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AN INTERACTIVE METHOD OF TACKLING UNCERTAINTY
IN INTERVAL MULTIPLE OBJECTIVE LINEAR PROGRAMMING

C. Oliveira and C. H. Antunes UDC 519.852.6

Abstract. Mathematical programming models for decision support must explicitly take account of
the treatment of the uncertainty associated with the model coefficients along with multiple and con-
flicting objective functions. Interval programming just assumes that information about the variation
range of some (or all) of the coefficients is available. In this paper, we propose an interactive ap-
proach for multiple objective linear programming problems with interval coefficients that deals with
the uncertainty in all the coefficients of the model. The presented procedures provide a global view
of the solutions in the best and worst case coefficient scenarios and allow performing the search for
new solutions according to the achievement rates of the objective functions regarding both the upper
and lower bounds. The main goal is to find solutions associated with the interval objective function
values that are closer to their corresponding interval ideal solutions. It is also possible to find solutions
with non-dominance relations regarding the achievement rates of the upper and lower bounds of the
objective functions considering interval coefficients in the whole model.

1. Introduction

Interval programming methods have been used to tackle specific issues in multiple objective linear
programming (MOLP): some deal with uncertainty in the objective functions, others handle uncer-
tainty both in the objective functions and in the right-hand side (RHS) of the constraints, and others
deal with uncertainty in all the coefficients of the model (see an illustrated overview of these methods
in [8]). In the framework of an interactive approach Urli and Nadeau [11] have considered MOLP
models with interval coefficients in the whole model. This approach uses a simple mathematical for-
mulation and allows a strong integration of the decision-maker (DM) into the decision phases. The
following assumptions are considered for the problem transformation: the DM is less satisfied when
the lower bound of the objective function is closer to the lower bound of the target interval, and more
satisfied when the upper bound of the objective function is closer to the upper bound of the target
interval; the DM hopes that the lower bound of the (left and side) LHS of the constraints will not
be larger than the upper bound of the RHS of the constraints and his/her satisfaction level will be
even higher as much as the upper bound of the LHS will be closer to the upper bound of the RHS.
This latter problem is then solved by an interactive approach derived from STEM [1]. Nevertheless,
although the DM prefers the most favorable situation, the results obtained through the algorithm do
not allow the DM to take into account the worst case and the best case “scenarios” in order to perceive
the risk at stake (see [4]). In the next sections of this paper, we propose a new approach to address-
ing MOLP problems with interval coefficients that deals with the uncertainty in all the coefficients
of the model. The methodology developed is aimed at making the most of distinct methodological
approaches in order to provide effective decision support to DMs, paying also attention to the mini-
mization of the computational efforts. It starts with obtaining two surrogate deterministic problems
by considering the minimization of the worst possible deviation of the interval objective functions
from their corresponding interval ideal solutions. The first compromise solution is obtained by solving
the surrogate deterministic problem, which is chosen according to a more or less conservative stance
of the DM with the narrowest version of the feasible region. Other solutions are computed in the
framework of the method’s interactive phases. During these interactive phases, additional information
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is shown to the DM: the interval objective function values obtained in each solution and the corre-
sponding midpoint and width, which can be compared with the values obtained for the corresponding
interval ideal solutions; the distance of the interval objective function values obtained in each solution
to the corresponding interval ideal solutions and the comparison between the interval objective func-
tion values and the corresponding interval ideal solutions through the use of an acceptability index
that allows comparing any interval numbers (since the main aim is to find the solutions that allow
obtaining the interval objective function values that are closer to their corresponding interval ideal
solutions when both the distance and the acceptability index are close to zero, the interval objective
functions are close to the corresponding interval ideal solutions); the achievement rates of the bounds
of the objective function values in each solution regarding the bounds of the corresponding interval
ideal solutions (the closer these values are to 1, the closer the DM is to meet his/her aspiration levels).
After providing this information to the DM, he/she is asked to reveal his/her satisfaction regarding the
solution being analyzed. If the DM is not yet satisfied with the obtained solution, then the algorithm
proceeds. Then the DM is asked to choose the objective function he/she wishes to improve. If the
problem obtained with the additional constraints has an empty feasible region, then information is
provided on the amount he/she should relax the different objective reference values in order to restore
feasibility. In this phase the DM can also choose the objective function(s) he/she is willing to relax in
order to improve the other objective function(s) and solve the problem with the additional constraints.
If the DM wants to have a sensitivity measure of the efficient basis obtained for simultaneous and
independent changes of the reference values considered for the objective functions, then the ranges
of variation of these reference values must be computed according to the individual tolerance range
approach [13]. On the other hand, if the DM wishes to have a sensitivity measure of the efficient basis
obtained when changes occur in only one reference value for one objective function, then the range of
variation of this reference value must be computed according to sensitivity analysis techniques. In each
case, the DM might choose new reference values within the ranges of computed variation or outside
these ranges, knowing that in the last option the efficient basis will be changed. The main advantage
of these procedures is that it is no longer necessary to solve the entire problem all over again in order
to obtain a new solution. The impacts of different thresholds on the constraints on the compromise
solution can also be shown, allowing the DM to analyze distinct solutions with different coefficient
sets. The exhaustiveness of the solution search process depends on the DM, who can decide to end
the procedure when he/she considers to have gathered enough information about the problem.

