a2

(1+ �)(a2
+ b2 )

�

�
�

�

�
� , (13) 
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Fig. 4 

where  � = 3� 4	   for a plane strain, and   � = (3� 	) / (1+ 	)   for a plane stress; and  
   is the Poisson’s ratio. 

Approaching the parameter  b   to infinity, we obtain the solution of the problem 

 KI =
P
�a

, 

where  P   is the principal vector of a tensile load given at infinity. 

Two Elliptic Holes 

Consider the biaxial tension of the infinite isotropic plate with two identical elliptic holes  Lk ,  k = 1,2 , 

whose contours are unloaded, by forces  p   and  q .  We refer each contour  Lk   to the local coordinate system  

xk Ok yk .  In the basic Cartesian coordinate system  xOy ,  the points  Ok   are defined by the complex-valued coordi-

nates  z1
0
= d   and  z2

0
= �d ,  and the  Ok xk   axes form the angles  �1 = 0   and  �2 = �   with the  Ox   axis (Fig. 4,  

P = 0 ).   
We solved the first basic problem of the plane elasticity theory for an infinite body with smooth curvilinear 

holes, whose contours do not intersect each other, by using the method of singular integral equations [12].  The 
complex-valued potentials of stresses of such a problem take the form 

 �(z) = �0 (z)+ 1
2�

�gk (tk )exp(i�k )
Tk � z

Lk

�
k=1

2

� dtk ,      Tk = tk exp(i�k )+ zk
0 , 

 �(z) = �0 (z)+ 1
2�i

M k

(z � zk
0 )2

k=1

2

� +
1

2�

�gk (tk )exp(�i�k )
Tk � z

dtk �
Tk �gk (tk )exp(i�k )

(Tk � z)2
dtk

�

�

�

�

�

	





Lk

�
k=1

2

� , 

where  gk (tk )   is the required continuous function on the contours of holes; the potentials  �0 (z)   and  �0 (z)  

that determine the basic stress-strain state in the continuous plane without holes are 

 �0 (z) = p + q / 4,                �0 (z) = p � q / 2 , 
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and 

 

 

M k = i [Tk �gk (tk )exp(i�k )dtk � Tk �gk (tk )exp(� i�k )dtk ]
Lk

� . 

The system of two singular integral equations of the problem takes the form [12] 

 

 

K nk (tk , tn ) gk (tk )dtk + Lnk (tk , tn ) tn (tk )dtk
�
�

�
�

Lk

�
k=1

2

�  

  

 

�
1
2i

M k exp(�2i�n )

( �Tn � zk
0 )2

k=1

2

�
d �tn

d �tn
+an

d �sn

d �tn
=�pn ( �tn ),    n=1,2 , (14) 

where  sn   is the arc abscissa of a point  tn �Ln ; �Tn = �tn exp(i�n )+ zn
0 ; 

 

 

K nk (tk , �tn ) =
exp(i�k )

2
1

Tk � �Tn
+

exp(�2i�k )

Tk � �Tn

d �tn

d �tn

�

�

�

�

�

	







, 

 Lnk (tk , �tn ) =
exp(�i�k )

2
1

Tk � �Tn

�
Tk � �Tn

(Tk � �Tn )2

d �tn

d �tn
exp(�2i�k )

�

�

�

�

�

	







, 

 

 

pn ( �tn ) = � �0 ( �Tn ) +�0 ( �Tn ) +
d �tn

d �tn
[ �Tn ��0 ( �Tn ) +�0 ( �Tn ) ]

�

�
�

��

	

�
�

��

. 

To the left-hand side of the integral equations (14), we added zero functionals 

 an = 
gn (tn )dtn
Ln

� ,          n = 1,2 , 

which ensure the unconditional solvability and uniqueness of their solution. 
Choosing the local coordinate systems to be symmetric by the origin and taking the similar symmetry of the 

elastic region and the external load into account, we obtain 

 �g1(t ) = �g2 (t ) = �g (t ),        t �L1 = L . 