The methodology herein presented is applied to a small illustrative example, some conclusions are
made, and some flexibility proposals are suggested.

2. Obtaining the Surrogate Deterministic Problems

Let the MOLP problem with interval coefficients be given, without loss of generality, by

max Zk(x) =
n∑

j=1

[
cL
kj , cU

kj

]
xj , k = 1, . . . , p,

s.t.
n∑

j=1

[
aL

ij , aU
ij

]
xj ≤

[
bL
i , bU

i

]
, i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n,

(1)

where
[

cL
kj

, cU
kj

]
,
[

aL
ij
, aU

ij

]
, and

[
bL

i
, bU

i

]
, k = 1, . . . , p, j = 1, . . . , n, i = 1, . . . , m, are closed

intervals.
Two surrogate problems are initially obtained by considering that the DM wants to minimize the

worst possible deviation [6] of each interval objective function from an established interval goal and
considering satisfaction thresholds of the constraints [11].
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The possible deviation Dk(x) =[dL
k (x), dU

k (x)] of Zk(x) =
[

n∑
j=1

cL
kj

xj = ZL
k (x),

n∑
j=1

cU
kj

xj = ZU
k (x)

]

from an interval target Tk = [tLk , tUk ] is

Dk(x) =|Tk(−)Zk(x)| =
∣∣∣∣

[
tLk−

n∑

j=1

cU
kj

xj ,t
U
k −

n∑

j=1

cL
kj

xj

]∣∣∣∣

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
[
tLk −

n∑

j=1

cU
kj

xj , t
U
k −

n∑

j=1

cL
kj

xj

]
if tLk −

n∑

j=1

cU
kjxj ≥ 0,

(b)
[
0,

n∑

j=1

cU
kj

xj − tLk∨tUk −
n∑

j=1

cL
kj

xj

]
if tLk −

n∑

j=1

cU
kj

xj < 0 < tUk −
n∑

j=1

cL
kj

xj ,

(c)
[ n∑

j=1

cL
kj

xj − tUk ,
n∑

j=1

cU
kj

xj − tLk

]
if tUk −

n∑

j=1

cL
kjxj ≤ 0.

(2)

In order to transform the interval constraints of (1) into deterministic constraints, we have used the
approach shown in [11], which is based on the DM’s degree of satisfaction relative to a nondeterministic
constraint. The degree of satisfaction, μ, of an interval constraint of (1) is given by

μ

( n∑

j=1

aijxj ≤ bi

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
n∑

j=1

aL
ijxj ≥ bU

i ,

1 if
n∑

j=1

aU
ijxj ≤ bi

L,

bU
i −

n∑

j=1

aL
ijxj

(bU
i − bL

i ) +
n∑

j=1

(aU
ij − aL

ij)xj

otherwise,

(3)

where aij ∈
[

aL
ij
, aU

ij

]
and bi ∈

[
bL
i , bU

i

]
.

The solutions to problem (1) should individually satisfy each nondeterministic constraint with
some satisfaction threshold, called individual satisfaction threshold on constraints and denoted by αi,
i = 1, . . . , m. Therefore, each interval constraint has the following surrogate deterministic form for
each αi ∈ [0, 1], i = 1, . . . , m:

μ

( n∑

j=1

aijxj ≤ bi

)
≥ αi. (4)

From relation (3), this constraint takes the form

n∑

j=1

(aL
ij + αi(aU

ij − aL
ij))xj ≤ bU

i − αi(bU
i − bL

i ). (5)

Reference points in general represent the aspiration levels of the DM for the objective functions.
The ideal solution is frequently used as a reference point in MOLP problems since it represents the best
value of each objective function in the feasible region. In this context, the individual optima obtained
with the best and worst case coefficients scenario are respectively considered to be the bounds of the
interval ideal solutions.
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For each objective function Zk(x), k = 1, . . . , p, we solve the following LP problems which allow
obtaining the best and worst optima, respectively [4]:

max ZU
k (x)

s.t.

n∑

j=1

aL
ijxj ≤ bU

i , i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n,

(6)

and
max ZL

k (x),

s.t.
n∑

j=1

aU
ijxj ≤ bL

i , i = 1, . . . , m,

xj ≥ 0, j = 1, . . . , n.

(7)

Problems (6) and (7) are denoted by β = 0 and β = 1, respectively, and the optimal solution of
each problem is given by xβ

k , β = 0, 1, k = 1, . . . , p. The interval goals are chosen by considering

tUk = ZU
k (x0

k) = ZU∗
k , k = 1, . . . , p, (8)

tLk = ZL
k (x1

k) = ZL∗
k , k = 1, . . . , p. (9)

The possible deviation of each interval objective function from the corresponding interval ideal
solution is

Dk(x) =|[ZL∗
k −ZU

k (x), ZU∗
k −ZL

k (x)]|

=

{
(a) [ZL∗

k − ZU
k (x), ZU∗

k − ZL
k (x)] if ZL∗

k − ZU
k (x) ≥ 0,

(b) [0, (ZU
k (x) − ZL∗

k ) ∨ (ZU∗
k − ZL

k (x))] if ZL∗
k − ZU

k (x) < 0 < ZU∗
k − ZL

k (x).

(10)

In this case, line (c) of expression (2) can never occur because ZU∗
k − ZL

k (x) ≥ 0 since ZU∗
k is the

best possible optimum that objective function k can attain.
Let εk = ZL∗

k − ZU
k (x) be such that εk = ε+

k − ε−k , ε+
k ≥ 0, ε−k ≥ 0 and ε+

k ε−k = 0; then

Dk(x) =

{
(a) [ε+

k − ε−k , ZU∗
k − ZL

k (x)] if ε+
k − ε−k ≥ 0,

(b) [0, (ε−k − ε+
k ) ∨ (ZU∗

k − ZL
k (x))] if ε+

k − ε−k < 0 < ZU∗
k − ZL

k (x).
(11)

Hence the following situations can occur:
(i) if ε+

k = 0, then ε−k ≥ 0 and Dk(x) = [0,ε−k ∨ (ZU∗
k − ZL

k (x))];
(ii) if ε−k = 0, then ε+

k ≥ 0 and Dk(x) = [ε+
k , (ZU∗

k − ZL
k (x))].

Therefore, Dk(x) = [ε+
k ,ε−k ∨ (ZU∗

k − ZL
k (x))], k = 1, . . . , p.

If the DM wants to minimize the worst possible deviation of each objective function from the
corresponding interval target, then problem (1) has the following surrogate problem for a given αi,
i = 1, . . . , m:

min max
k=1,...,p

λkDk(x),

s.t.
n∑

j=1

(aL
ij + αi(aU

ij − aL
ij))xj ≤ bU

i − αi(bU
i − bL

i ), i = 1, . . . , m,

ε+
k − ε−k = ZL∗

k − ZU
k (x), k = 1, . . . , p,

ε+
k ε−k = 0, ε+

k , ε−k ≥ 0, k = 1, . . . , p,

xj ≥ 0, j = 1, . . . , n,

(12)
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where λk are scaling factors taking account of the different orders of magnitude of the objective
functions.