The last conditions allow us to reduce the complex potentials of stresses to the form 

 �(z) = �0 (z)+ 1
�

T �g (t )

T 2
� z2

L
� dt,            T = t + d , 
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 �(z) = �0 (z) + 1
�

T
T 2

� z2
�g (t )dt �

T (T 2
+ z2 )

(T 2
� z2 )2

�g (t )dt
�

�

�

	




�L
�  

  

 

+
z2

+ d2

�(z2
� d2 )

[t �g (t )dt � t �g (t )dt ]
L
� � id [ �g (t )dt + �g (t )dt ]

L
�

�

�
�

��

	



�

��

. (15) 

In this case, the system of two integral equations (14) is reduced to one singular integral equation 

 

  

{K (t, �t ) �g (t )dt + L(t, �t ) �g (t )dt}
L
� = �p ( �t ),          �t �L , (16) 

where 

 
 

K (t, �t ) = T
T 2

� �T 2
+

T
T 2

� �T 2
�

T ( �T 2
+ a2 )

( �T 2
� a2 )2

�

�
�

�

	
�

d �t
d �t

+
d �s
d �t

,       �T = �t + d , 

 
 

L(t, �t ) = T
T 2

� �T 2
+

2 �T T �T � T (T 2
+ �T 2 )

(T 2
� �T 2 )2

+
T ( �T 2

+ a2 )

( �T 2
� a2 )2

�

�
�

�

	
�

d �t
d �t

. 

Here,  �s   is the arc abscissa of the point  �t �L . 
We write the parametric equation of the elliptic contour of a hole in the form 

 
 
t = ��(�) = �(cos� + imsin�),          0 � � � 2� , (17) 

where  m = c / � ;  and   �   and  c   are the major and minor semiaxes of the ellipse. 

Making the substitution 

 
 
t = ��(�),      0 � � � 2�,          �t = ��(�),      0 � � � 2� , 

we write the integral equation (16) in the canonical form 

 

 

1
�

[M (�,�)u(�)+ N (�,�)u(�)]
0

2�

� d� = p(�),        0 � � � 2� , 

where we introduced the notation 

 
    M (��) = �

�K(�(�),�(�)),         N (��) = � �L(�(�),�(�)) , 

  u(�) = �g (�(�)) �� (�),              p(�) = p(�(�)) . 
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The required  2� -periodic continuous function  u(�)   has quasisingularities at the tips of the contour  L   

on the major axis of the ellipse for small values of the parameter  � ,  which complicates the derivation of suffi-
ciently exact numerical solutions in this case.  In recent years, in order to enhance the exactness of solutions of 
equations of such a type, various nonlinear transformations of the integration variable are used.  This causes the 
accumulation of quadrature nodes and collocation nodes in the vicinity of the contour tip.  Such transformations 
lead, in essence, to a change of the parametric equations of a curvilinear contour that allow one to obtain more 
precise numerical solutions.  We note that the parametric equation of the elliptic contour in the form (17) is not 
efficient from this viewpoint due to the accumulation of quadrature nodes on sections of the contour with mini-
mum curvature. 

In this case, we performed the change of variables [23] 

 � = G(�) = � �
1
2

sin 2�,    0 � � � 2�,      � = G(�),    0 � � � 2� . 

The function  G(�)   uniquely maps the interval  � �[0, 2�]   on the interval  ��[0, 2�] .  As a result, we obtain 

the integral equation 

 1
�

M (�,�)u� (�) + N (�,�)u� (�)�

��
	


�
�G (�)d�

0

2

� = p� (�),     0 � � � 2 , 

where 

 u�(�) = u(G(�)) , p�(�) = p(G(�)) . 

A discrete analog of the integral equation is the system of  2n   linear algebraic equations 

 1
�

M (�k ,�m )u� (�k ) + N (�k ,�m )u� (�k )�

�	



��
G (�k )

k=1

2n

� = p� (�m ) ,      m = 1,…,2n , (18) 

where 

 
 

�k = G(�k ),      �k =
�(2k �1)

2n
,      k = 1,…,2n , 

 
 

�m = G(�m ),    �m =
2�(m �1)

2n
,     m = 1,…,2n . 

The order of system (18) can be decreased twice with regard for the symmetry of the problem relative to the  
Ox   axis. 

After the solution of the system of algebraic equations by formulas (18), we can determine the complex po-
tentials of stresses that allow one to find the stress-strain state in the whole elastic region.  In the case where the 
contours of holes are unloaded, the normal stresses on the contour of a hole can be expressed directly through 

the function  u�(�)   [16]: 
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Fig. 5 

 

Fig. 6 

 
 
� s (t ) = 4 Re[�0 (t ) + �

+ (t )] = 4 Re�0 (t ) � 4 Im �g (t )  

  = 4 Re�0 (t ) � 4 Im
u(�)
�� (�)

�

�
�

	



�

= 4 Re�0 (t ) � 4 Im
u (�)
�� (�)

�

�
�

	



� , t �L . 