Let ωk ∈ {0, 1} , k = 1, . . . , p, s+
k = ωkε

+
k , s−k = (1 − ωk)ε−k ; then (12) can be rewritten as

min max
k=1,...,p

λkDk(x),

s.t.

n∑

j=1

(aL
ij + αi(aU

ij − aL
ij))xj ≤ bi

U − αi(bU
i − bL

i ), i = 1, . . . , m,

s+
k − s−k = ZL∗

k − ZU
k (x), k = 1, . . . , p,

s+
k − Mωk ≤ 0, k = 1, . . . , p,

s−k + Mωk,≤ M, k = 1, . . . , p,

s+
k , s−k ≥ 0, k = 1, . . . , p,

ωk ∈ {0, 1}, k = 1, . . . , p,

xj ≥ 0, j = 1, . . . , n,

(13)

where M is an arbitrary large number.
If the DM wants to minimize the lower bound of the worst possible deviation, then problem (1) has

the following surrogate mixed integer linear programming (MILP) problem:

min dL(x) = dL + γ

p∑

k=1

(s+
k ),

s.t. λks
+
k ≤ dL, k = 1, . . . , p,

n∑

j=1

(aL
ij + αi(aU

ij − aL
ij))xj ≤ bi

U − αi(bU
i − bL

i ), i = 1, . . . , m,

s+
k − s−k = ZL∗

k − ZU
k (x), k = 1, . . . , p,

s+
k − Mωk ≤ 0, k = 1, . . . , p,

s−k + Mωk ≤ M, k = 1, . . . , p,

s+
k , s−k ≥ 0, k = 1, . . . , p,

dL ≥ 0,

ωk ∈ {0, 1}, k = 1, . . . , p,

xj ≥ 0, j = 1, . . . , n,

(14)

where γ is a very small number and M is an arbitrary large number.
However, if ZL∗

k − ZU
k (x) ≤ 0, variable dL of problem (14) becomes sign unrestricted.
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If the DM wants to minimize the upper bound of the worst possible deviation, then problem (1)
has the following surrogate MILP problem:

min dU (x) = dU + γ

p∑

k=1

[s−k + ZU∗
k − ZL

k (x)],

s.t.λks
−
k ≤ dU , k = 1, . . . , p,

λk(ZU∗
k − ZL

k (x)) ≤ dU , k = 1, . . . , p,
n∑

j=1

(aL
ij + αi(aU

ij − aL
ij))xj ≤ bi

U − αi(bU
i − bL

i ), i = 1, . . . , m,

s+
k − s−k = ZL∗

k − ZU
k (x), k = 1, . . . , p,

s+
k − Mωk ≤ 0, k = 1, . . . , p,

s−k + Mωk ≤ M, k = 1, . . . , p,

s+
k , s−k ≥ 0, k = 1, . . . , p,

dU ≥ 0,

ωk ∈ {0, 1}, k = 1, . . . , p,

xj ≥ 0, j = 1, . . . , n,

(15)

where γ is a very small number and M is an arbitrary large number.

3. Interactive Steps

The first compromise solution is obtained by considering the minimum value range inequalities [9]
(αi = 1 for all i = 1, . . . , m) of problems (14) or (15) depending on the optimistic or pessimistic
perspective of the DM, respectively. Let the first compromise solutions to problems (14) and (15)
be given by x1U ′

and x1U ′′
, respectively. If the first compromise solution satisfies the DM, then the

algorithm stops and one of the solutions, x1U ′
or x1U ′′

, is chosen; otherwise, the algorithm proceeds.
The other compromise solutions are given by xm = xmU ′

and/or xmU ′′
, m = 2, 3, 4, . . .. The interactive

phases are described below.
For each obtained compromise solution, the following information is presented to the DM:
(1) Zk(x

m),

m[Zk(x
m)] =

ZL
k (xm) + ZU

k (xm)
2

(the midpoint of the interval), and

w[Zk(x
m)] = ZU

k (xm) − ZL
k (xm)

(the width of the interval), which can be compared with the corresponding values obtained for their
interval ideal solutions.

(2) The distance from Z∗
k to Zk(x

m),

d(Z∗
k , Zk(x

m)) = Max(|ZL∗
k − ZL

k (xm)|, |ZU∗
k − ZU

k (xm)|),
k = 1, . . . , p, and the acceptability of Zk(x

m) being inferior to Z∗
k = [ZL∗

k , ZU∗
k ],

A(Zk(x
m) ≺ Zk∗) =

(
m

[
Z∗

k

] − m
[
Zk(xm)

])
(

w [Zk(xm)]
2

+
w [Z∗

k ]
2

)
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(see [10]). When both the distance and the acceptability index are close to zero, the interval objective
functions are close to their corresponding interval ideal solutions. That is, when A(Zk(x

m) ≺ Zk∗)
and d(Z∗

k , Zk(x
m)) are close to zero, this means that Zk(x

m) is close to Zk∗.
(3) The achievement rate of Zk(x

m) with respect to Zk(x
m). The achievement rate is

tcL
k = 1 − (ZL∗

k − ZL
k (xm))

(ZL∗
k − mL

k
)

with respect to ZL
k (xm), and it is

tcU
k = 1 − (ZU∗

k − ZU
k (xm))

(ZU∗
k − mU

k
)

with respect to ZU
k (xm), where mL

k
and mU

k
are the worst optimum values obtained from the expanded

pay-off table. The extended pay-off table is the pay-off table with the optimum values of problems (6)
and (7). The closer the values of tcL

k and tcU
k are to 1, the closer the DM is to meet his/her aspiration

level Zk∗. In general, 0 < tcU
k < 1; however, tcL

k can be greater than 1, precisely, when αi is relaxed. A
value greater than 1 corresponds to a deviation from the goal considered and not to an improvement
of the achievement solution rate.

(4) The impact of different values for αi on the compromise solution if the DM wishes to analyze
other solutions with distinct coefficients sets.

After providing this information to the DM, he/she is asked to reveal his/her satisfaction regarding
the compromise solution being analyzed. If the DM is satisfied with the solution, then the algorithm
stops. Otherwise, the algorithm proceeds with the search for new solutions. For this purpose, the DM
may choose the objective function which he/she wishes to improve, and, if possible, sets the maximum
improvement level, ΔL∗

k or ΔU∗
k . If the DM is not able to specify ΔL∗

k or ΔU∗
k , the improvement level

can be automatically set in the following way:

ΔL∗
k = ZL∗

k − ZL
k (xm) and ΔU∗

k = ZU∗
k − ZU

k (xm).

If the improvement selected by the DM leads to an empty feasible region, then information is
provided on the amount he/she must relax the different reference values of the objective functions
considering the values of the binary variables equal to the ones obtained in the solution without the
introduction of that improvement in order to restore the feasibility of the problem. In this context, the
concept of “elastic programming” introduced by Brown and Graves [2] is used to widen the feasible
region. This method consists in the addition of extra variables (the “elastic variables,” ek) which
allow constraints to be relaxed thus enlarging the feasible region. A linear programming problem is
solved basing on “the smallest variable cost model” (see [2, 3] and [7]). According to this model, the
resistance to “stretch” implied by the elastic term is supplied by creating a new objective: minimize
the sum of the total variable cost of all changes (i.e., of the elastic variables). If this problem leads
to a solution where the elastic variables are positive, then an optimal change of the RHS is obtained
according to the model used herein.

If the DM wishes to obtain other compromise solutions that generate the same efficient basis, then
the extreme bounds for simultaneous and independent changes of the reference values considered for
the objective functions are computed according to the individual tolerance range (ITR) approach [13]
and sensitivity analysis [5]. If the DM wants to obtain other solutions with the same efficient basis
changing more than one reference point simultaneously, he/she should consider the values obtained
from the ITR approach. On the other hand, if the DM wants to obtain a solution where only a
reference point is changed, then he/she should consider the values obtained from sensitivity analysis.

The ITR approach uses two vectors with upper (b̂
+
) and lower (b̂

−
) bounds for simultaneous and

independent changes of the RHS of the constraints. Consider, without loss of generality, that the
constraints that lead to an empty feasible region are of the type “≥.”
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Let b̂L
k = ZL

k (xm) + ΔL∗
k − ek and b̂U

k = ZU
k (xm) + ΔU∗

k − ek, k = 1, . . . , p, where ek is an elastic
variable. Consider b̂k = b̂L

k or b̂U
k . Vector b̂

−
is defined for each k, k = 1, . . . , p, as

b̂−k =

⎧
⎪⎨

⎪⎩

b̂k − Min
i

{(|b̂k|ρi) : B−1
ik > 0},

−∞ if B−1
ik ≤ 0 for all i,

0 if b̂k = 0 and B−1
ik > 0 for some i,

(16)

where ρi =
B−1

i. b̂
m+2p∑
j=1

|B−1
ij b̂j |

(see [12]), B−1
i. is the ith row of the inverse matrix of the basis, B−1

ij (B−1
ik )

is the element located on the ith row and on the jth (kth) column of the inverse matrix of the basis,
and b̂ is the RHS with the original reference points.