We obtained the numerical results for the stresses  � s (t )   at the vertexes of the holes  A   and  B   (�A   and  

�B )  as functions of the relative distance between the holes  1� �    (� = � / d)   for various values of the parame-

ter m ,  i.e., for various ratios of the minor and major semiaxes of the ellipse.  In Fig. 5, we give such de-
pendences for  m = 1  (circular holes) under transverse tension.  In the limiting case where the distance between 
the holes tends to zero, the relative stress  

 
�B / p = 3.861 ,  which is in good agreement with both the result of 

C.-B. Ling [24]  
 
(�B / p = 3.869)   and solution (8), and the stress  �A   tends to infinity.   

For small distances between the holes (Fig. 6), the numerical results are well approximated by the curve  

�A / p = � 2.008 + 2.199 / 1� �   (continuous line) constructed by the method of least squares.  Then, by ex-

trapolation, we obtain the coefficient of the singularity of maximum stresses on the contour of a circular hole  

 
�A 1� � / p = 2.199  which is close to 2.22, which follows from solution (8). 
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Fig. 7 

 

Fig. 8 

The behavior of maximum stresses on the contours of circular holes on their approach to each other was 
studied also numerically using of integral equations [21].  The results from [21] (squares) and those obtained by 
us (continuous curve) are compared in Fig. 7.  In [21], the value of the coefficient of singularity of maximum 

stresses on the contour of a circular hole obtained by extrapolation was somewhat less:  
 
�A 1� � / p = 2.13 . 

Knowing the coefficient of the singularity of stresses, we can construct the approximating formulas for the 
stresses  �A   which are valid in the whole range of variation of the relative distance between the holes.  In the 

case of uniaxial tension under consideration, we obtained the approximating formula 

 

 

�A

p
=

3� �
2 (0.916 �1.931�), 0 � � < 0.7,

2.199 / 1� � �1.949 + 2.438 1� � , 0.7 � � � 1,

�

�
	

�
	

 

whose relative error does not exceed 1% for all values of the parameter  � ,  0 � � � 1. 
The contour stresses at the vertex  A  of the elliptic hole versus the relative distance between the holes are 

given in Fig. 8 for the uniaxial tension for various ratios of the semiaxes of the ellipse,  c / � .  The approxima-

tion of numerical data with the help of the method of least squares showed that the elliptic holes have the same 
singularity of stresses  �A   upon approaching each other (the square-root type) as that in the case of circular 
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holes.  In order to determine the coefficients of this singularity, we present the dependence of the function  

 
�A 1� � / p   on the parameter  1� �   for various values of  � = �/ � = c2

/ �
2   (�   is the curvature radius at 

the vertex  A )  in Fig. 9 (uniaxial tension) and Fig. 10 (uniform tension).  These results were obtained numeri-
cally (continuous lines) and with the help of the extrapolation by functions of the type  

�A 1� � / p = a1 + a2 1� �   for small values of the relative distances between the holes (dashed lines).  Here,  

 
�0 = p(1� q / p + 2 / � )   is the stress at the vertex  A   for a single elliptic hole  ( � = 0 ). 

Numerical values of the coefficients of the singularity of stresses  �A   are given in Table 1.  We note that, 

as the ratio of the semiaxes of the ellipse decreases, this coefficient increases.  Such an increase can be explained 
by the change of a type of the singularity from the power to the power-logarithmic one if an elliptic hole is trans-
formed in a crack  ( �� 0 ),  which follows from asymptotics (12). 

The relative contour stresses  
 
�B /�0   at the vertex  B  of the elliptic hole versus the relative distance be-

tween the holes are shown in Fig. 11 (uniaxial tension) and Fig. 12 (biaxial tension).   
Upon approach of the holes to each other  ( �� 1 ),  the stresses  �B   tend to a finite value close to the re-

sult obtained by the formula for the equivalent ellipse [5], i.e., for an elliptic hole with the same curvature radius  
�   at the vertex  A   and with the twice larger major semiaxis   2� : 

 

Fig. 9 

 

Fig. 10 
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Fig. 11 

 

Fig. 12 

 
 
�e = p(1� q / p + 2 2 / � ) . 

The values calculated by this formula are given in Table 1 to the right from the dashed vertical line. 

Two Semi-Infinite Parabolic Notches 

Consider the unbounded elastic plane weakened by two symmetric semi-infinite parabolic notches with the 
symmetry axes on the  Ox   axis and the distance  2a   between the vertexes.  By the definition in [20], the 
boundary-value problem of the plane elasticity theory for such a region is referred to singular problems, whose 
solutions cannot be obtained, if a constant load is set at infinity.  Therefore, we assume that the stresses are ab-
sent at infinity, and the plate is stretched by the concentrated forces  P   applied at the points  (0,b)   and  
(0,�b)   on the  Oy   axis.  We get the solution of this problem by passage to the limit starting from the corre-

sponding problem of two elliptic holes (Fig. 4,  p = q = 0 ),  where the distance between the near vertexes is constant 

and is equal to  2a , and the major axis of the ellipse   �   increases infinitely.  In this case, the problem of two elliptic 
holes should be solved for an external load that is defined by the complex-valued potentials 
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 �0 (z) = bP
�(1+ �)

1
z2

+ b2
, 

 �0 (z) = �bP
�(1+ �)

1
z2

+ b2
+

bP
�(1+ �)

z2
� b2

(z2
+ b2 )2

. 

If the relative curvature radius  �/ a   at the notch tip is small, then the approximate value of maximum 

stresses at this vertex can be determined by the formula [13] 

Table 2 

b/a  Approximating 

formulas 

1 
 
�A �n = 2.216 � 0.493(�/�)0.203  

2 
 
�A �n = 2.021� 0.897(�/�)0.212  

5/2 
 
�A �n = 1.982 �1.063(�/�)0.217  

10/3 
 
�A �n = 1.935 �1.307(�/�)0.237  

5 
 
�A �n = 1.899 �1.671(�/�)0.254  

Table 1 

1� � �A/p  �B / p  

  c / �  

q = 0  q = p  q = 0  q = p  

1  2.20 1.94 3.86 3.83 2.89 2.83 

1/2  3.93 3.70 6.66 6.66 5.70 5.66 

1/4  7.44 7.23 12.26 12.32 11.34 11.32 

1/8  14.5 14.3 23.53 23.63 22.6 22.63 

1/16  28.6 28.3 45.87 46.25 45.2 45.25 
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�max = 2KI / �� , 

where  KI   is the stress intensity factor for two semi-infinite cracks (13).  In the case where �/ a = 1, we present 

the approximating formulas for the relative stresses  
 
�A /�n  (

 
�n = P / 2a )  at the vertex  A  of an elliptic hole 

that were obtained for small values of the parameter    �/ �  (  0 � �/ � � 10�5 )  numerically  ( 
 = 0.3 , a plane 

stressed state) in Table 2.  The first terms in these formulas are the approximate values of the stress intensity 
factors at the vertex of a parabolic notch.  On the basis of these data for parabolic notches, we constructed the 
approximating dependence of the relative stresses  

 
�A /�n : 

 
�A

�n
=

1.87 + 2.89 a b( )
2

1+ a b( )
2

�
�

�
�

1.1
, 0.1 � a

b
� 1.  

By extrapolating this dependence for  a b = 0 ,  we obtain the value  
 
�A /�n = 1.87  in the case where the 

tensile load is set at infinity, whose principal vector is equal to  P.   The corresponding value of the stress con-
centration factor for two hyperbolic notches [3] is  �A /�n = 1.56 . 

We note that the above-presented procedure for determining the solution of the problem for parabolic 
notches is not efficient because it involves two passages to the limit in the numerical solution.  Here, we demon-
strated only the possibility of construction of such solutions.  For this purpose, it is much more efficient to use, 
for example, the problem on a periodic system of holes in the elastic plane, which does not require the double 
passages to the limit.  Just in such a way with the use of the common approach to the problem concerning the 
concentration of stresses near angular acute and rounded notches, the stress intensity factor and the stress con-
centration factor for two such notches are obtained in [14, 15]. 

The authors thank Dr. A. Kazberuk for his help in the preparation of this article. 
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