On the other hand, vector b̂
+

is defined for each k, k = 1, . . . , p, as

b̂+
k =

⎧
⎪⎨

⎪⎩

b̂k + Min
i

{(|b̂k|ρi) : B−1
ik < 0},

+∞ if B−1
ik ≥ 0 for all i,

0 if b̂k = 0 and B−1
ik < 0 for some i.

(17)

The obtained results are shown to the DM. If the DM wants to obtain other solutions with the
same efficient basis by changing more than one reference point, then he/she should consider the values
belonging to the range of variation computed according to the ITR approach. On the other hand, if the
DM wants to obtain a solution where only a reference point is changed, then he/she should consider
the values obtained from sensitivity analysis. Hence the new efficient solution can be computed in the
following way: xB= B−1[b], where B−1 is the inverse matrix of the basis, xB is the vector of basic
variables, and [b] is the changed RHS vector (i.e., the RHS vector with the new reference values).
This new compromise solution is operated like the previous ones and the procedure stops when the
DM considers that the obtained solution is a satisfactory compromise.

The flowchart of the algorithm herein suggested is illustrated in Fig. 1. In the next section, a small
example will be given in order to illustrate the proposed approach.

4. Illustrative Example

Let us consider the following MOLP with interval coefficients [11]:

max Z1(x) = [0.8, 1.2]x1 + [−0.5, 0.2]x2,

max Z2(x) = [−0.3, 0.2]x1 + [0.7, 1.2]x2,

max Z3(x) = [0.8, 1.1]x1 + [0.9, 1.2]x2,

s.t.[1.5, 2.8]x1 + [0.5, 1.2]x2 ≤ [7, 9],

[0.5, 1.5]x1 + [2, 4]x2 ≤ [13.5, 16],
x1 ≥ 0, x2 ≥ 0.

In order to obtain the surrogate deterministic problems, it is necessary to determine the interval
goals Tk, k = 1, . . . , 3, by solving LP problems (6) and (7).

The first problem allows obtaining the best optimum values with the maximum value range in-
equalities (β= 0); the second problem allows obtaining the worst optimum values with the minimum
value range inequalities (β= 1). The obtained optimal solutions are xβ

k , k = 1, 2, 3 and β = 0, 1:
x0

1 = (6.0000, 0.0000)T , x0
2 = (0.0000, 8.0000)T , x0

3 = (3.6364, 7.0909)T , x1
1 = (2.5000, 0.0000)T ,

x1
2 = (0.000, 3.3750)T , x1

3 = (1.2553, 2.9043)T . This information is displayed in Table 1, which contains
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Fig. 1. Flowchart of the algorithm proposed.
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the values of ZU
k (xβ

k) and ZL
k (xβ

k) for β = 0, 1 and k = 1, 2, 3. From Table 2 we obtain the goals tUk
and tLk .

Table 1. Values of ZU
k (xβ

k) and ZL
k (xβ

k).
x0

1 x1
1 x0

2 x1
2 x0

3 x1
3

ZU
1 (xβ

k) 7.2000 3.0000 1.6000 0.6750 5.7818 2.0872
ZL

1 (xβ
k) 4.8000 2.0000 -4.0000 -1.6875 -0.6364 -0.4479

ZU
2 (xβ

k) 1.2000 0.5000 9.6000 4.0500 9.2364 3.7362
ZL

2 (xβ
k) -1.8000 -0.7500 5.6000 2.3625 3.8727 1.6564

ZU
3 (xβ

k) 6.6000 2.7500 9.6000 4.0500 12.5091 4.8660
ZL

3 (xβ
k) 4.8000 2.0000 7.2000 3.0375 9.2909 3.6181

Table 2.Values of the interval targets.
Z∗

k tLk tUk m[Z∗
k] w[Z∗

k]
Z ∗

1 2.0000 7.2000 4.6000 5.2000
Z ∗

2 2.3625 9.6000 5.9813 7.2375
Z ∗

3 3.6181 12.5091 8.0636 8.8910

Consider hypothetically that the DM has a pessimistic stance leading to the choice of the surrogate
problem (15). In order to obtain the first compromise solution, the narrowest feasible region is con-
sidered (i.e., α1 = α2 = 1). The following solution is obtained: x1U ′′

= (1.2553, 2.9043)T . The
information regarding the first compromise solution is shown to the DM (Table 3),

Table 3. Information regarding solution x1U ′′
.

ZL
k (x1U′′) ZU

k (x1U′′) m[Zk(x1U′′
)] w[Zk(x1U′′

)] A≺ dist tcL
k tcU

k

Z1 −0.4479 2.0872 0.8197 2.5351 0.9774 5.1128 0.5920 0.2164

Z2 1.6564 3.7362 2.6963 2.0798 0.7051 5.8638 0.8304 0.3556

Z3 3.6181 4.8660 4.2420 1.2479 0.7538 7.6431 1.0000 0.0890

where A≺ = A(Zk(x1U ′′
) ≺ Z∗

k) and dist = d(Z∗
k , Zk(x1U ′′

)).
Let us assume that the DM wishes to change the satisfaction thresholds of the constraints by

choosing α1 = 0.5 and α2 = 1. The new obtained solution corresponds to x2U ′′
= (2.1796, 2.5576)T .

The information regarding solution x2U ′′
is displayed in Table 4,

Table 4. Information regarding solution x2U ′′
.

ZL
k (x2U′′) ZU

k (x2U′′) m[Zk(x2U′′
)] w[Zk(x2U′′

)] A≺ dist tcL
k tcU

k

Z1 0.4649 3.1271 1.7960 2.6622 0.7133 4.0729 0.7441 0.3758

Z2 1.1365 3.5051 2.3208 2.3686 0.7621 6.0949 0.7055 0.3302

Z3 4.0456 5.4667 4.7562 1.4212 0.6415 7.0424 1.2642 0.1328

where A≺ = A(Zk(x2U ′′
) ≺ Z∗

k) and dist = d(Z∗
k , Zk(x2U ′′

)).
In what concerns the previous solution, there is a significant improvement of the achievement rates

of the first objective function regarding both the upper and lower bounds and an improvement of the
achievement rate of the upper bound of the third objective function; there is also a reduction of the
distance between the interval values of the objective functions and their corresponding interval ideal
solutions (see either the acceptability index or the distance between the intervals for both objective
functions). On the other hand, there is a deterioration of the achievement rates of the second objective
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function regarding both the upper and lower bounds and also a deviation (hence, a deterioration) of
the achievement rate of the lower bound of the third objective function from the value 1 (the aimed
value).

Let us now consider that the DM wants to choose the objective functions that he/she wishes to
improve/relax according to the values given in Table 5, but considering the previous satisfaction
thresholds of the constraints.

Table 5. Maximum/Minimum improvement of the objective functions.

ZL
k (x2U ′′

) + ΔL∗
k ZU

k (x2U ′′
) + ΔU∗

k

1 0
2 0
4 0

Since the problem becomes infeasible with the additional imposed constraints, an elastic program-
ming problem is solved with ωk = 0, k = 1, 2, 3 deduced from the solution obtained for the previous
problem. The solution obtained through the elastic programming problem is x3U ′′

= (2.7215, 2.3544)T .
The information regarding this new solution is shown in Table 6,

Table 6. Information regarding solution x3U ′′
.

ZL
k (x3U′′) ZU

k (x3U′′) m[Zk(x3U′′
)] w[Zk(x3U′′

)] A≺ dist tcL
k tcU

k

Z1 1.0000 3.7362 2.3684 2.7367 0.5624 3.4633 0.8333 0.4692

Z2 0.8316 3.3696 2.1006 2.5380 0.7940 6.2304 0.6322 0.3153

Z3 4.2962 5.8190 5.0576 1.5228 0.5573 6.6901 1.4191 0.1584

where A≺ = A(Zk(x3U ′′
) ≺ Z∗

k) and dist = d(Z∗
k , Zk(x3U ′′

)).
A comparison with the previous solution allows us to conclude that there is an improvement of

the achievement rate of the first objective function regarding both the upper and lower bounds and
of the achievement rate of the upper bound of the third objective function; on the other hand, the
achievement rate of the second objective function regarding both the upper and lower bounds and
the achievement rate of the lower bound of the third objective function are worsened. There is
also an increase of the distance between the value of the second interval objective function and its
corresponding interval ideal solution. On the contrary, the first and third objective functions are
closer to their corresponding interval targets (the acceptability index and the distance between these
intervals are reduced).

Let us suppose that the DM wants to have a sensitivity measure of the efficient basis regarding
the reference values considered for the objective functions. The ranges of variation of these reference
values are computed according to distinct approaches (see Table 7).

Table 7. Ranges of variation of the objective function reference values.
Tolerance approach ITR approach Sensitivity analysis

b̂− b̂+ b̂− b̂+ b̂− b̂+

1.0000 1.0000 -∞ 1.0000 -∞ 1.0001
0.8316 0.8316 0.8258 0.8316 0.7864 0.8317
4.0000 4.0000 -∞ 4.1226 -∞ 4.2962

After observing Table 7, consider that the DM decides to change the reference values within the
range of variation that leads to a different efficient basis. For instance, these values could be (-2, 2, 3)
for Z1, Z2, and Z3, respectively, according to the information in Table 7 regarding the ITR approach
since these values are being changed simultaneously.
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The new obtained solution is x4U ′′
= (0.6444, 3.1333)T . The information regarding this solution is

given in Table 8,

Table 8. Information regarding solution x4U ′′
.

ZL
k (x4U′′) ZU

k (x4U′′) m[Zk(x4U′′
)] w[Zk(x4U′′

)] A≺ dist tcL
k tcU

k

Z1 −1.0511 1.4000 0.1744 2.4511 1.1568 5.8000 0.4915 0.1111

Z2 2.0000 3.8889 2.9444 1.8889 0.6655 5.7111 0.9129 0.3724

Z3 3.3356 4.4689 3.9022 1.1333 0.8303 8.0402 0.8254 0.0600

where A≺ = A(Zk(x4U ′′
) ≺ Zk∗) and dist = d(Z∗

k , Zk(x4U ′′
)).

In this solution, the achievement rates of the first and third objective functions regarding both the
upper and lower bounds reach the lower levels as compared with the values attained until now. On
the other hand, the achievement rates of the second objective function regarding both bounds reach
their highest levels as compared with the achievement rates obtained for this indicator until now.

In this example, it is possible to observe that all the analyzed solutions have a non-dominance
relation regarding the achievement rates of the upper and lower bounds of the objective functions
meaning that it is not possible to improve the achievement rate of one objective function (regarding
its upper or lower bounds) without worsening at least the achievement rate of another objective
function (regarding its upper or lower bounds).

If the last obtained solution satisfies the DM, then the interactive procedure stops. Otherwise, it can
continue searching for new solutions, precisely by considering a similar analysis as the one previously
made.

5. Conclusion

Generally speaking, the coefficients of mathematical programming models are not exactly known.
Hence, it is convenient to extend traditional mathematical programming models considering their
intrinsic uncertainty. Moreover, in most of real-world problems multiple axes of evaluation are at stake.
This paper proposes an interactive procedure for tackling uncertainty in MOLP models with interval
coefficients. The approach herein suggested is not very demanding from the point of view of both the
information required from the DM in each interaction and the computational efforts involved. This
method allows obtaining a simple mathematical surrogate formulation leading to a strong integration
of the DM in the decision procedure; operates uncertainty in all the coefficients of the model; provides
a global view of the solutions in the best and worst case coefficients scenario; performs the search of
new solutions according to the achievement rates of the objective functions regarding both the upper
and lower bounds, taking always into account the best and worst case coefficients scenario; identifies
the interval solution that is closest to the interval ideal solution; enables one to review the search
options of the solutions considered by the DM; finds solutions with non-dominance relations regarding
the achievement rates of the upper and lower bounds of the objective functions.

Also, it is possible to use the algorithm in a more flexible manner by: changing the interval goals;
considering reference values for the objective functions explicitly out of ITR approach or the sensitivity
analysis of ranges of variation; introducing penalties associated with the objective functions of the
elastic programming problems, using the DM’s preferences in the solution search process; considering
satisfaction thresholds for each coefficient and not for the constraint as a whole.
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